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THE REAL AND THE SYMMETRIC NONNEGATIVE

INVERSE EIGENVALUE PROBLEMS ARE DIFFERENT

CHARLES R. JOHNSON, THOMAS J. LAFFEY, AND RAPHAEL LOEWY

(Communicated by Lance W. Small)

Abstract. We show that there exist real numbers λ1, λ2, . . . , λn that occur
as the eigenvalues of an entry-wise nonnegative n-by-n matrix but do not occur
as the eigenvalues of a symmetric nonnegative n-by-n matrix. This solves a
problem posed by Boyle and Handelman, Hershkowitz, and others. In the
process, recent work by Boyle and Handelman that solves the nonnegative
inverse eigenvalue problem by appending 0’s to given spectral data is refined.

1.

LetMm,n (Mm,n(R)) denote the set of allm-by-n complex (real) matrices, and let
Mm = Mm,m (Mm(R) = Mm,m(R)). The nonnegative inverse eigenvalue problem
(NIEP) asks which sets of n complex numbers λ1, λ2, . . . , λn occur as the eigenvalues
(spectrum) of some entry-wise nonnegative matrix A ∈ Mn. In case the data:
λ1, . . . , λn are real, two natural variations suggest themselves:

(1) The real nonnegative inverse eigenvalue problem (RNIEP) asks which sets of
n real numbers occur as the spectrum of a nonnegative A ∈Mn; and

(2) the symmetric nonnegative inverse eigenvalue problem (SNIEP) asks which
sets of n real numbers occur as the spectrum of a symmetric nonnegative matrix
A ∈Mn.

Each problem remains open in general. Several necessary conditions for NIEP are
known. Suppose that λ1, . . . , λn are complex numbers. For every positive integer
k define the moments

Sk(λ) =
n∑
i=1

λki .(1)

If λ1, . . . , λn are the eigenvalues of an n-by-n nonnegative (positive) matrix A, we
must have Sk(λ) ≥ 0 (Sk(λ) > 0) for every positive integer k, because Sk(λ) is
just the trace of Ak. The Perron-Frobenius theorem implies that max1≤i≤n |λi| is
an eigenvalue of A. (The Perron-Frobenius condition and the nonnegativity of the
moments are not independent; see a remark after the statement of Theorem 2.) We
also have:
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Theorem 1 ([7, 9]). Suppose λ1, . . . , λn are the eigenvalues of an n-by-n nonneg-
ative matrix. Then, for any positive integers k and t we have

nk−1Skt(λ) ≥ St(λ)k.(2)

Note that the nonnegativity of the moments is independent of the order of the
matrix in contrast to the inequalities (2).

If the SNIEP has a solution for given real data, then, of course, the RNIEP
also has a solution. In particular, in case λ1, λ2, . . . , λn ≥ 0, then both problems
trivially have a solution. When at least one of the λ’s is negative, there are several
construction techniques to solve the RNIEP under additional conditions on the λ’s
([13, 3, 4, 8, 10, 11, 12], etc.). Interestingly, these construction techniques actually
solve the SNIEP (or may be modified to do so) under the assumed circumstance.
No example of data has previously been presented for which the RNIEP has a
solution while the SNIEP does not, and in low dimensions (n ≤ 4) the two are
actually equivalent. Thus, it is natural to ask whether RNIEP and SNIEP are
generally equivalent, and various people have raised this question, cf. Question
3.4 in [2], and [6]. Using recent work of [1] on the general NIEP, older results in
[7, 9] and a cone-theoretic dimension argument, we show that the two problems
are different. In the process, we refine the aforementioned work in the case of the
RNIEP and, especially in the case of the SNIEP. Briefly put, according to [1], if
λ1, . . . , λn meet certain necessary conditions, it is possible to append sufficiently
many 0’s: λn+1 = λn+2 = · · · = λm = 0 so that λ1, λ2, . . . , λm are the eigenvalues
of a positive A ∈ Mm. However, m (and, implicitly, rankA) may have to be large
relative to n. (No explicit bounds are given.) Using [7] or [9], it is possible to
give real data that meet the criteria of [1] but for which m must be very large.
If A were symmetric (or, more generally, diagonalizable), rankA would then be
very low relative to m. Using a cone-theoretic dimension argument, we show that
if A ∈ Mm is a sufficiently low rank nonnegative matrix, then there is another
nonnegative matrix A′ ∈ Mm′ , with m′ < m, such that the nonzero part of the
spectrum of A′ agrees with that of A. This rules out the possibility of the SNIEP
having a solution for certain data for which [1] guarantees a solution to the RNIEP.

2.

Nonzero numbers λ1, . . . , λn are said to be the nonzero spectrum ofA ∈Mm, m ≥
n, if the nonzero eigenvalues of A coincide with λ1, . . . , λn, counting multiplicities.
We define an equivalence relation on square complex matrices of all dimensions
as follows: A ∈ Mm and A′ ∈ Mm′ are said to have the same nonzero spectrum,
written

A ∼ A′

if, for each 0 6= λ ∈ C, λ occurs as an eigenvalue of A with the same algebraic
multiplicity (possibly 0) as it does in A′. Recall that, ifB ∈Mm,m1 andC ∈Mm1,m,
then BC ∼ CB.

The following is a specialization of one of the results in [1, p. 313], but is sufficient
for our purposes.

Theorem 2 ([1]). Suppose that λ1, . . . , λn ∈ C are nonzero and that λ1 =
max1≤i≤n |λi|. Then {λ1, . . . , λn} is the nonzero spectrum of an entry-wise pos-
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itive matrix in Mm, for some m ≥ n, if and only if
(a) λ1 > |λi|, i = 2, . . . , n;
(b) Sk(λ) > 0, k = 1, 2, . . . ; and
(c) all coefficients of the polynomial

∏n
i=1(x− λi) are real.

Note that the conditions (a)–(c) are not independent. It is clear from Newton’s
identities that (b) implies (c). It was shown in [5] that if λ1, . . . , λn ∈ C satisfy
Sk(λ) ≥ 0 for k = 1, 2, . . . then there exists i ∈ {1, 2, . . . , n} such that λi = |λi| ≥
|λj | for all j = 1, 2, . . . , n.

Finally, we also make use of the following fact.

Theorem 3 (Carathéodory). Let E be an l-dimensional real vector space, and let
vi ∈ E, i = 1, 2, . . . , p. Let K be the convex cone generated by v1, v2, . . . , vp.
Then each point in K can be expressed as a linear combination, with nonnegative
coefficients, of l or fewer of the vi’s.

3.

Our two main observations are the following.

Theorem 4. If A ∈Mm is an entry-wise nonnegative matrix of rank r, then there
is a nonnegative A′ ∈Mr2 such that A ∼ A′.

Proof. If m ≤ r2, there is nothing to show. Thus, we assume r2 < m. Considering
A as an element of Mm(R), we may write

A = BTC,

in which B,C ∈Mr,m(R). Partition B and C by columns as

B = [b1b2 · · · bm], C = [c1c2 · · · cm].

Now, A ∼ CBT =
∑m
i=1 cib

T
i , but, as the cib

T
i lie in the r2-dimensional vector

space Mr(R), Theorem 3 shows that

CBT =
r2∑
j=1

αjcij b
T
ij ,

for some nonnegative real numbers α1, α2, . . . , αr2 . Let B′ = [bi1bi2 · · · bir2 ], C′ =

[ci1ci2 · · · cir2 ], and Dα = diag(α1, . . . , αr2). Then we have CBT = C′DαB
′T ∼

B′TC′Dα ∈ Mr2(R). The j, k entry of B′TC′Dα is αkb
T
ij
cik ≥ 0, because αk ≥ 0

and bTijcik is the ij , ik entry of A ≥ 0. This completes the proof.

A modification of the above argument yields a stronger statement in the sym-
metric case.

Theorem 5. Let A ∈ Mm be a symmetric, nonnegative matrix of rank r. Then,
there exists a symmetric, nonnegative matrix A′ ∈Mr(r+1)/2 such that A ∼ A′.

Proof. Let q = r(r + 1)/2. If m ≤ q, there is nothing to show, so we may assume
q < m. Via Sylvester’s law, A may be written in inertial form as

A = BTEB,

in which B ∈ Mr,m(R) and E = Ir1 ⊕ −Ir2 , with r1 + r2 = r. Partition B by
columns as B = [b1b2 · · · bm].
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Now, A ∼ BBTE =
∑m
i=1 bi(Ebi)

T, and notice that the bi(EBi)
T lie in a q-

dimensional vector space, namely the subspace of matrices X ∈ Mr(R) such that
XE is symmetric. Theorem 3 then yields BBTE =

∑q
j=1 αjbij (Ebij )

T in which

α1, . . . , αq ≥ 0. Setting B′ = [bi1bi2 · · · biq ] and Dα = diag(α
1/2
1 , . . . , α

1/2
q ), we

have BBTE = B′Dα(B′Dα)TE ∼ DαB
′TEB′Dα ∈ Mq(R), which, as before, is

entry-wise nonnegative.

4.

Suppose λ1, . . . , λn are nonzero complex numbers that meet the conditions of
Theorem 2. Then, Theorem 1 has the effect of placing a lower bound on the
number m − n of 0’s that need be appended to λ1, . . . , λn in order to achieve the
spectrum of a nonnegative m-by-m matrix (as Theorem 2 qualitatively guarantees
is possible). The larger m is, the more likely the necessary conditions of Theorem 1
are to be met. Arbitrarily large numbers of 0’s may need to be added to meet the
conditions of Theorem 1. Theorem 4 shows that if sufficiently many 0’s need be
added, they must have a nonsimple Jordan structure in any realizing nonnegative
matrix A (as the rank cannot be too low). In the event that λ1, . . . , λn are real and
nonzero and we wish to have the realizing nonnegative A symmetric, the Jordan
structure of the added 0’s would have to be simple. Thus, if Theorem 1 says that
too many zeros need be added, there will be no symmetric nonnegative matrix
with nonzero spectrum λ1, . . . , λn, even though there will be a nonsymmetric (even
positive) one if the conditions of Theorem 2 are met. Theorem 5 further quantifies
the limitations on symmetric realizability. As a specific example consider n = 6
and

λ1 =
3
√

51 + ε, λ2 = λ3 = λ4 = 1, and λ5 = λ6 = −3

for “small” ε > 0. It is easy to verify that for any ε > 0, these λ’s meet the
conditions of Theorem 2. However, as S3(λ) = 0 when ε = 0, for any integer m > 6
there is an εm such that for ε = εm, at least m− 6 0’s must be added to meet the
conditions of Theorem 1, and therefore, at least m− 6 0’s must be added to obtain
the realization guaranteed by Theorem 2. Consider now m = 22. For ε = ε22,
Theorem 5 shows there is no symmetric nonnegative matrix (of any dimension)
whose nonzero spectrum is λ1, λ2, . . . , λ6. If there were one, Theorem 5 guarantees
one in M21, a contradiction to Theorem 1. According to Theorem 2, there is
a nonsymmetric nonnegative (even positive) matrix whose nonzero spectrum is
λ1, . . . , λ6; suppose it lies in Mm. Then λ1, . . . , λm, with λ7 = · · · = λm = 0,
provides an example of the difference between the RNIEP and the SNIEP.

5.

The above remarks raise a number of natural further questions. For example,
more needs to be known about the minimum number of 0’s that need be added
to obtain the realization guaranteed by Theorem 2 (and other results in [1]). How
“nonsimple” must the Jordan structure of the added 0’s be? To what extend is
Theorem 1 (or other results in [9]) indicative of the true number of 0’s needed? Is
there a [1]-type result for the SNIEP? What are the additional necessary conditions?
More specifically, can the estimates r2 and r(r + 1)/2, respectively, in Theorems 4
and 5 be sharpened? We do not know examples to show that either is sharp. Is there
any example of n nonzero real numbers λ1, λ2, . . . , λn which are not the spectrum
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of a symmetric, nonnegative matrix in Mn and such that there exist m ≥ n and a
symmetric, nonnegative matrix in Mm whose nonzero spectrum is λ1, λ2, . . . , λn?
For a set of n ≤ 4 real nonzero numbers simple arguments with known techniques
show that adding 0’s cannot help in the SNIEP, but 4 may be too small a value of
n to be indicative.

Author’s note

An earlier version of the results described here was presented in a talk by the
second author at the 8th Haifa Matrix Theory Conference in June 1993.
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