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A Comparing BBP to CPI data to estimate kurtosis

We match a subset of our French CPI data with the prices from 3 French retailers taken from

the Billion Price Project (BPP) dataset, see Cavallo (2015).25 Table 2 offers two comparisons.

The first three columns compare the BPP data from 2 large retailers with our CPI data

for a similar type of outlet: to this end we restrict our dataset to CPI price records in

“hypermarkets”, excluding gasoline. The last two columns compare the BPP data from a

large retailer specialized in electronics and appliances with the CPI data for goods in the

category of appliances and electronic (we use the Coicop nomenclature, collected in outlets

type “hypermarkets”,“supermarkets”, and “large area specialists”). Comparing the values

of kurtosis from both data sets suggests that Ω/ζ ∼= 2, see equation (2). We can apply this

magnitude to the full sample of CPI data, for which no “measurement error-free” counterpart

like the BPP exists (and the feasible correction for heterogeneity is only partial), to obtain a

corrected kurtosis. The number thus obtained for the kurtosis is near 4, so it lays in between

the kurtosis of the Normal and the Laplace distribution.

B Proofs

Proof. (of Proposition 1). Let p(0) = 0. Define x(t) ≡ ||p(t)||2 − nσ2 t for t ≥ 0. Using

Ito’s lemma we can verify that the drift of ||p||2 is nσ2, and hence x(t) is a Martingale. By

the optional sampling theorem x (τ), the process stopped at τ , is also a martingale. Then

25 We are extremely grateful to Alberto Cavallo for producing these statistics for us.
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Table 2: Comparison of the CPI vs. the BPP data in France

CPI category: Hypermarkets Appliances and electronic
Data source: BPP BPP CPI BPP CPI

retailer 1 retailer 5 Hypermarkets retailer 4 Large ret. electr.
duration (months) 8.6 8.1 4.8 6.4 7.2
kurtosis 5.5 4.3 10.1 2.8 6.3

Note: The BPP data are documented in Cavallo (2015). Results were communicated by the author. For
CPI data source is INSEE, monthly price records from French CPI, data from 2003:4 to 2011:4. The sub-
sample in the third column features the CPI records for the outlet type “hypermarkets”. The sub-sample
in the 5th column features the CPI records in the category of “appliances and electronic”, as identified
using the Coicop nomenclature, collected in the following outlets type: “hypermarkets”,“supermarkets”,
and “large area specialists”. Data are standardized within each subsample using Coicop categories.
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Proof. (of Lemma 1). First, note that since two value functions differ by a constant, then

all their derivatives are identical. Hence, if the one for the discount rate and arrival rate of

free adjustment (r + λ, 0) satisfies value matching and smooth pasting, so does the one for

discount rate and arrival rate of free adjustment (r, λ, 0), for the same boundary. Second,

consider the range of inaction, subtracting the value function for the problem with parameters

(r+λ, 0) from the one with parameters (r, λ), and using that all the derivatives are identical,

one verifies that if the Bellman equation holds for the problem with (r + λ, 0), so it does for

the problem with (r, λ). �

Proof. (of Proposition 2 ). The first part is straightforward given Lemma 1 and Proposition 3

in Alvarez and Lippi (2014). The second part is derived from the following implicit expression

determining ȳ (see the proof of Proposition 3 in Alvarez Lippi for the derivation):

ψ =
B

r + λ
ȳ

[
1−
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r+λ

ȳ + ȳ2 + ȳ2
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∑∞
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]
(25)

where κi = (r + λ)−i
∏i

s=1
1

σ2(s+2)(n+2s+2)
. So we can rewrite equation (25) as: ψ = B

r+λ
ȳ

[1− ξ(σ2, r + λ, n, ȳ)] . Since ȳ →∞ as ψ →∞ then we can define the limit:

lim
ψ→∞

ψ

ȳ
=

B

r + λ

[
1− lim

ȳ→∞
ξ(σ2, r + λ, n, ȳ)

]
Simple analysis can be used to show that limȳ→∞ ξ(σ

2, r + λ, n, ȳ) = 0 which gives the

expression in the proposition (see the technical Appendix J in Alvarez, Le Bihan, and Lippi
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(2016) for a detailed derivation). �

Proof. (of Proposition 3 ). To characterize N(∆pi) we write the Kolmogorov back-

ward equation for the expected time between adjustments T (y) which solves: λT (y) =

1 + n σ2 T ′(y) + 2 y σ2 T ′′(y) for y ∈ (0, ȳ) and T (ȳ) = 0 (see the technical Appendix K in

Alvarez, Le Bihan, and Lippi (2016) for details on the solution to this equation). Then the

expected number of adjustments is given by N(∆pi) = 1/T (0), subject to T (0) <∞.

The solution of the second order ODE for T (y) has a power series representation: T (y) =∑∞
i=0 αi y

i , for y ∈ [0, ȳ], with the following conditions on its coefficients {αi}: α1 =
λα0−1
nσ2 , αi+1 = λ

(i+1) σ2 (n+2i)
αi , for i ≥ 1 and where 0 < α0 < 1/λ is chosen so that

0 ≥ αi for i ≥ 1, limi→∞
αi+1

αi
= 0 and 0 =

∑∞
i=0 αi ȳ

i. Moreover, T (0) = α0 is an increasing

function of ȳ since α0 solves:

0 = α0 +
(α0 − 1/λ)

n

(
ȳλ

σ2

)[
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∞∑
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(
i∏
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1
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)(
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Note that for i ≥ 1: αi = αi/ [i! (n/2 + i)] (λ/(2σ2)) , and using the properties of the Γ

function

αi = Γ(n/2)/ (Γ(n/2 + i)
(
λ/(2σ2)

)i
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Solving for α0 and using L ≡ λ/N(∆pi) = λT (0) = λα0. Thus
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(
∞∑
i=1

Γ
(
n
2

)
i! Γ
(
n
2

+ i
) ( λȳ
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i=0

Γ
(
n
2

)
i! Γ
(
n
2

+ i
) ( λȳ
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which is equation (6). �

Proof. (of Proposition 4). We first state a lemma about the density f(y).

Lemma 3 Let f(y;n, λ
σ2 , ȳ) be the density of y ∈ [0, ȳ] in equation (7) satisfying the boundary

conditions. For any k > 0 we have: f
(
y;n, λ

σ2 , ȳ
)

= 1
k
f
(
y
k
;n, λk

σ2 ,
ȳ
k

)
.

Proof. (of Lemma 3 ). Consider the function f(y;n, λ
σ2 , ȳ) solving equation (7) (and

boundary conditions) for given n, λ
σ2 , ȳ. Without loss of generality set σ′ = σ and consider

ȳ′ = ȳ/k and λ′ = λk. Notice that by setting C ′1 = C1k and C ′2 = C2k we verify that the

boundary conditions hold (because C ′1/C
′
2 = C1/C2) and that (7) holds (which is readily

verified by a change of variable). �

We now prove the proposition. Let w (∆pi;n, `, Std(∆pi)) be the density function in
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equation (9). Next we verify equation (10). From the first term in equation (9) notice that

(1− `)ω (∆pi; ȳ) = s (1− `)ω
(
s∆pi; s

2ȳ
)

where the first equality uses the homogeneity of degree -1 of ω(∆pi; y) (see equation (8)).

From the second term in equation (9) for n ≥ 2
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ω(∆pi; y)f(y;n,
λ

σ2
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)
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where the first equality follows from Lemma 3 for k = 1/s2, and the homogeneity of degree

-1 of ω(·, ·). Further we note
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f
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)
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where λ′ȳ′

σ′2
= λȳ

σ2 , so that ` is the same across the two economies. Using z = y s2

s3`

∫ ȳ

0

ω
(
s∆pi; s
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)
f

(
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σ′2
, ȳ′
)
dy = s `

∫ ȳ′

0

ω (s∆pi; z) f

(
z;n,

λ′

σ′2
, ȳ′
)
dz .

where ȳ′ = s2ȳ, which completes the verification of equation (10). �

Proof. (of Proposition 5). For any p ∈ Rn with ||p||2 ≤ ȳ, we write m(p; ȳ, σ, λ) to emphasize

the dependence on (ȳ, σ, λ). A guess and verify strategy can be used to show the following

scaling property of the function m: Let k > 0, then for all p ∈ Rn with ||p||2 ≤ ȳ:

m(kp; k2ȳ, kσ, λ) = km(p; ȳ, σ, λ) and m(p; ȳ, σ
√
k, λk) =

1

k
m(p; ȳ, σ, λ) .

It is straightforward to verify that this function satisfies the ODE and boundary conditions

for m(p) (see e.g. the one in the main text for the n = 1 case). Recall the homogeneity of

f(y) stated in Lemma 3. Finally, note that the density g(p) can be expressed as a function

of the density f(y) given in equation (7) and the density of the sum of n coordinates of

a random variable uniformly distributed on a n dimensional hypersphere of square radius

y, as obtained in Equation 21 in Alvarez and Lippi (2014). These properties applied to

equation (16) establish the scaling property stated in the proposition.

Proof. (of Proposition 6). We first notice that for some special cases a simple analytic proof

is available. These cases concern n = 1 or n =∞ with ` ∈ (0, 1); alternatively, they concern

1 < n <∞ and ` = 0 or ` = 1. See Appendix G for details.

We now assume 1 ≤ n < ∞ and 0 < ` < 1 and prove that M′(0) = Kur(∆pi)
6N(∆pi)

. The proof
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is structured as follows. First we derive an analytic expressions for Kur(∆pi)
6N(∆pi)

and for M′(0).

Each expression is a power series that involves only two parameters: n and `. Verifying the

equality is readily done numerically to any arbitrary degree of accuracy. A simple Matlab

code for the verification, called solveMp0.m, is available on our websites.

We first show that Kur(∆pi)
6N(∆pi)

can be written as the right hand side of equation (19). This

is done in two steps. First notice that Kur(∆pi)
N(∆pi)

=(1/λ)L(φ, n)Kur (∆pi) where L is given in

Proposition 3. The second step is to derive an analytic expression for the Kur (∆pi). We

notice that

Kur (∆pi) =
E (∆p4

i (τ) | y(0) = 0)

V ar (∆pi)
2 =

Q(0)
σ4

N(∆pi)
2

=
(λ/σ2)

2
Q(0)

(L(φ, n))2

where τ is the stopping time associated with a price change, and where Q(y) is the expected

fourth moment at the time of adjustment τ conditional on a current squared price gap y, i.e.

Q(y) = E
(
∆p4

i (τ) | y(0) = y
)

=
3

(n+ 2)n
E
(
y2(τ)|y(0) = y

)
where y(τ) is the value of the squared price gap at the stopping time. Notice that for y ∈ [0, ȳ]

the function Q(y) obeys the o.d.e.:

λQ(y) = λ
3y2

(n+ 2)n
+Q′(y)nσ2 +Q′′(y) 2σ2y

with boundary condition Q(ȳ) = 3ȳ2

(n+2)n
. The solution of Q has a power series representation

which is easily obtained by matching coefficients and using the boundary conditions. Using

this power series in the expression for Kur(∆pi)
N(∆pi)

obtained in the first step gives the expression

on the right hand side of equation (19). See the technical Appendix L in Alvarez, Le Bihan,

and Lippi (2016) for details on the algebra.

Next we derive an expression for M′(0), which holds for all 1 ≤ n <∞ and 0 ≤ ` ≤ 1:

Lemma 4 Let M(·;n) be the area under the IRF of output and f(·;n) be the density of the

invariant distribution for an economy with n products and parameters (ȳ, λ, σ2). Let Tn+2(y)

be the expected time until either y(t) hits ȳ or that until there is a free adjustment opportunity,

whichever happens first, starting at y(0) = y, for an economy with n + 2 products and the

same parameters (ȳ, λ, σ2). Then

M′(0;n) =
1

ε

∫ ȳ

0

[
Tn+2(y) +

2

n
T ′n+2(y) y

]
f(y;n) dy . (26)
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The function Tn(y) is characterized in the proof of Proposition 3 where we give an explicit

power series representation for this function. The proof of Lemma 4 uses a characterization

of m(p) in terms of a two dimensional vector (z, y), where z is the sum of the n coordinates

of p. The function m(z, y) solves a PDE whose solution can be expressed in terms of Tn(y)

(see the technical Appendix M in Alvarez, Le Bihan, and Lippi (2016) for details).

To compute the right hand side of equation (26), we separately characterize Tn+2(y) +
2
n
T ′n+2(y) y and f(y;n). Using the power series representation of Tn+2(y) (see proof of Propo-

sition 3) it is immediate to obtain a power series representation of Tn+2(y)+ 2
n
T ′n+2(y) y. This

gives (see the technical Appendix N in Alvarez, Le Bihan, and Lippi (2016) for details):

Tn+2(y) +
2

n
T ′n+2(y) y =

∑∞
i=1

Γ(n2 +1)
i! Γ(n2 +i+1)

[(
λȳ

2σ2

)i − (1 + 2i
n

) (
λy
2σ2

)i]
∑∞

i=0

Γ(n2 +1)
i! Γ(n2 +i+1)

(
λȳ

2σ2

)i (27)

For f we use the characterization in equation (7) in term of modified Bessel functions of the

first and second kind (see the technical Appendix O in Alvarez, Le Bihan, and Lippi (2016)

for a step-by-step derivation). These functions have a power series representation, which we

use to solve for the two unknown constants C1, C2. This gives:

f(y) =

( λy2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λy
2σ2

)i(
λȳ
2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λȳ
2σ2

)i −
∑∞

i=0 βi,1−n2
(
λy
2σ2

)i∑∞
i=0 βi,1−n2

(
λȳ
2σ2

)i
 / (28)

( λȳ2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

ȳ
i+n/2

(
λȳ
2σ2

)i
(
λȳ
2σ2

)(n2−1) ∑∞
i=0 βi,n2−1

(
λȳ
2σ2

)i −
∑∞

i=0 βi,1−n2
ȳ
i+1

(
λȳ
2σ2

)i∑∞
i=0 βi,1−n2

(
λȳ
2σ2

)i


where the two sequence of coefficients β are defined in term of the Γ function as

βi,n
2
−1 ≡

1

i! Γ(i+ n/2)
and βi,1−n

2
≡ 1

i! Γ(i+ 2− n/2)
for i = 0, 1, 2, ... .

The expression in equation (28) holds for all real numbers n ≥ 1, except when n is an even

natural number (due to a singularity of the power expansion of the modified Bessel function

of the second kind). Yet the expression is continuous in n.

Finally, we establish an equivalence to verify equation (19):

Lemma 5 The equality between equation (26) and the ratio Kur(∆pi)/(6N(∆pi)), as from
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equation (19), is equivalent to the following equality

∞∑
j=1

γj
1

1+j∑∞
s=0 γs

1
1+s

j =
∞∑
j=1

γj

(
1 +

2 j

n

)
× (29)([∑∞

i=0 ξi
1

n
2

+i+j∑∞
i=0 ξi

−
∑∞

i=0 ρi
1

i+1+j∑∞
i=0 ρi

] / [∑∞
i=0 ξi

1
n
2

+i∑∞
i=0 ξi

−
∑∞

i=0 ρi
1
i+1∑∞

i=0 ρi

])
,

where the sequences {γj, ξj, ρj}∞j=0 are defined as

γj ≡
Γ
(
n
2 + 1

)
j! Γ

(
n
2 + 1 + j

) ( λȳ

2σ2

)j
, ξj ≡

1
j! Γ

(
j + n

2

) ( λȳ

2σ2

)( n
2 +j−1)

and ρj ≡
1

j! Γ
(
j + 2− n

2

) ( λȳ

2σ2

)j
.

The derivation of equation (29) uses equation (27) and equation (28) to compute equa-

tion (26). Verifying equation (29) is straightforward since both sides are simple functions

of convergent power series, which are arbitrarily well approximated by a finite sum. As

explained above, for even values of n this expression should be understood as the limit for

n→ 2 k (or, numerically, as the sum for values of n close to 2 k for k ∈ N and k ≥ 1). �

Proof. (of Proposition 7). The idea is to show that for any n and ` we have

Kur(∆pi;µ) = Kur(∆pi;−µ) , N(∆pi)(µ) = N(∆pi)(−µ) , M(δ;µ) = −M(−δ;−µ) (30)

for all (µ, δ) in a neighborhood of (0, 0). Note that differentiating the last expression with

respect to δ, and evaluating it at δ = 0 we obtain that M′(0;µ) = M′(0;−µ). Hence we

have that Kur(∆pi; ·), N(∆pi)(·) and M′(0; ·) are symmetric functions of inflation around

µ = 0. Hence, if they are differentiable, they must have zero derivative with respect to

inflation at zero inflation. The symmetry in equation (30) follows from the symmetry on the

firm’s problem with respect to positive and negative drift. To establish this symmetry we

proceed in two steps. First we analyze the symmetry of the decision problem for the firm of

Section 3.2. Second, we consider the approximation to the GE problem for values µ 6= 0. All

the arguments follow a guess and verify strategy of a simple nature but with heavy notation.

The technical Appendix S in Alvarez, Le Bihan, and Lippi (2016) provides the details of the

proof.

Proof. (of Proposition 8.) The proof proceeds by verification. We analyze the condition

that ensures that every firm with ||p||2 = y ≤ ȳ before the shock will find that ||p− ιδ||2 ≥ ȳ

after the shock, where ι is a vector of ones. See the technical Appendix Q in Alvarez, Le

Bihan, and Lippi (2016) for a detailed derivation.

Proof. (of Lemma 2) To prove the lemma we let z(t) = x4(t) and y(t) = x2(t). We use Ito’s
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lemma to obtain:

dy(t) = σ(t)2 dt + 2x(t)σ(t)dW (t) or y(t) =

∫ t

0

σ(s)2 ds +

∫ t

0

2x(s)σ(s) dW (s)

and taking expected values: E0 [y(T )] = E0

[∫ T
0
σ(t)2 dt

]
=
∫ T

0
E0 [σ(t)2] dt . Likewise

dz(t) = 6 x2(t)σ(t)2 dt + 4x3(t)σ(t)dW (t)

then E0 [z(T )] = 6 E0

[∫ T
0
σ(t)2 y(t) dt

]
= 6

∫ T
0

E0 [σ(t)2 y(t)] dt. Now note that:

E0

[
σ(t)2 y(t) dt

]
= E0

[
σ(t)2

(∫ t

0

σ(s)2 ds +

∫ t

0

2x(s)σ(s) dW (s)

)]

and using the independence of {W (t)} and {σ(t)} we have: E0 [σ(t)2 y(t)] = E0

[∫ t
0
σ(t)2 σ(s)2 ds

]
.

Then, replacing this expression and noticing that K(T ) = E0 [z(T )] / (E0 [y(T )])2, we obtain

the desired result. �

Proof. (of Proposition 9. ) Define the probability that u(t) = 1 if u(0) = i as P1 (t |i ), or:

P1 (t | i ) ≡ Pr {u(t) = 1 | u(0) = i} for i ∈ {0, 1} . These probabilities are given by:

P1 (t | 0 ) =
θ0

θ0 + θ1

[
1− e−(θ0+θ1)t

]
, P1 (t | 1 ) =

θ0

θ0 + θ1

[
1 +

θ1

θ0

e−(θ0+θ1)t

]
.

We now use these probabilities to compute two expressions that appear in equation (21).

(see the technical Appendix T in Alvarez, Le Bihan, and Lippi (2016) for the details on the

derivation). The first expression is the expected second moment v(t) ≡ E0 [σ(t)2] which is

given by

v(t) = E0

[
σ(t)2

]
= σ2

0

θ1

θ1 + θ0

+ σ2
1

θ0

θ0 + θ1

. (31)

Notice that this expected variance is independent of the horizon t. The second expression is

k(t, s) ≡ E0 [σ(t)2 σ(s)2 ], or the expected fourth moment over an horizon t conditional on

σ(t). This is given by

k(t, s) =

[
σ2

0

θ1

θ1 + θ0

+ σ2
1

θ0

θ1 + θ0

]2

+
(
σ2

1 − σ2
0

)2 θ0θ1

(θ0 + θ1)2
e−(θ0+θ1)(t−s) (32)
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Using equation (31) and equation (32) into equation (21) gives

K(T ) = 3 + 6
(σ2

1 − σ2
0)

2 θ0θ1
(θ0+θ1)2[

σ2
0

θ1
θ1+θ0

+ σ2
1

θ0
θ1+θ0

]2

[
T (θ0 + θ1)− 1 + e−(θ1+θ0)T

]
(θ1 + θ0)2 T 2

.

Without loss of generality, since the expression is homogeneous of degree zero on (σ1, σ0), we

can set σ1 = 1. We can also use θ = (1/2)(θ1+θ0). Finally for any θ we can let s = θ0/(θ0+θ1)

to obtain equation (22). �

Proof. ( of Proposition 10. ) First we compute the frequency of adjustment. Let Ti(p)

denote the expected time to hit a barrier conditional on the state p. The Kolmogorov

backward equation gives the following system of ODEs for the expected times:θ0(T0 − T1) = 1 + T ′′0
σ2

0

2

θ1(T1 − T0) = 1 + T ′′1
σ2

1

2

which is symmetric Ti(p) = Ti(−p) with boundary condition Ti(p̄) = 0. The solution isT0(p) = (θ0+θ1)(p̄2−p2)

σ2
0θ1+σ2

1θ0
+

σ2
1θ0(σ2

0−σ2
1)

(σ2
0θ1+σ2

1θ0)2

(
eχp+e−χp

eχp̄+e−χp̄
− 1
)

T1(p) = (θ0+θ1)(p̄2−p2)

σ2
0θ1+σ2

1θ0
+

σ2
0θ1(σ2

1−σ2
0)

(σ2
0θ1+σ2

1θ0)2

(
eχp+e−χp

eχp̄+e−χp̄
− 1
)

where χ ≡
√

2
σ2

0θ1+σ2
1θ0

σ2
0σ

2
1

This implies that the average time between price adjustment is given by

1

Na

=
T0(0)θ1 + T1(0)θ0

θ0 + θ1

=
(θ0 + θ1)p̄2

σ2
0θ1 + σ2

1θ0

+
θ0θ1(σ2

1 − σ2
0)2

(θ0 + θ1)(σ2
0θ1 + σ2

1θ0)2

(
1− 2

eχp̄ + e−χp̄

)
or, rewriting in terms of the fundamental parameters that pin down K(T ), namely θ, s, ξ,

and the implied parameter ρ̂ = θ1
θ0

= 1−s
s

we have equation (23).

Now we turn to computing the cumulative output effect. Use the approximation

M(δ) ≈ δ M′(0) =
2δ

ε

∫ p̄

0

(m0(p)g′0(p) +m1(p)g′1(p)) dp

Next we solve for the terms in the equation. First consider the ODE that characterizes mi(p):θ0(m0 −m1) = −p+
σ2

0

2
m′′0

θ1(m1 −m0) = −p+
σ2

1

2
m′′1
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The function must satisfy mi(p) = −mi(−p) and the boundaries mi(p̄) = 0. The solution ism0(p) =
(θ0+θ1) p(p2−p̄2)

3(σ2
0θ1+σ2

1θ0)
+

σ2
1θ0(σ2

1−σ2
0)

(σ2
0θ1+σ2

1θ0)2

(
eχp−e−χp
eχp̄−e−χp̄ p̄− p

)
where χ ≡

√
2
σ2

0θ1+σ2
1θ0

σ2
0σ

2
1

m1(p) =
(θ0+θ1) p(p2−p̄2)

3(σ2
0θ1+σ2

1θ0)
+

σ2
0θ1(σ2

0−σ2
1)

(σ2
0θ1+σ2

1θ0)2

(
eχp−e−χp
eχp̄−e−χp̄ p̄− p

)
Finally we compute the invariant distribution of price gaps. Let gi(p) be the density for

price gaps in state i which must be symmetric around p = 0, zero at the boundary: gi(p̄) = 0.
σ2

0

2
g′′0(p) = θ1g1(p)− θ0g0(p)

σ2
1

2
g′′1(p) = θ0g0(p)− θ1g1(p)

For p ∈ [−p̄, p̄], the shape of the densities is linear triangular, with density functionsg0(p) = θ1
θ0+θ1

p̄−|p|
p̄2

g1(p) = θ0
θ0+θ1

p̄−|p|
p̄2

�

C On the implied cost of price adjustment

In this section we give a characterization of the model implications for the size of the menu

cost, i.e. a mapping between observable statistics and the value of ψ/B or ψ (we also discuss

how to measure B). We consider two measures for the cost of price adjustment: the first one

is the cost of a single price adjustment as a fraction of profits: ψ/n. Recall that ψ is the cost

that a firm must pay if it decides to adjust all prices instantaneously (i.e. without waiting for

a free adjustment). Measuring this cost as a fraction of profits transforms these magnitudes

into units that have an intuitive interpretation. The second measure is the average flow cost

of price adjustment given by: N(∆pi)
ψ
n

(1− `). This cost measures the average amount of

resources that the firm pays to adjust prices per period. The latter measure is useful because

it relates more directly to what has been measured in the data by Levy et al. (1997); Zbaracki

et al. (2004), namely the “average” cost of a price adjustment. The next proposition analyzes

the mapping between the scaled menu cost ψ/n , and B, `, n, N(∆pi) and V ar(∆pi).

Proposition 11 Fix the number of products n ≥ 1 and let r ↓ 0. There is a unique triplet

(σ2, λ, ψ) consistent with any triplet ` ∈ [0, 1], V ar(∆pi) > 0 and N(∆pi) > 0. Moreover,
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fixing any value `, the menu cost ψ ≥ 0 can be written as:

ψ

n
= B

V ar(∆pi)

N(∆pi)
Ψ (n , `) (33)

where Ψ is only a function of (n, `). For all n ≥ 1 the function Ψ(n, ·) satisfies:

lim
`→0

Ψ (n, `) =
n

2 (n+ 2)
, lim

`→1
Ψ (n, `) =∞ , lim

`→1
Ψ (n, `) (1− `) = 0 , (34)

lim
`→1

Ψ(n′, `)/n′

Ψ(n, `)/n
≤ 1 for n′ ≥ n, and lim

n→∞

Ψ(n, `)/n

Ψ(1, `)/1
→ 0 as `→ 1 . (35)

Equation (33) shows that for any fixed n ≥ 1 and ` ∈ [0, 1] the menu cost ψ is proportional

to the ratio V ar(∆pi)/N(∆pi). Second, equation (33) shows that the menu cost is propor-

tional to B, which measures the benefits of closing a price gap. The parameter B is related

to the constant demand elasticity faced by firms η (see Section 3), so that B = η(η − 1)/2,

which can be written in terms of the (net) markup over marginal costs m ≡ 1/(η − 1) so

that B = (1 + m)/(2m2).26 The last expression is useful to calibrate the model using em-

pirical estimates of the markup such as the ones by Christopoulou and Vermeulen (2012):

the estimated markups average around 28% for the US manufacturing sector, and around

36% for market services (slightly smaller values are obtained for France, see their Table 1).27

A similar value for the US, namely a markup rate of about 33%, is used by Nakamura and

Steinsson (2010).

The left panel of Figure 6 illustrates the comparative static effect of ` and n on the implied

menu cost, fixing B V ar(∆pi)/ N(∆pi), i.e. it plots the function Ψ(n, `). Fixing a value of n

it can be seen that the menu cost ψ/n is increasing in `. Indeed equation (34) shows that as

`→ 1, the implied menu cost diverges to +∞. On the other hand, for ` = 0 and n = 1, our

version of Golosov-Lucas ’s model, the menu cost attains its smallest (strictly positive) value.

Fixing ` and moving across lines shows that the implied fixed cost ψ/n is not monotone in

the number of products n. Indeed, as stated in equation (34) for a very small share ` the

values of ψ/n are increasing in n. On the other hand, for larger value of the share `, the

order of the implied fixed cost is reversed.

The model also has clear predictions about the per period (say yearly) cost of price ad-

justments borne by the firms: (1−`)N(∆pi)ψ/n. In spite of the fact that the cost of a single

deliberate price adjustment diverges as `→ 1, the total yearly cost of adjustment converge to

26Nakamura and Steinsson (2010) notice that lower markups (higher values of demand elasticity) η must
imply higher menu costs, as shown by equation (33). Footnote 14 in their paper discusses evidence on the
markup rates across several microeconomic studies and macro papers.

27 The evidence for the US services is consistent with the gross margins, based on accounting data, reported
in the Annual Retail Trade Survey by the US Census (see http://www.census.gov/retail/).
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Figure 6: Implied cost of price adjustment

Cost of one price adjustment ψ/n (as % of profits) Yearly cost of adjustment (as % of revenues)
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All economies in the figures feature Std(∆pi) = 0.10 and a markup of 25%. For those in the left panel
we set N(∆pi) = 1.5.

zero continuously. This can be seen in the right panel of Figure 6. A simple transformation

gives the yearly cost of price adjustments as a fraction of revenues: (1−`)N(∆pi) ψ/n
η

, where the

scaling by η transforms the units from fraction of profits into fraction of revenues.28 This

statistic is useful because it has empirical counterparts, studied e.g. by Levy et al. (1997).

Using equation (33) and the previous definition for the markup yields

Yearly costs of price adjustment

Yearly revenues
=

1

2

V ar(∆pi)

m
(1− `) Ψ (n , `) (36)

Figure 6 plots the two cost measures in equation (33) and (36) as functions of `, n for

an economy with N(∆pi) = 1.5, Std(∆pi) = 0.10 and a markup m ≈ 25% (i.e. B = 10).

We see this parametrization as being consistent with the US data on price adjustments,

markups, and the size distribution of price changes discussed above. The figure illustrates

how observations on the costs of price adjustments can be used to parametrize the model.

Levy et al. (1997) and Dutta et al. (1999) (Table IV and Table 3, respectively) document

that for multi-product stores (a handful of supermarket chains and one drugstore chain) the

average cost of price adjustment is around 0.7 percent of revenues. For an economy with

n = 10 (a reasonable parametrization to fit the size-distribution of price changes) the right

panel of the figure shows that the model reproduces the yearly cost of 0.7% of revenues when

28Since R = ηΠ where R is revenues per good and Π profits per good.
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the fraction of free adjustments ` is around 60%. The left panel in the figure indicates that

at this level of ` the cost of one price adjustment is around 5% of profits.

Proof. (of Proposition 11). To obtain the expression in equation (33) we use the character-

ization of ` = L
(
λ ȳ
nσ2 , n

)
of Proposition 3, it is equivalent to fix a value of φ ≡ λ ȳ

nσ2 . We let

the optimal decision rule be ȳ (ψ/B, σ2, r + λ, n) so that we have:

ȳ

(
ψ

B
, σ2, r + λ, n

)
λ

nσ2
= φ

To be consistent with V ar(∆pi) and N(∆pi) we have, using Proposition 1 and ` = L(φ, n):

N(∆pi) = λ/L(φ, n) and
λ

σ2
= L(φ, n)/V ar(∆pi) .

Thus, after taking r ↓ 0 and using the expression above we can write:

ȳ

(
ψ

B
, N(∆pi)V ar(∆pi) , `N(∆pi) , n

)
`

n V ar(∆pi)
= L−1(`;n)

Fixing n and ` and computing the total differential for this expression with respect to

(ψ/B,N(∆pi), V ar(∆pi)), and denoting by ηψ, ησ2 , ηλ the elasticities of ȳ with respect to

ψ/B, σ2, λ we have:

ηψ ψ̂ + ησ2 (N̂(∆pi) + V̂ ar(∆pi)) + ηλ N̂(∆pi) = V̂ ar(∆pi)

where a hat denotes a proportional change. Using Proposition 3-(iv) in Alvarez and Lippi

(2014) and Lemma 1 we have that these elasticities are related by: ηλ = 2ηψ − 1 and ησ2 =

1−ηψ .Thus ηψ ψ̂+(1−ηψ) (N̂(∆pi)+V̂ ar(∆pi))+(2ηψ−1) N̂(∆pi) = V̂ ar(∆pi). Rearranging

and canceling terms: ηψ ψ̂ + ηψ N̂(∆pi) − ηψV̂ ar(∆pi) = 0. Dividing by ηψ we obtain that

ψ̂ = V̂ ar(∆pi) − N̂(∆pi). Additionally, since ȳ is a function of ψ/B, then we can write

ψ/n = B (V ar(∆pi)/N(∆pi)) Ψ(n, `) for some function Ψ(n, `).

That ψ →∞ as `→ 1 follows because L(φ, n)→ 1 as φ→∞ and because, by Proposition

3-(i) in Alvarez and Lippi (2014), ȳ is increasing in ψ and has range and domain [0,∞). For

λ = 0 and N(∆pi) > 0 we obtain: ψ
n

= B V (∆p)
N(∆pi)

n
2 (n+2)

.This follows from using the

square root approximation of ȳ for small ψ (λ + r)2, the expression for N(∆pi) = nσ2/ȳ

and Proposition 1, i.e. N(∆pi)V ar(∆pi) = σ2. To obtain the expression for Ψ(n, 0) we use

Proposition 6 in Alvarez and Lippi (2014) where it is shown that for λ = 0 then Kur (∆pi) =

3n/(n+ 2).

54



D The CPI response to a monetary shock

To compute the IRF of the aggregate price level we analyze the contribution to the aggregate

price level by each firm. Firms start with price gaps distributed according to g, the invariant

distribution. Then the monetary shock displaces them, by subtracting the monetary shock δ

to each of them. After that we divide the firms in two groups. Those that adjust immediately

and those that adjust at some future time. Note that, for each firm in the cross section,

it suffices to keep track only of the contribution to the aggregate price level of the first

adjustment after the shock because the future contributions are all equal to zero in expected

value.

Let g (p;n, λ/σ2, ȳ) be the density of firms with price gap vector p = (p1, ..., pn) at time

t = 0, just before the monetary shock, which corresponds to the invariant distribution with

constant money supply. The density g equals the density f of the steady state square norms

of the price gaps given by Lemma 3 evaluated at y = p2
1 + · · ·+p2

n times a correction factor:29

g

(
p1, ..., pn ;n,

λ

σ2
, ȳ

)
= f

(
p2

1 + · · ·+ p2
n ;n,

λ

σ2
, ȳ

)
Γ (n/2)

πn/2 (p2
1 + · · ·+ p2

n)
(n−2)/2

(37)

To define the impulse response we introduce two extra pieces of notation. First we let

{(p̄1(t, p), . . . , p̄n(t, p))} the process for n independent BM, each one with variance per unit

of time equal to σ2, which at time t = 0 start at p, so p̄i(0, p) = pi. We also define the

stopping time τ(p), also indexed by the initial value of the price gaps p as the minimum of

two stopping times, τ1 and τ2(p). The stopping time τ1 denotes the first time since t = 0 that

jump occurs for a Poisson process with arrival rate λ per unit of time. The stopping time

τ2(p) denotes the first time that ||p̄(t, p)||2 > ȳ. Thus τ(p) is the first time a price change

occurs for a firm that starts with price gap p at time zero. The stopped process p̄(τ(0), p) is

the vector of price gaps at the time of price change for such a firm.

The impulse response for the aggregate price level can be written as:

P(t, δ;σ, λ, ȳ) = Θ(δ;σ, λ, ȳ) +

∫ t

0

θ(δ, s;σ, λ, ȳ) ds , (38)

where Θ(δ) gives the impact effect, the contribution of the monetary shock δ to the aggregate

price level on impact, i.e. at the time of the monetary shock. The integral of the θ’s gives the

remaining effect of the monetary shock in the aggregate price level up to time t, i.e. θ(δ, s)ds

is the contribution to the increase in the average price level in the interval of times (s, s+ds)

29See Section 5 of Alvarez and Lippi (2014) for this result and the technical Appendix P in Alvarez, Le
Bihan, and Lippi (2016) for a derivation.
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from a monetary shock of size δ. Figure 3 displays several examples of impulse responses

(the figures plots output, i.e. (δ−P)/ε). The functions θ and Θ are readily defined in terms

of the density g, the process {p̄} and the stopping times τ :

Θ(δ;σ, λ, ȳ) ≡
∫
||p(0)−ιδ||≥ȳ

(
δ −

∑n
j=0 pj(0)

n

)
g

(
p(0);n,

λ

σ2
, ȳ

)
dp1(0) · · · dpn(0)

and θ(δ, t;σ, λ, ȳ) is the density, i.e. the derivative with respect to t of the following expression:

∫
||p(0)−ιδ||<ȳ

E

[
−
∑n

j=0 p̄j (τ(p), p)

n
1{τ(p)≤t}

∣∣∣ p = p(0)− ιδ

]
g

(
p(0);n,

λ

σ2
, ȳ

)
dp1(0) · · · dpn(0)

where ι is a vector of n ones. This expression takes each firm that has not adjusted prices on

impact, i.e. those with p(0) satisfying ||p(0)− ιδ|| < ȳ, weights them by the relevant density

g, displaces the initial price gaps by the monetary shock, i.e. sets p = p(0) − ιδ, and then

looks a the (negative) of the average price gap at the time of the first price adjustment, τ(p),

provided that the price adjustment has happened before or at time t. We make 3 remarks

about this expression. First, price changes equal the negative of the price gaps because price

gaps are defined as prices minus the ideal price. Second, we define θ as a density because,

strictly speaking, there is no effect on the price level due to price changes at exactly time t,

since in continuous time there is a zero mass of firms adjusting at any given time. Third, we

can disregard the effect of any subsequent adjustment because each of them has an expected

zero contribution to the average price level. Fourth, the impulse response is based on the

steady-state decision rules, i.e. adjusting only when y ≥ ȳ even after an aggregate shock

occurs.

Given the results in Proposition 3 -Proposition 4 we can parametrize our model either

in terms of (n, λ, σ2, ψ/B) or instead parametrize it, for each n, in terms of the implied

observable statistics (N(∆pi), Std(∆pi), `). These propositions show that this mapping is

indeed one-to-one and onto. We refer to ` as an “observable” statistic, because we have

shown that the “shape” of the distribution of price changes depends only on it.

Proposition 12 Consider an economy whose firms produce n products and with steady state

statistics (N(∆pi), Std(∆pi), `). The cumulative proportional response of the aggregate price

level t ≥ 0 periods after a once and for all proportional monetary shock of size δ can be

obtained from the one of an economy with one price change per period and with unitary

standard deviation of price changes as follows:

P (t , δ ; N(∆pi) , Std(∆pi)) = Std(∆pi) P
(
tN(∆pi) ,

δ

Std(∆pi)
; 1 , 1

)
. (39)
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This proposition extends the result of Proposition 8 in Alvarez and Lippi (2014) to the

case of ` ≡ λ/N(∆pi) > 0.30 The proof proceeds by verification. It is made of three parts.

First we introduce a discrete-time, discrete-state version of the model. Second we show the

scaling of time with respect to Na , and finally the homogeneity of degree one with respect

to Std(∆pi) and δ. The step by step passages of the proof are reported in the technical

Appendix P in Alvarez, Le Bihan, and Lippi (2016).

The proposition establishes that the shape of the impulse response is completely deter-

mined by 2 parameters: n and `, whose comparative static is explored in Figure 3. Economies

sharing these parameters but differing in terms of N(∆pi) or Std(∆pi) are immediately an-

alyzed by rescaling the values of the horizontal and/or vertical axis. In particular, a higher

frequency of price adjustments will imply that the economy “travels faster” along the im-

pulse response function (this is the sense of the rescaling the horizontal axis). Instead, the

effect of a larger dispersion of price changes is seen by rescaling the monetary shock δ by

Std(∆pi) and by a proportional scaling of the vertical axis. A further simplification to the

last result is given by next corollary, showing that for small values of the monetary shocks

one can overlook the scaling by Std(∆pi) so that, for a given n and ` determining the shape,

the most important parameter is the frequency of price changes N(∆pi):

Corollary 1 For small monetary shocks δ > 0, the impulse response is independent of

Std(∆pi). Differentiating equation (39) gives:

P (t , δ ; N(∆pi) , Std(∆pi) ) = δ
∂

∂δ
P (tN(∆pi) , 0 ; 1 , 1 ) + o(δ)

for all t > 0 and, since f(ȳ) = 0, then the initial jump in prices can be neglected, i.e.:

P (0 , δ ; N(∆pi) , Std(∆pi) ) ≡ Θn,` (δ;Std (∆pi)) = o(δ) .

E An economy with heterogenous sectors

Assume that there are S sectors, each with an expenditure weight e(s) > 0, and with different

parameters so that each has N(s) price changes per unit of time, and a distribution of price

changes with kurtosis Kur(s). In this case, after repeating the arguments above for each

sector and aggregating, we obtain that the area under the IRF of aggregate output for a small

30The proof in Alvarez and Lippi is constructive in nature, exploiting results from applied math on the
characterization of hitting times for brownian motions in hyper-spheres, which is not longer valid for λ > 0.
Here we use a different strategy which relies on limits of discrete-time, discrete state approximations.
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monetary shock δ is

M(δ) ∼= δM′(0) =
δ

6 ε

∑
s∈S

e(s)

N(s)
Kur(s) =

δ

6 ε
D
∑
s∈S

d(s)Kur(s) (40)

where D is the expenditure-weighted average duration of prices D ≡
∑

s∈S
e(s)
N(s)

and the

d(s) ≡ e(s)
N(s)D

are weights taking into account both relative expenditures and durations. In

the case in which all sectors have the same durations then d(s) = e(s) andM is proportional

to the kurtosis of the standardized data. Likewise, the same result applies if all sectors have

the same kurtosis.31 In general, if sectors are heterogenous in the durations (or expenditures),

then the kurtosis of the sectors with longer duration (or expenditures) receive a higher weight

in the computation of M. For the French data, computation of the duration weighted

kurtosis in equation (40) increases the estimated cumulative effect by about 15%, reflecting

a correlation between the kurtosis and the duration of price changes.

F Frequency of price changes in Retail vs. Wholesale

In this appendix we document that wholesale prices are as sticky as retail prices for a broad

cross section of products sold in grocery stores. For wholesale price we use PromoData,

a dataset on manufacturer prices for packaged foods from grocery wholesalers (the largest

wholesaler in each location). PromoData provides the price per case charged by the man-

ufacturer to the wholesaler for a UPC in a particular day, for 48 markets, over the period

2006-2012. The data includes information on almost 900 product categories and more than

500,000 UPC×Market products, and contain information on both base prices and “trade

deals” (discounts offered to the grocery wholesalers to encourage promotions). We compute

the frequency of price changes using base prices (excluding trade deals) as well as including

trade deals.32

The frequency of price adjustment at the retail level is computed using the IRI Symphony

data. The dataset contains weekly scanner price and quantity data covering a panel of

stores in 50 metropolitan areas from January 2001 to December 2011, with multiple chains

of retailers for each market. The dataset contains around 2.4 billion transactions from over

31The effect of heterogeneity in N(∆pi) on aggregation is well known, so that D is different from the
average of N(∆pi)’s, see for example Carvalho (2006) and Nakamura and Steinsson (2010).

32In PromoData firms report only the dates in which their prices change. We thus assume that the price is
constant between reporting dates. We discard the last price (uncompleted spell) and consider products with
at least two price changes. The frequency of adjustment is computed at the weekly level for comparability
with the retail data sets (even though our data may have a higher frequency). The frequency of adjustment
is computed for each product (i.e. UPC x Market given that the data is not at the store level) and then
aggregated using equal product weights.

58



Table 3: Weekly Frequency of Price Adjustment - Wholesale vs Retail Level

Data Period Frequency excl. Sales Frequency
All Products

PromoData (Wholesale) 2006-2012 0.09 0.14
IRI Symphony (Retail) 2001-2011 0.11 0.22

All Products (2006 - 2011)
PromoData (Wholesale) 2006-2011 0.08 0.14
IRI Symphony (Retail) 2006-2011 0.12 0.23

Coffee
PromoData (Wholesale) 2006-2012 0.17 0.20
IRI Symphony (Retail) 2001-2011 0.10 0.19
RMS 2006-2012 - 0.16

The table reports the weekly frequency of price adjustment using three datasets: Nielsen’s PromoData, IRI
Symphony, and Nielsen’s Retail Scanner (RMS) data. The frequency of adjustment is computed at the
product level and then aggregated across products using equal weights.

170,000 UPCs and around 3,000 stores. Goods are classified into 31 general product categories

and a sales flag is provided when an item is on discount (thus we compute the frequency

both including and excluding sales as in Section 2.2). To correct for measurement error

(due to composition and time aggregation) we only retain price changes within the interval

0.1 ≤ |∆pi| ≤ 100 · log(10/3). Finally, to compare with and extend Nakamura and Steinsson

(2008), we compute the frequency of price changes for coffee using data on retail prices and

sales from the Retail Scanner Data (RMS) by Nielsen. Our data is at the week-product-

store level for the period of 2006-2013. The structure of the dataset is the same as the IRI

Symphony data except that the RMS does not provide a sales flag, and covers about 200

cities.

Table 3 summarizes the main findings of this measurement exercise. The weekly frequency

of price adjustment (sales excluded) for the entire wholesale data (PromoData) is 0.09 per

week which compares with a mean frequency of adjustment of about 0.11 per week in the

retail (IRI) data. Frequencies of comparable magnitude are detected across samples from

different segments of the distribution chain, as well as for different items (coffee and beer,

not reported) in the samples that exclude sales. Including sales makes the frequency of

adjustment in retail somewhat higher than the frequency in wholesale.
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G Simple special cases of Proposition 6

This section discusses some limiting cases in which tractable closed form expressions for the

cumulative effectM as well as the frequency and kurtosis of price adjustments can be derived.

The first two cases we illustrate assume either n = 1 or n → ∞: we derive the implications

for the cumulative output effect while considering the full range of values for ` ∈ (0, 1) and

keeping the frequency of price changes constant. The last case restricts attention to ` = 0 or

` = 1 but allows for any value of n ≥ 1.

G.1 Analytical computation of M in the case of n = 1

We give an analytical summary expression for the effect of monetary shocks in two interesting

cases, those for one product, i.e. n = 1, and those for the large number of product, i.e. n =∞.

The summary expression is the area under the impulse response for output, i.e. the sum of

the output above steady state after a monetary shock of size δ > 0, which we denote as:

Mn(δ) = (1/ε)

∫ ∞
0

[δ − Pn(δ, t)] dt (41)

where 1/ε is related to the uncompensated labor supply elasticity and Pn(δ, t) is the cumu-

lative effect of monetary shock δ in the (log) of the price level after t periods. For large

enough shocks, given the fixed cost of changing prices, the model display more price flex-

ibility. Because of their prominence in the literature, and because of realism, we consider

the case of small shocks δ by taking the first order approximation to equation (41), so we

consider Mn(δ) ≈M′
n(0)δ.

For the case of n = 1 we obtain an analytical expression which, after normalizing by

N(∆pi) depends only on λ/N(∆pi). Thus as λ/N(∆pi) ranges from 0 to 1 the model ranges

from a version of the menu cost model of Golosov and Lucas to a version using Calvo pricing.

The analytical expression is based upon the following characterization:

M1(δ) = (1/ε)

∫ p̄−δ

−p̄
m(p0) g(p0 + δ) dp0 (42)

where p0 is the price gap after the monetary shocks and where m(p) gives the contribution

to the area under the IRF of firms that start with price gap, after the shock, equal to p0.

Since the monetary shock happens when the economy is in steady state, the distribution

right after the shock has the steady state density h displaced by δ. Immediately after the

shock the firms with the highest price gap have price gap p̄ − δ. Note that the integral in

equation (42) does not include the firms that adjust on impact, those that before the shock

60



have price gaps in the interval [−p̄, p̄− δ), whose adjustment does not contribute to the IRF.

The definition of m is:

m(p) = −E
[∫ τ

0

p(t) dt
∣∣ p(0) = p

]
where τ is the stopping time denoting the first time that the firm adjusts its price. This

function gives the integral of the negative of the price gap until the first price adjustment.

This expression is based on the fact that those firms with negative price gaps, i.e. low

markups, contribute positively to output being in excess of its steady state value, and those

with high markups contribute negatively. Given a decision rule summarized by p̄ we can

characterize m as the solution to the following ODE and boundary conditions:

λm(p) = −p+
σ2

2
m′′(p) for all p ∈ [−p̄, p̄] and m(p) = 0 otherwise .

The solution for the function m is:

m(p) = −p
λ

+
p̄

λ

(
e
√

2φ p
p̄ − e−

√
2φ p

p̄

e
√

2φ − e−
√

2φ

)
for all p ∈ [−p̄ , p̄] .

φ ≡ λp̄2/σ2. We then have:

M(δ) ≈M′(0)δ = (δ/ε)

∫ p̄

p̄

m(p) g′(p) dp = (δ/ε) 2

∫ p̄

0

m(p) g′(p) dp

since m(p̄)g(p̄) = 0. The last equality uses that m is negative symmetric, i.e. m(p) =

−m(−p), and that g is symmetric around zero. Using the expression for g in Section 3.1

g′(p) = − 2φ

2p̄2
(
e
√

2φ − 1
)2

(
e
√

2φ(2− p
p̄) + e

√
2φ p

p̄

)
for p ∈ [0, p̄] .

we obtain:

δM′(0) =

(
δ

ε

)
−2

λ
(
e
√

2φ − 1
)2

(
e
√

2φ

(
1 + φ− e

√
2φ + e−

√
2φ

2

))
.

Using the expression for N(∆pi) for the n = 1 and simple algebra we can rewrite it as:

δM′(0) =

(
δ

ε

)
1

N(∆pi)

e
√

2φ + e−
√

2φ(
e
√

2φ + e−
√

2φ − 2
)2

(
e
√

2φ + e−
√

2φ − 2− 2φ
)
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which yields the cumulative output effect of a small monetary shock of size δ.33

Kurtosis. We now verify that the expression can be equivalently obtained by computing

the kurtosis, as stated in Proposition 6. For notation convenience let x ≡
√

2φ. Using the

distribution of price changes derived in Section 3.1 and the definition of kurtosis we get

Kur (∆pi) =

2`

(
12
x4 − 12+x2

x2(ex/2−e−x/2)
2

)
+ 1− `(

2`
(

1
x2 + 1

2−e−x−ex
)

+ 1− `
)2 =

12− 12x2+x4

(ex/2−e−x/2)
2 + x4 1−`

2`

2`
(
1 + x2

2−e−x−ex + x2 1−`
2`

)2

Recall from Section 3.1 that ` = ex+e−x−2
ex+e−x

so that , after some algebra

Kur (∆pi) = 6
ex + e−x

(ex + e−x − 2)2

(
ex + e−x − 2− x2

)
It is immediate that the kurtosis and the cumulative output effect satisfy Proposition 6.

G.2 Analytical computation of M in the case of n =∞

Define

Yn(t, δ) ≡ 1

n

n∑
i=1

[pi(t)− δ] = Yn(t, 0)− 2δ

∑n
i=1 pi(t)

n
+ δ2 .

where the pi(t) are independent of each other, start at pi(0) = 0 and have normal distribution

with E [pi(t)] = 0 and V ar [pi(t)] = σ2t. Then, by an application of the law of large numbers,

we have:

Y∞(t, δ) = Y∞(t, 0) + δ2 = tσ2 + δ2

Letting Ȳ ≡ limn→∞ ȳ(n)/n we can represent the steady state optimal decision rule as

adjusting prices when t, the time elapsed since last adjustment, attains T = Ȳ /σ2. We

compute the density of the distribution of products indexed by the time elapsed since the

last adjustment t and, abusing notation, we denote it by f . This distribution is a truncated

33As a check of this formula compute the case for φ = 0, i.e. the cumulative output for the Golosov-Lucas
model. In this case we let λ = 0 and p̄ > 0. In this case we have: m(p) = − p̄

2 p
3σ2 + p3

3σ2 . Also g′(p) = −1/p̄2

for p ∈ (0, p̄], so we have:

M′(0)δ =
(
δ

ε

)
2

−3σ2p̄2

∫ p̄

0

[
−p̄2p+ p3

]
dp =

(
δ

ε

)
−2

3σ2p̄2

[
− p̄

4

2
+
p̄4

4

]
=
(
δ

ε

)
2p̄2

3σ2

2
8

=
(
δ

ε

)
1

N(∆pi)
1
6

which is the same value obtained by taking the limit for φ→ 0 in the general expression above.
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exponential with decay rate λ and with truncation T , thus the density is:

f(t) = λ
e−λ t

1− e−λT
for all t ∈ [0, T ] .

The (expected) number of price changes per unit of time is given by the sum of the free

adjustments and the ones that reach T , so

N(∆pi) = λ+ f(T ) = λ

[
1 +

e−λT

1− e−λT

]
=

λ

1− e−λT

Note that, using the definition of T given above, λT = Ȳ λ/σ2 the parameter which indexes

the shape of f and of the distribution of price changes. Since this figures prominently in this

expressions we define:

φ ≡ λT =
Ȳ λ

σ2
.

which is consistent with the definition of φ in Proposition 3. Using this definition we get:

` =
λ

N(∆pi)
= 1− e−φ and thus N(∆pi) =

λ

1− e−φ

Impulse Response of Prices to a monetary Shock. We can now define the impulse

response. Note that after the monetary shock firms that have adjusted their prices t periods

ago, in average will adjust their price up by δ. This highlights that as n → ∞ there is no

selection.

Now we turn to the characterization of the impact effect Θ. In this case we have

Y∞(t, δ) = Y∞(t, 0) + δ2 = tσ2 + δ2 ≥ Ȳ = σ2T ⇐⇒ t ≥ T − δ2/σ2 .

Thus the impact effect is:

Θ(δ) = δ

∫ T

T−δ2/σ2

f(t)dt = δ
e−λT+ λ

σ2 δ
2

− e−λT

1− e−κ
= δ

e−κ+ λ
σ2 δ

2

− e−κ

1− e−κ

Using that N(∆pi)V ar(∆pi) = σ2 we can write:

Θ(δ) = δ + δ
e
−κ+ λ

N(∆pi)
δ2

V ar(∆pi) − 1

1− e−κ
= δ + δ

(
1− λ

N(∆pi)

)
e

λ
N(∆pi)

δ2

V ar(∆pi) − 1

λ/N(∆pi)
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Note that

lim Θ(δ) =

δ
(

δ
Std(∆pi)

)2

as λ/N(∆pi)→ 0

0 as λ/N(∆pi)→ 1

and in general

Θ(δ)

∂(λ/N(∆pi))
= δ

e
λ

N(∆pi)
δ2

V ar(∆pi)

(
δ2

V ar(∆pi)
λ

N(∆pi)

(
1− λ

N(∆pi)

)
− 1
)

+ 1

(λ/N(∆pi))2
< 0

whenever δ < 2Std(∆pi).

θ(t) = δe−λt

[
f
(
T − δ2/σ2 − t

)
+ λ

∫ T−δ2/σ2−t

0

f(s)ds

]
= δ

λe−λt

1− e−λT
.

We can interpret θ(t)dt as θ(t) times the number of firms that adjust its price at times (t, dt).

This is the sum of two terms. The first term is the fraction that adjust because they hit the

boundary between t and t + dt. The second term is the fraction that have not yet adjusted

times the fraction that adjust, λdt due to a free opportunity. Both terms are multiplied by

e−λt to take into account those firms that have received a free adjustment opportunity before

after the monetary shock but before t.

Thus we have:

P∞(t, δ) = Θ(δ) + δ

∫ t

0

λe−λs

1− e−λT
ds = Θ(δ) + δ

1− e−
λ

N(∆pi)
tN(∆pi)

λ/N(∆pi)

Using P∞ we can compute the IRF for output, and a summary measure for it, namely

the area below it:

M∞(δ) =
1

ε

∫ T

0

[δ − P∞(δ, t)] dt ≈ δ

εN(∆pi)

[
1− (1 + φ) e−φ

(1− e−φ)2

]
where the approximation uses the expression for small δ, i.e. its first order Taylor’s expansion.

Kurtosis. For completeness we also include here an expression for the kurtosis of the

distribution of price changes in the case of n =∞. Price changes are distributed as:

E
[
(∆pi)

2
]

= σ2/N(∆pi) =
σ2

λ

λ

N(∆pi)
=
Tσ2

Tλ

λ

N(∆pi)
= Tσ2 1

Tλ

λ

N(∆pi)
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E
[
(∆pi)

4
]

= 3
λ

N(∆pi)

∫ T

0

(σ2t)2λe−λt

1− e−λT
dt+

(
1− λ

N(∆pi)

)
3
(
σ2T

)2

= 3σ4T 2

[
2− e−λT (λT (λT + 2) + 2)

(Tλ)2 +

(
1− λ

N(∆pi)

)]
Some algebra shows that kurtosis is then given by:

E [(∆pi)
4]

(E [(∆pi)2])2 = 6
1− e−φ (1 + φ)

(1− e−φ)2

It is immediate to use the expressions above to verify Proposition 6.

G.3 Analytical computation for ` = 0 or ` = 1 (any n).

For ` = 0, or equivalently λ = 0, we use the result in Alvarez and Lippi (2014) for

Tn+2(y) =
ȳ − y

(n+ 2)σ2

gives:

M′(0) =
1

nε

∫ ȳ

0

[
n(ȳ − y)− 2y

(n+ 2)σ2

]
f(y) dy

and using the following expression for f from Alvarez and Lippi (2014) :

f(y) =
1

ȳ
[log(ȳ)− log(y)] if n = 2, and

f(y) = (ȳ)−
n
2

(
n

n− 2

)[
(ȳ)

n
2
−1 − (y)

n
2
−1
]

otherwise

gives that:

M′(0) =
1

nε

2 ȳ n(n− 2)

(n2 − 4)σ2
=

1

ε

Kurt(∆pi)

6N(∆pi)

which verifies the equality in Proposition 6.

For 1 < n < ∞ and ` = 1, with λ > 0 and σ2 > 0, using Proposition 3 it must be the

case that ȳ = ∞. In this case, N(∆pi) = λ` = λ, and the distribution of price changes is

independent across each of the n products, and given by a Laplace distribution, which has

kurtosis 6. Likewise Tn+2(y) = 1/λ for all y ≥ 0. Thus, using equation (26) we obtain the

desired result.
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