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THE REAL FIELD WITH CONVERGENT
GENERALIZED POWER SERIES

LOU VAN DEN DRIES AND PATRICK SPEISSEGGER

ABSTRACT. We construct a model complete and o-minimal expansion of the
field of real numbers in which each real function given on [0,1] by a series
> enz® with 0 < ay, — 00 and Y |en|r* < oo for some r > 1 is definable.
This expansion is polynomially bounded.

1. INTRODUCTION

We develop here a new way to prove model completeness and o-minimality of
certain expansions of the real field. We apply this to a particular expansion Ry~
for which previous methods, from [1], [3], [12], [17], fail. Inductive arguments using
blow-up maps as in Tougeron [15], [16] are an important ingredient of our approach.
Also, ideas of Gabrielov (as expounded in [1]) are crucial.

Throughout this paper we let m range over N = {0,1,2,...}, and we let X =
(X1,...,Xm) be a tuple of m distinct indeterminates. We consider formal series

F=F(X)=) caX?

where the multi-index a = («v, . . ., @y, ) ranges over [0, 00)™, the coefficients ¢, are
real, X denotes the formal monomial X" --- X2 and the set

supp(F') := {a € [0,00)™ : ¢o # 0} (the support of the series)

is contained in the cartesian product S1 X - - - X S, of well ordered subsets S1, ..., S,
of [0,00). (It follows that supp(F) is countable.) These series are added and
multiplied in the usual way, and form an R-algebra denoted by R[X*]. For each
polyradius r = (r1,...,7) (thatis, 0 < 7; < oo for i =1,...,m) we put

1l =D lealr™ € [0, 00]

and we let R{X*}, be the normed subalgebra of R[X*] consisting of the F’s with
|1 F]l» < oo, with norm given by || - ||,. Each F(X) =) coX® € R{X*}, gives rise
to a continuous function x +— F(x) := > cqz® : [0,71] X - -+ x [0, 7] — R, analytic
on the interior (0,71) X - - - X (0, 7,,) of its domain. Let R, be the expansion of the
ordered real field (R, <,0,1,4,—,-) by all functions f : R™ — R (for all m € N)
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4378 LOU VAN DEN DRIES AND PATRICK SPEISSEGGER

that are 0 outside [0, 1] and are given on [0, 1]™ by a power series F' € R{X*}, for
some polyradius r with 1 > 1,...,7,, > 1. If F(X) € R{X*}, and 0 < 7| < 1y,
...,0 < rl < rp,then the function z — F(x) : [0,7]] x---x[0,7],] — R is clearly
definable in R,,«. It is also easy to see that the primitives of the structure R,y
as defined in [6] are definable in R,,+, so the subsets of R™ that are definable in
R, are definable in R,,« as well. On the other hand, there are many one-variable
functions that are definable in R,,«, but not in R,,. For example, the function

x— ((—logz) = leog" 10,67 — R
n=1

(where ( is the Riemann zeta function) is definable in R,,«, but not in R,,, in fact,
not even in Ry, exp. (See corollary 5.14 in [7].) Here is our main result.

Theorem A. The expansion R,y is model complete and o-minimal.

We have set up this article so that much of it will be useful also in a planned
sequel, where we construct other model complete and o-minimal expansions of the
real field. One such expansion, worked out in the second author’s doctoral thesis,
is more closely related to the material in [15].

Sections 2 and 3 are of a very general nature. In section 2 we develop a geometric
test for model completeness and o-minimality of expansions of the real field. Section
3 elaborates on cell decomposition, as needed later. In sections 4, 5 and 6 we
consider in detail the power series rings mentioned above, establishing, among other
things, Weierstrass preparation, and study a variant of the blow-up substitutions
used by Tougeron [15] in his treatment of semianalytic sets with “Gevrey condition
on the boundary”. In section 7 we introduce the generalized semianalytic sets
described locally by equations and inequalities between the power series above.
In section 8 we establish Theorem A. In its proof we use inductive arguments
inspired by [15] to establish the so-called “Gabrielov property” of section 2 for our
generalized semianalytic sets, which allows us to draw the desired conclusion. In
section 9 we obtain, by similar inductive arguments,

Theorem B. Let € > 0 and let f : (0,¢) — R be definable in Ra,+. Then there
is a series F(X) € R{X*}s for some ¢ € (0,¢), where X is a single variable, and
there is a (possibly negative) real number r such that f(x) = 2" F(x) for x € (0,0).

It follows that Ry« is polynomially bounded. The o-minimality and polynomial
boundedness of an expansion of the real field carries numerous topological and
analytic-geometric consequences with it, such as Lojasiewicz inequalities; see [8].

We finish this introduction with some terminological conventions, in particular
concerning manifolds and dimension, that are in force throughout this paper.

Notations and Conventions. We let k,l, m,n and d range over N, and we let
X = (X,...,.Xn), Y = (1n,...,Y,) and Z = (Z1,...,7;) denote tuples of

distinct indeterminates. The tuples r = (r1,...,7) and s = (s1,...,8,) al-
ways denote polyradii (as defined above), while the tuples o = (aq,...,am) and
B = (B1,...,0n) denote elements of [0,00)™ and [0,00)™ respectively. For any
tuple z = (21,...,2;) € R¥ we put |z| := sup{|z1],...,|2x|}, and we write 2/ =
(#1,...,25—1) if k > 1. For polyradii r = (r1,...,7m) and s = (81,. .., S) We write
r < stomean r; <s; forall i =1,...,m, and similarly for r < s.

For any set S we write |S| for the cardinality of S.
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THE REAL FIELD WITH CONVERGENT GENERALIZED POWER SERIES 4379

All rings are assumed to be commutative with 1 # 0. A normed ring is a ring
A equipped with a norm |-|: A — [0,00), i.e. for all z,y € A:

1. || = 0 if and only if z = 0;
2. |z 4yl < |z + ly[;
3. |zy| < |z||y|, hence |1] < 1.

Given m < n, we denote by II7Y : R® — R™ the projection on the first m coor-
dinates. More generally, if A € {1,...,n}™ is a strictly increasing sequence, we let
I} : R® — R™ be the projection defined by IIx(x1,...,%n) = (Zx1),- -+ Ta(m))-
If n is clear from context (as is usually the case), we just write II,,, and II) respec-
tively.

Given a subset A of a topological space S, we let cl(A), int(A) and frA :=
cl(A) \ A denote the closure, interior and frontier of A in S respectively, if the
ambient space S is clear from context. If f,g : A — R U {—00,400} are two
functions, we write f < g if f(z) < g(z) for all € A; in that case we put

(f,g9) ={(z,t) e AxR: f(z) <t <g(x)}

A manifold M is always a nonempty embedded (not just immersed) analytic
submanifold of R* (for some k depending on M) everywhere of the same dimension
dim(M). We identify the tangent space T, M of M at a point € M in the usual
way with a linear subspace of the ambient space R* (of dimension dim(M)). Note
that if M is a manifold in R¥, then M is locally closed; hence fr M is closed. In
order to facilitate arguments by “induction on dimension” it will be convenient to
say that a set S C R* has dimension if S is a countable union of manifolds; in
that case we put

dim(S) := max{dim(M) : M C S is a manifold}

for nonempty S, and dim((}) := —oo. If S happens also to be a manifold, then this
agrees with the dimension of S as a manifold. This notion of dimension is a bit ad
hoc, tied as it is to the notion of manifold, but it has some useful properties:

1. if S = J,cny Si and each S; has dimension, then S also has dimension and
dim(S) = max{dim(S;) : i € N};

2. if f: M — R™ is an analytic map from the manifold M into R™ of constant
rank r, then f(M) has dimension, and dim(f(M)) = r.

Property (1) follows by a Baire category argument (see [4], p. 533 for details).
Property (2) follows from the rank theorem, the fact that M has a countable basis
for its topology, and property (1).

We will also occasionally use the following fact.

3. If n > mand A C R™ as well as I1,,(A) C R™ have dimension, then dim(A) >
dim(I1,,, (A)).

One way to see this is to observe that if A C R™ has dimension, then dim(A4) =
Hausdorffdim(A) (with respect to the usual euclidean metric on R™), and that
Hausdorffdim(A4) > Hausdorffdim(IT,,(A)), since II,,, : R® — R™ is a Lipschitz
map. (Actually, the assumption in (3) that A has dimension implies that II,,(A)
has dimension, but we will not need this fact.)
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2. GABRIELOV PROPERTY, MODEL COMPLETENESS AND O-MINIMALITY

In this section we develop a useful geometric test for the model completeness and
o-minimality of expansions of the real field. We do this by axiomatizing and gen-
eralizing the arguments in the proof of Gabrielov’s “Theorem of the Complement”
as exposed by Bierstone and Milman in [1].

2.1 Definition. Let a collection A,, of bounded subsets of R™ be given for each n,
and let A = (Ay)nen. We call a set A C R™ a A-set if A € A,,; if in addition A is
a manifold, we call A a A-manifold. We also call a set £ C R™ a sub-A-set if
there are n > m and a A-set A C R™ such that E = II,,,(A); if in addition E is a
manifold, we call £ a sub-A-manifold.

We say that a set A C R™ has the A-Gabrielov property, if for each m < n
there are connected sub-A-manifolds By C R**%, ... By, C R"T9% where q1,...,
qr € N, such that

M (A) = I (B1) U+ - ULy (By)

and for each i = 1,..., k we have:

(G1) fr B, is contained in a closed sub-A-set D; C R"% such that D; has dimension
with dim(D;) < dim(B;);

(G2) dim(B;) < m, and there is a strictly increasing sequence A € {1,...,m}¢,
with d = dim(B;), such that II,|p, : B; — R? is an immersion.

2.2 Remarks. (1) In (G2) the sequence A and the natural number d may depend of
course on 7. That ITy|p, in (G2) is an immersion just means that II is injective on
each tangent space T, (B;) C R""% for x € B;; since dim(7T,(B;)) = d, it follows
in particular that II,(B;) is open in R? and that II,|p, : B; — R? is a local
homeomorphism. Note that II,,|p, : B; — R™ is then also an immersion, since
H;-i_qi |Bi = HT o (Hm|B7)

(2) In the situation of Gabrielov’s Theorem of the Complement one has

A, = {A CR": Ais bounded and semianalytic in R"},

and each A € A, has the A-Gabrielov property, with ¢; =0, B; C A and fr B; = D;
a A-set for all 7 in the definition above. Because of our later use of “blowing up” it
is crucial for us to allow ¢; > 0, and to allow D; to be a sub-A-set.

2.3. Let I = [-1,1] C R. Write E° for the complement I™ \ E of a set E C I™.
From now on in this section we assume A = (A,,),en, where each A,, is a collection
of subsets of I"™ such that for every A, B € A,,:
(I) @ and I"™ belong to A,,, and for each pair (i, j) with 1 < i < j < n the diagonal
Ay ={x eI :z; =uz;} belongs to A,, along with its complement (A;;)%
(I1) AUB,ANB e Ay;
(IIT) I x A and A x I belong to A,11;
(IV) A has the A-Gabrielov property.

2.4 Remark. Axioms (I)-(III) imply that if A C I"™ and B C I™ are A-sets, then
A x B C I"™" is a A-set. This can be used to show that if F, Ey C I™ are
sub-A-sets, then E71 U Ey and Fq N Es are sub-A-sets too. One checks easily that if
A€ {1,...,n}? is strictly increasing and A € A,,, then I1(A4) C I? is a sub-A-set.

We now have the following elementary lemma.
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2.5 Lemma. Suppose for a certain d that the complement of each sub-A-set in 1%
is a sub-A-set. Let A € {1,...,m}? be a strictly increasing sequence. Let E be a
sub-A-set in I"™ and suppose there is M € N such that |E N H;l(x)| < M for all
x € I%. Then the complement E¢ of E in I"™ is also a sub-A-set.

Proof. For simplicity of notation assume A(1) = 1,...,A(d) = d, and write E,, for
the fiber ENTI, " (2), € I9. Clearly for each k € N the set C, := {z € I¢: |E,| >
k} is a sub-A-set in I%; hence Dy, := {x € I?: |E,| = k} = C) \ Cr1 is a sub-A-set.
Now I? = Dy U---U Dy, so

E¢ = (II;"(Do) \ E) U--- U (II;'(Dum) \ E) .

Hence it suffices to show that each set IT; ' (D) \ E is a sub-A-set. With m = d+e
and (z,y) = (x1,...,%d,Y1,---,Ye) ranging over I"™ and 4,5 over {1,... k}, this
follows from

k
(1‘7y)EH;I(Dk)\E;}H,Zl...ZkEIG[$€DkA (/\y#@) A
i=1

k
A /\ 2 # % A(/\(x,zﬂeE)}

1<i<j<k i=1
O

2.6 Remark. Note that 2.4 and 2.5 go through for I any nonempty set equipped
with a collection A, of subsets of I", for each n € N, such that axioms (I),(II)
and (IIT) hold. The next result is a basic tool for proving model completeness and
o-minimality theorems in this paper and its sequel. Here axiom (IV) comes into
play.

2.7 Theorem of the Complement. If E C I"™ is a sub-A-set, then E€ is a sub-
A-set.

Remark. In the proof of the “theorem of the complement” we will use the following
easy consequences of axiom (IV) for an arbitrary sub-A-set £ C I™:
1. E has only finitely many (connected) components, and each component of E
is a sub-A-set in I™;
2. E has dimension.

To see this, write E = II,,,(A) with A € A,,, n > m. By axiom (IV), and using
the notation of 2.1, each connected component of E is a union of sets II%t% (B;).
Hence E has only finitely many connected components, and each component of F is
a sub-A-set. Property (2) follows in the same way, taking into account the remarks
made on dimension at the end of the introduction.

Proof of the theorem of the complement. By induction on m; the case m = 0 is
clear.

Let m > 0 and assume that the theorem holds for sub-A-sets in I¢, for all
d < m. Let E be a sub-A-set in I™. To show that E€ is a sub-A-set we may reduce
by axiom (IV) to the case that E = II,,(B) for some connected sub-A-manifold
B C R™, where m < n and B has the following properties:

1. fr B is contained in a closed sub-A-set D C I™ such that D has dimension
with dim(D) < dim(B);
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2. dim(B) = d < m, and there is a strictly increasing A € {1,...,m}? such that
|5 : B — R is an immersion.
Put F =1I\(B), so II{*(E) = F. Since II,,|p and II)|p have constant rank d, we
have dim(B) = dim(E) = dim(F) = d.
Case 1: d < m. In this case we first establish

Claim. There is M € N such that |(II{*)"Y(z) N E| < [T '(z) N B| < M for all
xz eI

The left inequality is obvious. For the right inequality, put B, := H;l(x) N B for
x € I%. Note that ITy|5 : B — R? is a local homeomorphism. Put G := II(D).
Then G is a closed sub-A-set of dimension < d; in particular, every neighbourhood
of every point in G contains points of G°. Hence if M € N is such that |B,| < M
for all z € G°, then |B,| < M for z € G as well. So it suffices to show there is such
a constant M for x € G°.

The map H/\|BmH;1(GC) : BﬁH;l(GC) — G° is proper: let K C G° be compact
and (uy) a sequence of points in B NII'(K) converging to u € I"™; we have to
show that u € B NI (K). Clearly u € TI,'(K); if u ¢ B, then u € fr B,
so I\ (u) € G, contradicting II)(u) € K. Since said map is both proper and a
local homeomorphism, it is a topological covering map, and hence |B,| takes a
constant finite value on each component of G¢ (see for example [9], 4.22). By the
inductive assumption G is a sub-A-set; hence GG¢ has only finitely many connected
components. So there is M € N such that |B;| < M for all x € G¢. This proves
the claim.

Now it follows immediately from lemma (2.5) and the claim above that E° is a
sub-A-set.

Case 2: d = m. Then IL,|p is a local homeomorphism; hence II,,(B) is open
in R™. Note that II,,,(D) is a (closed) sub-A-set of dimension < m, so (IL,,,(D))¢ is
a sub-A-set by case 1. Since (IL,,(B U D))¢ = (IL,,(B))° N (IL,(D))°, and II,,,(B)
is open and B U D is compact, it follows that (II,,,(B U D)) is open and closed in
(IL,(D))?; hence (I, (BUD))¢ is a sub-A-set by remark (1) above. Next note that

B¢ = (ln(B))" = (I (B U D))" U (T (D) \ (T (B) N T (D))) -

Since I1,,,(B) N1, (D) is a sub-A-set of dimension < m, it follows from case 1 that
I, (D) \ (II,,(B) N1I,,,(D)) is a sub-A-set. Hence E° is a sub-A-set. |

2.8 Corollary. The structure (I,A) which has an n-ary relation for each set in
A, n € N, is model complete. Its definable sets are exactly the sub-A-sets. (Here
“definable” means “definable without parameters”.)

Proof. Let SA,, be the collection of sub-A-sets in I™, for each n. Then the theorem
of the complement implies that SA,, is a Boolean algebra of subsets of I"™. It
is also clear from the definition of sub-A-set that SA, contains all diagonals A;;
(1 <i<j<n) that A€ SA, implies Ix A, AxI € SA, 11, and that if B € SA, 1,
then II,,(B) € SA,. These facts imply that every subset of I"™ definable in the
structure (I, A) must belong to SA,,. Since the sub-A-sets are in fact existentially
definable in (I, A), it follows that (I, A) is model complete. |

2.9 Corollary. Assume in addition that {r} € Ay for all r € I and the sets
{(z,y,2) € P :x+y =2z} and {(x,y,2) € I* : 2y = 2}
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belong to As. Then the expansion Ry := (R, <,0,1,+,—, -, A) of the ordered field by
the A-sets in R™ formn =0,1,2,... is model complete and o-minimal. A set A C R"
is definable in Ry if and only if 7,,(A) is a sub-A-set in I"™, where 7, : R — "

is given by Tn(x1,...,xn) = (x1/\/1+ 22, xp//1+22).

Proof. Let ¥, be the collection of all sets A C R™ such that 7,,(A4) is a sub-A-set
in I". Let (R,X) be the structure with underlying set R and an n-ary relation
symbol for each set A € X,,, n € N. The previous corollary and the fact that
Tp o I =TI, 0 7,11 for all n implies that any set A C R™ that is definable in
(R, X) actually belongs to %,,.

A routine argument using the hypothesis of this corollary shows that the graphs
of addition and multiplication belong to X3. Hence all primitives of Ry are definable
in (R,X). Conversely, the sets in X, are clearly existentially definable in Rj.
The model completeness of Ry follows. Since sub-A-sets have only finitely many
connected components, the o-minimality of Rp follows as well. O

2.10 Remark. This section goes through unchanged if by “manifold” we mean
“nonempty embedded C'! submanifold of R* (for some k) everywhere of the same
dimension”, and we correspondingly extend the notion of “dimension” to subsets of
R¥ that are countable unions of such manifolds, as in “Notations and Conventions”.

3. CELL DECOMPOSITION

In this section we elaborate on a result from [11] on “relatively semialgebraic”
sets. We also refer to the exposition in ch. 2 of [5].

3.1. Let S be a nonempty topological space. Let £ be a ring of continuous functions
¢ : S — R, the ring operations being pointwise addition and multiplication, with
the identity the function on S which takes the constant value 1. Call A C S an
E-set if A is a finite union of sets of the form

{zeS:o(x) =0,¢1(x) >0,...,¢p(x) >0}
with ¢,91,...,¢, € £. The E-sets form a Boolean algebra of subsets of S.
3.2 Cell Decomposition. Let fi,..., far € E[T] all be of degree at most d in T,
and let fi,..., fx be the list of all partials O f,, /OT" with m = 1,..., M and 0 <
1 <d. Then S can be partitioned into finitely many E-sets S1, ..., Sk such that for

each connected component C of each S; there are continuous real valued functions
§o1 < <&cm(c) on C such that, with {c0 = —00 and &g m(c)+1 = +00,

1. each of the sets T'(¢c;), 1 < j < m(C), and (&c,j,8c,j+1), 0 < G <m(C), is
of the form
{(z,t) € C xR :sign(f,(z,t)) =€(n) forn=1,...,N}
for a suitable sign condition e : {1,...,N} — {-1,0,1};
2. 4f fiyyo ooy fo, with1 <y < --- <14 < N are those members of {f1,...,fn}
which are not identically zero on C xR, and if g := fi, -~ fi,, then ¢ # 0 on

each (c.j,€c,j+1), and for each j =1,...,m(C) thereise € {1,...,degp(9)}
such that for all (z,t) € T'(éc,;) we have

glx,t) =---=01g/oT Hx,t) =0 and 0°/OT°(x,t) # 0;
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3. if moreover fi,..., far are monic in T, then each function {c;, 1 < j <
m(C), extends uniquely to a continuous function nc ; : cl(C') — R such that
each of the sets cl(T'(¢c,;)) = T'(ne,;) with1 < 7 <m(C) and cl((éc,j,€c,j+1))
with 0 < j < m(C) equals

{(z,t) € l(C) x R : sign(fn(z,t)) € {e(n),0} forn=1,...,N},
where € is the corresponding sign condition from Part 1.

Proof. Following the proofs in [5], ch. 2, we obtain a partition S = Sy U---U S}, for
which the statement of the theorem holds with the possible exception of property
(2). Note that property (1) implies that for g as in (2) we have

{(z,t) € C xR:g(x,t) =0} =T'(€c1) U - UT(Ecm(c))-

To obtain property (2), we will refine the partition {Si, ..., Sk }; this will not affect
(1) and (3).

To find such a refinement, we apply conclusion (1) of the theorem to the list
g1, ..., gm consisting of all products f;, --- f;, with 1 <43 <. <4 < N. Since
fis-oos fam €491,--.,9m}, the proof in ch. 2 of [5] gives a finite partition of S into
E-sets that refines the partition {S1,...,Sk}. Let C’ be a connected component of
some element of this refinement, and let C' be the (unique) connected component
of one of Sy,...,Sk such that C' C C. If g is the product of all those f; that are
not identically zero on C’ x R, and if £ is the restriction of one of the & ; to C7,
then clearly g is identically zero on I'(§); but also £ is one of the functions {cv ;v
obtained from the theorem applied to g1, ..., g, and hence every partial 0¥g/9T"
has constant sign on I'(§). Moreover, the number of zeros of g(z,T) is constant and
finite as x ranges over C’. Hence some 0”g/0T", 1 < v < degr(g), does not vanish
identically on I'(€). O

3.3 Remark. In section 8 we will use this theorem in a situation where S C R?
for some ¢, C' is a component of some S; as in the theorem, and D is a manifold
contained in C such that all functions ¢|p with ¢ € £ are analytic. Then the
functions éc j|p, j =1,...,m(C), are also analytic. (This follows easily from part
(2) above and the implicit function theorem.)

4. GENERALIZED POWER SERIES

4.1. We denote by X* the multiplicative monoid whose elements are the mono-
mials X := X" - X% with o = (g, ..., ) € [0,00)™, multiplied according
to X X? = X°*+P. The identity element of X* is X° = 1, where 0 = (0,...,0).

Let us say that a set S C [0,00)™ is good if for each ¢ = 1,...,m the set
Si := {a; : a € S} is a well ordered subset of [0, 00), or equivalently, if there are well
ordered subsets S1, ..., Sy, of [0,00) such that S C Sy X---XxS,,. We partially order
[0,00)™ by setting o < Bif and only if oy < ; fori =1,...,m. Instead of @ < 3 we
also write X | X#. We put |a| := a1 + -+, a4+ := (a1 + 31, .., m + Bm),
inf(a, B) := (min{ay, 1}, ..., min{a,, Bm}), and ged(X®, XP) := xinf(@h),

4.2 Lemma. Suppose S C [0,00)™ is good.

1. Shin := {a € S : « is a minimal element of S} is finite, and each element
a €S is > some element of Smin-

2. The set {|a] : a € S} is a well ordered subset of [0,00), and for every t €
[0,00) the set S(t) :={a € S: |a| =1t} is finite.
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Proof. (1) Suppose Smin is infinite. Take a sequence {a"},en in Spin With akf #£ ot
for k # I. By passing to a subsequence we may assume that {af},en is either
constant or strictly increasing (use the fact that each infinite sequence in S; has
a subsequence that is constant or strictly increasing). By repeating this argument
we reduce to the case that for each ¢ = 1,...,m the sequence {al},en is either
constant or strictly increasing. Hence a® < a!, contradicting the fact that o and
ol are distinct elements in Spin.

(2) Suppose the set in (2) is not well ordered. Take a sequence {a"}nen in S

such that [a°| > |a!| > |@?| > .... By the same argument as in (1) we may pass
to a subsequence and reduce to the case that a® < o' < a? < ..., contradiction.
In the same way one proves the second statement of (2). |

For S C [0,00)™ put X(S) :={a' +---+a*: k€eN,al,..., ok € S}.
4.3 Lemma. If S,T C [0,00)™ are good, then so are SUT and X(S).

Proof. This is easily reduced to the case m = 1, for which the lemma is well known
(see e.g. [10]). O

4.4. Let A be a ring; then A[X*] is by definition the set of power series in X*
over A. Its elements are the formal sums

FX) =) faX?,
where « ranges over [0,00)™, the coefficients f, belong to A, and
supp(f) := {a € [0,00)™ : fo # 0}

is a good subset of [0,00)™. If supp(f) is finite, we call f a polynomial in X*
and we denote by A[X*] the set of all polynomials in X* with coefficients in A.

These series are added and multiplied in the usual way, just as formal power series
in A[X], and form a ring under these operations, containing A[X*] as a subring.
We consider the power series ring A[X] also as a subring of A[X*], namely as the
subring of all series f(X) as above for which supp(f) C N™. (Note that N™ is a
good subset of [0,00)™.)

The constant term of a series f(X) = > foX® € A[X*] is the element
fo = f(0) of A. Note that the map > foX* — fo : A[X*] — A is a ring
homomorphism.

4.5. Let f(X) = Y faX* € A[X*]. The order of f is the element of [0, 0]
defined as follows:

ord(f) i min{|«a| : fo # 0} %f f#0,
0 if f=0.
One easily checks that for f,g € A[X*] we have

1. ord(f + g) > min{ord(f),ord(g)}, and
2. ord(fg) > ord(f) + ord(g), with equality if A is an integral domain.

Hence A[X*] is an integral domain if A is an integral domain.
4.6. Let J be any index set and {f;};cs a family in A[X*] such that

1. for each a € [0,00)™ there are only finitely many j € J such that a €

supp(f;), and
2. Ujessupp(f;) is a good subset of [0, 00)™.
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(Note that if J is finite these conditions are automatically satisfied.) We may then
clearly consider the (potentially infinite) sum } ., ; f; as a well defined element of
A[X™*]. In the following we shall frequently use such infinite sums, and the obvious
rules for manipulating them. Note that with this notation Y fo X* has acquired
a new meaning (sum of the family f, X indexed by a € [0,00)™), but this new
meaning agrees of course with the given one: f(X) =73 foX*. We can also write
f(X) = faX™ as the sum of its homogeneous parts: f = ZTE[0,00) [y with
foy = Z\a|:r faX® the homogeneous part of degree r of f. Note that by
lemma 4.2 each f, is actually a polynomial in X*.

4.7 Lemma. Let f(X) = > foaX® € A[X*]. Then f is a unit in A[X*] if and
only if its constant term fqy is a unit in A.

Proof. If f(X)g(X) =1 with g(X) = > b X~ € A[X*], then apbyp = 1, so ag is a
unit.

Conversely, if agbg = 1 with by € A, then byf = 1 — h with ord(h) > 0. Hence
the infinite sum Y07 k™ is well defined, and clearly 1 = (3°°° (h™)(1 — h) =
(3o g h™bof, so f has inverse by(>., o k") in A[X*]. O

4.8 Lemma. Fach f € A[X*] with ord(f) > 0 is of the form
f=XI ot X fn
with f; € A[(X1,...,X;)*] fori=1,...,m and real numbers v1,...,¥m > 0.

Proof. By induction on m; the case m = 0 is trivial. Solet m > 0. Write f € A[X*]
with ord(f) > 0 as f = g+ h, where g is the sum of the terms of f not involving
X, and & is the sum of the terms of f involving X,,. Then clearly h = X f,,, for
some fp, € A[X*] and some ~,, > 0, while the inductive hypothesis implies that
g=X"fi+ + X" fn1 with fi € A[(Xq,...,X;)*] fori=1,...,m—1 and
real numbers vy, ..., Vm—1 > 0. O
4.9. Blow-up height. Assume m > 2. Given distinct 4,5 € {1,...,m} and v > 0, we
define an injective monoid homomorphism SZJ : X* — X™ such that SZJ (Xk) = X
for k # i and s?j (X;) = XiX], as follows:
ST(X®) = X XU XX X = XX

We call s?j a singular blow-up substitution on X.

We now assign to every pair of monomials X%, X? a number bx(X®, X#) € N
called the blow-up height of the pair (X, X”), also denoted by b(X®, X?) if
X =(Xy,...,X,) is clear from context, as follows:

Special case: ged(X®, XP) = 1. We let a := |{i € {1,...,m} : a; # 0}| and
b:={je{l,...,m}:B; #0}|, and we put

b(X® Xﬁ) _]0 if X*=1or XP =1,
’ " la+b otherwise.

General case. This is reduced to the special case by setting b(X®, X?) :=
b(X @™, XP~) where X* = gcd(X*, X?).

4.10 Lemma. 1. b(X®, X?%) =0 if and only if X*|X® or XP|X°.
2. If (X, XP) = 0 then b(s];(X %), s];(X?)) = 0.
3. (X, XP) =b(XP, X).
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4. If b(X™, XB) # 0, then there are v > 0 and distinct 1,7 € {1,...,m} such
that

b(s7,(X*), s7,(X7)) < b(X*, XP)

)24
and

b(si/(X), s17(XP)) < (X, XP).

) ]z
Proof. (1),(2) and (3) are easy, so we prove (4).

Let b(X®, X#) # (0,0). Using the notation of 4.9 above, we assume first that
ged(X @, XP) =1 with X # 1 and X? # 1. Taked,j € {1,...,m} with a; # 0 and
Bj #0 (so i # j), and let v := 3;/a;. Then s;(X*) = XO‘XB] and s; (XB) X5,
Dividing XO‘XB] and X? by their ged Xﬂj we see that b( (XO‘), W(Xﬁ)) <
b(X“, XP); similarly for 8; /V

In the general case, take distinct 4,5 € {1,...,m} and v > 0 such that

b(sT, (X7, 57, (XP7)) < b(X*, XP)

b) 'LJ
and

b(s}/ T (XO7), sH/T(XP79)) < b(X®, XP),

ji 1 8ji
where X = ged(X®, X#). The identity s 5(X¥) = s (X9)s](X*7¢) then im-
plies b(s7, (X%, 53, (X%)) = b(s}; (X*¥), 57,(X5~)); hence bls}y(X*), 5];(X?)) <
b(X®, Xﬂ). The case of Sji/ is again similar. O

4.11. Next we consider a finite collection G = {X*M) . X of k distinct
monomials in X*, and define

57.(G) == {S%(Xa(l)% o zg(Xa(k))}

ij
We associate to G the pair bx (G) = (p,q) € N? defined as follows: if there are pairs
(1,I) with 1 <1 < I’ < k and (XD, X)) £ 0, then p := number of such pairs
and ¢ := minimum of the blow-up heights of all such pairs; if no such pairs exist,
then (p,q) := (0,0). Again, if X = (X31,...,X,,) is clear from the context we just
write b(G) for bx (G). We also order N? lexicographically in what follows.

Note that b(G) = (0,0) means that G is linearly ordered by divisibility.
4.12 Lemma. 1. If G’ C G then b(G') < b(G).

2. If b(G) # (0,0), then there are v > 0 and distinct i,5 € {1,...,m} such that

b(s7,(G)) < b(G) and b(s}" (G)) < b(G).

Proof. (1) is easy.

For (2), let b(G) = (p,q) with p € N— {0}, and consider monomials X%, X”? € G
for which b(X®, X?) = ¢q. By (4) of the previous lemma, we get v > 0 and distinct
i,j € {1,...,m} such that

a Je] a yvB v yay /v vB a v
b(s3;(X ), s;(X7)) < b(X, X7) and b(s;; " (X*), 5517 (X7)) < b(X*, X7).
Then it follows from (2) of the previous lemma that

b(s7(G)) < b(G) and b(s}/"(G)) < b(G).

3 1]
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4.13. We now extend s?j to an injective A-algebra endomorphism of A[X*] by
putting s7;(3° faX®) 1= 3 fas];(X*). To avoid too many nested parentheses, we
will write s; f instead of s}, (f).

Consider a finite collection F C A[X*] of generalized power series. For distinct
i,j € {1,...,m} we put s,(F) = {sl;f : [ € F}, and let bx(F) := bx(9),
where G := {XO‘ ta € User (supp(f)) } is the (by lemma 4.2 finite) set of
“minimal monomials” of members of F. The elements of G are called the minimal
monomials of F, and bx(F) is the blow-up height of F. (As before we write
b(F) if X is clear from the context.)

Note that each f € F can be written as f = > X“g,,, where the sum is over
supp(f)min and each g, € A[X*] satisfies g,,(0) # 0.

4.14 Proposition. 1. If b(F) # (0,0), then there are v > 0 and distinct i,j €
1/
{1,...,m} such that b(s};(F)) < b(F) and b(s;;” (F)) < b(F).
2. If b(F) = (0,0), then each nonzero f € F is of the form f = X“g with

g € A[X"], g(0) #0.

Proof. For (1), using the previous lemma we get v > 0 and distinct 4,5 € {1,...,m}
such that b(s/;(G)) < b(G) and b(s;i/'y(g)) < b(G). Note that each monomial in
1;(G) has a nonzero coefficient in some member of s;(¥), and that each monomial
with a nonzero coefficient in some member of sJ;(F) is divisible by a monomial
in 57;(G). Hence the minimal monomials of s7;(F) belong to s7;(G). Therefore by
lemma 4.10, part (1), we get b(s};(F)) < b(s/;(G)) < b(F). Similarly we obtain
b(st!”(F)) < b(F).

Ji

For (2), if b(F) = (0,0) then G is linearly ordered by divisibility; hence the
desired result. O

min

S

4.15. Mized series. Let (X,Y) = (X1,...,Xm,Y1,...,Y,) be a tuple of m +n
distinct indeterminates. According to 4.6 a series Y aq 3 XY 7 in A[(X,Y)*] can
also be written as > 5(>_,, Ao, pX*)YP. But PIFIODN a0, X*)YP is also (the nota-
tion for) a power series in A[X*][Y*]. These two ways of reading (3" aq s X*)Y?
agree, provided we identify the ring A[(X,Y)*] with a subring of A[X*][Y*] via the
injective ring homomorphism A[(X,Y)*] — A[X*][Y*] given by 3" a0 s XY ? —
YY" aa,pX“)YP. This identification will often be made without further comment.
Note that this homomorphism is not surjective in general: with m,n > 0, the series
5% X[Fyk isin A[X*][Y*], but not in (the image of) A[(X,Y)*]. On the other
hand, A[X*][Y*] C A[(X,Y)*].

We shall also be working with the subring A[X*,Y] of A[(X,Y)*], consisting
of those f € A[(X,Y)*] in which the Y-indeterminates have only natural numbers
as exponents. Similarly to the above, we identify A[X*, Y] with the corresponding
subring of A[X*][Y]; note that by the example above A[X*, Y] # A[X*][Y], for
m,n > 0.

4.16 Definition. Let n > 0. A power series f € A[X*,Y] is called regular in Y,
if £(0,0,Y,) = uY,2+ terms of higher degree in Y,,, with u a unit in A; with this d
we call f regular in Y, of order d. We put Y’ := (Y1,...,Y,_1).

4.17 Weierstrass Division and Preparation. Let n > 0 and let f € A[X*,Y]
be reqular in Y, of order d.
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1. There is for each g € A[X*,Y] a unique pair (Q, R) with @ € A[X*,Y] and
R € A[X*,Y'][Y,], such that

g=Qf + R and degy, (R) < d.
2. f factors uniquely as f = UW, where U € A[X*,Y] is a unit and W €
A[X*,Y'][Yn] is monic of degree d in Y,.

Proof. (1) The proof below is adapted from [2]. Writing f = 3", o fxY,¥ with each
fr € A[X*, Y], the coefficients fo,..., fa—1 have order > ¢ for some § > 0, while
fa is a unit in A[X*,Y"']. Thus, taking

k—d
u = Z kan N
k>d

w is a unit in A[X*,Y]. Then

uf =T YO AYE DAY

k<d k>d

k<d

=y ! <Z ka,§> +v2.
k<d

So, replacing f by u~!f, we may as well assume that f = Y, — F with F € M[Y,],
where M C A[X* Y] is the ideal of power series of order > 4.

Claim 1. For each G € M![Y,], there are Q € M![Y,,], R € M![Y,,] of degree < d
in Y, and L(G) € M!T[Y,], such that G = Qf + R+ L(G).

To see this, write G = Y, oy GrYF with Gy € M!, so that G = Y k<d GrYF +
Y43 o a GeYF =4 hence with R:= Y, _,GrY,F and Q := Y, , GxY,*~? we have
G =QY!~F)+ R+ L(G), where L(G) := FQ. Clearly Claim 1 holds for this
choice of @, R and L(G).

We now proceed with the proof of the existence part. Given g, we apply the
claim successively to g, L(g), L(L(g)) = L*(g), .. .:

g=Qof + Ro+ L(g),
L(g) = Q1f + Ry + L*(g),

LY(g) = Quf + R+ L (g),

with Q; € M'[Y,], R, € M'[Y,], degy. (R;) < d and L'(g) € M'*1[Y,]. Thus the
power series Q := Y, .y Qr and L := Y, L'(g) and the polynomial R := ", R
are well defined elements of A[X*][Y] and A[X*][Y'][Yn], respectively, and adding
up the rows above gives g = Qf + R in A[X*][Y]; it remains to verify that supp(Q)
and supp(R) are good subsets of [0, 00)™ ™.
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For H € A[X*][Y] we put

supp’(H) = {(, f') € [0,00)™ x N""' 2 (v, B, B,) € supp(H) for some S, € N};

it is clearly enough to show that supp’(Q) and supp’(R) are good subsets of
[0700)771-1—71—1

Claim 2. supp’(L'(g)),supp’(Q:) € S(supp’(F) Usupp’(g)) for all [ € N.

This is trivial for [ = 0. If [ > 0 and the claim holds for [ — 1 in place of [, then

supp’(L'(g)) = supp(FQi-1)
C supp’(F) + supp'(Qi-1)
C supp'(F') + X(supp’ (F) Usupp’(g))
C X(supp’(F) Usupp'(9)),

and hence supp’(Q;) C supp’(L'(g)) € X(supp’(F) U supp’(g)), which establishes
Claim 2.
Therefore also supp’(R;) C X(supp’(F) Usupp’(g)) for all I, so

supp’ (Q), supp’ (R) C S (supp’(F) Usupp’(g)),

which together with lemma 4.3 implies that supp’(Q) and supp’(R) are good subsets
of [0,00)™*" =1 as desired.

For the uniqueness, suppose g = Q1f + R1 = Qa2f + Ro with each (Q;, R;)
satisfying the conclusions of the theorem. Then Qf = R where Q = @1 — Q2
and R = R; — Ry, so degy. (R) < d. It suffices to derive @ = 0. Suppose Q =
S pen @k Y,H € MU[Y,] for some I € N. For any k the coefficient of Y,¢™* in Qf is
0, so

0=qrfa+ > anfask-n+ D Gnfari—n

h<k k<h<k+d

Since f = Y4 — F with FF € M[Y,,] and £, is a unit, it follows that g, € M'*1. The
index k was arbitrary, so we have shown that Q € M![Y,] implies Q € M*1[Y,],
ie. Q=0.

(2) Writing again f = Y,y fuY,¥ with fr € A[X*,Y’], we get from Weierstrass
division that Y,¢ = gf +r, with ¢ = Y,y arYs¥, ax € A[X*,Y’], and r = ro +
Yy + 4 rg 1 Y47 with v, € A[X*, Y] for h < d. Substituting (0,0,Y;,) for
(X,Y",Y,,) gives the following equation in A[Y,]:

(Z qx(0 ) (f4(0)Y;¥ + higher degree terms)

keN
+ 7"0(0) + -4 Td_l(O)Ynd_l.

Comparing coefficients of Y, gives qo(0)f4(0) = 1; hence g is a unit in A[X*, Y],
and therefore ¢ is a unit in A[X*,Y]. Thus f = UW withU = ¢~ *and W = Y,¢—R,
which proves existence. Uniqueness follows similarly by arguing backwards, and
using the uniqueness in the Weierstrass division formula Y,¢ = ¢f +r. O
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5. CONVERGENT GENERALIZED POWER SERIES

5.1. We let r and s denote polyradii (with m components unless indicated other-

wise), and we write r < s if r; < s; for all 4, and r < s if r; < s; for all i. Also
re = T?l . Qo

5.2. In this section A is a normed ring with norm |-|. For f(X) =Y fo X € A[X*]
and a polyradius r we define

£l =" " 1 falr™ € [0, 00].
We then have, for f,g € A[X*] and polyradii r, s:
1. [[fll» = 0 if and only if f = 0;
2. ”f +g||T < ”f”r + Hg”r;

3. 1 £gllr < I fll+llgllr;
4. ifr < s, then || f]l, < || f]s

We only prove (3), the other rules being obvious. Let f(X) =Y foX* and g(X) =
> gaX®. Then

NS

Ifalle =D D0 fagy|r™ <D 1fsllgrIr?r = 1 £l gllr-

a |B+y=a By

5.3. We now define A{X*}, := {f € A[X*] : ||f]l» < co}. Note that A{X*}, is a
normed ring with norm || - ||,. It is clearly a subring of A[X*] containing A[X*].
We put A{X*} =], A{X*},. Since A{X*}, D A{X*},ifr <s, A{X*}isalso a
subring of A[X*]. Put A{X*, Y} := A[X* Y] N A{(X,Y)*}, and A{X* Y}, ,:=
A[X* Y] A{(X,Y)" }(r,s) for polyradii r = (r1,...,7m), s = (51,...,5n)

Note that if f(X)=>" faX* € A{X*},, then |fo| < || f|-/r".

It follows that if {fi(X) = > fr,.a X}y is a Cauchy sequence in A{X ™}, then
{fr,a}ren is a Cauchy sequence in A for each a. If moreover limy oo fr,o = fo € A
for every a, we say that the sequence {f;} has formal limit f(X) = 5 f, X
The trouble is that supp(f) need not be a good subset of [0,00)™ any more: take
for instance A =R, m = 1 and fx(X) = Y5, X% then f(X) = 3%, XYL
But we can still say the following:

5.4 Lemma. Let {fi}, oy be a Cauchy sequence in A{X*}, with formal limit f
such that supp(f) is a good subset of [0,00)™. Then f € A{X*},.

Proof. Writing f(X) = > foX®, we have to show that f € A{X*}, and that
fx — f in the normed ring A{X*},.

Let € > 0 and take M = M (e) so large that || fx — fi||» < e for all k,i > M. Then
we have, for k,l > M and any finite subset I C supp(f),

S o= fralr® <D o = fralr® + 3 1fra = fralr®

acl a€cl acl
<Y o= fralr® +e
acl

Fixing I and k and letting [ — oo in this inequality gives Y ;[fa — fral® <€,
and fixing k and increasing I gives ||f — fxll» < ¢, for each k > M. Hence || f]|, <
If=Fell-+ |l fellr < oo, s0 f € A{X*}, and fr — f in the normed ring A{X*},. O

5.5 Lemma. If f =) fo X* € A{X*}, then lim, o ||f|l» = |£(0)].
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Proof. Tt suffices to show that lim,_q || f— f(0)]|. = 0, so replacing f by f— f(0) we
may as well assume that f(0) = 0. Take s such that || f||s < oo, and fix € > 0. Let
I C supp(f) be finite such that > o/ |fals® < €/2, and let p < s be a polyradius
such that » ;| falp® < €/2. Then for every r < p,

1l < S 1alr + 30 Ufals® < e

ael ag¢l

Since € was arbitrary, this proves the lemma. O

5.6 Corollary. Let f € A{X*}. Then
1. fis a unit in A{X*} if and only if f(0) is a unit in A, and
2. each f € A{X*} with ord(f) > 0 is of the form f = X"fi+ -+ X" fm
with real numbers y1,...,Ym > 0 and f; € A{(X1,...,X;)*} for alli.
Also, if m > 1, then A{X*} N A[(X1,..., Xm-1)"] = A{(X1,..., X;m—1)*}.
Proof. (1) The necessity is clear. Suppose then f(0) # 0 and write f = f(0)(1 —g)

for some g € A{X*} with g(0) = 0. Then 1 — g has inverse 1 + g + ¢> + ... in
A[X*]. Take r small enough so that ||g||, < 1 (possible by lemma 5.5). Then for

every n € N,
2 n < 2 n __ 1- ”gH?-i_l
T+g+g"+-+g"[lr <T+lglr+llglli+ -+ gl = Tl
so by lemma 5.4 the inverse 1 + g + g% + ... belongs to A{X*},.
(2) follows from 4.8, since || f|l, = 7" || f1llr + - + 7% || fn |-
The last statement is obvious. O

5.7. Given any family {a;};cs of elements of A, there is at most one element a € A
such that for each € > 0 there is a finite subset I(€) C J with |32, a; —a| <e
for all finite sets I C J that contain I(¢). If a € A has this property, we say that
ZjeJ a; exists in A and define ZjEJ a; := a. Note that ZjeJ a; certainly exists
in A if A is complete and >, ;|a;| < oo. (One checks easily that in that case
a; # 0 for only countably many j € J.)

We now modify 4.6 as follows: let J be any index set and assume that {f; =
Yo fiaX%}jes is a family in A[X*] such that

1. for each a € [0,00)™ we have > . ;[fjal < 0o and > . ; fja exists in A,

and
2. Ujessupp(f;) is a good subset of [0, 00)™.

Then )" f;:=3, (ZJEJ fj_,a) X € A[X*], and one easily checks that || > f;|l» <
2 £l

Suppose now that Y || f;|l» < oo; then our formal power series > f; actually
belongs to A{X*},.. One checks easily that then )" f; is also the sum of the family
{fj}jes in the sense of the normed ring A{X*},..

5.8 Substitutions. A permutation o of the set {1,...,m} induces a monoid isomor-
phism o : X* — X* defined by o(X?) := Xg(ll) e Xg‘(*;”‘n), which in turn extends

to an A-algebra automorphism of A[X* Y] by putting

o (3 JasXY) =3 fapo (XY,
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We usually write o f for o(f), where f € A[X*,Y]. Also corresponding to o we de-
fine a map o : R"*" — R™*" by o(2,y) = (Z4(1), - - - » To(m), ¥)- (For a polyradius
r=(r1,...,rm) the case n = 0 applies, so that o(r) = (r5(1), -+ To(m))-)

In a similar way, if s'y : X* — X* is a singular blow-up substitution, then S;Yj
extends to an A- algebra endomorphism s - of A[X*,Y] by setting

3 (S fus XV ) = 3 fusy X

We define the corresponding map s7; : [0,00)™ xR™ — [0,00)™ xR™ by s/ (2,y) =

(T1, s Ti1, ] T, Tige 1y -+, Ty y). - (For a polyradius 7 = (r1,...,7,) the case
n = 0 applies, so that S;Yj (r)y=(r,... ,ri_l,r;-yn-, Titls--->Tm)-)

Suppose now that f = f(X,Y) € A[X*, Y], and let g = (g1,...,9n) € A[Z]™
with ¢g1(0) = -+ = gn(0) = 0. Since A[X*,Y] C A[X*][Y], we may substitute g

for Y in f and obtain an element f(X,g(Z)) € A[X*][Z]. One easily checks that
in fact f(X,9(2)) € A[X*, Z].
Partial derivatives. The operatlon fe 7 on A[X] does not extend naturally to

A[X™], i aX on A[X] does have a good extension
9; to A[X*]: given f(X) =" foa X € A[X* ]] we define

0if(X) =) aifaX® € A[X"].

On the other hand, considering f(X,Y) € A[X*, Y] as an element of A[X*][Y],
the partial derivatives 0f/0Y; defined as usual belong to A[X*, Y], and in fact
Y;0f /0Y; = Ot f-

5.9 Lemma. Let f € A{X*,Y},,. Then

1. if ¢ is either a permutation of {1, ..., m} or a singular blow-up substitution on
X* with m > 2, and 7 is a polyradius with ¢(7) < r, then ¢f € A{X*, Y }7s;

2.9 g = (91,---,9n) € A{Z}}, where g1(0) = -+ = ¢,(0) = 0 and t =
(t1,...,t1) is a polyradius with ||g;||; < s; for each j, then f(X,9(Z)) €
A{X* Z} s

3. if i € {1,...,m}, then O0;f € A{X*,Y}ss for each 7 < r, and if j €
{1,...,n}, then 0f/0Y; € A{X*, Y}, s for each § < s.

Proof. (1) Assume f = Y fo 3 X°YP. If ¢ is the singular blow-up substitution

Spm—1 (With m > 2) and ¢(t) < r, then [|¢fl|e,s = 3 [fast*thmys” < || fllrs.
The other case of ¢ and (2) are similar.
(3) Let 7 € {1,...,m}. To simplify notation we assume that n = 0; the case

n > 0 is similar. Write f(X) = fo X%; then, with 7 < r,

oo
SITED S (D STy

k=1 k—1<]al<k

oo /F «
=3k ¥ m(f)
k=1 k—1<|a|<k

o fk_l
Sy > k).
k=1 k—1<]al<k
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where (7/r)® := (F1/r1)* -+ (Fm/7m)*™ and |F/r| == max{%, ce i—:} < 1. Since
limy,_o k|7/r[F=1 = 0, there is a constant C' = C(7) > 0 such that k|#/r|*~1 < C
for all positive k € N, and so

Zai|fa|f°‘ < CZ [falr® < o0
The assertion about 0f/9Y; is proved in the same way. O

Remark. For later use in section 9 we consider here more closely the case m =1,
n=0. Let 0 := 9;. The proof of (3) above shows that then ||0f||z < C||f|», where

we can take C := |slog s|~! with s := |F/r|, since
1 1
max (a:sz_l) = s@_l < =C
>0 log s slogs

Now let 71 := #s~1/2; then % = It = s1/2 and the calculation above with ry in place
of 7 gives ||0f|lr, < C - 2]||f]|» (since 81/2](:%.1(51/2) < Sl;zs), and taking r1, df and
02 f in place of r, f and Of respectively, we get ||0%f||z < C-2[|0f]|,, < C%-22||f]|,-
A similar argument with any k € N gives

10" fll7 < C*K*|| £l

5.10 Weierstrass Preparation. Let n > 0, and let f € A{X* Y} be regular in
Y, of order d.

1. There is for each g € A{X*,Y} a unique pair (Q, R) with Q@ € A{X*,Y} and
R € A{X*,Y'}[Y,], such that
g=Qf + R and degy, (R) <d.
2. f factors uniquely as f = UW, where U € A{X*,Y} is a unit and W €
A{X* Y'}[Y,] is monic of degree d in'Y,.

Proof. (1) Let g € A{X*,Y}. We use the same notations as in the proof of (1) in
Theorem 4.17. Choose s > 0 so that

1Flls < u™ s D 1 Fellors < s,
k<d

and put € := ||F||ss,;? < 1. Writing N' = M N A{X*, Y’} and making s smaller if
necessary, we may assume that G in the claim of the proof of (1) of Theorem 4.17
is in N{Y,,}s, so

1QIs < Y lIGkllorsi™ < ||Gllesy® and | R|s < |G,
k>d

while

ILG)]ls < [IQUsIFls < ellGls

by the definition of € and the estimate on ||Q||s. Applying these norm estimates
successively, we get

IRulls < ILY N5 < €'llglls

and

l —d l —d
1Qulls < L (955" < €llgllssr
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so that

Tl sna . <

(2) follows from the proof of (2) of theorem 4.17 and from (1) above. O

—d
S
IRl < 19l

6. THE REAL CASE

From now on we are only interested in the case A = R, with the norm on R
given by the usual absolute value. Note that Corollary 5.6 implies that R{X*} is a
local ring with maximal ideal {f € R{X*} : f(0) = 0}, and if m = 1, then R{X*}
is a valuation ring.

6.1. Let f = fa(X)YP € R{X*, Y}, f#0,n>0. Assume there is a monomial
X7 € X* such that f(X,Y) = XPF(X,Y) with F = 3> F3(X)Y® € R{X*,Y} and
F5(0) # 0 for at least one 3. (Note that this always holds if m = 1.) Take d € N
minimal such that there is 8 € N™ with d = || and Fp(0) # 0.

Consider a linear substitution 8(Y) = (Y1 + 1Yn, ..., Ya-1 + cn_1Yn, Ys) with
€1y .-y0n—1 € R, and put g := g(X,0(Y)) for g € R{X*,Y}. Then

GF(Ov Oa Yn) = F(07 ClYn, s 7Cn—lYn7 Yn)
= P(c1,...,cn_1)Y.? + terms of higher degree in Yj,,

where P is a nonzero polynomial in ¢i,...,¢,—1 depending only on f (not on
Cly-yCn—1). In summary we get

Lemma. Let fi,..., fi € R{X* Y }\{0} be such that each f;(X,Y) = X F;(X,Y)
for some suitable p; € [0,00)™ and F; € R{X*,Y} satisfying F;(0,Y) # 0. Then
there are infinitely many linear transformations 0(Y) = (Y1 + a1Yy,,..., Y1 +
Cn1Yn,Yn) with (c1,...,cn_1) € R*™! such that

0f:(X,Y)=X"Gi(X,Y)
with each G; € R{X*, Y} regular in'Y,, fori=1,... 1.
6.2. Given a polyradius p = (p1, ..., Pm+n), We put

Ln,p = [O,pl] Ko X [O,pm] X [_pm+17pm+1] XX [_pm+mpm+n]§

we will denote [0,00)™ X R™ by Inn.co. We also write R{X* Y}, instead of
R{X*, Y}, s, where 7 = (p1,...,pm) and s = (Pm+1,---;Pm+n). For n = 0 we
write I, instead of Ip, 0,,-

To an element f(X,Y) =3 fasXY? € R{X*, Y}, we associate a function on
Ly.n,p as follows. Given (z,y) € Ly n,,, the series Y fo s7%y” converges absolutely
to a real number which we denote by f(x,y). The function (z,y) — f(z,y) :
I n,p — R is continuous, since by 5.7 f is the limit in the sense of the normed
ring R{X*, Y}, of its partial sums f; := Z(aﬁ)eJ fa.sXYP with J finite, which
implies that the corresponding continuous functions (x,y) — fi(x,vy) : Imm,, — R
converge uniformly on I, , , to the function (z,y) — f(z,y).

We shall denote the function (x,y) — f(z,y) : Immn, — R by f,. Note
that the argument above shows that || f,|sup < ||f|l, for all f € R{X*,Y},. Let
C(Imn,p) be the ring of all real valued continuous functions on I, ., ,. Part (1) of
the following lemma shows that the map f — f, : R{X*,Y}, — C(Imn,) is a
ring homomorphism.
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6.3 Lemma. Let f,g € R{X*,Y},. Then

L (f+9)p(@,y) = folz.y) + gp(z,y) and (f - 9)p(z,y) = fo(@,y) - gp(x,y) for
all (x,y) € I n,p;

2. if ¢ is either a permutation of {1,...,m} or a singular blow-up substitution
on X* with m > 2, and p is a polyradius with ¢(p) < p, then (of)s(z,y) =
[,(6(2), ) for all (2,) € Ty

3.9 g = (91,---,9n) € R{Z}}, where g1(0) = -+ = ¢,(0) = 0 and t =
(t1,...,t1) is a polyradius with ||g;|l¢ < pms; for j = 1,...,n, then with
hMX,Z) = f(X,9(2)) € R{X*,Z}; where T = (p1,..,Ppm,t1,...,1), we
have h.(z, z) = fo(x, g1(2)) for all (x,2) € Iy 1,+;

4. ifje{l,...,n} and p < p, then for each (x,y) € I n,; the partial derivative
(01/9y)(w.y) exists and (01 /0Y;)5( ) — Of3/0y, (5. 9);

5.4fi € {1,...,m} and p < p, then for all (z,y) € int(Ip ;) the partial
derivative (0fz/0x;)(x,y) exists and x;(0f5/0x;)(x,y) = (0;f)s(z,y).

Proof. These statements are obvious if f and g have finite support; hence by 6.2
they follow for general f and g. O

6.4 Lemma. The map f — f, : R{X*}, — C(I,,, r) is injective.

Proof. Let f(X) =3 faX* € R{X*}, and assume f # 0; we will show that f,
cannot vanish identically on any I, 7 with 7 < r (which is more than what we
need).

By induction on m: if m = 1 then X = X; and, assuming f has order §, we can
write f(X) = X°(fs+ Y05 X*70) with f5 # 0. By 6.2 the series fs+> .5 X0
also gives rise to a function on [0,7]. It follows from Lemma 5.5 that f,.(z) # 0 for
all x € (0,7], where 7 > 0 is small enough.

Let m > 1; assume our claim holds for R{(X’)*},,. Write a nonzero f € R{X*},
as f(X) = >, 50 fa (X)X5m with fo,, € R{(X')*},s, and note that {a,, :
fa,, # 0} is a well ordered subset of [0,00). Hence | f|l, = 3 || fa, |7 and
fr(@) = > (fa,,)r (2")zlm for all & = (2, 2) € Ip,r. Fix some ayy, € [0, 00) with
fan (X') # 0; by the inductive assumption there are &’ € I,;,_1,» arbitrarily close
to the origin such that (f,, ) (2') # 0. For such 2’ we have shown above (case
m = 1) that fr(2/,2m) = D (fa,.)r(2")x%m is nonzero for all sufficiently small

m

T € (0, 7] O
Remark. It follows from Lemma 6.4 that the map f — f, : R{X* Y}, —
C(Im,n,p) is an injective ring homomorphism.

6.5 Lemma. Let f € R{X* Y}, with m > 2, and let vy, > 0. Suppose T < p is
such that T, < XA and 7, _1 (A + Tm) < pm. Then there is a power series r(f) €
R{(X")*, (Xm,Y)}r such that

T(f)-,—(l'/,.%'m,y) = fp(fflaff%q(/\ + xm)v y)

for every (¢',xm,y) € Im—1n+1,-- (Note that here we allow negative values for
ZTn-)

Proof. Write f(X,Y) = 3,5, fe(X',Y)X},. Formally substituting X7, _;(A+ Xon)
for X, and using the binomial expansion (A+X,,)" 1= >, oy (F)AN7F X%, we obtain

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE REAL FIELD WITH CONVERGENT GENERALIZED POWER SERIES 4397

the power series

W)=Y (ﬁ(Xﬁ Ny () x—w;;)

t>0 keN
t
=S X () A x| X e RO (YL
keN \ t>0

Next we note that

()\—I—Xm)t L=
- f [ %

for some positive C' = C(\, 7y,,) that is independent of ¢ > 0.

(2) ’ )\t_ijfl <O+ 7))

(To see this, factor out A' and put = := 7,,/), so that the problem is reduced to
estimating >, o [(})]2* for 0 < 2 < 1. Using that (;) > 0if k < t+ 1 and
](,’i)| <1ifk>t+1, we obtain

t k t| _ t k U\ &
Z <k> ¥ — (1+x)| = Z (k) " — Z <k>$
kEN E>t+1 E>t41
t
SSE
k>t+1
zt
<2
- 1l—x
2
< —1 ¢
- 1—x( +2)

Hence Y cn | (1) 2% < 25 (1 + @)*, which will do.)
From (f) we obtain easily that ||7(f)||- < C|f|l, < oo; in particular, r(f) €
R{(X")*, (Xm,Y)}r. One now easily checks that the power series (f) has the

desired properties. O

Remark. The power series r(f) with v,A > 0 and m > 2 obtained in lemma 6.5
is clearly independent of 7 and is called a regular blow-up of f. (If we want
to indicate the dependence on v, A, we write r(f) instead of r(f).) We also de-
note by 7 : Iy_1n4+1,00 — R™T" the corresponding map defined by r(z,y) =
(&', 230 A+ ) y).

The proof of the previous lemma with v = 0 gives the following.

6.6 Lemma. 1. Let f € R{X*Y},, m > 1, and let A € (0,pm). Suppose
T < pis such that 7, < min(\,p,, — A).  Then there is a power series
t(f) € R{(X")*,(Xm,Y)}r such that

t(f)r(@', zm,y) = fola', XN+ 2, y)
for every (', xm,y) € Im—1.n+1.7-

2. Let f € R{X*,Y},, n>1, and let X € (—pmtn, Pmin). Suppose T < p is
such that T < pm+n — |A|. Then there is a power series t(f) € R{X*, Y},
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such that
t(f)r(2,9) = folz,y', A+ yn)
for every (x,y) € Ly n.r-

Clearly the series t(f) (in both (1) and (2) above) is independent of the choice
of 7. Applying this lemma repeatedly and permuting some variables if necessary,
we obtain:

6.7 Corollary (“Taylor expansion”). Let f € R{X*,Y},, and let a € I, be
such that a; < p; for 1 <i<m. Putm/ =|{i:1 <i<m,a; =0}, and choose
any permutation o of {1,...,m} witho({i: 1 <i<m,a; =0})={1,...,m'}. Let
n:=m+n—m'andlet T = (11,..., T +n’) be a polyradius such that

Po=1(i) Zf 1 << m’,

T < min(a071(i),p071(i) — agq(i)) if m <i<m,

pi — |ail if m<i<m'+n =m+n.
(Hence a + 0(2) € Imn,p for 2 € Iy n-.) Then there is a unique power series
T.f e R{U*,V},, where U = (Uy,...,Un),V = (V4,..., V), such that

(Taf)r(2) = fola+0(2))

for every z € Ly +. In particular, f, is analytic on int(Lpy ).

7. GENERALIZED SEMIANALYTIC SETS
Given a polyradius p = (p1, ..., Pm+n), recall that

Im,"»P = [0,,01] XX [O,pm] X [_pm+17pm+1] XX [_pm+napm+n] C R™H",

We also write I n.e for I, p (c,....e), for positive real e.
7.1 Definition. We let R, , be the set of all functions
(@, y) = f(2,9): Innp — R

with f € R{z*,Y}; for some p > p. Then R, , is an R-algebra of real valued
continuous functions on I, y,,-
A set A C Iy n,p is called a basic R, p,p-set if

A={z€lnn,: f(2)=0,01(2) >0,...,gk(2) > 0}

for some f,g1,...,9x € Rmn,p. A finite union of basic R, ,-sets is called an
Rm,n,p-set. Note that the R,, , ,-sets form a Boolean algebra of subsets of I, n,,.

7.2 Definition. Given a point a = (a1,...,am+n) € R™T™ and a choice of signs
o€ {-1,1}", we let hq, : R™T™ — R™*" be the bijection given by

ha,a(z) = (al + 0121y+++,am + OmZmy Am+1 + Zm41y -y Am4n + Zm-i—n) .

A set A C R™*™ is called R, ,-semianalytic at the point a € R™*™ if there
is € > 0 such that for each o € {—1,1}" we have AN hgo(Imne) = ha,o(As)
for some Ry ne-set Ay C Lyne. A set A C R™ is R,, ,-semianalytic if it
is Ry, n-semianalytic at every point a € R™*". For convenience, if A C R™ is
Rm,0-semianalytic we also simply say that A is R,,-semianalytic.

Note that if A, B C R™*™ are R, ,-semianalytic at a, then so are AUB, ANB
and A\ B. The maps h, , (a € R o € {—1,1}") form a group of permutations
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of R™*". Using this fact, it is easy to check that if A C R™*" is R, ,,-semianalytic,
then each set hq »(A) is also R,y n-semianalytic, and that for each A € (R\ {0})™*"
the set E)\(A) is Ry n-semianalytic, where E) : R™t" — R™*" ig given by
Ex(z) = (M21, -+, MmanZman). Furthermore, if A C R™T" is semianalytic at a,
then A is R, n-semianalytic at a. Finally, it follows from the definition above that
each bounded R, ,-semianalytic set is quantifier-free definable in R,,+. Below we
write 0 for the point (0,...,0) € R+,

7.3 Lemma. 1. If AC I, n,, 95 an Ry p-set, then A is Ry, n-semianalytic at 0.
2. Let n > 0 and A C Ipyn,p be Ryn-semianalytic at 0. Then A is also
Rm+1,n—1-semianalytic at 0.
3. Each Ry, n-semianalytic subset of R™F™ 4s Ronin-semianalytic.
4. Let A C R™"™ be R, n-semianalytic at 0 and let o be a permutation of
{1,...,m}. Then o(A) is Ry n-semianalytic at 0.

Proof. (1) Clearly we may assume that A is a basic Ry, ,-set. Let € > 0 be such
that e < p; fori=1,...,m+n. Let f,g1,...,9% € R n, be such that

A={z€lnn,: f(z)=0,91(2) >0,...,g5(2) > 0}.
For o € {—1,1}™ we define
A =An{zelyne:2zi=0ifo;, =-1,i=1,...,m}.

Then each A, is a (basic) Ry n,e-set, and since A N ho o (Lmn.e) = hoo(As) for
each o, the first statement is proved.

(2) Let 0 € {—1,1}™*! and write 0/ = (01, ...,0.,). Then there is an R, , -set
A, for some € > 0, such that ANho o' (I n,e) = ho,o (Ao’ ). Let the variables z, ¢, z
range over R™, R and R™~!, respectively. Now note that Line 2 Imsin—1,e and
{flimsrmore : f € R} € Rmg1n—1,¢ 50 the set

Ay = {(x,t,z) € RmH1t(n-1) (x, omt1t,2) € Agr N h07(1,...71,am+1)(Im+1,n—1,é)}

is an Rpt1,n—1,e-8et if o1 = 1. A similar argument shows that A, is an
Rm+1,n—1,e-5¢et if 041 = —1. But obviously

AN hO7U(Im+1,n—1,e) = hO,a(Aa')~

(3) This is an easy consequence of (2).
(4) follows from Lemma 5.9, part (1), and Lemma 6.3, part (2). O

7.4 Lemma. Every Ry n p-set A C Iinp 08 R n-semianalytic.

Proof. We may assume that A is a basic Ry, n, p-set, so there are f,g1,...,9r €
R{X*,Y}; for some polyradius p > p such that

A={z€lnn,: f(2)=0,91(2) >0,...,9x(2) > 0}.

Fix a € R™*". We will show that A is R, ,-semianalytic at a. If a ¢ I n,
this is clear. Suppose that a € I, n,,. By adding suitable equalities z; = £p; and
inequalities —p; < z; < p; to the description of A, and then increasing p (which is
possible because p > p), we reduce to the case where |a;| < p; fori =1,...,m+n.

Let A := A — a, the translate of A by —a. It is clear from Definition 7.2 that A
is Ry, n-semianalytic at a if and only if A is Rom,n-semianalytic at 0.

We now apply Corollary 6.7 to the functions describing A. Let o be the per-
mutation of {1,...,m} obtained from 6.7; by Lemma 7.3, part (4), it is enough
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to show that 0_1(121) is Ry, n-semianalytic at 0. By 6.7 there are natural numbers
m' < m and n’ with m’ +n' = m +n and power series T, f, T, g1, ..., Tagr defining
functions in Ry, - for some polyradius 7 = (71, ..., Tm/4n’), such that

U_l(fl) NLywr={2€Innr:Tof(z) =0,Thg1(2) >0,...,Tagx(z) > 0}.

Hence o"l(ﬁ) N Ipy 7 18 & basic Ry ns r-set. Together with Lemma 7.3, parts
(1) and (2), and the fact that

U_l(/i) M ([—Tl,’Tl] X oo X [—Tm/+n/, Tm/+n/]) = U_l(A) M Im’7n’,ra
this implies that ¢~ (A) is R, ,-semianalytic at 0. O

8. THE MAIN THEOREM
8.1. For p € N we put, with I = [-1,1],
A, :={X CI?: X is R,-semianalytic} .

Note that if X C I? is R, ,-semianalytic with m + n = p, then X is also R,-
semianalytic by 7.3, part (3), so X € A,,.

The system (Ap) is easily seen to satisfy axioms (I)-(III) of section 2; in the
following we verify axiom (IV) (see Corollary 8.15): every A-set has the A-Gabrielov
property.

8.2. In this section it is convenient to work with a more general notion of dimen-
sion than the one given in the introduction. We call M C R"™ a C°-manifold
of dimension d if M # () and each point of M has an open neighbourhood in
M homeomorphic to R?; in this case d is uniquely determined (by a theorem of
Brouwer), and we write d = dim(M). Correspondingly, we say that a set S C R"
has dimension if S is a countable union of C°-manifolds, and in that case we put

dim(S) max{dim(M) : M C S is a C%manifold} if S # 0,
im(S) :=
—00 otherwise.

We then have (by a Baire category argument as in [4]): if S = [J,cySi and each
S; has dimension, then S has dimension and dim(S) = max{dim(S;) : i € N}. It
follows easily that if S has dimension in the sense of the introduction, then S has
dimension in the present sense, and the two dimensions of S agree.

This extended notion of dimension is only a temporary convenience; once we have
shown in 8.9 that the sets we are dealing with are finite unions of manifolds, these
sets, whose dimension was up to then taken in the extended sense, have dimension
in the original sense.

8.3 Definitions. Let m,n € N and let p = (p1,..., Pm+n) be a polyradius. We
call M C R™*" an R, ,, ,-manifold if
(i) M is a basic Ry n,p-set contained in int(Z, n,,), and
(ii) there are k <m+n and fi,..., fv € Rum.n,p such that M is an (m +n — k)-
dimensional manifold on which fi, ..., fx vanish identically and the gradients
Vfi(2),...,Vfi(z) are linearly independent at each z € M.
For positive real € we write p < eif p, <efori=1,...,m+n.
Given m/ > m and n/ > n, we let Hﬂz;{/ : R™ A RMHN be the pro-
jection map given by Hﬁj;l"/(xl, ey e YLy ey Ynr) = (T ey Ty Y1y e -+ Yn); WE
will simply write IL,, ,, for ™' " if m/ and n’ are clear from the context.

m,n
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A set U C int(Ip, n,00) is an (m, n)-corner if there is 6 > 0 with int(Z, n,6) C U.

Let f = (f1,...,fu) € R{X* Y}, We say that ¢ > 0 is f-admissible if
[ e R{X*,Y}{ for some § > e. For f-admissible € > 0, S C I, . and a sign
condition o € {—1,0, 1}* we let

Bs(f,0) :=={(z,y) € S :signfi(z,y) = 01,...,signfu(z,y) = ou}.
Finally, we put

{0 ifm=0,1,
b= {bxqfl,...,fu}) itm > 1,

with each f; considered as an element of A[X*] with A = R[YT].
We can now state a key result.

8.4 Proposition. Let f € R{X*,Y}* and let € > 0 be f-admissible. Then there
is an (m,n)-corner U C int(Iy, n,e) with the following property:

(x) for every sign condition o € {—1,0,1}* there are m; > m and n; > n and

connected R,,, . ,»-manifolds M; C R™i+7 with each polyradius p) =

(pgi), - ,p§:;1+ni) <efori=1,...,k=k(o), such that
BU(f? 0) = Hm,n(Ml) U---u Hm,n(Mk)a

and for each M = M;,m/ = m;, n' = n; and p' = p() the set L, (M) is
a manifold and Iy, n |y 2 M — I, (M) is an analytic isomorphism, and
fr M is an Ry s, -set that has dimension with dim(fr M) < dim(M).

Remark. Suppose that f = (fi,..., fus fug1) € R{X* VI e > 0is f-admissible,
UCInneand 0 € {—1,0,1}*. Then By(f,o) is the disjoint union of the sets
By(f,(0,—1)), Bu(f,(0,0)) and By (f, (5,1)). Therefore, in the attempt to estab-
lish 8.4, there is no harm in replacing f by a suitable longer list, and below we will

tacitly use this device.
We first establish two lemmas needed in the inductive proof of 8.4.

8.5 Lemma. Let m >0, n > 1 be fized and assume 8.4 holds for all m' < m and
n' < n in place of m and n. Let f = (fi,..., fu) € R{X* Y'}Y,]* be such that
each f; is monic in'Y,,. Then for each f-admissible € > 0 there is an (m,n)-corner
U Cint(Ipn,e) for which (x) holds.

Proof. Let € > 0 be f-admissible. By extending the list f we may as well assume
that Y, —e, Y, +ec {fi,..., fu}.

We apply Theorem 3.2 with S = I;, ,—1,. and & = Ry n—1,c to the list f1,..., fy,
where each f; is considered as a polynomial in Y;, with coefficients in £. Let ¢ =
(¢1,...,0,) € EY be the tuple of all functions involved in a description of the sets
S1,...,Sk that are obtained from 3.2. Assume ¢, ..., ¢, are given by power series
b1,...,b, € R{X*,Y'}s, where § > ¢, and let ¢ = (¢B1, . .,d;,,). By hypothesis,
Proposition 8.4 applies to ¢. So there is a (m,n — 1)-corner V. C int(In_1.)
such that for each S; there are m; > m and n; > n — 1 and connected Rmi)m’pm—
manifolds M; C R™i*" with each polyradius p® = (pgi), . ,pf,?ﬁm) < ¢ for
i=1,...,1=1(j), such that

Sj NV = Hm,n—l(Ml) J---u Hm,n—l(Ml)7
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and for each M = M;,m' = m;, n’ = n; and p/ = p» the set I n—1(M) is a
manifold and I, p—1|a : M — II,,, ,—1(M) is an analytic isomorphism, and fr M
is an Ry n pr-set that has dimension with dim(fr M) < dim(M).

We will show that the (m,n)-corner U := V x (—¢,¢€) has property (x). Note
that it is enough to prove (x) with (S; N V) X (—e,€) in place of U for each S;
as above, so from now on we fix such an S;. Similarly, it is enough to prove (k)
with (IT,,, n—1(M;) NV) x (—¢, €) in place of U for each M; corresponding as above
to S;. Fix such an M = M; and put m’ := m;,n' :=n;, p" = (p1,..., pmign’) =
(p:(LZ), e 7pf;),+n,) and D := II,;, ,—1(M) (hence D is a connected manifold). Let
C be the connected component of S; that contains D. Simplifying the notation of

Theorem 3.2 correspondingly, from now on we write d = m(C) and &,...,&; for
the restrictions éc1|p,...,¢c,dlp. Since Y, +¢€,Y, —e € {f1,..., fu}, it follows
that the constant functions —e and +€ on D are among &1, ...,&q.

Let hi,..., hy € Ry, with p < m’+n' be such that dim(M) = m’+n'—p and
hi,...,hp vanish identically on M, with Vhi(2),..., Vh,(z) linearly independent
at each point z € M. Below we let x range over R™, u over Rm/_m, y over R"
with y" = (y1,-..,Yn-1), and v over R™~("=1_ For k = 1,...,d, we now define the
connected subsets of R™ +7/+1

Ny = {(z,u,y,0) : (2, u,y',v) € M,y, = E(x,9")}
and for K = 1,...,d — 1 the connected subsets of R™ +7'+1
(Nigy Nig1) = {(2,u,9,0) : (2,0, 9',0) € M, &§s(2,9') < yn < Eupr(x,9)}

Note that IT77;"+1(N,) = T'(&) and I 1 (N, Nuy1)) = (6ns€ns1). Let N
be any one of the Ny’s with —e < &, < ¢ or any one of the (N, Nc41)’s with
—€ < & < Epp1 < € put € = &, & = Epr, and write II,,,, for Hﬂi,{‘l“. Let
D= (Pl Pmidn—1,€ Pmi4ns - -+, Pms+n’ ), SO p is a polyradius with m’ +n’ + 1
components and p < e.

Claim. N is a connected Ry n/41 ,-manifold, I, (V) is a manifold, I, »|n :
N — 11, n (V) is an analytic isomorphism, and fr N is an R,/ n/41,p-set that has
dimension with dim(fr N) < dim(N).

Clearly the proof of this claim will finish the proof of Lemma 8.5.
Proof of the claim. We distinguish two cases.

Case 1: N = N, for some £ € {1,...,d} with —e < & < e. By remark
3.3, ¢ is analytic, so N and II,, ,(N) are manifolds of dimension m’ + n’ — p
and I, n|n : N — II,, o(N) is an analytic isomorphism. Since fi,..., f, are

monic, part (3) of 3.2 implies that £ extends uniquely to a continuous function
n:cl(D) — R. So

c(N) = {(z,u,y,v) : (z,u,y',v) € (M), y, =n(z,y)},
and hence
fr N = {(z,u,y,v) : (z,u,y’,v) € fr M,y, = n(x,y")};

in particular, fr N is homeomorphic to fr M. Moreover, by part (3) of 3.2 the set
T'(n) is described inside cl(D) x R by equations and weak inequalities involving
fi,..., fu and their derivatives 0" f;/0Y;”. It follows from the inductive hypothesis
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on fr M that fr N is an R/ n/41,p-set, and that fr N has dimension with dim(fr V) <
dim(N). (Up to this point the argument also works if £, = —€ or £, = €.)

It remains to show that N is an R, n/4+1,,-manifold. Using part (1) of 3.2 and
the inductive hypothesis on M, it follows easily that N is a basic R/ n/41,p-s€t.
Note also that N C int(l nr41,p). Next, let g € £[Y;,] be the polynomial in
part (2) of 3.2 (with Y, in place of T') and let e € {1,...,degy (g)} be such that
ho := 9°7tg/0Y, ! vanishes identically on I'(¢), while Ohy/dY,, vanishes nowhere
on I'(¢). For simplicity, denote the functions

(il',’u, yav) g ho((E, y) : Im’,n’—i—Lp — R
and
(33, u, Y, U) = (8h0/8Yn)($a y) : Im/,n/—i-l,p — R

also by ho and 0hgy/0Y, respectively. Clearly these two functions belong to
R ni41,p- Similarly, for each i € {1,...,p} denote the function (z,u,y,v) —
hi(z,u,y',v) : Iys 41, — R also by h;, so that ho, hi,...,hy € Ry niq1,, van-
ish identically on N, while they have linearly independent gradients at each point
of N, since hy, ..., h, do not depend on yy,.

Case 2: N = (N, Nyq1) for some k € {1,...,d — 1} with —e < &, < &xy1 <.
Clearly (&,€) and N are manifolds of dimension m/+n'+1—p and I, |5 : N —
(&, 13 ) is an analytic isomorphism. As in case 1 we see that £ and € extend uniquely
to continuous functions 7,7 : cl(D) — R respectively. To see that fr N is an
R’ n'+1,p-5et and has dimension, we first observe that fr N = cl(N,,)Ucl(Ny41)UG,
where

G = {(z,u,y,v) € R™ TV H: (a,u,y',0) € fr M,n(z,y) < yn < 7iz,y)}.

Putting H := {(z,u,y’,v) € it M : n(z,y’) < 7(x,y')}, we see that H is open in
fr M and hence H has dimension. It follows from the continuity of n and 7 that G
has dimension with dim(G) = dim(H) +1 < dim(M)+1=m'+n'+1—p. On the
other hand, cl(N,) and cl(N,41) have dimension m’ +n’ — p by case 1. Hence fr N
has dimension with dim(fr N) < dim(N); the fact that fr N is an Ry, nry1, p-set is
established as in case 1.

It remains to show that N is an Ry, n/41,,-manifold. Using part (1) of 3.2 and
the inductive hypothesis on M, it follows easily that N is a basic R/ n/41,p-s€t.
Note also that N C int(l n41,p). Similarly to case 1, for each ¢ € {1,...,p}
denote the function (z,u,y,v) — hi(x, u,y’,v) : Iy nr41,, — R also by h;, so that
hi,...,hy € Ry mr41,, vanish identically on N, while they have linearly indepen-
dent gradients at each point of V. O

8.6 Lemma. Let f € R{X* Y} andlete > 0 be f-admissible. Let S C R™T" ¢ :
S — R™™" m. €N andd >0, and suppose we are in one of the following three

situations:
(i) S=R™" m=m, 7 =n >0 and there are c1,...,cn_1 € R with
I+ 1|+ +|en-1])d <€
and

¢(1’7y) = (xayl + ClYny -+ Yn—1 + Cn—lynayn) fOT’ all (l',y) S S
(then we put ¢f == f(X, Y1 +c1Yn, ..., Yoo1 + 1Yy, Yy) € R{X* Y}#);
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(ii) S = ILnnoo, m=m > 1, 7 =n and there is v > 0 with max(8,67"1) < € and
d(xyy) = (2, 2), _1xm,y) for all (z,y) € S
(then we put of := s, .. 1 (f) € R{X*Y}* as defined in 5.8);
(iii) S = Impoo, M = m—1, 7 = n+ 1, and there are v,\ > 0 such that
max (5, 07"(A+9)) < e and
d(zyy) = (@' 2], _ AN+ xm),y) for all (z,y) € S
(then we put ¢f = r](f) € R{U(X')*, (Xm,Y)}* as defined in 6.5 and the
remark thereafter).

Assume that § is ¢ f -admissible and that (x) holds with ¢f in place of f, § in place
of € and some (m,n)-corner V- C int (15, 7,5) in place of U. Then ¢(V') C int (I n,e)
and (x) holds for [ with U = ¢(V).

Remark. The set ¢(V) is an (m, n)-corner in case (i), but not necessarily in cases
(ii) or (iii).

Proof. Put U := ¢(V). It is easy to check that U C int(I, ) and that ¢ f(x,y) =
f(o(z,y)) for all (z,y) € V. Hence

(0) BU(fu U) = ¢(BV(¢f7 0))

for each sign condition o € {—1,0,1}*. In the rest of the proof we treat only case
(ii) in detail (so m = m > 1,7 = n); the other cases are handled similarly. Let M
be one of the R,/ 5/ -manifolds in () for ¢f with ¢ in place of € and V in place
of U, m' > m and n’ > n, and polyradius p’ = (p1,..., pm/4n’) < 6. Put

N := {(m’,t,xm,u,y,v) e RV (2 u,y,v) € Mt = x;_lxm},

where ¢ ranges over R. Note that Hﬁ::{l”‘/ (N) = ¢(II,n(M)); below we write
I, for Hﬁ,f{lvnl. Let p:= (p1,-- -y Pm—1,€ Pmy-- -5 Pmi+n' ), SO p is a polyradius
with m’ + n”+ 1 components and p < €. Clearly N is a basic Ryy/41,n,p-s€t and
N C int(Im/_,_l,n/,p).

Claim. N is a connected Rpn41,n,,-manifold, II,, »,(N) is a manifold, I, »|n :
N — II,, n (V) is an analytic isomorphism, and fr N is an R,/ 41,0, p-set that has
dimension with dim(fr N) < dim (V).

In view of (¢) and I, o (V) = ¢ n(M)) the proof of this claim will finish the
proof of case (ii) of Lemma 8.6.

Proof of the claim. Tt is easy to see that N is a manifold and that the map 6 :
(', t, Tm,u,y,v) — (z,u,y,v) : N — M is an analytic isomorphism onto M.
Since M is connected it follows that N is connected. Now ¢|iny(g) : int(S) — int(S)
is an analytic isomorphism, Hﬁi;{‘/ (M) is contained in int(S) and

Hm,n|N == d) o Hm:hn,|M o 9)

and hence II,, ,(N) is a manifold and I, |y : N — 1L, (V) is an analytic
isomorphism. As in the proof of the previous lemma we obtain that

fr N ={(2,t,zm,u,y,v) : (z,u,y,v) €t M, t =z xm},

from which it follows that fr N is an Ry, 41,n p-set, and homeomorphic to fr M;
hence fr N has dimension and dim(fr N) = dim(fr M) < dim(M) = dim(N).
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It remains to show that IV is an Ry 41 0, ,-manifold. Let hy, ..., hy € Ry n o
with p < m/ 4+ n’ be such that M is a basic Ry n -set and an open subset of
{z € int(Ipy nip) + hi(z) = -+ = hp(z) = 0}, with Vhi(2),...,Vhy(z) linearly
independent at each point z € M. For simplicity, for each i € {1,...,p} denote the
function

(@', t, Ty u, y,0) = By (2,0, y,0) L1,y — R

also by h;, so that h1,...,hy, € Ryy1,n,, vanish identically on N. Also denote the
function

/ Y .
($ atvxma u,y, U) =t — LTpp—1Lm Im’+1,n’,p > R

by hg, s0 hg € Ryn/41,n7,p and vanishes identically on N as well. But ho, hy,..., hy
have linearly independent gradients at each point of N, since hj,...,h, do not
depend on t. O

8.7. Proof of Proposition 8.4. Fix a tuple f € R{X* Y }*, and write b = b(f). We
proceed by induction on the quadruples (m,n,b) € N%, ordered lexicographically.
The case (m,n,b) = (0,0,0,0) is trivial; so we assume that (m,n,b) > (0,0,0,0)
and that the proposition holds for all lower values of (m,n,b). We may and shall
also assume that f; # 0 for all i. Let ¢ > 0 be f-admissible. We have to find an
(m,n)-corner U C int(Ip, ) for which (%) holds.

First we assume that b = (0,0), and we distinguish two cases depending on the
value of n. Recall that b = (0,0) means that there are 6; € [0,00)™ fori =1,..., u,
such that

fi(X,Y) = X5 F(X,Y)
with F; € R{X* Y} satisfying F;(0,Y) # 0; so we may as well assume that
(¢) £:(0,Y) # 0 for each i.

Case 1: n =0. By (¢) and corollary 5.6 (1) we can choose d € (0, ¢) such that
fi(x) # 0 for all z € [0,6]™ and ¢ = 1,...,u. Then with U = (0,5)™ each set
By (f,0) (where o € {—1,0,1}* is a sign condition) is either empty or equal to U,
so it obviously has the desired properties.

Case 2: n > 0. By (¢) and 6.1 there is a linear transformation 6(X,Y) =
(X, Y1 + aiYa, .., Y1 + cna1Yy,Y,) with ¢1,...,¢,—1 € R such that each
Of; == fi(0(X,Y)) is regular in Y,,.

Assume for the moment that 8.4 holds with 6f in place of f. Take some 6f-
admissible ¢ > 0 with (1 4 |e1| + -+ + |en—1])d < € and an (m,n)-corner V. C
int(I,.n,6) such that (%) holds with 6f in place of f and V in place of U. Then (x)
holds for f and the (m,n)-corner U := 6(V') by case (i) of Lemma 8.6.

We may therefore assume that each f; is regular in Y,,. Applying Weierstrass
Preparation 5.10 to each f; and decreasing e if necessary, we obtain

fi(Xv Y) = Ui(Xv Y) : Wi(va)

with each U; € R{X*,Y}. having no zeros in I, ., and each W; a monic poly-
nomial in Y;, with coefficients in R{X*,Y"}.,, for some ¢ > e. Clearly we may
even replace f; by W;, so that each f; is actually a monic polynomial in Y,, with
coefficients in R{X™*,Y’}... We now use the inductive hypothesis to apply Lemma
8.5 to f, thereby proving case 2.
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Next we assume b > (0,0) (recall that b > (0,0) implies m > 1 by definition of
b(f)). By Proposition 4.14, after permuting the first m coordinates if necessary,
there are 7y > 0 and singular blow-up substitutions so := s, ,,_; and s := s:n/ZLm
such that b(sof) < b and b(sf) < b. Note that the corresponding maps sg, Seo :
I 00 — R™*™ are given by

50(1;7 y) = (:E/v z;—lajmv y)a

Soo(xv y) = (xla sy Tm—2, x,ln/vxm_l,xm, y)
Take 6 > 0 such that 0 is sgf-admissible as well as s, f-admissible and
max(d, 07, 61/ M+) < e

By the inductive hypothesis (x) holds for sof and s f in place of f with an
(m,n)-corner Vy C int(l, n,s) and an (m,n)-corner Voo C int(I, ».5) in place of U
respectively. Then case (ii) of Lemma 8.6 implies that so(Vo) U Seo (Vo) C Imone
and that (x) holds for f with so(Vh) U 800 (Vo) in place of U.

The problem now is that so(Vh) U Seo(Veo) is not in general an (m,n)-corner.

But we know there is a 79 > 0 such that int(1,, , ) is contained in V5. The image
under sg of int(Ip, n.r,) is contained in so(Vp), i.e. so(Vo) contains the set

Do = {(z,y) € int(Imn,ry)  Tm < ToTp_1 } -
The same argument for s, gives 7 > 0 such that the set
Deo : = {(z,y) € nt(Iypn.r) : Tm_1 < T2/}
= {(&,9) € (L) s 70,y < )

is contained in $o0(Vo). Writing 7o, := 7717, we see that if 79 > 7o, then
Dy U Dy, is clearly an (m,n)-corner; hence so(Vp) U $00(Vio) is an (m, n)-corner,
and we are done. Suppose then that 79 < 7.; it remains to cover everything in the
set int(In n,o0) \ (Do U Do) close enough to the origin in R™*7.

To do this we use regular blow-ups. By lemma 6.5, for any A > 0 the regular
blow-up substitution 7} satisfies r} f € R{(X')*,(Xm,Y)}*. (The corresponding
map ry : Iym—1nt1,00 — R s given by 7} (z,y) = (2/,z),_1 (A + 2,,),y).) Take
some 7, f-admissible 6 > 0 with max(8,87(A +0)) <e.

By the inductive hypothesis, (*) holds with r} f in place of f and an (m—1,n+1)-
corner Vy C int(I,,—1,n+1,5) in place of U. Then Lemma 8.6 implies that (*) holds
for f with the set 7] (V) C int(I, ,,e) in place of U. On the other hand, there is a
Tx € (0, A) such that int(l—1,n41,r, ) is contained in Vy, and hence the set

Dy = {(z,y) € int(Imn,r,) : (A= 72)2), 1 < T < (A +7a)2),_1}
is contained in 7} (V).
Take finitely many A1, ..., Ax € [0, Too] such that

K

[70, Too) € [J (i = a0 Mi + 70,).
=1

Then Dy U Do U Ufil D,, is clearly an (m,n)-corner, and hence

K
U:= SO(VO) U Soo(Voo> U U T;\Y,i(VAJ g int(Im-,n,E)
i=1
is an (m,n)-corner. Therefore (x) holds for f with this set U. |
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We now extend 8.4 to closed (m, n)-corners; a set U C I, ,, o is called a closed
(m,n)-corner if I, , s C U for some § > 0. A point on the boundary of I, » oo
has some of its first m coordinates equal to 0, but after a permutation of the first
m coordinates it is of the form (0,,—m/, u,v), where 0,/ is the origin in Rm—m’
and (u,v) € int(I, ), for some m’ < m. In this way one reduces questions about
sets contained in the boundary of I, ,, to similar questions about sets contained
in int(Ip, n,00). We now formalize this observation as follows.

A set M C R™" is an R,, ,-manifold if there are m’ < m, a polyradius

= (p1,--+, Pm/+n)s a0 Ry p-manifold N C int(Ip ,,,) and a permutation ¢ of
{1 ,m} such that M = ¢({Om—m'} X N). (Here ¢ acts on R™" as specified
in 5. 8) In this situation we will say that the R,, ,-manifold M is obtained
from the R,/ n ,-manifold N. Note that each R, ,-manifold is a bounded Ry, n-
semianalytic manifold.

8.8 Lemma. Let f € R{X* Y} and let ¢ > 0 be f-admissible. Then there is a

closed (m,n)-corner U C I, , ¢ with the following property:

(xx) for every sign condition o € {—1,0,1}* there are m; > m and n; > n and
connected R, n;-manifolds M; C R™i*" fori=1,..., k= k(o) such that

By(f,0) = Hm,n(Ml) u---u Hm,n(Mk)v

and for each M = M;,;m' = m; and n' = n; the set Il,, ,(M) is a manifold
and Wy plae + M — Iy, o (M) is an analytic isomorphism, and fr M is
Ry nr-semianalytic and has dimension with dim(fr M) < dim(M).

Proof. Let P C {1,...,m} and define, for 6§ > 0,
,I:L)W; ={(z,y) € Imns:xi=0forie Px; >0forie{l,...,m}\ P}
For the purpose of this proof we call a set U C I, , . a P-corner if there is

5 € (0,€) such that I} s C U. Tt suffices to find for each P C {1,...,m} a
P-corner Up C Iy e for which (%) holds with Up in place of U, because then

is a closed (m,n)-corner for which (x%) holds.

So let us fix some P C {1,...,m}. To simplify notation, assume P = {1,...,p},
0<p<m. Let 0, = (0,...,0) be the origin in RP?, let X = (Xpt1s .-+, Xm) and
put f := f(0,, X,Y) € R{X*, Y }#. By 8.4 applied to f there is an (m —p, n)-corner
U C int(l_pn.c) for which (%) holds with f in place of f (and X in place of X,
m — p in place of m). Then Up := {0,} x U C I,, » . is clearly a P-corner.

We now claim that (xx) holds for Up in place of U (We will be done once this claim
is established). To see why this claim holds, let o € {—1,0,1}* and let M, ..., M,
be the manifolds for which BU(f, o) = m—pm(Ml) UHm_pm(Mk)7 and which
have the other properties required in (x) for f in place of f. In particular, each
M; is clearly a connected Rnins,p»-manifold in R™itmi with m; > m — p and
n; > n and some polyradius p(*) (here we use 7.4). One checks easily that then
each M; := {0,} x M; C R™i*P+7 is a connected R, 4 p.n;-manifold, that

By, (f,0) = Hm,n(Ml) u.---u Hm,n(Mk)a

and that the M;’s have the other properties required to make (%) hold for Up in
place of U. O
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8.9 Corollary. Let A C R™™ be bounded and Ry, n-semianalytic. Then there
are m; > m and n; > n and connected, bounded, Ry, n,-semianalytic manifolds
M; CR™i*" fori=1,...,k such that

A = Hm,n(Ml) U---u Hm,n(Mk)a

and for each M = M;, m' = m; and n’ = n; we have:
1. there are a € R™™, o € {—1,1} and a connected Ry -manifold N C
R™+" such that M = ha.o(N),
2. Iy n (M) is a manifold and Iy pn|pr 2 M — Iy, (M) is an analytic iso-
morphism, and
3. fr M is Ry ne-semianalytic and has dimension with dim(fr M) < dim(M).

Proof. By the definition of “R,, ,-semianalytic” and the previous lemma the corol-
lary holds locally at each point of R™*" and hence the boundedness of A implies
that it holds globally. O

8.10 Remark. Corollary 8.9 implies that every bounded R, »-semianalytic set has
dimension not only in the sense of 8.2, but even in the sense of the introduction.

8.11 Definitions and Remarks. Given m,n € N and strictly increasing sequen-
ces t € {l,...,m}* and & € {1,...,n}" with y < m and v < n, let TI7%" :
R™+" — RATY be the projection map given by

7" (2,y) = (Tu)s - -5 Tuu)r Yn(1)s - - -5 Yn(v))-

As before, we simply write II, ,, for II7%" whenever m and n are clear from the

context.
Let m > k > 0,n > 1 > 0, and let M be an R, n,,-manifold of dimension d
for some polyradius p = (p1,..., Pm+n). Take functions hq,...,hp € Ry pn,, with

p = m-+n—d such that M is a basic Ry, n, p-set and hq,. .., h, vanish identically on
M while the gradients Vhq(z), ..., Vh,(z) are linearly independent at each z € M.
For strictly increasing sequences ¢ € {1,...,m}* and x € {1,...,n}” with p <m
and v <nand p+v=d, welet M, ., :={zeM:II.(T.M) = R?}. Then M,
is of the form {z € M : h, (2) # 0} for some h, x € Ry n,p: if 0 € {1,...,m}m#
and & € {1,...,n}"" are strictly increasing sequences such that Im(:) N\Im(z) =
and Im(x) NIm(%) = @, then basic linear algebra shows that

8(ha, ... hy) > }
M, , = zeM:det( P z 0p;
, { a(lean'7$Zm,*“yﬁ17"'7y/%n,u) ( )#

but the function

m—p
O(hi, ... hy) >
hy x = xz. | det ( P
' J:l_[l ! 8(1;517 7yl~*€n—u)

"'71‘5m7;ny7€1’ SN
clearly has the same zeros in int(/, ) as det Oha,::shp) and by
TP 6(1517~~~,$zm,u;yr€1;~~~7ykn,,,) ’

6.3, parts (4) and (5), and the definition of R, ,,, we have h, , € Ry.n,p. Hence
each M, , is either empty or an R, n ,-manifold of dimension d. Moreover, M is
clearly the union of all the M, ,’s.

For sequences ¢,k as above, put ¢ := 0, ko := 0, and let u’ € {0,...,u} and
v € {0,...,v} be maximal with ¢,, < k and k,» < I respectively. (We do not
explicitly indicate the dependence of p’ and v/ on k and [, as it will be clear from
the context.) If we assume that M = M, ,, and that IIj ;| » has constant rank p'+1/,
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then by the rank theorem (see [14], pp. 86,89) each fiber M, := H,;}(a) N M for

a € R**+!is either empty or a manifold of dimension d — (11/ +1'). Moreover, writing
o=y tw), D= (b, -y b) and K= (Ke, e Ko ), Ri= (R, -0 Ke),
we note that II; z|ar, is an immersion. (To see this, note that for z € M, the
tangent space T, M, is a subspace of T, M of dimension e := d — (¢' + V') such
that 11y ; (7> M,) = 0. Let vy, ..., ve be a basis of T, M,; then II, ., (v1),...,II, (ve)
are linearly independent in R?, and I (1) = -+ = I, w(ve) = 0. Hence
I; %z (v1), ...,z z(ve) are linearly independent in Re.) It follows that if C is a
connected component of M,, then II; z(C') is open in R® and hence has nonempty
frontier if e > 1, which implies (since C is bounded) that fr C' # 0 if e > 1.

8.12 Fiber Cutting Lemma. Let m >k >0 andn > 1 > 0. Assume that M is
an R n,p-manifold for some polyradius p, and that moreover M = M, ,; for some
fized strictly increasing sequences ¢ € {1,...,m}* k € {1,...,n}” with p > k or
v > 1, and that rank(ITy i |7, ar) = p' +1/' for all z € M. Then there is an Ry, pn,p-set
A C M with dim(A) < d such that I (M) = I 1 (A).

Proof. Note that u > k or v > [ implies p/' + v/ < d.

First observe that there is ¢ € Ry, n,, such that g is strictly positive on all of
M and identically zero on fr M: choose a set of equations and strict inequalities
from Ry, n,, describing M, and let g be the product of all functions making up the
inequalities of this description, together with the functions x;, p;—z; fori =1,...,m
and ¥ + Pm+j, Pmyj — Yy for j=1,...,n.

Next, by the last remark preceding this lemma, for each a € IIj ;(M) the fiber
M, = H,;}(a)ﬂM is a manifold of dimension d— (i’ +v") > 0. Also by that remark,
fr C # () for each connected component C of M,, and thus g|ys, has critical points on
each connected component of M, since g is positive on M, and vanishes identically
on fr M,; since g|s, is analytic, the set of its critical points has empty interior in
M,. Let A be the set of all critical points of g|as, for all a € Ty ;(M), i.e.

A={z¢€ M : zis a critical point of g|p,,a = I (2)}.

Then clearly IIj, ;(A) = II ; (M), and A is an R, » p-set, so by 8.9 A has dimension.
Since A has empty interior in M, we have dim(A) < dim(M). This finishes the
proof of the fiber cutting lemma. O

If M C R™*" is a manifold of dimension d and k¥ < m and [ < n, we define
r(M) := max{rank(Ig |7, ) : 2 € M} < d.
(Again, we do not indicate explicitly the dependence of (M) on k, [, m and n.)

8.13 Lemma. Let M C R™T™ be an Rom,n-manifold of dimension d, and let k < m
and | <n. Then

(x) there are bounded, R, n,;-semianalytic manifolds N; C R™it™ satisfying
dim(N;) < d, m; > m and n; > n fori=1,..., K, and there are bounded,
Ry, .q; -semianalytic sets A; C RPit% satisfying dim(A;) < d, p; > m and
g >n forj=1,...,L, such that

Hk)l(M) = HkJ(Nl) U---u HkJ(NK) U HkJ(Al) Uu---u Hk},l(AL)u

and for each N = N; there are strictly increasing sequences ¢ € {1,... k}*
and k€ {1,...,1}" with p+v =dim(N), such that I, |n is an immersion.
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Proof. We prove this lemma by induction on r(M) simultaneously for all k, I, m, n.
One easily checks (as in the proof of Lemma 8.8) that if M is obtained from an
R n,p-manifold N, it is enough to prove () with N in place of M and a possi-
bly smaller k. We will therefore assume that M is an R, n, ,-manifold for some
polyradius p.

The initial case (M) = 01is trivial (since then ITj ; is constant on each component
of M), so below we assume (M) > 0 and that the lemma holds for lower values of
r(M).

Let ¢ € {1,...,m}* k € {1,...,n}" be strictly increasing sequences such that
M, #0, u+v=dand g/ + v =r(M). Note that if u < k and v <, 8.13 holds
trivially with K = 1,L = 0 and M, ,, in place of both M and N;. So we assume
that i > k or v > [. Then since M, ,; is open in M, for every z € M, ,

r(M) = p' +v" < rank(Ily |7, 0, ) < 7(M),

and hence 8.13 with M, , in place of M follows from the fiber cutting lemma. It is
therefore enough to prove () with

M = M\ U ML7N
p’+l/'7:r(M)

in place of M.

Note first that for every z € M, rank(ITy |7.a) < 7(M). Since M is clearly an
Rom,n,p-set, we may apply Corollary 8.9 with M in place of A. Denote by M, C
R™>*7x the manifolds obtained from 8.9 for M. Since for each A the projection
ynlay, 2 My — I (M) C M is an analytic isomorphism, it follows that
for each w € My, 2z = Il 5 (w), we have rank(IL'M" |1, a1, ) < rank(Iy |7 m) <
r(M), ie. r(My) < r(M). By 8.9 again each M) is equal to h, - (H)) for some
a € R™M*m g e {—1,1}™ and some R,,, ,,-manifold Hy, and clearly r(H)) =
r(M)). Therefore by the inductive hypothesis (*) holds with each H) in place of
M, and one easily verifies that then (x) holds with each M) in place of M. This
finishes the proof of the lemma. O

8.14 Proposition. Let A C R™" be a bounded, Rom,n-semianalytic set, and let
k <m andl <n. Then there are connected, bounded R, n,-semianalytic manifolds
N; CR™F% with m; > m and n; >n fori=1,...,J, such that

Hk)l(A) = Hk,l(Nl) Uu---u Hk;)l(NJ)

and for each N = N;, m' = m; and n’ = n; we have:
1. fr N is Ry ns-semianalytic and has dimension with dim(fr N) < dim(N);
2. dim(N) < k + 1, and there are strictly increasing sequences ¢ € {1,... k}*
and k € {1,...,1}" with p+v =d := dim(N) such that I, .|n : N — R? s
an tmmersion.

Proof. By induction on e := dim(A); if e = 0 then A is finite by 8.9, so the theorem
is trivial in this case. So we assume e > 0 and that the theorem holds for lower
values of e.

Note first that if there is a bounded R 7-semianalytic set £ C [ M+ for some
m > m and 7 > n such that A = II,,, ,(F) and 8.14 holds with E, m and 7 in place
of A, m and n respectively, then 8.14 also holds for A, m and n; and if A is a finite
union of R, ,-semianalytic sets each satisfying 8.14 in place of A, then again 8.14
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also holds for A. By 8.9 and the inductive hypothesis, reasoning as at the end of
the previous proof, and increasing m and n if necessary, we may therefore reduce
to the case that A is a bounded, connected, R, ,-manifold M of dimension d.

Applying Lemma 8.13 to M (with m,n, k,1), let Nq,..., N and A;,..., Ay, be
as in (x) for M. Since for each j = 1,...,L we have dim(4;) < e, the inductive
hypothesis together with the above implies that we may even reduce to the case
where M = N; for some i € {1,..., K} (again increasing m and n if necessary), i.e.
condition (2) of 8.14 holds with M in place of N.

Now we again apply 8.9 with M in place of A, and we let N (with corresponding
m’ > m and n’ > n) be one of the M;’s thus obtained from 8.9. We now claim that
conditions (1) and (2) of 8.14 hold for this N, which together with the fact that N
is a connected, bounded R,/ ,--manifold then finishes the proof of 8.14.

Since I, p|n : N — II,,, (V) is an analytic isomorphism, II,, ,(N) C M and
I, |a is an immersion, we see that HT,;’"/| N is an immersion, which establishes
(2). Condition (1) follows from condition (3) of 8.9 with N in place of M. O

8.15 Corollary. Fvery A-set A C IP has the A-Gabrielov property.

Proof. Note first that if A C I in Corollary 8.9 (resp. Proposition 8.14), then
each M; (resp. N;) can be taken to be a subset of I™i ™" (multiply the coordinates
Tntls -« Tmly Yntls--->Yn Dy some small enough & > 0 and use the remarks in
7.2). Therefore Corollary 8.15 follows from 8.14 with m = p and n = 0. O

Theorem A. The expansion R,y is model complete and o-minimal.

Proof. Since any A-set A C I? is a bounded Rp-semianalytic set, A is quantifier-
free definable in R,,+ by a remark in 7.2. The theorem then follows in view of
Corollaries 8.15 and 2.9. O

As a consequence of 2.9 and the way we proved Theorem A we have

8.16 Proposition. If A C R™ is bounded and definable in R,,«, then there are
n > m and a bounded R, -semianalytic set B C R™ with A = I1,,,(B).

9. POLYNOMIAL BOUNDEDNESS

From now on we work in the structure R,,«; in particular, “definable” means
“definable in R,,+”. In this section we prove Theorem B, which characterizes
definable 1-variable functions. The main step towards this goal is the curve selection
result 9.6, whose proof is along the lines of Tougeron’s treatment of curve selection
in [15] and [16]. To deduce Theorem B from this curve selection we also need to
construct the “compositional inverse” of certain elements of R{T*}; see 9.9. Here
T is a single indeterminate. Note that R{7T™*} is a valuation ring with residue field
R and value group R. Let Frac(R{T*}) denote the fraction field of R{T™*}; we make
it into an ordered field as follows: for 0 # g € R{T*}, put g > 0 if g(T) = > b, 17
with berq(g) > 0.

9.1 Lemma. The local ring R{T*} is henselian, i.e. given any
FW)=W" +ar(T)W" ™ + -+ an(T) € R{T*} W]

with £(0,0) =0 and (0f /OW)(0,0) # 0, there is «(T) € R{T*} such that «(0) =0
and f(T,a(T)) = 0.
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Proof. Let f(T,W) be as in the lemma. Considering f(T,W) as an element of
R{T*, W}, this means that f is regular in W of order 1. Hence by 5.10, f(T, W) =
u(T,W)(W — «(T)) for some unit u € R{T*, W} and some o € R{T*}, and the
lemma follows with this a. a

9.2 Corollary. The field Frac(R{T*}) is real closed. Every f € Frac(R{T*})\ {0}
is of the form T"g(T) for some r € R and g € R{T*} with g(0) # 0.

Proof. By 9.1 and the remarks preceding it, using [13]. |

Before we can proceed to curve selection, we need to make sense of substituting a
positive generalized power series in one variable in another generalized power series.

9.3 Definition and remarks. Let h € R{T*} with h(0) = 0, and let 7 > 0. Then
we define

T = r k
1 = ;
(I+h)" =) <k>h :
k=0
note that (1+ h)" is a well defined element of R{T*} by 5.7.
Now let 0 < g = > b,77 € R{T*}, and write g = b\, 77 (1 + h) with v =
ord(g) > 0, by, >0, and h € R{T™*} with h2(0) = 0. Then we define, for any r > 0,

g = T (1 + R

More explicitly, b =31 >0 o b, 77770 = b3 35, byor0T?, s0

k _ 1—k Y
h* = b'yo § : (b’Yo+91 T b70+0k) .
01+ +0="
01,..., 601.>0

Hence g" =Y b, T with

T\ .
(*) bry = Z </€> bvo g Z byo+61 -+ Doty

k 01+ 40 =7—rv0
01,...,0>0
(Note that since supp(g) is well ordered, the right-hand side of equality (x) is
actually a finite sum, and that it equals 0 if v < rv.)
For any small enough 7 > 0 we have by 5.5 that ||h]l; < 1; let us fix such a
number 7. Then by 5.7 and 5.2
r
h|k.
()

By (f) in the proof of 6.5 there is a constant C' > 0 depending only on ||A| - (not on
r), such that ||¢"||- < C|lg||%; indeed, it follows from (}) in the proof of 6.5 that for
any D € (0,1) the constant C' := 125 works whenever ||h||. < D. By the binomial
formula we also get for ¢ € (0,7) that g(t) > 0 and ¢"(¢) = (g(¢))".

I+ R) <>
k=0

9.4 Lemma. Let f € R{X* Y}, for some polyradii p = (p1,...,pm) and o =
(0'1,.. .,0'").
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1. Let n > 1, g € R{T*} and suppose |g|- < on, where 7 > 0. Then
there are 7' € (0,7] and a series (X, T,Y") € R{(X,T)*,Y'}p 0, Y =
(Y1,...,Y,_1), such that

h(xvtv y/) = f(a:,y/,g(t))

for every (x,t,y") € int(Lyi1,0-1,(p,r,07))-

2. Let m > 1,0 < g € R{T*} and suppose ||g||- < pm, where 7 > 0. Then
there are 7 € (0,7] and a series h(X',T,Y) € R{(X", TV, Y}y +.0, X' =
(X1,...,Xm—1), such that

ha',t,y) = f(2',9(t),v)
for every (2',t,y) € int(Ly, n, (p 7.0

Remark. (Here we assume the lemma is true.) We note that by 6.4 the series
MX,T,Y") e R{(X,T)*,Y'} (respectively h(X',T,Y) € R{(X',T)*, Y}) is unique
in the sense that it depends only on f € R{X* Y} and g € R{T*}, but not on
choices of p,o,7 with f € R{X*,Y},, and | g||l- < on (resp. |g|l- < pm). We
will therefore simply denote h(X,T,Y”) by f(X,Y’,g(T)) (resp. h(X',T,Y) by
f(X’,9(T),Y)). In particular, for any f € R{X*, Y} withn > 1 (resp. m > 1) and
any g € R{T*} with g(0) = 0 the power series f(X,Y’, g(T)) (resp. f(X',g(T),Y)
with g > 0) is well defined.

These substitutions behave as expected. For example, let f, g € R{T*}, f(0) # 0,
g(0) =0, g > 0; then ﬁ = %(g) in R{T*}, as is clear from 6.4. Below we shall
freely use facts of this nature.

Proof of 9.4. We distinguish two cases.

Case 1: ¢(0) =0.

(1) Writing f(X,Y) = Y0, fx(X, Y)Y, with fr € R{X*,Y'} for k € N, we
define

h(X,T,Y") kaXY

note that h € R[(X,T)*, Y] since ord(g) > 0. Convergence of h follows easily from
the assumptions on g, and the equation of part (1) holds obviously if f has finite
support, and hence by 6.2 for general f.

(2) To simplify notation, we assume throughout the rest of case 1 that m =1
and n = 0; the general case is treated similarly. Write f(X) = Y a,X" and
g(T) =>"b,T7. Let vy := ord(g) > 0, and define

WT) == f0)+ Y arg(T)" = F0)+ > e T7,

>0 >0

v = E :arbrm

r>0

where, for v > 0,

with b, as in (x) of 9.3. For these definitions of h(T) and ¢y to make sense, we
first need to show that the last sum is actually a finite sum, and that ¢, # 0 only
on a well ordered set of 4’s. Since the proofs for these two statements are almost
the same, we only prove the first one.

Note that b, = 0 for v < ry9. Assume for a contradiction that v > 0 and that
there is a sequence {r;};en of distinct real numbers such that a,,b,, 4 # 0 (hence
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r; < /70 for all ¢). By passing to a subsequence, we may as well assume (using
the fact that f has good support) that the sequence {r;} is strictly increasing.
Next, by () there are for each i € N a natural number k(i) > 0 and real numbers
0i1,.. -79i7k(i) > 0 such that 6;; + - + 91’71@(1') = v — r;7y and b'YO"l‘Gi,j # 0 for
j=1,...,k(i). Since the sequence v — r;7p is strictly decreasing, one easily checks
that then there is a strictly decreasing sequence {6;};cn such that by, # 0, which
contradicts the fact that supp(g) is well ordered.

Next we show that h converges: by 5.5 and the last remark in 9.3 there are
7' € (0,7] and C > 0 such that ||g"||» < C|lg||%, (with C' depending only on |/g,,
not on r), and hence by 5.7

1l < 1£O) + Y larlllg Il < ClLFIl,-

r>0

The remaining equation of part (2) follows from the last remark of 9.3 if f has
finite support, and hence by 6.2 it holds for general f.

Case 2: ¢(0) # 0. We only give a proof of part (1) in this case, since the proof
of part (2) is similar.

Write g = bg + ¢ with by € (0,0,) and g € R{T*} with §(0) = 0. By 6.6, part
(2), there is a series h € R{X* Y} such that for every o/, € (0,0, — |bo|) we have
il S R{X*, Y}(p,o’ﬂo’;) and

h(fE,y) = f(x7yl7b0 + yn)

for every (z,y) € Iy n,(p,0',01)- Now apply part (1) with h, § and (0’,0") in place
of f, g and o respectively. O

Let f € R{X*, Y }* with x € N, let € > 0 be f-admissible, and let U C I,;, ,, .. We
then denote by () the statement () of 8.4 together with the following statement:
for every M = M;, m' = m; and n’ = n; (with M;, m; and n; as in (x)), and every
zefrM,

(1) there are 6 > 0 and g = (91,---,Gm'+n’) € R{T*}?/"’”/ such that g(t) € M
for every t € (0,9) and g(0) = z.

We can now strengthen Proposition 8.4 as follows.

9.5 Proposition. Let f € R{X* Y} with u € N, and let € > 0 be f-admissible.
Then there is an (m,n)-corner U C int(Ip, n.) for which (x%) holds.

We proceed as in the proof of Proposition 8.4; in particular, we first need to
establish the following two facts.

Sublemma 1. Let m > 0,n > 1 be fized and assume 9.5 holds for all m’ < m and
n' < n in place of m and n. Let f = (f1,..., fu) € R{X* Y'}[Y,]* be such that
each f; is monic in'Y,,. Then there is for each f-admissible € > 0 an (m,n)-corner
U Cint(Lnn.c) for which (xx) holds.

Proof. We follow the proof of 8.5 with (xx) in place of (x) and work with the notation
established in that proof. To finish the proof of Sublemma 1, we assume that ()
holds for the manifold M that we fixed in the proof of 8.5 and every z € fr M,
and we show that then (}) also holds with N in place of M for each N = N,; with
—e < & < eand each N = (Ny, Noi1) with —e < &, < €:41 < ¢, and for every
zefrN.
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Let z € fr N, and let w be the image of z under the projection (z,u,y,v) —
(z,u,y,v) : R0/ +1 _ gm/+n’

Case 1: N = N, with —e < &, < €. By case 1 of the proof of 8.5 we have
w € fr M. By hypothesis there are 7 > 0 and h = (h1, ..., hpyn') € R{T*}m+7

such that h(t) € M for ¢ € (0,7) and h(0) = w; below we write h = (h1,..., hm,
Pm/41s -« y Bm/4n—1). Define the auxiliary set

N:={(s,t) eR*:0 < s <7,t=£(h(s))} CR?

and for simplicity of notation assume that there is ¢ € {1,..., u} such that, after
shrinking 7 if necessary, ¢(S, T) := f;(h(S), T) vanishes identically on N (in general,
this is true for some 9 f;/8Y (h(S),T) with v < degy. f, and the proof is then
similar). Note that ¢ € R{S*}.[T] is monic in T". Hence by 9.2, and after decreasing
7 if necessary, ¢ factors as

¢(5,T) = (T = ar(9)) -+ (T — eu(9)P(5,T)

with o; € R{S*},, ¥ € R{S*};[T], such that 9(s,t) > 0 for all (s,t) € (0,7) x R.
It follows from the o-minimality of R,,- that, after decreasing 7 once more, there
is j € {1,...,1} such that ¢(s,;(s)) € N for all s € (0,7) and a;(0) = £(h(0)). Tt
is now easy to check that () holds with IV in place of M, with ¢ := 7 and

g = (hla"'7hm’+n—17aj7hm’+n7"'7hm’+n’)'

Note that hi, ..., hp 4y do not depend on k.

Case 2. N = (N, Nyy1) with —e < & < &1 < €. If 2z € No U Nopq
then (1) holds trivially with N in place of M, so by case 2 of the proof of 8.5
we may assume that z € fr N, U fr No41 U G, and hence again w € fr M. Write
z = (x,u,y,t,v), 80w = (z,u,y’,v). Let t; < t3 be such that (z,u,y’,t1,v) € fr Ny
and (x,u,y’,t2,v) € fr Nyi1. By case 1 above we have 7 > 0 and

h = (h17 e -7hm’+n—1,alyhm’+n7 e '7hm’+n’)7

!
h = (hla-"7hm’+n—17a27hm’+n~ "7hm’+n’)

in R{T*}™+7"+1 such that h(t) € N, and h/(t) € N1 for t € (0,7) and h(0) =
(z,u,y ,t1,v), K'(0) = (z,u,y’,t2,v). Then () holds with N in place of M, where

6 :=7 and
g = (h'la .. '7hm’+n—17al +C(042 - al)uhm’+na .. '7hm’+n’)7

where ¢ := % O
22—l

Sublemma 2. Let f € R{X* Y}, and let € > 0 be f-admissible. Let S, ¢,m,n
and 6 > 0 be as in Lemma 8.6. Assume that 0 is ¢ f-admissible and that (x*) holds
with ¢f in place of f, ¢ in place of € and some (M, n)-corner V. C int(I, 7.5) in
place of U. Then ¢(V) Cint(Ipy n.e), and (xx) holds for f with U = ¢(V).

Proof. As in the previous sublemma, we follow the proof of 8.6 with (#x) in place
of (%), and again we use the notation established in the proof of 8.6. So we assume
in addition that (}) holds for M and every z € fr M, and we show that then (1)
holds with IV in place of M for every z € fr N. But this follows readily from the
definition of N and from 9.4. O
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Proof of 9.5. The proof of 8.4 (section 8.7) goes now through almost literally for
9.5, with some obvious adaptations: replace (x) by (xx) and the references to 8.5
and 8.6 by references to Sublemma 1 and Sublemma 2 respectively. O

9.6 Curve selection. Let A be a definable subset of R™, and let 0 € fr A. Then
there are € > 0 and g = (g1, .., gn) € R{T*}* such that g(t) € A for every t € (0,¢)
and g(0) = 0.

Proof. We may of course assume that A is bounded. Note first that if 9.6 holds
with A, then 9.6 also holds with II,,(A) in place of A and m in place of n, for
any m < n. Hence by 8.16 we may assume that A is R,-semianalytic, and by the
definition of “R,-semianalytic”, we may even assume that A is a basic R, --set for
some T > 0.

Since A = By, (f,0) for some f € R{X*}!, with 7/ > 7 and some o €
{—1,0,1}*, there is by 9.4 an R, ,-manifold M C R™ for some n’ > n and
p > 0, such that 0 € frII,(M). But M is bounded, so there is z € fr M with
IT,,(z) = 0, and again by 9.4 there are € > 0 and h = (hy,..., h,) € R{T*}" such
that h(t) € M for all t € (0,¢) and h(0) = z. Now take ¢ := (h1,...,hy). |

Before we can deduce Theorem B from the curve selection, we need to show that
the “compositional inverse” of f € R{T™*} with f(0) = 0 and f > 0 exists in R{7T*}.

9.7 Remark and definition. Let X be a single indeterminate and write 0 for 9;. Let
p>p>7>0, and let f € R{X*};. By 5.9 and 6.7, each derivative (f,)*) exists
and is analytic in (0, p), and for any |¢t| < min(r, p — 7),
1
Folr +8) = fo(r) + (£p) (Dt + 5 (fp)" (D) + .,
where the right hand side is an absolutely convergent series. Thus by 5.9 and 6.3,
t t

e+ =50+ 00,0 (1) 4w (1) +on
We define
THX,Y):=f(X)+0f(X)-Y + %82f(X) Y24+ e RIXH, Y.
By the remark after 5.9 we have, with s := p/5 and C := |slogs|™* > 1,
10 Fll, < ORIl < (BC) M

so for every o € (0, 55) we have ||Tf,, < t—aaz|lfll; < co. Hence with |¢| <
min(g%, p — 7) we have

t

fr+t)=Tf <T, ;> :

We now want to prove a similar equation with 7 and ¢ replaced by suitable series in
R{T*}. Note that if g, h € R{T*} with ord(h) > ord(g), g # 0, then h/g € R{T*}
also.

9.8 Lemma. Let X be a single indeterminate, and let f € R{X*}. Assume g,h €
R{T*} with g > 0 and ord(h) > ord(g) > 0. Let Tf be defined for f as in 9.7.
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Then f(g+ h) and Tf(g, %) are in R{T*}, and

~ h
flg+h)=Tf <g,§) |
Proof. Use 9.4, 9.7 and 6.4. |

9.9 Lemma. Let 0 < f € R{T*} with f(0) = 0. Then there is g € R{T*} such
that g >0, g(0) =0 and f(g(T))=T.

Proof. Write f(T') = a,T7 + h(T) with v > 0, a, > 0 and h € R{T*} with
1 := ord(h) > 7. Note first that if %f(g(T)) =T with 0 < g € R{T*}, ¢(0) =0,
then by 9.4 and 6.4 we have f(g(T/a)) = T as well, so we may assume that a, = 1;

and similarly, if f1/7(g(T)) = T, then f(g(T*/7)) = T, so we may even assume that
v =1. We may also assume that h # 0, so 1 <7 < oco. Put a:= %(n —1)>0.

Claim. There are p,7 > 0 with 7 < 1, 7= < p and || f||2, < oo, and there are
€n, On, € R{T*}; for n € N, such that ¢(T) =T, 6o(T) = f(T) — T, and
(0) ord(en) > 1+ 2"« if n > 0, ord(d,) > 1+ 2" a, |le,]l, < 717 and
[10a]lr < 7D and with g, == .1 ;& we have g, > 0, ord(g,) = 1
and

Assume for the moment that the claim holds. Let g := Y7 €, € R{T*};; then
llgll- < p, so f(g) € R{T*},  for some 7’ € (0, 7] by 9.4. Hence for any t € [0,7']
we have lim,, o gn(t) = ¢g(t) and lim,— . 0,(¢) = 0, so by the continuity of f,

flg(®)) = lim_f(gn(t)) = lim (t+6,(t)) = ¢,

which together with 6.4 finishes the proof of the lemma.
Before we proceed to prove the claim, we note that f/(T) := 9f(T)/T € R{T*}
by 5.9 and that f/(0) = 1, so the multiplicative inverse % is in R{T*} as well.

Proof of the claim. Put C := |$logi|™' > 1, A := 72 (6C)* > 12, and choose
p > 0 such that || f|lo < 20 for every o € (0,2p] and H%Hp < 2. Let 7 := %p and
assume (shrinking p if necessary) that 7* < 55 and == < 3. Note that further
decreasing p does not affect the above inequalities.

We now proceed by induction on n.

Initial step. We put eo(T) := T and 6o(T") := f(T) — T; then ord(eg) = 1,
ord(dp) =1 > 1+, ||eo]l- = 7, and decreasing p if necessary we may assume that
[6o]|- < 7. Note that now () holds for n = 0.

Inductive step. Let n > 0 and assume that we are given d;,¢; € R{T*}, for
1=0,...,n— 1, such that (¢) holds with each 4 in place of n. Note first that

lgnallr € —— < 2r = p

In—1 7'71_7_0‘727—_/)7
if gn—1 =T(1+ hy—1) with hy,—1(0) = 0, then ||gn—1]- = 7(1 + ||hn-1]|+), so

llgn—1ll~ 1

hp—illr =—————-1< -

1| = 5

Hence from the last remark in 9.3 (with D = 1/2) we get for any r > 0 that
lgr 11+ < 6]lgn—1]l% < 6p", and hence for any F' € R{T*}; with p > p that

(I) ”F(gn—l)H‘r < 6HF”P
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By 9.8 and the inductive hypothesis we can write, for h € R{T*} with ord(h) >
ord(gn—1) =1,

k
Flgna 4 1) = Fgns) + S w3 504 (o) (1)

k>2 In—1

k
:T+5n_1+f’(gn-1)h+2%3’“f(gn-1) (gh ) :

k>2 n—1
Put €, := —8,-1(f'(gn-1))"!. Then ord(e,) = ord(8,—1) > ord(g,—1), and by the
remark after 9.4, the assumptions on p, and (I) we have ”mHT < 6||%||p <12,

i.e.

1.1 e
ST ifn =1,

€n T<12 6n— r <
lenllz < 12[|6n—]] {THM fns 1

Replacing h above by €,, we get

f(gn—l + 6n) =T + 5717

k
where 0, 1= 3,5, 508 f(gn-1) ( En ) . By the inductive hypothesis, for k > 2

In—1
we have

c \F
ord <3kf(gn_1) (gn:) ) > 1+ k(ord(e,) — ord(gn-1))
>142(14+2"a—1)

=1+42""q;

hence ord(8,) > 1+ 2" la. Next note that, by the inductive hypothesis and the
assumptions on p,

€ 1 € 1
=2 — D <l = (1 il =+ |2 + ...
| =2 = | < ety @l s+ )
1
< llenllr ——57—
=l =T,
(11) 2

<

—lenll~
o

o)At ifn=1,
|2 ifn> 1,

and by the remark after 5.9 (with s = 1/2), (I), and the assumptions on p,

(IIT) 10" f (gn-1)lI+ < 610" fll, < 6CT K" || fl2p < 24(3C)"klp.
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Thus using (IT) and (III) gives, for n =1,
1
Il < 3 2104 S ao)l-

k>2

<249 Y (B0 ()

k>2

€1

g0

T

< 924 (60)2£ 1
= p A2 1 _ %TO‘

27.2o¢

1
< 1+2«
=127

and similarly, for n > 1,
1
100~ < Z Hnakf(gn—l)nf

k>2

<24p ) (3C)F(2r")

k>2

€n

gn—1

T

1

< 367(6C)% e . T oo
— T

< Ar - ror(nthe

1
< — 1+(n+1)a
= 127' )
so (¢) holds for n with ¢, and 6,. O

Theorem B. Let € > 0, and let f : (0,¢6) — R be definable in Ran«. Then there
are a series F(T) € R{T*} and an r € R such that f(t) = t"F(t) for all sufficiently
small t > 0.

Proof. Assume first that lim,_ f(¢) = 0. Then (0,0) € frI'(f), so by 9.6 there
are 7 € (0,€) and g1,g2 € R{T*}, such that (g1(¢),g2(t)) € I'(f) for all t € (0, 7)
and ¢1(0) = ¢2(0) = 0. By 9.9 there is h € R{T*} such that h > 0, h(0) = 0 and
91(h(T)) = T. Then it is clear that the desired result holds with F(T") := g2(h(T))
and r = 0.

If lim; 0 f(t) = ¢ < 00, then the theorem follows easily from the case above by
considering f —c. If lim;—q | f(t)| = oo, then the theorem follows similarly from the
first case by considering % O

9.10 Corollary. The expansion Run« of the real field is polynomially bounded.

It is easy to see that for any definable set A C R"™, the dimension dim(A) agrees
with the dimension of A in the sense of o-minimal structures. Using this observation
and “cell decomposition” for o-minimal structures (see for example [8]), we obtain
the following consequence of Theorem B:

9.11 Corollary. If A C R™ is definable (in Run+) and dim(A) < 1, then A is
Ry -semianalytic.

For subsets of R? the condition “dim(A) < 1” can be omitted, and the conclusion
strengthened:
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9.12 Corollary. If A C R? is definable, then A is Rq 1-semianalytic.

10. CONCLUDING REMARKS

1. Let 0 < 6 < € and let f(T) € R{T*}.. Then the function fs : [0,] — R
is definable in R,,+, but in general not in R exp. This is because a necessary
condition for f5 to be definable in Ray, exp is for supp(f) to be contained in a finitely
generated additive subgroup of R, by Proposition 4.13 and the idea of the proof of
Corollary 4.14 in [7]. Clearly, many well ordered subsets of [0, c0) are not contained
in any finitely generated additive subgroup of R, and for each well ordered subset
S of [0,00) there is a power series f € R{T*}5 with supp(f) = S: for example, if
S = {v, :n € N}, we can take f(T) = > 7" ;27" T,

2. Theorems A and B of this paper go through (with the same proofs) if the
requirement of “good support” for the series F'(X) considered in the introduction is
strengthened to “supp(F) C S1 X - -+ x S,, with S; C [0, 00) such that |\S; N[0, R]| <
oo for all positive real R and ¢ = 1,...,m”. One might wonder if this variant of our
results cannot be achieved more directly as in [3] via a suitable preparation theorem
for the power series rings involved. We are not aware of any useful preparation
theorem of this nature. In any case, the non-noetherianity of these power series
rings would seem to be another obstacle in applying this method.

In [3] it is shown that R,, admits elimination of quantifiers in its natural language
augmented by a symbol for the reciprocal function. We have no reason to believe
that the analogous statement for R,,~ is true.

3. A natural next step would be to show that the expansion Ranx cxp 0f Ran-
is model complete and o-minimal. (Note that in this expansion the Riemann zeta
function on (1, 00) is definable.) One way to attempt this is as follows.

Let I' be an ordered vector space over R. There is a natural way to expand
the generalized formal power series field R((t")) into a structure R((¢!))a,- for the
natural language of R,,, so that R,y is a substructure of R((t"))a,~. If one could
show that Ruy« < R((t1))an~ for all T', then the same arguments as in [6] would give
us that Ran« exp is model complete and o-minimal. However, we have not been able
to prove that Ru,« < R((t"))an~ for all T', though it seems quite plausible to us.
The second author has obtained a complete axiomatization of the (model complete)
theory Th(R,,+) and has proved that R,,- is existentially closed in its extension
R(("))an+, which implies in particular that R((t'')).,- is a substructure of a model
of Th(Ryp+).
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