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THE REAL FIELD WITH CONVERGENT
GENERALIZED POWER SERIES

LOU VAN DEN DRIES AND PATRICK SPEISSEGGER

Abstract. We construct a model complete and o-minimal expansion of the
field of real numbers in which each real function given on [0, 1] by a series∑

cnxαn with 0 ≤ αn → ∞ and
∑ |cn|rαn < ∞ for some r > 1 is definable.

This expansion is polynomially bounded.

1. Introduction

We develop here a new way to prove model completeness and o-minimality of
certain expansions of the real field. We apply this to a particular expansion Ran∗ ,
for which previous methods, from [1], [3], [12], [17], fail. Inductive arguments using
blow-up maps as in Tougeron [15], [16] are an important ingredient of our approach.
Also, ideas of Gabrielov (as expounded in [1]) are crucial.

Throughout this paper we let m range over N = {0, 1, 2, . . .}, and we let X =
(X1, . . . , Xm) be a tuple of m distinct indeterminates. We consider formal series

F = F (X) =
∑

α

cαX
α,

where the multi-index α = (α1, . . . , αm) ranges over [0,∞)m, the coefficients cα are
real, Xα denotes the formal monomial Xα1

1 · · ·Xαm
m , and the set

supp(F ) := {α ∈ [0,∞)m : cα 6= 0} (the support of the series)

is contained in the cartesian product S1×· · ·×Sm of well ordered subsets S1, . . . , Sm

of [0,∞). (It follows that supp(F ) is countable.) These series are added and
multiplied in the usual way, and form an R-algebra denoted by R[[X∗]]. For each
polyradius r = (r1, . . . , rm) (that is, 0 < ri <∞ for i = 1, . . . ,m) we put

‖F‖r :=
∑

|cα|rα ∈ [0,∞]

and we let R{X∗}r be the normed subalgebra of R[[X∗]] consisting of the F ’s with
‖F‖r <∞, with norm given by ‖ · ‖r. Each F (X) =

∑
cαX

α ∈ R{X∗}r gives rise
to a continuous function x 7→ F (x) :=

∑
cαx

α : [0, r1]×· · ·× [0, rm] −→ R, analytic
on the interior (0, r1)×· · ·× (0, rm) of its domain. Let Ran∗ be the expansion of the
ordered real field (R, <, 0, 1,+,−, ·) by all functions f : Rm −→ R (for all m ∈ N)
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that are 0 outside [0, 1]m and are given on [0, 1]m by a power series F ∈ R{X∗}r for
some polyradius r with r1 > 1, . . . , rm > 1. If F (X) ∈ R{X∗}r and 0 < r′1 < r1,
. . . , 0 < r′m < rm, then the function x 7→ F (x) : [0, r′1]×· · ·× [0, r′m] −→ R is clearly
definable in Ran∗ . It is also easy to see that the primitives of the structure Ran

as defined in [6] are definable in Ran∗ , so the subsets of Rn that are definable in
Ran are definable in Ran∗ as well. On the other hand, there are many one-variable
functions that are definable in Ran∗ , but not in Ran. For example, the function

x 7→ ζ(− log x) =
∞∑

n=1

xlog n : [0, e−2] −→ R

(where ζ is the Riemann zeta function) is definable in Ran∗ , but not in Ran, in fact,
not even in Ran,exp. (See corollary 5.14 in [7].) Here is our main result.

Theorem A. The expansion Ran∗ is model complete and o-minimal.

We have set up this article so that much of it will be useful also in a planned
sequel, where we construct other model complete and o-minimal expansions of the
real field. One such expansion, worked out in the second author’s doctoral thesis,
is more closely related to the material in [15].

Sections 2 and 3 are of a very general nature. In section 2 we develop a geometric
test for model completeness and o-minimality of expansions of the real field. Section
3 elaborates on cell decomposition, as needed later. In sections 4, 5 and 6 we
consider in detail the power series rings mentioned above, establishing, among other
things, Weierstrass preparation, and study a variant of the blow-up substitutions
used by Tougeron [15] in his treatment of semianalytic sets with “Gevrey condition
on the boundary”. In section 7 we introduce the generalized semianalytic sets
described locally by equations and inequalities between the power series above.
In section 8 we establish Theorem A. In its proof we use inductive arguments
inspired by [15] to establish the so-called “Gabrielov property” of section 2 for our
generalized semianalytic sets, which allows us to draw the desired conclusion. In
section 9 we obtain, by similar inductive arguments,

Theorem B. Let ε > 0 and let f : (0, ε) −→ R be definable in Ran∗ . Then there
is a series F (X) ∈ R{X∗}δ for some δ ∈ (0, ε), where X is a single variable, and
there is a (possibly negative) real number r such that f(x) = xrF (x) for x ∈ (0, δ).

It follows that Ran∗ is polynomially bounded. The o-minimality and polynomial
boundedness of an expansion of the real field carries numerous topological and
analytic-geometric consequences with it, such as  Lojasiewicz inequalities; see [8].

We finish this introduction with some terminological conventions, in particular
concerning manifolds and dimension, that are in force throughout this paper.

Notations and Conventions. We let k, l,m, n and d range over N, and we let
X = (X1, . . . , Xm), Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zl) denote tuples of
distinct indeterminates. The tuples r = (r1, . . . , rm) and s = (s1, . . . , sn) al-
ways denote polyradii (as defined above), while the tuples α = (α1, . . . , αm) and
β = (β1, . . . , βn) denote elements of [0,∞)m and [0,∞)n respectively. For any
tuple z = (z1, . . . , zk) ∈ Rk we put |z| := sup{|z1|, . . . , |zk|}, and we write z′ =
(z1, . . . , zk−1) if k ≥ 1. For polyradii r = (r1, . . . , rm) and s = (s1, . . . , sm) we write
r < s to mean ri < si for all i = 1, . . . ,m, and similarly for r ≤ s.

For any set S we write |S| for the cardinality of S.
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THE REAL FIELD WITH CONVERGENT GENERALIZED POWER SERIES 4379

All rings are assumed to be commutative with 1 6= 0. A normed ring is a ring
A equipped with a norm | · | : A −→ [0,∞), i.e. for all x, y ∈ A:

1. |x| = 0 if and only if x = 0;
2. |x+ y| ≤ |x|+ |y|;
3. |xy| ≤ |x||y|, hence |1| ≤ 1.

Given m ≤ n, we denote by Πn
m : Rn −→ Rm the projection on the first m coor-

dinates. More generally, if λ ∈ {1, . . . , n}m is a strictly increasing sequence, we let
Πn

λ : Rn −→ Rm be the projection defined by Πλ(x1, . . . , xn) = (xλ(1), . . . , xλ(m)).
If n is clear from context (as is usually the case), we just write Πm and Πλ respec-
tively.

Given a subset A of a topological space S, we let cl(A), int(A) and frA :=
cl(A) \ A denote the closure, interior and frontier of A in S respectively, if the
ambient space S is clear from context. If f, g : A −→ R ∪ {−∞,+∞} are two
functions, we write f < g if f(x) < g(x) for all x ∈ A; in that case we put

(f, g) := {(x, t) ∈ A× R : f(x) < t < g(x)}.

A manifold M is always a nonempty embedded (not just immersed) analytic
submanifold of Rk (for some k depending on M) everywhere of the same dimension
dim(M). We identify the tangent space TxM of M at a point x ∈ M in the usual
way with a linear subspace of the ambient space Rk (of dimension dim(M)). Note
that if M is a manifold in Rk, then M is locally closed; hence frM is closed. In
order to facilitate arguments by “induction on dimension” it will be convenient to
say that a set S ⊆ Rk has dimension if S is a countable union of manifolds; in
that case we put

dim(S) := max {dim(M) : M ⊆ S is a manifold}

for nonempty S, and dim(∅) := −∞. If S happens also to be a manifold, then this
agrees with the dimension of S as a manifold. This notion of dimension is a bit ad
hoc, tied as it is to the notion of manifold, but it has some useful properties:

1. if S =
⋃

i∈N Si and each Si has dimension, then S also has dimension and
dim(S) = max{dim(Si) : i ∈ N};

2. if f : M −→ Rn is an analytic map from the manifold M into Rn of constant
rank r, then f(M) has dimension, and dim(f(M)) = r.

Property (1) follows by a Baire category argument (see [4], p. 533 for details).
Property (2) follows from the rank theorem, the fact that M has a countable basis
for its topology, and property (1).

We will also occasionally use the following fact.

3. If n ≥ m and A ⊆ Rn as well as Πm(A) ⊆ Rm have dimension, then dim(A) ≥
dim(Πm(A)).

One way to see this is to observe that if A ⊆ Rn has dimension, then dim(A) =
Hausdorffdim(A) (with respect to the usual euclidean metric on Rn), and that
Hausdorffdim(A) ≥ Hausdorffdim(Πm(A)), since Πm : Rn −→ Rm is a Lipschitz
map. (Actually, the assumption in (3) that A has dimension implies that Πm(A)
has dimension, but we will not need this fact.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4380 LOU VAN DEN DRIES AND PATRICK SPEISSEGGER

2. Gabrielov Property, Model Completeness and O-minimality

In this section we develop a useful geometric test for the model completeness and
o-minimality of expansions of the real field. We do this by axiomatizing and gen-
eralizing the arguments in the proof of Gabrielov’s “Theorem of the Complement”
as exposed by Bierstone and Milman in [1].

2.1 Definition. Let a collection Λn of bounded subsets of Rn be given for each n,
and let Λ = (Λn)n∈N. We call a set A ⊆ Rn a Λ-set if A ∈ Λn; if in addition A is
a manifold, we call A a Λ-manifold. We also call a set E ⊆ Rm a sub-Λ-set if
there are n ≥ m and a Λ-set A ⊆ Rn such that E = Πm(A); if in addition E is a
manifold, we call E a sub-Λ-manifold.

We say that a set A ⊆ Rn has the Λ-Gabrielov property, if for each m ≤ n
there are connected sub-Λ-manifolds B1 ⊆ Rn+q1 , . . . , Bk ⊆ Rn+qk , where q1, . . . ,
qk ∈ N, such that

Πm(A) = Πm(B1) ∪ · · · ∪Πm(Bk)

and for each i = 1, . . . , k we have:
(G1) frBi is contained in a closed sub-Λ-set Di ⊆ Rn+qi such that Di has dimension

with dim(Di) < dim(Bi);
(G2) dim(Bi) ≤ m, and there is a strictly increasing sequence λ ∈ {1, . . . ,m}d,

with d = dim(Bi), such that Πλ|Bi : Bi −→ Rd is an immersion.

2.2 Remarks. (1) In (G2) the sequence λ and the natural number d may depend of
course on i. That Πλ|Bi in (G2) is an immersion just means that Πλ is injective on
each tangent space Tx(Bi) ⊆ Rn+qi for x ∈ Bi; since dim(Tx(Bi)) = d, it follows
in particular that Πλ(Bi) is open in Rd and that Πλ|Bi : Bi −→ Rd is a local
homeomorphism. Note that Πm|Bi : Bi −→ Rm is then also an immersion, since
Πn+qi

λ |Bi = Πm
λ ◦ (Πm|Bi).

(2) In the situation of Gabrielov’s Theorem of the Complement one has

Λn = {A ⊆ Rn : A is bounded and semianalytic in Rn},
and each A ∈ Λn has the Λ-Gabrielov property, with qi = 0, Bi ⊆ A and frBi = Di

a Λ-set for all i in the definition above. Because of our later use of “blowing up” it
is crucial for us to allow qi > 0, and to allow Di to be a sub-Λ-set.

2.3. Let I = [−1, 1] ⊆ R. Write Ec for the complement In \ E of a set E ⊆ In.
From now on in this section we assume Λ = (Λn)n∈N, where each Λn is a collection
of subsets of In such that for every A,B ∈ Λn:

(I) ∅ and In belong to Λn, and for each pair (i, j) with 1 ≤ i < j ≤ n the diagonal
∆ij = {x ∈ In : xi = xj} belongs to Λn, along with its complement (∆ij)c;

(II) A ∪B,A ∩B ∈ Λn;
(III) I ×A and A× I belong to Λn+1;
(IV) A has the Λ-Gabrielov property.

2.4 Remark. Axioms (I)-(III) imply that if A ⊆ Im and B ⊆ In are Λ-sets, then
A × B ⊆ Im+n is a Λ-set. This can be used to show that if E1, E2 ⊆ Im are
sub-Λ-sets, then E1 ∪E2 and E1 ∩E2 are sub-Λ-sets too. One checks easily that if
λ ∈ {1, . . . , n}d is strictly increasing and A ∈ Λn, then Πλ(A) ⊆ Id is a sub-Λ-set.

We now have the following elementary lemma.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE REAL FIELD WITH CONVERGENT GENERALIZED POWER SERIES 4381

2.5 Lemma. Suppose for a certain d that the complement of each sub-Λ-set in Id

is a sub-Λ-set. Let λ ∈ {1, . . . ,m}d be a strictly increasing sequence. Let E be a
sub-Λ-set in Im and suppose there is M ∈ N such that |E ∩ Π−1

λ (x)| ≤ M for all
x ∈ Id. Then the complement Ec of E in Im is also a sub-Λ-set.

Proof. For simplicity of notation assume λ(1) = 1, . . . , λ(d) = d, and write Ex for
the fiber E ∩Π−1

λ (x), x ∈ Id. Clearly for each k ∈ N the set Ck := {x ∈ Id : |Ex| ≥
k} is a sub-Λ-set in Id; hence Dk := {x ∈ Id : |Ex| = k} = Ck \Ck+1 is a sub-Λ-set.
Now Id = D0 ∪ · · · ∪DM , so

Ec =
(
Π−1

d (D0) \ E) ∪ · · · ∪ (Π−1
d (DM ) \ E) .

Hence it suffices to show that each set Π−1
d (Dk) \E is a sub-Λ-set. With m = d+ e

and (x, y) = (x1, . . . , xd, y1, . . . , ye) ranging over Im and i, j over {1, . . . , k}, this
follows from

(x, y) ∈ Π−1
d (Dk) \ E ⇐⇒ ∃z1 . . .zk ∈ Ie

[
x ∈ Dk ∧

(
k∧

i=1

y 6= zi

)
∧

∧
 ∧

1≤i<j≤k

zi 6= zj

 ∧
(

k∧
i=1

(x, zi) ∈ E
)]

.

2.6 Remark. Note that 2.4 and 2.5 go through for I any nonempty set equipped
with a collection Λn of subsets of In, for each n ∈ N, such that axioms (I),(II)
and (III) hold. The next result is a basic tool for proving model completeness and
o-minimality theorems in this paper and its sequel. Here axiom (IV) comes into
play.

2.7 Theorem of the Complement. If E ⊆ Im is a sub-Λ-set, then Ec is a sub-
Λ-set.

Remark. In the proof of the “theorem of the complement” we will use the following
easy consequences of axiom (IV) for an arbitrary sub-Λ-set E ⊆ Im:

1. E has only finitely many (connected) components, and each component of E
is a sub-Λ-set in Im;

2. E has dimension.

To see this, write E = Πm(A) with A ∈ Λn, n ≥ m. By axiom (IV), and using
the notation of 2.1, each connected component of E is a union of sets Πn+qi

m (Bi).
Hence E has only finitely many connected components, and each component of E is
a sub-Λ-set. Property (2) follows in the same way, taking into account the remarks
made on dimension at the end of the introduction.

Proof of the theorem of the complement. By induction on m; the case m = 0 is
clear.

Let m > 0 and assume that the theorem holds for sub-Λ-sets in Id, for all
d < m. Let E be a sub-Λ-set in Im. To show that Ec is a sub-Λ-set we may reduce
by axiom (IV) to the case that E = Πm(B) for some connected sub-Λ-manifold
B ⊆ Rn, where m ≤ n and B has the following properties:

1. frB is contained in a closed sub-Λ-set D ⊆ In such that D has dimension
with dim(D) < dim(B);
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2. dim(B) = d ≤ m, and there is a strictly increasing λ ∈ {1, . . . ,m}d such that
Πλ|B : B −→ Rd is an immersion.

Put F = Πλ(B), so Πm
λ (E) = F . Since Πm|B and Πλ|B have constant rank d, we

have dim(B) = dim(E) = dim(F ) = d.
Case 1: d < m. In this case we first establish

Claim. There is M ∈ N such that |(Πm
λ )−1(x) ∩ E| ≤ |Π−1

λ (x) ∩ B| ≤ M for all
x ∈ Id.

The left inequality is obvious. For the right inequality, put Bx := Π−1
λ (x)∩B for

x ∈ Id. Note that Πλ|B : B −→ Rd is a local homeomorphism. Put G := Πλ(D).
Then G is a closed sub-Λ-set of dimension < d; in particular, every neighbourhood
of every point in G contains points of Gc. Hence if M ∈ N is such that |Bx| ≤ M
for all x ∈ Gc, then |Bx| ≤M for x ∈ G as well. So it suffices to show there is such
a constant M for x ∈ Gc.

The map Πλ|B∩Π−1
λ (Gc) : B∩Π−1

λ (Gc) −→ Gc is proper: let K ⊆ Gc be compact
and (uk) a sequence of points in B ∩ Π−1

λ (K) converging to u ∈ In; we have to
show that u ∈ B ∩ Π−1

λ (K). Clearly u ∈ Π−1
λ (K); if u /∈ B, then u ∈ frB,

so Πλ(u) ∈ G, contradicting Πλ(u) ∈ K. Since said map is both proper and a
local homeomorphism, it is a topological covering map, and hence |Bx| takes a
constant finite value on each component of Gc (see for example [9], 4.22). By the
inductive assumption Gc is a sub-Λ-set; hence Gc has only finitely many connected
components. So there is M ∈ N such that |Bx| ≤ M for all x ∈ Gc. This proves
the claim.

Now it follows immediately from lemma (2.5) and the claim above that Ec is a
sub-Λ-set.

Case 2: d = m. Then Πm|B is a local homeomorphism; hence Πm(B) is open
in Rm. Note that Πm(D) is a (closed) sub-Λ-set of dimension < m, so (Πm(D))c is
a sub-Λ-set by case 1. Since (Πm(B ∪D))c = (Πm(B))c ∩ (Πm(D))c, and Πm(B)
is open and B ∪D is compact, it follows that (Πm(B ∪D))c is open and closed in
(Πm(D))c; hence (Πm(B∪D))c is a sub-Λ-set by remark (1) above. Next note that

Ec = (Πm(B))c = (Πm(B ∪D))c ∪ (Πm(D) \ (Πm(B) ∩ Πm(D))) .

Since Πm(B)∩Πm(D) is a sub-Λ-set of dimension < m, it follows from case 1 that
Πm(D) \ (Πm(B) ∩Πm(D)) is a sub-Λ-set. Hence Ec is a sub-Λ-set.

2.8 Corollary. The structure (I,Λ) which has an n-ary relation for each set in
Λn, n ∈ N, is model complete. Its definable sets are exactly the sub-Λ-sets. (Here
“definable” means “definable without parameters”.)

Proof. Let SΛn be the collection of sub-Λ-sets in In, for each n. Then the theorem
of the complement implies that SΛn is a Boolean algebra of subsets of In. It
is also clear from the definition of sub-Λ-set that SΛn contains all diagonals ∆ij

(1 ≤ i < j ≤ n), that A ∈ SΛn implies I×A,A×I ∈ SΛn+1, and that if B ∈ SΛn+1,
then Πn(B) ∈ SΛn. These facts imply that every subset of In definable in the
structure (I,Λ) must belong to SΛn. Since the sub-Λ-sets are in fact existentially
definable in (I,Λ), it follows that (I,Λ) is model complete.

2.9 Corollary. Assume in addition that {r} ∈ Λ1 for all r ∈ I and the sets

{(x, y, z) ∈ I3 : x+ y = z} and {(x, y, z) ∈ I3 : xy = z}
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belong to Λ3. Then the expansion RΛ := (R, <, 0, 1,+,−, ·,Λ) of the ordered field by
the Λ-sets in Rn for n = 0, 1, 2, . . . is model complete and o-minimal. A set A ⊆ Rn

is definable in RΛ if and only if τn(A) is a sub-Λ-set in In, where τn : Rn −→ In

is given by τn(x1, . . . , xn) = (x1/
√

1 + x2
1, . . . , xn/

√
1 + x2

n).

Proof. Let Σn be the collection of all sets A ⊆ Rn such that τn(A) is a sub-Λ-set
in In. Let (R,Σ) be the structure with underlying set R and an n-ary relation
symbol for each set A ∈ Σn, n ∈ N. The previous corollary and the fact that
τn ◦ Πn+1

n = Πn ◦ τn+1 for all n implies that any set A ⊆ Rn that is definable in
(R,Σ) actually belongs to Σn.

A routine argument using the hypothesis of this corollary shows that the graphs
of addition and multiplication belong to Σ3. Hence all primitives of RΛ are definable
in (R,Σ). Conversely, the sets in Σn are clearly existentially definable in RΛ.
The model completeness of RΛ follows. Since sub-Λ-sets have only finitely many
connected components, the o-minimality of RΛ follows as well.

2.10 Remark. This section goes through unchanged if by “manifold” we mean
“nonempty embedded C1 submanifold of Rk (for some k) everywhere of the same
dimension”, and we correspondingly extend the notion of “dimension” to subsets of
Rk that are countable unions of such manifolds, as in “Notations and Conventions”.

3. Cell Decomposition

In this section we elaborate on a result from [11] on “relatively semialgebraic”
sets. We also refer to the exposition in ch. 2 of [5].

3.1. Let S be a nonempty topological space. Let E be a ring of continuous functions
φ : S −→ R, the ring operations being pointwise addition and multiplication, with
the identity the function on S which takes the constant value 1. Call A ⊆ S an
E-set if A is a finite union of sets of the form

{x ∈ S : φ(x) = 0, ψ1(x) > 0, . . . , ψk(x) > 0}
with φ, ψ1, . . . , ψk ∈ E . The E-sets form a Boolean algebra of subsets of S.

3.2 Cell Decomposition. Let f1, . . . , fM ∈ E [T ] all be of degree at most d in T ,
and let f1, . . . , fN be the list of all partials ∂lfm/∂T

l with m = 1, . . . ,M and 0 ≤
l ≤ d. Then S can be partitioned into finitely many E-sets S1, . . . , Sk such that for
each connected component C of each Si there are continuous real valued functions
ξC,1 < · · · < ξC,m(C) on C such that, with ξC,0 = −∞ and ξC,m(C)+1 = +∞,

1. each of the sets Γ(ξC,j), 1 ≤ j ≤ m(C), and (ξC,j , ξC,j+1), 0 ≤ j ≤ m(C), is
of the form

{(x, t) ∈ C × R : sign(fn(x, t)) = ε(n) for n = 1, . . . , N}
for a suitable sign condition ε : {1, . . . , N} −→ {−1, 0, 1};

2. if fi1 , . . . , fil
with 1 ≤ i1 < · · · < il ≤ N are those members of {f1, . . . , fN}

which are not identically zero on C × R, and if g := fi1 · · · fil
, then g 6= 0 on

each (ξC,j , ξC,j+1), and for each j = 1, . . . ,m(C) there is e ∈ {1, . . . , degT (g)}
such that for all (x, t) ∈ Γ(ξC,j) we have

g(x, t) = · · · = ∂e−1g/∂T e−1(x, t) = 0 and ∂eg/∂T e(x, t) 6= 0;
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3. if moreover f1, . . . , fM are monic in T , then each function ξC,j, 1 ≤ j ≤
m(C), extends uniquely to a continuous function ηC,j : cl(C) −→ R such that
each of the sets cl(Γ(ξC,j)) = Γ(ηC,j) with 1 ≤ j ≤ m(C) and cl((ξC,j , ξC,j+1))
with 0 ≤ j ≤ m(C) equals

{(x, t) ∈ cl(C) × R : sign(fn(x, t)) ∈ {ε(n), 0} for n = 1, . . . , N} ,
where ε is the corresponding sign condition from Part 1.

Proof. Following the proofs in [5], ch. 2, we obtain a partition S = S1 ∪ · · · ∪Sk for
which the statement of the theorem holds with the possible exception of property
(2). Note that property (1) implies that for g as in (2) we have

{(x, t) ∈ C × R : g(x, t) = 0} = Γ(ξC,1) ∪ · · · ∪ Γ(ξC,m(C)).

To obtain property (2), we will refine the partition {S1, . . . , Sk}; this will not affect
(1) and (3).

To find such a refinement, we apply conclusion (1) of the theorem to the list
g1, . . . , gM ′ consisting of all products fi1 · · · fil

with 1 ≤ i1 < · · · < il ≤ N . Since
f1, . . . , fM ∈ {g1, . . . , gM ′}, the proof in ch. 2 of [5] gives a finite partition of S into
E-sets that refines the partition {S1, . . . , Sk}. Let C′ be a connected component of
some element of this refinement, and let C be the (unique) connected component
of one of S1, . . . , Sk such that C′ ⊆ C. If g is the product of all those fi that are
not identically zero on C ′ × R, and if ξ is the restriction of one of the ξC,j to C′,
then clearly g is identically zero on Γ(ξ); but also ξ is one of the functions ξC′,j′

obtained from the theorem applied to g1, . . . , gM ′ , and hence every partial ∂νg/∂T ν

has constant sign on Γ(ξ). Moreover, the number of zeros of g(x, T ) is constant and
finite as x ranges over C ′. Hence some ∂νg/∂T ν, 1 ≤ ν ≤ degT (g), does not vanish
identically on Γ(ξ).

3.3 Remark. In section 8 we will use this theorem in a situation where S ⊆ Rq

for some q, C is a component of some Si as in the theorem, and D is a manifold
contained in C such that all functions φ|D with φ ∈ E are analytic. Then the
functions ξC,j |D, j = 1, . . . ,m(C), are also analytic. (This follows easily from part
(2) above and the implicit function theorem.)

4. Generalized Power Series

4.1. We denote by X∗ the multiplicative monoid whose elements are the mono-
mials Xα := Xα1

1 · · ·Xαm
m with α = (α1, . . . , αm) ∈ [0,∞)m, multiplied according

to Xα ·Xβ = Xα+β . The identity element of X∗ is X0 = 1, where 0 = (0, . . . , 0).
Let us say that a set S ⊆ [0,∞)m is good if for each i = 1, . . . ,m the set

Si := {αi : α ∈ S} is a well ordered subset of [0,∞), or equivalently, if there are well
ordered subsets S1, . . . , Sm of [0,∞) such that S ⊆ S1×· · ·×Sm. We partially order
[0,∞)m by setting α ≤ β if and only if αi ≤ βi for i = 1, . . . ,m. Instead of α ≤ β we
also write Xα | Xβ. We put |α| := α1 + · · ·+αm, α+β := (α1 +β1, . . . , αm +βm),
inf(α, β) := (min{α1, β1}, . . . ,min{αm, βm}), and gcd(Xα, Xβ) := X inf(α,β).

4.2 Lemma. Suppose S ⊆ [0,∞)m is good.
1. Smin := {α ∈ S : α is a minimal element of S} is finite, and each element
α ∈ S is ≥ some element of Smin.

2. The set {|α| : α ∈ S} is a well ordered subset of [0,∞), and for every t ∈
[0,∞) the set S(t) := {α ∈ S : |α| = t} is finite.
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Proof. (1) Suppose Smin is infinite. Take a sequence {αn}n∈N in Smin with αk 6= αl

for k 6= l. By passing to a subsequence we may assume that {αn
1}n∈N is either

constant or strictly increasing (use the fact that each infinite sequence in S1 has
a subsequence that is constant or strictly increasing). By repeating this argument
we reduce to the case that for each i = 1, . . . ,m the sequence {αn

i }n∈N is either
constant or strictly increasing. Hence α0 ≤ α1, contradicting the fact that α0 and
α1 are distinct elements in Smin.

(2) Suppose the set in (2) is not well ordered. Take a sequence {αn}n∈N in S
such that |α0| > |α1| > |α2| > . . . . By the same argument as in (1) we may pass
to a subsequence and reduce to the case that α0 ≤ α1 ≤ α2 ≤ . . . , contradiction.
In the same way one proves the second statement of (2).

For S ⊆ [0,∞)m put Σ(S) := {α1 + · · ·+ αk : k ∈ N, α1, . . . , αk ∈ S}.
4.3 Lemma. If S, T ⊆ [0,∞)m are good, then so are S ∪ T and Σ(S).

Proof. This is easily reduced to the case m = 1, for which the lemma is well known
(see e.g. [10]).

4.4. Let A be a ring; then A[[X∗]] is by definition the set of power series in X∗

over A. Its elements are the formal sums

f(X) =
∑

fαX
α,

where α ranges over [0,∞)m, the coefficients fα belong to A, and

supp(f) := {α ∈ [0,∞)m : fα 6= 0}
is a good subset of [0,∞)m. If supp(f) is finite, we call f a polynomial in X∗,
and we denote by A[X∗] the set of all polynomials in X∗ with coefficients in A.

These series are added and multiplied in the usual way, just as formal power series
in A[[X ]], and form a ring under these operations, containing A[X∗] as a subring.
We consider the power series ring A[[X ]] also as a subring of A[[X∗]], namely as the
subring of all series f(X) as above for which supp(f) ⊆ Nm. (Note that Nm is a
good subset of [0,∞)m.)

The constant term of a series f(X) =
∑
fαX

α ∈ A[[X∗]] is the element
f0 = f(0) of A. Note that the map

∑
fαX

α 7→ f0 : A[[X∗]] −→ A is a ring
homomorphism.

4.5. Let f(X) =
∑
fαX

α ∈ A[[X∗]]. The order of f is the element of [0,∞]
defined as follows:

ord(f) :=

{
min{|α| : fα 6= 0} if f 6= 0,
∞ if f = 0.

One easily checks that for f, g ∈ A[[X∗]] we have
1. ord(f + g) ≥ min{ord(f), ord(g)}, and
2. ord(fg) ≥ ord(f) + ord(g), with equality if A is an integral domain.

Hence A[[X∗]] is an integral domain if A is an integral domain.

4.6. Let J be any index set and {fj}j∈J a family in A[[X∗]] such that
1. for each α ∈ [0,∞)m there are only finitely many j ∈ J such that α ∈

supp(fj), and
2.
⋃

j∈J supp(fj) is a good subset of [0,∞)m.
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(Note that if J is finite these conditions are automatically satisfied.) We may then
clearly consider the (potentially infinite) sum

∑
j∈J fj as a well defined element of

A[[X∗]]. In the following we shall frequently use such infinite sums, and the obvious
rules for manipulating them. Note that with this notation

∑
fαX

α has acquired
a new meaning (sum of the family fαX

α indexed by α ∈ [0,∞)m), but this new
meaning agrees of course with the given one: f(X) =

∑
fαX

α. We can also write
f(X) =

∑
fαX

α as the sum of its homogeneous parts: f =
∑

r∈[0,∞) f(r) with
f(r) :=

∑
|α|=r fαX

α the homogeneous part of degree r of f . Note that by
lemma 4.2 each f(r) is actually a polynomial in X∗.

4.7 Lemma. Let f(X) =
∑
fαX

α ∈ A[[X∗]]. Then f is a unit in A[[X∗]] if and
only if its constant term f0 is a unit in A.

Proof. If f(X)g(X) = 1 with g(X) =
∑
bαX

α ∈ A[[X∗]], then a0b0 = 1, so a0 is a
unit.

Conversely, if a0b0 = 1 with b0 ∈ A, then b0f = 1 − h with ord(h) > 0. Hence
the infinite sum

∑∞
n=0 h

n is well defined, and clearly 1 = (
∑∞

n=0 h
n)(1 − h) =

(
∑∞

n=0 h
n)b0f , so f has inverse b0(

∑∞
n=0 h

n) in A[[X∗]].

4.8 Lemma. Each f ∈ A[[X∗]] with ord(f) > 0 is of the form

f = Xγ1
1 f1 + · · ·+Xγm

m fm

with fi ∈ A[[(X1, . . . , Xi)∗]] for i = 1, . . . ,m and real numbers γ1, . . . , γm > 0.

Proof. By induction onm; the case m = 0 is trivial. So let m > 0. Write f ∈ A[[X∗]]
with ord(f) > 0 as f = g + h, where g is the sum of the terms of f not involving
Xm and h is the sum of the terms of f involving Xm. Then clearly h = Xγm

m fm for
some fm ∈ A[[X∗]] and some γm > 0, while the inductive hypothesis implies that
g = Xγ1

1 f1 + · · ·+X
γm−1
m−1 fm−1 with fi ∈ A[[(X1, . . . , Xi)∗]] for i = 1, . . . ,m− 1 and

real numbers γ1, . . . , γm−1 > 0.

4.9. Blow-up height. Assume m ≥ 2. Given distinct i, j ∈ {1, . . . ,m} and γ > 0, we
define an injective monoid homomorphism sγ

ij : X∗ −→ X∗ such that sγ
ij(Xk) = Xk

for k 6= i and sγ
ij(Xi) = XiX

γ
j , as follows:

sγ
ij(Xα) := Xα1

1 · · ·Xαj−1
j−1 X

γαi+αj

j X
αj+1
j+1 · · ·Xαm

m = XαXγαi

j .

We call sγ
ij a singular blow-up substitution on X .

We now assign to every pair of monomials Xα, Xβ a number bX(Xα, Xβ) ∈ N
called the blow-up height of the pair (Xα, Xβ), also denoted by b(Xα, Xβ) if
X = (X1, . . . , Xm) is clear from context, as follows:

Special case: gcd(Xα, Xβ) = 1. We let a := |{i ∈ {1, . . . ,m} : αi 6= 0}| and
b := |{j ∈ {1, . . . ,m} : βj 6= 0}|, and we put

b(Xα, Xβ) :=

{
0 if Xα = 1 or Xβ = 1,
a+ b otherwise.

General case. This is reduced to the special case by setting b(Xα, Xβ) :=
b(Xα−ω, Xβ−ω), where Xω = gcd(Xα, Xβ).

4.10 Lemma. 1. b(Xα, Xβ) = 0 if and only if Xα|Xβ or Xβ|Xα.
2. If b(Xα, Xβ) = 0 then b(sγ

ij(Xα), sγ
ij(Xβ)) = 0.

3. b(Xα, Xβ) = b(Xβ, Xα).
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4. If b(Xα, Xβ) 6= 0, then there are γ > 0 and distinct i, j ∈ {1, . . . ,m} such
that

b(sγ
ij(Xα), sγ

ij(Xβ)) < b(Xα, Xβ)

and

b(s1/γ
ji (Xα), s1/γ

ji (Xβ)) < b(Xα, Xβ).

Proof. (1),(2) and (3) are easy, so we prove (4).
Let b(Xα, Xβ) 6= (0, 0). Using the notation of 4.9 above, we assume first that

gcd(Xα, Xβ) = 1 with Xα 6= 1 and Xβ 6= 1. Take i, j ∈ {1, . . . ,m} with αi 6= 0 and
βj 6= 0 (so i 6= j), and let γ := βj/αi. Then sγ

ij(Xα) = XαX
βj

j and sγ
ij(Xβ) = Xβ.

Dividing XαX
βj

j and Xβ by their gcd X
βj

j we see that b(sγ
ij(Xα), sγ

ij(Xβ)) <

b(Xα, Xβ); similarly for s1/γ
ji .

In the general case, take distinct i, j ∈ {1, . . . ,m} and γ > 0 such that

b(sγ
ij(Xα−ω), sγ

ij(Xβ−ω)) < b(Xα, Xβ)

and

b(s1/γ
ji (Xα−ω), s1/γ

ji (Xβ−ω)) < b(Xα, Xβ),

where Xω = gcd(Xα, Xβ). The identity sγ
ij(Xα) = sγ

ij(Xω)sγ
ij(Xα−ω) then im-

plies b(sγ
ij(Xα), sγ

ij(Xβ)) = b(sγ
ij(Xα−ω), sγ

ij(Xβ−ω)); hence b(sγ
ij(Xα), sγ

ij(Xβ)) <

b(Xα, Xβ). The case of s1/γ
ji is again similar.

4.11. Next we consider a finite collection G = {Xα(1), . . . , Xα(k)} of k distinct
monomials in X∗, and define

sγ
ij(G) := {sγ

ij(Xα(1)), . . . , sγ
ij(Xα(k))}.

We associate to G the pair bX(G) = (p, q) ∈ N2 defined as follows: if there are pairs
(l, l′) with 1 ≤ l < l′ ≤ k and b(Xα(l), Xα(l′)) 6= 0, then p := number of such pairs
and q := minimum of the blow-up heights of all such pairs; if no such pairs exist,
then (p, q) := (0, 0). Again, if X = (X1, . . . , Xm) is clear from the context we just
write b(G) for bX(G). We also order N2 lexicographically in what follows.

Note that b(G) = (0, 0) means that G is linearly ordered by divisibility.

4.12 Lemma. 1. If G′ ⊆ G then b(G′) ≤ b(G).
2. If b(G) 6= (0, 0), then there are γ > 0 and distinct i, j ∈ {1, . . . ,m} such that

b(sγ
ij(G)) < b(G) and b(s1/γ

ji (G)) < b(G).

Proof. (1) is easy.
For (2), let b(G) = (p, q) with p ∈ N− {0}, and consider monomials Xα, Xβ ∈ G

for which b(Xα, Xβ) = q. By (4) of the previous lemma, we get γ > 0 and distinct
i, j ∈ {1, . . . ,m} such that

b(sγ
ij(Xα), sγ

ij(Xβ)) < b(Xα, Xβ) and b(s1/γ
ji (Xα), s1/γ

ji (Xβ)) < b(Xα, Xβ).

Then it follows from (2) of the previous lemma that

b(sγ
ij(G)) < b(G) and b(s1/γ

ji (G)) < b(G).
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4.13. We now extend sγ
ij to an injective A-algebra endomorphism of A[[X∗]] by

putting sγ
ij(
∑
fαX

α) :=
∑
fαs

γ
ij(Xα). To avoid too many nested parentheses, we

will write sγ
ijf instead of sγ

ij(f).
Consider a finite collection F ⊆ A[[X∗]] of generalized power series. For distinct

i, j ∈ {1, . . . ,m} we put sγ
ij(F) = {sγ

ijf : f ∈ F}, and let bX(F) := bX(G),

where G :=
{
Xα : α ∈ ⋃f∈F

(
supp(f)

)
min

}
is the (by lemma 4.2 finite) set of

“minimal monomials” of members of F . The elements of G are called the minimal
monomials of F , and bX(F) is the blow-up height of F . (As before we write
b(F) if X is clear from the context.)

Note that each f ∈ F can be written as f =
∑
Xωgω, where the sum is over

supp(f)min and each gω ∈ A[[X∗]] satisfies gω(0) 6= 0.

4.14 Proposition. 1. If b(F) 6= (0, 0), then there are γ > 0 and distinct i, j ∈
{1, . . . ,m} such that b(sγ

ij(F)) < b(F) and b(s1/γ
ji (F)) < b(F).

2. If b(F) = (0, 0), then each nonzero f ∈ F is of the form f = Xωg with
g ∈ A[[X∗]], g(0) 6= 0.

Proof. For (1), using the previous lemma we get γ > 0 and distinct i, j ∈ {1, . . . ,m}
such that b(sγ

ij(G)) < b(G) and b(s1/γ
ji (G)) < b(G). Note that each monomial in

sγ
ij(G) has a nonzero coefficient in some member of sγ

ij(F), and that each monomial
with a nonzero coefficient in some member of sγ

ij(F) is divisible by a monomial
in sγ

ij(G). Hence the minimal monomials of sγ
ij(F) belong to sγ

ij(G). Therefore by
lemma 4.10, part (1), we get b(sγ

ij(F)) ≤ b(sγ
ij(G)) < b(F). Similarly we obtain

b(s1/γ
ji (F)) < b(F).
For (2), if b(F) = (0, 0) then G is linearly ordered by divisibility; hence the

desired result.

4.15. Mixed series. Let (X,Y ) = (X1, . . . , Xm, Y1, . . . , Yn) be a tuple of m + n
distinct indeterminates. According to 4.6 a series

∑
aα,βX

αY β in A[[(X,Y )∗]] can
also be written as

∑
β(
∑

α aα,βX
α)Y β . But

∑
β(
∑

α aα,βX
α)Y β is also (the nota-

tion for) a power series in A[[X∗]][[Y ∗]]. These two ways of reading
∑

(
∑
aα,βX

α)Y β

agree, provided we identify the ring A[[(X,Y )∗]] with a subring of A[[X∗]][[Y ∗]] via the
injective ring homomorphismA[[(X,Y )∗]] −→ A[[X∗]][[Y ∗]] given by

∑
aα,βX

αY β 7→∑
(
∑
aα,βX

α)Y β . This identification will often be made without further comment.
Note that this homomorphism is not surjective in general: with m,n > 0, the series∑∞

k=1X
1/k
1 Y k

1 is in A[[X∗]][[Y ∗]], but not in (the image of) A[[(X,Y )∗]]. On the other
hand, A[[X∗]][Y ∗] ⊆ A[[(X,Y )∗]].

We shall also be working with the subring A[[X∗, Y ]] of A[[(X,Y )∗]], consisting
of those f ∈ A[[(X,Y )∗]] in which the Y -indeterminates have only natural numbers
as exponents. Similarly to the above, we identify A[[X∗, Y ]] with the corresponding
subring of A[[X∗]][[Y ]]; note that by the example above A[[X∗, Y ]] 6= A[[X∗]][[Y ]], for
m,n > 0.

4.16 Definition. Let n > 0. A power series f ∈ A[[X∗, Y ]] is called regular in Yn

if f(0, 0, Yn) = uY d
n + terms of higher degree in Yn, with u a unit in A; with this d

we call f regular in Yn of order d. We put Y ′ := (Y1, . . . , Yn−1).

4.17 Weierstrass Division and Preparation. Let n > 0 and let f ∈ A[[X∗, Y ]]
be regular in Yn of order d.
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1. There is for each g ∈ A[[X∗, Y ]] a unique pair (Q,R) with Q ∈ A[[X∗, Y ]] and
R ∈ A[[X∗, Y ′]][Yn], such that

g = Qf +R and degYn
(R) < d.

2. f factors uniquely as f = UW , where U ∈ A[[X∗, Y ]] is a unit and W ∈
A[[X∗, Y ′]][Yn] is monic of degree d in Yn.

Proof. (1) The proof below is adapted from [2]. Writing f =
∑

k∈N fkY
k
n with each

fk ∈ A[[X∗, Y ′]], the coefficients f0, . . . , fd−1 have order ≥ δ for some δ > 0, while
fd is a unit in A[[X∗, Y ′]]. Thus, taking

u :=
∑
k≥d

fkY
k−d
n ,

u is a unit in A[[X∗, Y ]]. Then

u−1f = u−1

∑
k<d

fkY
k
n +

∑
k≥d

fkY
k
n


= u−1

(∑
k<d

fkY
k
n + uY d

n

)

= u−1

(∑
k<d

fkY
k
n

)
+ Y d

n .

So, replacing f by u−1f , we may as well assume that f = Y d
n −F with F ∈ M[[Yn]],

where M⊆ A[[X∗, Y ′]] is the ideal of power series of order ≥ δ.

Claim 1. For each G ∈Ml[[Yn]], there are Q ∈Ml[[Yn]], R ∈ Ml[Yn] of degree < d
in Yn, and L(G) ∈ Ml+1[[Yn]], such that G = Qf +R+ L(G).

To see this, write G =
∑

k∈N GkY
k
n with Gk ∈ Ml, so that G =

∑
k<d GkY

k
n +

Y d
n

∑
k≥d GkY

k−d
n ; hence with R :=

∑
k<d GkY

k
n and Q :=

∑
k≥d GkY

k−d
n we have

G = Q(Y d
n − F ) + R + L(G), where L(G) := FQ. Clearly Claim 1 holds for this

choice of Q, R and L(G).
We now proceed with the proof of the existence part. Given g, we apply the

claim successively to g, L(g), L(L(g)) = L2(g), . . . :

g = Q0f +R0 + L(g),

L(g) = Q1f +R1 + L2(g),
...

Ll(g) = Qlf +Rl + Ll+1(g),
...

with Ql ∈ Ml[[Yn]], Rl ∈ Ml[Yn], degYn
(Rl) < d and Ll(g) ∈ Ml+1[[Yn]]. Thus the

power series Q :=
∑

l∈N Ql and L :=
∑

l∈N L
l(g) and the polynomial R :=

∑
l∈N Rl

are well defined elements of A[[X∗]][[Y ]] and A[[X∗]][[Y ′]][Yn], respectively, and adding
up the rows above gives g = Qf+R in A[[X∗]][]Y ]]; it remains to verify that supp(Q)
and supp(R) are good subsets of [0,∞)m+n.
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For H ∈ A[[X∗]][[Y ]] we put

supp′(H) := {(α, β′) ∈ [0,∞)m × Nn−1 : (α, β′, βn) ∈ supp(H) for some βn ∈ N};
it is clearly enough to show that supp′(Q) and supp′(R) are good subsets of
[0,∞)m+n−1.

Claim 2. supp′(Ll(g)), supp′(Ql) ⊆ Σ(supp′(F ) ∪ supp′(g)) for all l ∈ N.

This is trivial for l = 0. If l > 0 and the claim holds for l − 1 in place of l, then

supp′(Ll(g)) = supp′(FQl−1)

⊆ supp′(F ) + supp′(Ql−1)

⊆ supp′(F ) + Σ(supp′(F ) ∪ supp′(g))

⊆ Σ(supp′(F ) ∪ supp′(g)),

and hence supp′(Ql) ⊆ supp′(Ll(g)) ⊆ Σ(supp′(F ) ∪ supp′(g)), which establishes
Claim 2.

Therefore also supp′(Rl) ⊆ Σ(supp′(F ) ∪ supp′(g)) for all l, so

supp′(Q), supp′(R) ⊆ Σ(supp′(F ) ∪ supp′(g)),

which together with lemma 4.3 implies that supp′(Q) and supp′(R) are good subsets
of [0,∞)m+n−1, as desired.

For the uniqueness, suppose g = Q1f + R1 = Q2f + R2 with each (Qi, Ri)
satisfying the conclusions of the theorem. Then Qf = R where Q = Q1 − Q2

and R = R1 − R2, so degYn
(R) < d. It suffices to derive Q = 0. Suppose Q =∑

k∈N qkY
k
n ∈ Ml[[Yn]] for some l ∈ N. For any k the coefficient of Y d+k

n in Qf is
0, so

0 = qkfd +
∑
h<k

qhfd+k−h +
∑

k<h≤k+d

qhfd+k−h.

Since f = Y d
n −F with F ∈M[[Yn]] and fd is a unit, it follows that qk ∈ Ml+1. The

index k was arbitrary, so we have shown that Q ∈ Ml[[Yn]] implies Q ∈Ml+1[[Yn]],
i.e. Q = 0.

(2) Writing again f =
∑

k∈N fkY
k
n with fk ∈ A[[X∗, Y ′]], we get from Weierstrass

division that Y d
n = qf + r, with q =

∑
k∈N qkY

k
n , qk ∈ A[[X∗, Y ′]], and r = r0 +

r1Yn + · · · + rd−1Y
d−1
n with rh ∈ A[[X∗, Y ′]] for h < d. Substituting (0, 0, Yn) for

(X,Y ′, Yn) gives the following equation in A[[Yn]]:

Y d
n =

(∑
k∈N

qk(0)Y k
n

)(
fd(0)Y d

n + higher degree terms
)

+ r0(0) + · · ·+ rd−1(0)Y d−1
n .

Comparing coefficients of Y d
n gives q0(0)fd(0) = 1; hence q0 is a unit in A[[X∗, Y ′]],

and therefore q is a unit in A[[X∗, Y ]]. Thus f = UW with U = q−1 andW = Y d
n−R,

which proves existence. Uniqueness follows similarly by arguing backwards, and
using the uniqueness in the Weierstrass division formula Y d

n = qf + r.
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5. Convergent Generalized Power Series

5.1. We let r and s denote polyradii (with m components unless indicated other-
wise), and we write r ≤ s if ri ≤ si for all i, and r < s if ri < si for all i. Also
rα = rα1

1 · · · rαm
m .

5.2. In this section A is a normed ring with norm |·|. For f(X) =
∑
fαX

α ∈ A[[X∗]]
and a polyradius r we define

‖f‖r :=
∑

|fα|rα ∈ [0,∞].

We then have, for f, g ∈ A[[X∗]] and polyradii r, s:
1. ‖f‖r = 0 if and only if f = 0;
2. ‖f + g‖r ≤ ‖f‖r + ‖g‖r;
3. ‖fg‖r ≤ ‖f‖r‖g‖r;
4. if r ≤ s, then ‖f‖r ≤ ‖f‖s.

We only prove (3), the other rules being obvious. Let f(X) =
∑
fαX

α and g(X) =∑
gαX

α. Then

‖fg‖r =
∑

α

∣∣∣∣∣∣
∑

β+γ=α

fβgγ

∣∣∣∣∣∣ rα ≤
∑
β,γ

|fβ ||gγ |rβrγ = ‖f‖r‖g‖r.

5.3. We now define A{X∗}r := {f ∈ A[[X∗]] : ‖f‖r <∞}. Note that A{X∗}r is a
normed ring with norm ‖ · ‖r. It is clearly a subring of A[[X∗]] containing A[X∗].
We put A{X∗} :=

⋃
r A{X∗}r. Since A{X∗}r ⊇ A{X∗}s if r ≤ s, A{X∗} is also a

subring of A[[X∗]]. Put A{X∗, Y } := A[[X∗, Y ]] ∩ A{(X,Y )∗}, and A{X∗, Y }r,s :=
A[[X∗, Y ]] ∩A{(X,Y )∗}(r,s) for polyradii r = (r1, . . . , rm), s = (s1, . . . , sn).

Note that if f(X) =
∑
fαX

α ∈ A{X∗}r, then |fα| ≤ ‖f‖r/r
α.

It follows that if {fk(X) =
∑
fk,αX

α}k∈N is a Cauchy sequence in A{X∗}r, then
{fk,α}k∈N is a Cauchy sequence in A for each α. If moreover limk→∞ fk,α = fα ∈ A
for every α, we say that the sequence {fk} has formal limit f(X) =

∑
fαX

α.
The trouble is that supp(f) need not be a good subset of [0,∞)m any more: take
for instance A = R, m = 1 and fk(X) =

∑k
l=1

1
l2X

1/l; then f(X) =
∑∞

l=1
1
l2X

1/l.
But we can still say the following:

5.4 Lemma. Let {fk}k∈N be a Cauchy sequence in A{X∗}r with formal limit f
such that supp(f) is a good subset of [0,∞)m. Then f ∈ A{X∗}r.

Proof. Writing f(X) =
∑
fαX

α, we have to show that f ∈ A{X∗}r and that
fk → f in the normed ring A{X∗}r.

Let ε > 0 and take M = M(ε) so large that ‖fk−fl‖r < ε for all k, l > M . Then
we have, for k, l > M and any finite subset I ⊆ supp(f),∑

α∈I

|fα − fk,α|rα ≤
∑
α∈I

|fα − fl,α|rα +
∑
α∈I

|fl,α − fk,α|rα

≤
∑
α∈I

|fα − fl,α|rα + ε.

Fixing I and k and letting l → ∞ in this inequality gives
∑

α∈I |fα − fk,α|rα ≤ ε,
and fixing k and increasing I gives ‖f − fk‖r ≤ ε, for each k > M . Hence ‖f‖r ≤
‖f−fk‖r+‖fk‖r <∞, so f ∈ A{X∗}r and fk → f in the normed ring A{X∗}r.

5.5 Lemma. If f =
∑
fαX

α ∈ A{X∗}, then limr→0 ‖f‖r = |f(0)|.
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Proof. It suffices to show that limr→0 ‖f−f(0)‖r = 0, so replacing f by f−f(0) we
may as well assume that f(0) = 0. Take s such that ‖f‖s <∞, and fix ε > 0. Let
I ⊆ supp(f) be finite such that

∑
α/∈I |fα|sα < ε/2, and let ρ ≤ s be a polyradius

such that
∑

α∈I |fα|ρα < ε/2. Then for every r ≤ ρ,

‖f‖r ≤
∑
α∈I

|fα|rα +
∑
α/∈I

|fα|sα ≤ ε.

Since ε was arbitrary, this proves the lemma.

5.6 Corollary. Let f ∈ A{X∗}. Then
1. f is a unit in A{X∗} if and only if f(0) is a unit in A, and
2. each f ∈ A{X∗} with ord(f) > 0 is of the form f = Xγ1

1 f1 + · · · + Xγm
m fm

with real numbers γ1, . . . , γm > 0 and fi ∈ A{(X1, . . . , Xi)∗} for all i.
Also, if m ≥ 1, then A{X∗} ∩A[[(X1, . . . , Xm−1)∗]] = A{(X1, . . . , Xm−1)∗}.
Proof. (1) The necessity is clear. Suppose then f(0) 6= 0 and write f = f(0)(1− g)
for some g ∈ A{X∗} with g(0) = 0. Then 1 − g has inverse 1 + g + g2 + . . . in
A[[X∗]]. Take r small enough so that ‖g‖r < 1 (possible by lemma 5.5). Then for
every n ∈ N,

‖1 + g + g2 + · · ·+ gn‖r ≤ 1 + ‖g‖r + ‖g‖2r + · · ·+ ‖g‖n
r =

1− ‖g‖n+1
r

1− ‖g‖r
,

so by lemma 5.4 the inverse 1 + g + g2 + . . . belongs to A{X∗}r.
(2) follows from 4.8, since ‖f‖r = rγ1

1 ‖f1‖r + · · ·+ rγm
m ‖fm‖r.

The last statement is obvious.

5.7. Given any family {aj}j∈J of elements of A, there is at most one element a ∈ A
such that for each ε > 0 there is a finite subset I(ε) ⊆ J with |∑j∈I aj − a| < ε

for all finite sets I ⊆ J that contain I(ε). If a ∈ A has this property, we say that∑
j∈J aj exists in A and define

∑
j∈J aj := a. Note that

∑
j∈J aj certainly exists

in A if A is complete and
∑

j∈J |aj | < ∞. (One checks easily that in that case
aj 6= 0 for only countably many j ∈ J .)

We now modify 4.6 as follows: let J be any index set and assume that {fj =∑
α fj,αX

α}j∈J is a family in A[[X∗]] such that
1. for each α ∈ [0,∞)m we have

∑
j∈J |fj,α| < ∞ and

∑
j∈J fj,α exists in A,

and
2.
⋃

j∈J supp(fj) is a good subset of [0,∞)m.

Then
∑
fj :=

∑
α

(∑
j∈J fj,α

)
Xα ∈ A[[X∗]], and one easily checks that ‖∑ fj‖r ≤∑ ‖fj‖r.

Suppose now that
∑ ‖fj‖r < ∞; then our formal power series

∑
fj actually

belongs to A{X∗}r. One checks easily that then
∑
fj is also the sum of the family

{fj}j∈J in the sense of the normed ring A{X∗}r.

5.8 Substitutions. A permutation σ of the set {1, . . . ,m} induces a monoid isomor-
phism σ : X∗ −→ X∗ defined by σ(Xα) := Xα1

σ(1) · · ·Xαm

σ(m), which in turn extends
to an A-algebra automorphism of A[[X∗, Y ]] by putting

σ
(∑

fα,βX
αY β

)
:=
∑

fα,βσ(Xα)Y β .
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We usually write σf for σ(f), where f ∈ A[[X∗, Y ]]. Also corresponding to σ we de-
fine a map σ : Rm+n −→ Rm+n by σ(x, y) = (xσ(1), . . . , xσ(m), y). (For a polyradius
r = (r1, . . . , rm) the case n = 0 applies, so that σ(r) = (rσ(1), . . . , rσ(m)).)

In a similar way, if sγ
ij : X∗ −→ X∗ is a singular blow-up substitution, then sγ

ij

extends to an A-algebra endomorphism sγ
ij of A[[X∗, Y ]] by setting

sγ
ij

(∑
fα,βX

αY β
)

:=
∑

fα,βs
γ
ij(Xα)Y β .

We define the corresponding map sγ
ij : [0,∞)m×Rn −→ [0,∞)m×Rn by sγ

ij(x, y) =
(x1, . . . , xi−1, x

γ
j xi, xi+1, . . . , xm, y). (For a polyradius r = (r1, . . . , rm) the case

n = 0 applies, so that sγ
ij(r) = (r1, . . . , ri−1, r

γ
j ri, ri+1, . . . , rm).)

Suppose now that f = f(X,Y ) ∈ A[[X∗, Y ]], and let g = (g1, . . . , gn) ∈ A[[Z]]n

with g1(0) = · · · = gn(0) = 0. Since A[[X∗, Y ]] ⊆ A[[X∗]][[Y ]], we may substitute g
for Y in f and obtain an element f(X, g(Z)) ∈ A[[X∗]][[Z]]. One easily checks that
in fact f(X, g(Z)) ∈ A[[X∗, Z]].
Partial derivatives. The operation f 7→ ∂f

∂Xi
on A[[X ]] does not extend naturally to

A[[X∗]], but the modified operation f 7→ Xi
∂f

∂Xi
on A[[X ]] does have a good extension

∂i to A[[X∗]]: given f(X) =
∑
fαX

α ∈ A[[X∗]], we define

∂if(X) :=
∑

αifαX
α ∈ A[[X∗]].

On the other hand, considering f(X,Y ) ∈ A[[X∗, Y ]] as an element of A[[X∗]][[Y ]],
the partial derivatives ∂f/∂Yj defined as usual belong to A[[X∗, Y ]], and in fact
Yj∂f/∂Yj = ∂m+jf .

5.9 Lemma. Let f ∈ A{X∗, Y }r,s. Then

1. if φ is either a permutation of {1, . . . ,m} or a singular blow-up substitution on
X∗ with m ≥ 2, and r̃ is a polyradius with φ(r̃) ≤ r, then φf ∈ A{X∗, Y }r̃,s;

2. if g = (g1, . . . , gn) ∈ A{Z}n
t , where g1(0) = · · · = gn(0) = 0 and t =

(t1, . . . , tl) is a polyradius with ‖gj‖t ≤ sj for each j, then f(X, g(Z)) ∈
A{X∗, Z}r,t;

3. if i ∈ {1, . . . ,m}, then ∂if ∈ A{X∗, Y }r̃,s for each r̃ < r, and if j ∈
{1, . . . , n}, then ∂f/∂Yj ∈ A{X∗, Y }r,s̃ for each s̃ < s.

Proof. (1) Assume f =
∑
fα,βX

αY β . If φ is the singular blow-up substitution
sρ

m,m−1 (with m ≥ 2) and φ(t) ≤ r, then ‖φf‖t,s =
∑ |fα,β |tαtραm

m−1s
β ≤ ‖f‖r,s.

The other case of φ and (2) are similar.
(3) Let i ∈ {1, . . . ,m}. To simplify notation we assume that n = 0; the case

n > 0 is similar. Write f(X) =
∑
fαX

α; then, with r̃ < r,

∑
αi|fα|r̃α ≤

∞∑
k=1

k

 ∑
k−1≤|α|<k

|fα|r̃α


=

∞∑
k=1

k

 ∑
k−1≤|α|<k

|fα|
(
r̃

r

)α

rα


≤

∞∑
k=1

k

∣∣∣∣ r̃r
∣∣∣∣k−1

 ∑
k−1≤|α|<k

|fα|rα

 ,
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where (r̃/r)α := (r̃1/r1)α1 · · · (r̃m/rm)αm and |r̃/r| := max{ r̃1
r1
, . . . , r̃m

rm
} < 1. Since

limk→∞ k|r̃/r|k−1 = 0, there is a constant C = C(r̃) > 0 such that k|r̃/r|k−1 ≤ C
for all positive k ∈ N, and so∑

αi|fα|r̃α ≤ C
∑

|fα|rα <∞.

The assertion about ∂f/∂Yj is proved in the same way.

Remark. For later use in section 9 we consider here more closely the case m = 1,
n = 0. Let ∂ := ∂1. The proof of (3) above shows that then ‖∂f‖r̃ ≤ C‖f‖r, where
we can take C := |s log s|−1 with s := |r̃/r|, since

max
x≥0

(
xsx−1

)
=

−1
log s

s
−1
log s−1 ≤ −1

s log s
= C.

Now let r1 := r̃s−1/2; then r̃
r1

= r1
r = s1/2 and the calculation above with r1 in place

of r̃ gives ‖∂f‖r1 ≤ C · 2‖f‖r (since −1
s1/2 log(s1/2)

≤ −2
s log s ), and taking r1, ∂f and

∂2f in place of r, f and ∂f respectively, we get ‖∂2f‖r̃ ≤ C ·2‖∂f‖r1 ≤ C2 ·22‖f‖r.
A similar argument with any k ∈ N gives

‖∂kf‖r̃ ≤ Ckkk‖f‖r.

5.10 Weierstrass Preparation. Let n > 0, and let f ∈ A{X∗, Y } be regular in
Yn of order d.

1. There is for each g ∈ A{X∗, Y } a unique pair (Q,R) with Q ∈ A{X∗, Y } and
R ∈ A{X∗, Y ′}[Yn], such that

g = Qf +R and degYn
(R) < d.

2. f factors uniquely as f = UW , where U ∈ A{X∗, Y } is a unit and W ∈
A{X∗, Y ′}[Yn] is monic of degree d in Yn.

Proof. (1) Let g ∈ A{X∗, Y }. We use the same notations as in the proof of (1) in
Theorem 4.17. Choose s > 0 so that

‖F‖s ≤ ‖u−1‖s

∑
k<d

‖Fk‖s′s
k
n < sd

n,

and put ε := ‖F‖ss
−d
n < 1. Writing N = M∩ A{X∗, Y ′} and making s smaller if

necessary, we may assume that G in the claim of the proof of (1) of Theorem 4.17
is in N l{Yn}s, so

‖Q‖s ≤
∑
k≥d

‖Gk‖s′s
k−d
n ≤ ‖G‖ss

−d
n and ‖R‖s ≤ ‖G‖s,

while

‖L(G)‖s ≤ ‖Q‖s‖F‖s ≤ ε‖G‖s

by the definition of ε and the estimate on ‖Q‖s. Applying these norm estimates
successively, we get

‖Rl‖s ≤ ‖Ll(g)‖s ≤ εl‖g‖s

and

‖Ql‖s ≤ ‖Ll(g)‖ss
−d
n ≤ εl‖g‖ss

−d
n ,
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so that

‖R‖s ≤ ‖g‖s

1− ε
and ‖Q‖s ≤ ‖g‖ss

−d
n

1− ε
.

(2) follows from the proof of (2) of theorem 4.17 and from (1) above.

6. The Real Case

From now on we are only interested in the case A = R, with the norm on R
given by the usual absolute value. Note that Corollary 5.6 implies that R{X∗} is a
local ring with maximal ideal {f ∈ R{X∗} : f(0) = 0}, and if m = 1, then R{X∗}
is a valuation ring.

6.1. Let f =
∑
fβ(X)Y β ∈ R{X∗, Y }, f 6= 0, n > 0. Assume there is a monomial

Xρ ∈ X∗ such that f(X,Y ) = XρF (X,Y ) with F =
∑
Fβ(X)Y β ∈ R{X∗, Y } and

Fβ(0) 6= 0 for at least one β. (Note that this always holds if m = 1.) Take d ∈ N
minimal such that there is β ∈ Nn with d = |β| and Fβ(0) 6= 0.

Consider a linear substitution θ(Y ) = (Y1 + c1Yn, . . . , Yn−1 + cn−1Yn, Yn) with
c1, . . . , cn−1 ∈ R, and put θg := g(X, θ(Y )) for g ∈ R{X∗, Y }. Then

θF (0, 0, Yn) = F (0, c1Yn, . . . , cn−1Yn, Yn)

= P (c1, . . . , cn−1)Y d
n + terms of higher degree in Yn,

where P is a nonzero polynomial in c1, . . . , cn−1 depending only on f (not on
c1, . . . , cn−1). In summary we get

Lemma. Let f1, . . . , fl ∈ R{X∗, Y }\{0} be such that each fi(X,Y ) = XρiFi(X,Y )
for some suitable ρi ∈ [0,∞)m and Fi ∈ R{X∗, Y } satisfying Fi(0, Y ) 6= 0. Then
there are infinitely many linear transformations θ(Y ) = (Y1 + c1Yn, . . . , Yn−1 +
cn−1Yn, Yn) with (c1, . . . , cn−1) ∈ Rn−1 such that

θfi(X,Y ) = XρiGi(X,Y )

with each Gi ∈ R{X∗, Y } regular in Yn for i = 1, . . . , l.

6.2. Given a polyradius ρ = (ρ1, . . . , ρm+n), we put

Im,n,ρ := [0, ρ1]× · · · × [0, ρm]× [−ρm+1, ρm+1]× · · · × [−ρm+n, ρm+n];

we will denote [0,∞)m × Rn by Im,n,∞. We also write R{X∗, Y }ρ instead of
R{X∗, Y }r,s, where r = (ρ1, . . . , ρm) and s = (ρm+1, . . . , ρm+n). For n = 0 we
write Im,r instead of Im,0,ρ.

To an element f(X,Y ) =
∑
fα,βX

αY β ∈ R{X∗, Y }ρ we associate a function on
Im,n,ρ as follows. Given (x, y) ∈ Im,n,ρ, the series

∑
fα,βx

αyβ converges absolutely
to a real number which we denote by f(x, y). The function (x, y) 7→ f(x, y) :
Im,n,ρ −→ R is continuous, since by 5.7 f is the limit in the sense of the normed
ring R{X∗, Y }ρ of its partial sums fJ :=

∑
(α,β)∈J fα,βX

αY β with J finite, which
implies that the corresponding continuous functions (x, y) 7→ fJ(x, y) : Im,n,ρ −→ R
converge uniformly on Im,n,ρ to the function (x, y) 7→ f(x, y).

We shall denote the function (x, y) 7→ f(x, y) : Im,n,ρ −→ R by fρ. Note
that the argument above shows that ‖fρ‖sup ≤ ‖f‖ρ for all f ∈ R{X∗, Y }ρ. Let
C(Im,n,ρ) be the ring of all real valued continuous functions on Im,n,ρ. Part (1) of
the following lemma shows that the map f 7→ fρ : R{X∗, Y }ρ −→ C(Im,n,ρ) is a
ring homomorphism.
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6.3 Lemma. Let f, g ∈ R{X∗, Y }ρ. Then

1. (f + g)ρ(x, y) = fρ(x, y) + gρ(x, y) and (f · g)ρ(x, y) = fρ(x, y) · gρ(x, y) for
all (x, y) ∈ Im,n,ρ;

2. if φ is either a permutation of {1, . . . ,m} or a singular blow-up substitution
on X∗ with m ≥ 2, and ρ̃ is a polyradius with φ(ρ̃) ≤ ρ, then (φf)ρ̃(x, y) =
fρ(φ(x), y) for all (x, y) ∈ Im,n,ρ̃;

3. if g = (g1, . . . , gn) ∈ R{Z}n
t , where g1(0) = · · · = gn(0) = 0 and t =

(t1, . . . , tl) is a polyradius with ‖gj‖t ≤ ρm+j for j = 1, . . . , n, then with
h(X,Z) := f(X, g(Z)) ∈ R{X∗, Z}τ where τ = (ρ1, . . . , ρm, t1, . . . , tl), we
have hτ (x, z) = fρ(x, gt(z)) for all (x, z) ∈ Im,l,τ ;

4. if j ∈ {1, . . . , n} and ρ̃ < ρ, then for each (x, y) ∈ Im,n,ρ̃ the partial derivative
(∂fρ̃/∂yj)(x, y) exists and (∂f/∂Yj)ρ̃(x, y) = ∂fρ̃/∂yj(x, y);

5. if i ∈ {1, . . . ,m} and ρ̃ < ρ, then for all (x, y) ∈ int(Im,n,ρ̃) the partial
derivative (∂fρ̃/∂xj)(x, y) exists and xj(∂fρ̃/∂xj)(x, y) = (∂jf)ρ̃(x, y).

Proof. These statements are obvious if f and g have finite support; hence by 6.2
they follow for general f and g.

6.4 Lemma. The map f 7→ fr : R{X∗}r −→ C(Im,r) is injective.

Proof. Let f(X) =
∑
fαX

α ∈ R{X∗}r and assume f 6= 0; we will show that fr

cannot vanish identically on any Im,r̃ with r̃ < r (which is more than what we
need).

By induction on m: if m = 1 then X = X1 and, assuming f has order δ, we can
write f(X) = Xδ(fδ +

∑
α>δ X

α−δ) with fδ 6= 0. By 6.2 the series fδ +
∑

α>δ X
α−δ

also gives rise to a function on [0, r]. It follows from Lemma 5.5 that fr(x) 6= 0 for
all x ∈ (0, r̃], where r̃ > 0 is small enough.

Let m > 1; assume our claim holds for R{(X ′)∗}r′ . Write a nonzero f ∈ R{X∗}r

as f(X) =
∑

αm≥0 fαm(X ′)Xαm
m with fαm ∈ R{(X ′)∗}r′ , and note that {αm :

fαm 6= 0} is a well ordered subset of [0,∞). Hence ‖f‖r =
∑ ‖fαm‖r′r

αm
m and

fr(x) =
∑

(fαm)r′(x′)xαm
m for all x = (x′, xm) ∈ Im,r. Fix some αm ∈ [0,∞) with

fαm(X ′) 6= 0; by the inductive assumption there are x′ ∈ Im−1,r′ arbitrarily close
to the origin such that (fαm)r′(x′) 6= 0. For such x′ we have shown above (case
m = 1) that fr(x′, xm) =

∑
(fαm)r′(x′)xαm

m is nonzero for all sufficiently small
xm ∈ (0, rm].

Remark. It follows from Lemma 6.4 that the map f 7→ fρ : R{X∗, Y }ρ −→
C(Im,n,ρ) is an injective ring homomorphism.

6.5 Lemma. Let f ∈ R{X∗, Y }ρ with m ≥ 2, and let γ, λ > 0. Suppose τ ≤ ρ is
such that τm < λ and τγ

m−1(λ + τm) < ρm. Then there is a power series r(f) ∈
R{(X ′)∗, (Xm, Y )}τ such that

r(f)τ (x′, xm, y) = fρ(x′, xγ
m−1(λ+ xm), y)

for every (x′, xm, y) ∈ Im−1,n+1,τ . (Note that here we allow negative values for
xm.)

Proof. Write f(X,Y ) =
∑

t≥0 ft(X ′, Y )Xt
m. Formally substituting Xγ

m−1(λ+Xm)
for Xm and using the binomial expansion (λ+Xm)t :=

∑
k∈N

(
t
k

)
λt−kXk

m, we obtain
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the power series

r(f) : =
∑
t≥0

(
ft(X ′, Y )

∑
k∈N

Xγt
m−1

(
t

k

)
λt−kXk

m

)

=
∑
k∈N

∑
t≥0

(
t

k

)
λt−kft(X ′, Y )Xγt

m−1

Xk
m ∈ R[[(X ′)∗, (Xm, Y )]].

Next we note that∥∥(λ+Xm)t
∥∥

τm
:=
∑
k∈N

∣∣∣∣(tk
)∣∣∣∣λt−kτk

m ≤ C(λ+ τm)t

for some positive C = C(λ, τm) that is independent of t ≥ 0.
(†)

(To see this, factor out λt and put x := τm/λ, so that the problem is reduced to
estimating

∑
k∈N

∣∣(t
k

)∣∣xk for 0 ≤ x < 1. Using that
(

t
k

) ≥ 0 if k ≤ t + 1 and∣∣(t
k

)∣∣ ≤ 1 if k > t+ 1, we obtain∣∣∣∣∣∑
k∈N

∣∣∣∣(tk
)∣∣∣∣xk − (1 + x)t

∣∣∣∣∣ =

∣∣∣∣∣ ∑
k>t+1

∣∣∣∣(tk
)∣∣∣∣ xk −

∑
k>t+1

(
t

k

)
xk

∣∣∣∣∣
≤ 2

∑
k>t+1

∣∣∣∣(tk
)∣∣∣∣ xk

≤ 2
xt

1− x

≤ 2
1− x

(1 + x)t.

Hence
∑

k∈N
∣∣(t

k

)∣∣xk ≤ 3
1−x (1 + x)t, which will do.)

From (†) we obtain easily that ‖r(f)‖τ ≤ C‖f‖ρ < ∞; in particular, r(f) ∈
R{(X ′)∗, (Xm, Y )}τ . One now easily checks that the power series r(f) has the
desired properties.

Remark. The power series r(f) with γ, λ > 0 and m ≥ 2 obtained in lemma 6.5
is clearly independent of τ and is called a regular blow-up of f . (If we want
to indicate the dependence on γ, λ, we write rγ

λ(f) instead of r(f).) We also de-
note by r : Im−1,n+1,∞ −→ Rm+n the corresponding map defined by r(x, y) :=
(x′, xγ

m−1(λ+ xm), y).

The proof of the previous lemma with γ = 0 gives the following.

6.6 Lemma. 1. Let f ∈ R{X∗, Y }ρ, m ≥ 1, and let λ ∈ (0, ρm). Suppose
τ ≤ ρ is such that τm < min(λ, ρm − λ). Then there is a power series
t(f) ∈ R{(X ′)∗, (Xm, Y )}τ such that

t(f)τ (x′, xm, y) = fρ(x′, λ+ xm, y)

for every (x′, xm, y) ∈ Im−1,n+1,τ .
2. Let f ∈ R{X∗, Y }ρ, n ≥ 1, and let λ ∈ (−ρm+n, ρm+n). Suppose τ ≤ ρ is

such that τm < ρm+n − |λ|. Then there is a power series t(f) ∈ R{X∗, Y }τ
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such that

t(f)τ (x, y) = fρ(x, y′, λ+ yn)

for every (x, y) ∈ Im,n,τ .

Clearly the series t(f) (in both (1) and (2) above) is independent of the choice
of τ . Applying this lemma repeatedly and permuting some variables if necessary,
we obtain:

6.7 Corollary (“Taylor expansion”). Let f ∈ R{X∗, Y }ρ, and let a ∈ Im,n,ρ be
such that ai < ρi for 1 ≤ i ≤ m. Put m′ = |{i : 1 ≤ i ≤ m, ai = 0}|, and choose
any permutation σ of {1, . . . ,m} with σ({i : 1 ≤ i ≤ m, ai = 0}) = {1, . . . ,m′}. Let
n′ := m+ n−m′ and let τ = (τ1, . . . , τm′+n′) be a polyradius such that

τi <


ρσ−1(i) if 1 ≤ i ≤ m′,
min(aσ−1(i), ρσ−1(i) − aσ−1(i)) if m′ < i ≤ m,

ρi − |ai| if m < i ≤ m′ + n′ = m+ n.

(Hence a + σ(z) ∈ Im,n,ρ for z ∈ Im′,n′,τ .) Then there is a unique power series
Taf ∈ R{U∗, V }τ , where U = (U1, . . . , Um′), V = (V1, . . . , Vn′), such that

(Taf)τ (z) = fρ(a+ σ(z))

for every z ∈ Im′,n′,τ . In particular, fρ is analytic on int(Im,n,ρ).

7. Generalized Semianalytic Sets

Given a polyradius ρ = (ρ1, . . . , ρm+n), recall that

Im,n,ρ = [0, ρ1]× · · · × [0, ρm]× [−ρm+1, ρm+1]× · · · × [−ρm+n, ρm+n] ⊆ Rm+n.

We also write Im,n,ε for Im,n,(ε,...,ε), for positive real ε.

7.1 Definition. We let Rm,n,ρ be the set of all functions

(x, y) 7→ f(x, y) : Im,n,ρ → R

with f ∈ R{x∗, Y }ρ̃ for some ρ̃ > ρ. Then Rm,n,ρ is an R-algebra of real valued
continuous functions on Im,n,ρ.

A set A ⊆ Im,n,ρ is called a basic Rm,n,ρ-set if

A = {z ∈ Im,n,ρ : f(z) = 0, g1(z) > 0, . . . , gk(z) > 0}
for some f, g1, . . . , gk ∈ Rm,n,ρ. A finite union of basic Rm,n,ρ-sets is called an
Rm,n,ρ-set. Note that the Rm,n,ρ-sets form a Boolean algebra of subsets of Im,n,ρ.

7.2 Definition. Given a point a = (a1, . . . , am+n) ∈ Rm+n and a choice of signs
σ ∈ {−1, 1}m, we let ha,σ : Rm+n −→ Rm+n be the bijection given by

ha,σ(z) := (a1 + σ1z1, . . . , am + σmzm, am+1 + zm+1, . . . , am+n + zm+n) .

A set A ⊆ Rm+n is called Rm,n-semianalytic at the point a ∈ Rm+n if there
is ε > 0 such that for each σ ∈ {−1, 1}m we have A ∩ ha,σ(Im,n,ε) = ha,σ(Aσ)
for some Rm,n,ε-set Aσ ⊆ Im,n,ε. A set A ⊆ Rm+n is Rm,n-semianalytic if it
is Rm,n-semianalytic at every point a ∈ Rm+n. For convenience, if A ⊆ Rm is
Rm,0-semianalytic we also simply say that A is Rm-semianalytic.

Note that if A,B ⊆ Rm+n are Rm,n-semianalytic at a, then so are A∪B, A∩B
and A\B. The maps ha,σ (a ∈ Rm+n, σ ∈ {−1, 1}m) form a group of permutations
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of Rm+n. Using this fact, it is easy to check that if A ⊆ Rm+n is Rm,n-semianalytic,
then each set ha,σ(A) is also Rm,n-semianalytic, and that for each λ ∈ (R\{0})m+n

the set Eλ(A) is Rm,n-semianalytic, where Eλ : Rm+n −→ Rm+n is given by
Eλ(z) = (λ1z1, . . . , λm+nzm+n). Furthermore, if A ⊆ Rm+n is semianalytic at a,
then A is Rm,n-semianalytic at a. Finally, it follows from the definition above that
each bounded Rm,n-semianalytic set is quantifier-free definable in Ran∗ . Below we
write 0 for the point (0, . . . , 0) ∈ Rm+n.

7.3 Lemma. 1. If A ⊆ Im,n,ρ is an Rm,n,ρ-set, then A is Rm,n-semianalytic at 0.
2. Let n > 0 and A ⊆ Im,n,ρ be Rm,n-semianalytic at 0. Then A is also
Rm+1,n−1-semianalytic at 0.

3. Each Rm,n-semianalytic subset of Rm+n is Rm+n-semianalytic.
4. Let A ⊆ Rm+n be Rm,n-semianalytic at 0 and let σ be a permutation of
{1, . . . ,m}. Then σ(A) is Rm,n-semianalytic at 0.

Proof. (1) Clearly we may assume that A is a basic Rm,n,ρ-set. Let ε > 0 be such
that ε < ρi for i = 1, . . . ,m+ n. Let f, g1, . . . , gk ∈ Rm,n,ρ be such that

A = {z ∈ Im,n,ρ : f(z) = 0, g1(z) > 0, . . . , gk(z) > 0}.
For σ ∈ {−1, 1}m we define

Aσ := A ∩ {z ∈ Im,n,ε : zi = 0 if σi = −1, i = 1, . . . ,m} .
Then each Aσ is a (basic) Rm,n,ε-set, and since A ∩ h0,σ(Im,n,ε) = h0,σ(Aσ) for
each σ, the first statement is proved.

(2) Let σ ∈ {−1, 1}m+1 and write σ′ = (σ1, . . . , σm). Then there is an Rm,n,ε-set
Aσ′ for some ε > 0, such that A∩h0,σ′(Im,n,ε) = h0,σ′(Aσ′ ). Let the variables x, t, z
range over Rm, R and Rn−1, respectively. Now note that Im,n,ε ⊇ Im+1,n−1,ε and
{f |Im+1,n−1,ε : f ∈ Rm,n,ε} ⊆ Rm+1,n−1,ε, so the set

Aσ :=
{

(x, t, z) ∈ Rm+1+(n−1) : (x, σm+1t, z) ∈ Aσ′ ∩ h0,(1,...,1,σm+1)(Im+1,n−1,ε)
}

is an Rm+1,n−1,ε-set if σm+1 = 1. A similar argument shows that Aσ is an
Rm+1,n−1,ε-set if σm+1 = −1. But obviously

A ∩ h0,σ(Im+1,n−1,ε) = h0,σ(Aσ).

(3) This is an easy consequence of (2).
(4) follows from Lemma 5.9, part (1), and Lemma 6.3, part (2).

7.4 Lemma. Every Rm,n,ρ-set A ⊆ Im,n,ρ is Rm,n-semianalytic.

Proof. We may assume that A is a basic Rm,n,ρ-set, so there are f, g1, . . . , gk ∈
R{X∗, Y }ρ̃ for some polyradius ρ̃ > ρ such that

A = {z ∈ Im,n,ρ : f(z) = 0, g1(z) > 0, . . . , gk(z) > 0} .
Fix a ∈ Rm+n. We will show that A is Rm,n-semianalytic at a. If a /∈ Im,n,ρ

this is clear. Suppose that a ∈ Im,n,ρ. By adding suitable equalities zi = ±ρi and
inequalities −ρi < zi < ρi to the description of A, and then increasing ρ (which is
possible because ρ̃ > ρ), we reduce to the case where |ai| < ρi for i = 1, . . . ,m+ n.

Let Ã := A− a, the translate of A by −a. It is clear from Definition 7.2 that A
is Rm,n-semianalytic at a if and only if Ã is Rm,n-semianalytic at 0.

We now apply Corollary 6.7 to the functions describing A. Let σ be the per-
mutation of {1, . . . ,m} obtained from 6.7; by Lemma 7.3, part (4), it is enough
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to show that σ−1(Ã) is Rm,n-semianalytic at 0. By 6.7 there are natural numbers
m′ ≤ m and n′ with m′ + n′ = m+n and power series Taf, Tag1, . . . , Tagk defining
functions in Rm′,n′,τ for some polyradius τ = (τ1, . . . , τm′+n′), such that

σ−1(Ã) ∩ Im′,n′,τ = {z ∈ Im′,n′,τ : Taf(z) = 0, Tag1(z) > 0, . . . , Tagk(z) > 0} .
Hence σ−1(Ã) ∩ Im′,n′,τ is a basic Rm′,n′,τ -set. Together with Lemma 7.3, parts
(1) and (2), and the fact that

σ−1(Ã) ∩ ([−τ1, τ1]× · · · × [−τm′+n′ , τm′+n′ ]) = σ−1(Ã) ∩ Im′,n′,τ ,

this implies that σ−1(Ã) is Rm,n-semianalytic at 0.

8. The Main Theorem

8.1. For p ∈ N we put, with I = [−1, 1],

Λp := {X ⊆ Ip : X is Rp-semianalytic} .
Note that if X ⊆ Ip is Rm,n-semianalytic with m + n = p, then X is also Rp-
semianalytic by 7.3, part (3), so X ∈ Λp.

The system (Λp) is easily seen to satisfy axioms (I)-(III) of section 2; in the
following we verify axiom (IV) (see Corollary 8.15): every Λ-set has the Λ-Gabrielov
property.

8.2. In this section it is convenient to work with a more general notion of dimen-
sion than the one given in the introduction. We call M ⊆ Rn a C0-manifold
of dimension d if M 6= ∅ and each point of M has an open neighbourhood in
M homeomorphic to Rd; in this case d is uniquely determined (by a theorem of
Brouwer), and we write d = dim(M). Correspondingly, we say that a set S ⊆ Rn

has dimension if S is a countable union of C0-manifolds, and in that case we put

dim(S) :=

{
max{dim(M) : M ⊆ S is a C0-manifold} if S 6= ∅,
−∞ otherwise.

We then have (by a Baire category argument as in [4]): if S =
⋃

i∈N Si and each
Si has dimension, then S has dimension and dim(S) = max{dim(Si) : i ∈ N}. It
follows easily that if S has dimension in the sense of the introduction, then S has
dimension in the present sense, and the two dimensions of S agree.

This extended notion of dimension is only a temporary convenience; once we have
shown in 8.9 that the sets we are dealing with are finite unions of manifolds, these
sets, whose dimension was up to then taken in the extended sense, have dimension
in the original sense.

8.3 Definitions. Let m,n ∈ N and let ρ = (ρ1, . . . , ρm+n) be a polyradius. We
call M ⊆ Rm+n an Rm,n,ρ-manifold if

(i) M is a basic Rm,n,ρ-set contained in int(Im,n,ρ), and
(ii) there are k ≤ m+ n and f1, . . . , fk ∈ Rm,n,ρ such that M is an (m+ n− k)-

dimensional manifold on which f1, . . . , fk vanish identically and the gradients
∇f1(z), . . . ,∇fk(z) are linearly independent at each z ∈M .

For positive real ε we write ρ ≤ ε if ρi ≤ ε for i = 1, . . . ,m+ n.
Given m′ ≥ m and n′ ≥ n, we let Πm′,n′

m,n : Rm′+n′ −→ Rm+n be the pro-
jection map given by Πm′,n′

m,n (x1, . . . , xm′ , y1, . . . , yn′) = (x1, . . . , xm, y1, . . . , yn); we
will simply write Πm,n for Πm′,n′

m,n if m′ and n′ are clear from the context.
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A set U ⊆ int(Im,n,∞) is an (m,n)-corner if there is δ > 0 with int(Im,n,δ) ⊆ U .
Let f = (f1, . . . , fµ) ∈ R{X∗, Y }µ. We say that ε > 0 is f -admissible if

f ∈ R{X∗, Y }µ
δ for some δ > ε. For f -admissible ε > 0, S ⊆ Im,n,ε and a sign

condition σ ∈ {−1, 0, 1}µ we let

BS(f, σ) := {(x, y) ∈ S : signf1(x, y) = σ1, . . . , signfµ(x, y) = σµ}.
Finally, we put

b(f) :=

{
(0, 0) if m = 0, 1,
bX({f1, . . . , fµ}) if m > 1,

with each fi considered as an element of A[[X∗]] with A = R[[Y ]].

We can now state a key result.

8.4 Proposition. Let f ∈ R{X∗, Y }µ and let ε > 0 be f -admissible. Then there
is an (m,n)-corner U ⊆ int(Im,n,ε) with the following property:

(∗) for every sign condition σ ∈ {−1, 0, 1}µ there are mi ≥ m and ni ≥ n and
connected Rmi,ni,ρ(i) -manifolds Mi ⊆ Rmi+ni with each polyradius ρ(i) =
(ρ(i)

1 , . . . , ρ
(i)
mi+ni

) ≤ ε for i = 1, . . . , k = k(σ), such that

BU (f, σ) = Πm,n(M1) ∪ · · · ∪Πm,n(Mk),

and for each M = Mi,m
′ = mi, n′ = ni and ρ′ = ρ(i) the set Πm,n(M) is

a manifold and Πm,n|M : M −→ Πm,n(M) is an analytic isomorphism, and
frM is an Rm′,n′,ρ′-set that has dimension with dim(frM) < dim(M).

Remark. Suppose that f̃ = (f1, . . . , fµ, fµ+1) ∈ R{X∗, Y }µ+1, ε > 0 is f̃ -admissible,
U ⊆ Im,n,ε and σ ∈ {−1, 0, 1}µ. Then BU (f, σ) is the disjoint union of the sets
BU (f̃ , (σ,−1)), BU (f̃ , (σ, 0)) and BU (f̃ , (σ, 1)). Therefore, in the attempt to estab-
lish 8.4, there is no harm in replacing f by a suitable longer list, and below we will
tacitly use this device.

We first establish two lemmas needed in the inductive proof of 8.4.

8.5 Lemma. Let m ≥ 0, n ≥ 1 be fixed and assume 8.4 holds for all m′ ≤ m and
n′ < n in place of m and n. Let f = (f1, . . . , fµ) ∈ R{X∗, Y ′}[Yn]µ be such that
each fi is monic in Yn. Then for each f -admissible ε > 0 there is an (m,n)-corner
U ⊆ int(Im,n,ε) for which (∗) holds.

Proof. Let ε > 0 be f -admissible. By extending the list f we may as well assume
that Yn − ε, Yn + ε ∈ {f1, . . . , fµ}.

We apply Theorem 3.2 with S = Im,n−1,ε and E = Rm,n−1,ε to the list f1, . . . , fµ,
where each fi is considered as a polynomial in Yn with coefficients in E . Let φ =
(φ1, . . . , φν) ∈ Eν be the tuple of all functions involved in a description of the sets
S1, . . . , Sk that are obtained from 3.2. Assume φ1, . . . , φν are given by power series
φ̂1, . . . , φ̂ν ∈ R{X∗, Y ′}δ, where δ > ε, and let φ̂ := (φ̂1, . . . , φ̂ν). By hypothesis,
Proposition 8.4 applies to φ̂. So there is a (m,n − 1)-corner V ⊆ int(Im,n−1,ε)
such that for each Sj there are mi ≥ m and ni ≥ n− 1 and connected Rmi,ni,ρ(i) -
manifolds Mi ⊆ Rmi+ni with each polyradius ρ(i) = (ρ(i)

1 , . . . , ρ
(i)
mi+ni

) ≤ ε for
i = 1, . . . , l = l(j), such that

Sj ∩ V = Πm,n−1(M1) ∪ · · · ∪Πm,n−1(Ml),
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and for each M = Mi,m
′ = mi, n′ = ni and ρ′ = ρ(i) the set Πm,n−1(M) is a

manifold and Πm,n−1|M : M −→ Πm,n−1(M) is an analytic isomorphism, and frM
is an Rm′,n′,ρ′ -set that has dimension with dim(frM) < dim(M).

We will show that the (m,n)-corner U := V × (−ε, ε) has property (∗). Note
that it is enough to prove (∗) with (Sj ∩ V ) × (−ε, ε) in place of U for each Sj

as above, so from now on we fix such an Sj . Similarly, it is enough to prove (∗)
with (Πm,n−1(Mi) ∩ V )× (−ε, ε) in place of U for each Mi corresponding as above
to Sj . Fix such an M = Mi and put m′ := mi, n

′ := ni, ρ
′ = (ρ1, . . . , ρm′+n′) :=

(ρ(i)
1 , . . . , ρ

(i)
m′+n′) and D := Πm,n−1(M) (hence D is a connected manifold). Let

C be the connected component of Sj that contains D. Simplifying the notation of
Theorem 3.2 correspondingly, from now on we write d = m(C) and ξ1, . . . , ξd for
the restrictions ξC,1|D, . . . , ξC,d|D. Since Yn + ε, Yn − ε ∈ {f1, . . . , fµ}, it follows
that the constant functions −ε and +ε on D are among ξ1, . . . , ξd.

Let h1, . . . , hp ∈ Rm′,n′,ρ′ with p ≤ m′+n′ be such that dim(M) = m′+n′−p and
h1, . . . , hp vanish identically on M , with ∇h1(z), . . . ,∇hp(z) linearly independent
at each point z ∈ M . Below we let x range over Rm, u over Rm′−m, y over Rn

with y′ = (y1, . . . , yn−1), and v over Rn′−(n−1). For κ = 1, . . . , d, we now define the
connected subsets of Rm′+n′+1

Nκ := {(x, u, y, v) : (x, u, y′, v) ∈M, yn = ξκ(x, y′)} ,
and for κ = 1, . . . , d− 1 the connected subsets of Rm′+n′+1

(Nκ, Nκ+1) := {(x, u, y, v) : (x, u, y′, v) ∈M, ξκ(x, y′) < yn < ξκ+1(x, y′)} .
Note that Πm′,n′+1

m,n (Nκ) = Γ(ξκ) and Πm′,n′+1
m,n ((Nκ, Nκ+1)) = (ξκ, ξκ+1). Let N

be any one of the Nκ’s with −ε < ξκ < ε or any one of the (Nκ, Nκ+1)’s with
−ε ≤ ξκ < ξκ+1 ≤ ε, put ξ = ξκ, ξ̃ = ξκ+1, and write Πm,n for Πm′,n′+1

m,n . Let
ρ := (ρ1, . . . , ρm′+n−1, ε, ρm′+n, . . . , ρm′+n′), so ρ is a polyradius with m′ + n′ + 1
components and ρ ≤ ε.

Claim. N is a connected Rm′,n′+1,ρ-manifold, Πm,n(N) is a manifold, Πm,n|N :
N −→ Πm,n(N) is an analytic isomorphism, and frN is an Rm′,n′+1,ρ-set that has
dimension with dim(frN) < dim(N).

Clearly the proof of this claim will finish the proof of Lemma 8.5.

Proof of the claim. We distinguish two cases.
Case 1: N = Nκ for some κ ∈ {1, . . . , d} with −ε < ξκ < ε. By remark

3.3, ξ is analytic, so N and Πm,n(N) are manifolds of dimension m′ + n′ − p
and Πm,n|N : N −→ Πm,n(N) is an analytic isomorphism. Since f1, . . . , fµ are
monic, part (3) of 3.2 implies that ξ extends uniquely to a continuous function
η : cl(D) −→ R. So

cl(N) = {(x, u, y, v) : (x, u, y′, v) ∈ cl(M), yn = η(x, y′)},
and hence

frN = {(x, u, y, v) : (x, u, y′, v) ∈ frM, yn = η(x, y′)};
in particular, frN is homeomorphic to frM . Moreover, by part (3) of 3.2 the set
Γ(η) is described inside cl(D) × R by equations and weak inequalities involving
f1, . . . , fµ and their derivatives ∂νfi/∂Y

ν
n . It follows from the inductive hypothesis
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on frM that frN is anRm′,n′+1,ρ-set, and that frN has dimension with dim(frN) <
dim(N). (Up to this point the argument also works if ξκ = −ε or ξκ = ε.)

It remains to show that N is an Rm′,n′+1,ρ-manifold. Using part (1) of 3.2 and
the inductive hypothesis on M , it follows easily that N is a basic Rm′,n′+1,ρ-set.
Note also that N ⊆ int(Im′,n′+1,ρ). Next, let g ∈ E [Yn] be the polynomial in
part (2) of 3.2 (with Yn in place of T ) and let e ∈ {1, . . . , degYn

(g)} be such that
h0 := ∂e−1g/∂Y e−1

n vanishes identically on Γ(ξ), while ∂h0/∂Yn vanishes nowhere
on Γ(ξ). For simplicity, denote the functions

(x, u, y, v) 7→ h0(x, y) : Im′,n′+1,ρ −→ R

and

(x, u, y, v) 7→ (∂h0/∂Yn)(x, y) : Im′,n′+1,ρ −→ R

also by h0 and ∂h0/∂Yn respectively. Clearly these two functions belong to
Rm′,n′+1,ρ. Similarly, for each i ∈ {1, . . . , p} denote the function (x, u, y, v) 7→
hi(x, u, y′, v) : Im′,n′+1,ρ −→ R also by hi, so that h0, h1, . . . , hp ∈ Rm′,n′+1,ρ van-
ish identically on N , while they have linearly independent gradients at each point
of N , since h1, . . . , hp do not depend on yn.

Case 2: N = (Nκ, Nκ+1) for some κ ∈ {1, . . . , d− 1} with −ε ≤ ξκ < ξκ+1 ≤ ε.
Clearly (ξ, ξ̃) and N are manifolds of dimension m′+n′+1−p and Πm,n|N : N −→
(ξ, ξ̃) is an analytic isomorphism. As in case 1 we see that ξ and ξ̃ extend uniquely
to continuous functions η, η̃ : cl(D) −→ R respectively. To see that frN is an
Rm′,n′+1,ρ-set and has dimension, we first observe that frN = cl(Nκ)∪cl(Nκ+1)∪G,
where

G := {(x, u, y, v) ∈ Rm′+n′+1 : (x, u, y′, v) ∈ frM, η(x, y′) < yn < η̃(x, y′)}.
Putting H := {(x, u, y′, v) ∈ frM : η(x, y′) < η̃(x, y′)}, we see that H is open in
frM and hence H has dimension. It follows from the continuity of η and η̃ that G
has dimension with dim(G) = dim(H) + 1 < dim(M) + 1 = m′ +n′+ 1− p. On the
other hand, cl(Nκ) and cl(Nκ+1) have dimension m′ +n′− p by case 1. Hence frN
has dimension with dim(frN) < dim(N); the fact that frN is an Rm′,n′+1,ρ-set is
established as in case 1.

It remains to show that N is an Rm′,n′+1,ρ-manifold. Using part (1) of 3.2 and
the inductive hypothesis on M , it follows easily that N is a basic Rm′,n′+1,ρ-set.
Note also that N ⊆ int(Im′,n′+1,ρ). Similarly to case 1, for each i ∈ {1, . . . , p}
denote the function (x, u, y, v) 7→ hi(x, u, y′, v) : Im′,n′+1,ρ −→ R also by hi, so that
h1, . . . , hp ∈ Rm′,n′+1,ρ vanish identically on N , while they have linearly indepen-
dent gradients at each point of N .

8.6 Lemma. Let f ∈ R{X∗, Y }µ, and let ε > 0 be f -admissible. Let S ⊆ Rm+n, φ :
S −→ Rm+n, m̃, ñ ∈ N and δ > 0, and suppose we are in one of the following three
situations:

(i) S = Rm+n, m̃ = m, ñ = n > 0 and there are c1, . . . , cn−1 ∈ R with

(1 + |c1|+ · · ·+ |cn−1|)δ ≤ ε

and

φ(x, y) = (x, y1 + c1yn, . . . , yn−1 + cn−1yn, yn) for all (x, y) ∈ S
(then we put φf := f(X,Y1 + c1Yn, . . . , Yn−1 + cn−1Yn, Yn) ∈ R{X∗, Y }µ);
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(ii) S = Im,n,∞, m̃ = m > 1, ñ = n and there is γ > 0 with max(δ, δγ+1) ≤ ε and

φ(x, y) = (x′, xγ
m−1xm, y) for all (x, y) ∈ S

(then we put φf := sγ
m,m−1(f) ∈ R{X∗, Y }µ as defined in 5.8);

(iii) S = Im̃,ñ,∞, m̃ = m − 1, ñ = n + 1, and there are γ, λ > 0 such that
max(δ, δγ(λ+ δ)) ≤ ε and

φ(x, y) = (x′, xγ
m−1(λ+ xm), y) for all (x, y) ∈ S

(then we put φf := rγ
λ(f) ∈ R{(X ′)∗, (Xm, Y )}µ as defined in 6.5 and the

remark thereafter).
Assume that δ is φf -admissible and that (∗) holds with φf in place of f , δ in place
of ε and some (m̃, ñ)-corner V ⊆ int(Im̃,ñ,δ) in place of U . Then φ(V ) ⊆ int(Im,n,ε)
and (∗) holds for f with U = φ(V ).

Remark. The set φ(V ) is an (m,n)-corner in case (i), but not necessarily in cases
(ii) or (iii).

Proof. Put U := φ(V ). It is easy to check that U ⊆ int(Im,n,ε) and that φf(x, y) =
f(φ(x, y)) for all (x, y) ∈ V . Hence

BU (f, σ) = φ(BV (φf, σ))(�)
for each sign condition σ ∈ {−1, 0, 1}µ. In the rest of the proof we treat only case
(ii) in detail (so m̃ = m > 1, ñ = n); the other cases are handled similarly. Let M
be one of the Rm′,n′,ρ′ -manifolds in (∗) for φf with δ in place of ε and V in place
of U , m′ ≥ m and n′ ≥ n, and polyradius ρ′ = (ρ1, . . . , ρm′+n′) ≤ δ. Put

N :=
{

(x′, t, xm, u, y, v) ∈ Rm′+n′+1 : (x, u, y, v) ∈M, t = xγ
m−1xm

}
,

where t ranges over R. Note that Πm′+1,n′
m,n (N) = φ(Πm,n(M)); below we write

Πm,n for Πm′+1,n′
m,n . Let ρ := (ρ1, . . . , ρm−1, ε, ρm, . . . , ρm′+n′), so ρ is a polyradius

with m′ + n′ + 1 components and ρ ≤ ε. Clearly N is a basic Rm′+1,n′,ρ-set and
N ⊆ int(Im′+1,n′,ρ).

Claim. N is a connected Rm′+1,n′,ρ-manifold, Πm,n(N) is a manifold, Πm,n|N :
N −→ Πm,n(N) is an analytic isomorphism, and frN is an Rm′+1,n′,ρ-set that has
dimension with dim(frN) < dim(N).

In view of (�) and Πm,n(N) = φ(Πm,n(M)) the proof of this claim will finish the
proof of case (ii) of Lemma 8.6.

Proof of the claim. It is easy to see that N is a manifold and that the map θ :
(x′, t, xm, u, y, v) 7→ (x, u, y, v) : N −→ M is an analytic isomorphism onto M .
SinceM is connected it follows that N is connected. Now φ|int(S) : int(S) −→ int(S)
is an analytic isomorphism, Πm′,n′

m,n (M) is contained in int(S) and

Πm,n|N = φ ◦Πm′,n′
m,n |M ◦ θ,

and hence Πm,n(N) is a manifold and Πm,n|N : N −→ Πm,n(N) is an analytic
isomorphism. As in the proof of the previous lemma we obtain that

frN = {(x′, t, xm, u, y, v) : (x, u, y, v) ∈ frM, t = xγ
m−1xm},

from which it follows that frN is an Rm′+1,n′,ρ-set, and homeomorphic to frM ;
hence frN has dimension and dim(frN) = dim(frM) < dim(M) = dim(N).
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It remains to show that N is an Rm′+1,n′,ρ-manifold. Let h1, . . . , hp ∈ Rm′,n′,ρ′

with p ≤ m′ + n′ be such that M is a basic Rm′,n′,ρ′-set and an open subset of
{z ∈ int(Im′,n′ρ′) : h1(z) = · · · = hp(z) = 0}, with ∇h1(z), . . . ,∇hp(z) linearly
independent at each point z ∈M . For simplicity, for each i ∈ {1, . . . , p} denote the
function

(x′, t, xm, u, y, v) 7→ hi(x, u, y, v) : Im′+1,n′,ρ −→ R

also by hi, so that h1, . . . , hp ∈ Rm′+1,n′,ρ vanish identically on N . Also denote the
function

(x′, t, xm, u, y, v) 7→ t− xγ
m−1xm : Im′+1,n′,ρ −→ R

by h0, so h0 ∈ Rm′+1,n′,ρ and vanishes identically on N as well. But h0, h1, . . . , hp

have linearly independent gradients at each point of N , since h1, . . . , hp do not
depend on t.

8.7. Proof of Proposition 8.4. Fix a tuple f ∈ R{X∗, Y }µ, and write b = b(f). We
proceed by induction on the quadruples (m,n, b) ∈ N4, ordered lexicographically.
The case (m,n, b) = (0, 0, 0, 0) is trivial; so we assume that (m,n, b) > (0, 0, 0, 0)
and that the proposition holds for all lower values of (m,n, b). We may and shall
also assume that fi 6= 0 for all i. Let ε > 0 be f -admissible. We have to find an
(m,n)-corner U ⊆ int(Im,n,ε) for which (∗) holds.

First we assume that b = (0, 0), and we distinguish two cases depending on the
value of n. Recall that b = (0, 0) means that there are δi ∈ [0,∞)m for i = 1, . . . , µ,
such that

fi(X,Y ) = XδiFi(X,Y )

with Fi ∈ R{X∗, Y } satisfying Fi(0, Y ) 6= 0; so we may as well assume that

fi(0, Y ) 6= 0 for each i.(�)
Case 1: n = 0. By (�) and corollary 5.6 (1) we can choose δ ∈ (0, ε) such that

fi(x) 6= 0 for all x ∈ [0, δ]m and i = 1, . . . , µ. Then with U = (0, δ)m each set
BU (f, σ) (where σ ∈ {−1, 0, 1}µ is a sign condition) is either empty or equal to U ,
so it obviously has the desired properties.

Case 2: n > 0. By (�) and 6.1 there is a linear transformation θ(X,Y ) =
(X,Y1 + c1Yn, . . . , Yn−1 + cn−1Yn, Yn) with c1, . . . , cn−1 ∈ R such that each
θfi := fi(θ(X,Y )) is regular in Yn.

Assume for the moment that 8.4 holds with θf in place of f . Take some θf -
admissible δ > 0 with (1 + |c1| + · · · + |cn−1|)δ ≤ ε and an (m,n)-corner V ⊆
int(Im,n,δ) such that (∗) holds with θf in place of f and V in place of U . Then (∗)
holds for f and the (m,n)-corner U := θ(V ) by case (i) of Lemma 8.6.

We may therefore assume that each fi is regular in Yn. Applying Weierstrass
Preparation 5.10 to each fi and decreasing ε if necessary, we obtain

fi(X,Y ) = Ui(X,Y ) ·Wi(X,Y )

with each Ui ∈ R{X∗, Y }ε′ having no zeros in Im,n,ε, and each Wi a monic poly-
nomial in Yn with coefficients in R{X∗, Y ′}ε′ , for some ε′ > ε. Clearly we may
even replace fi by Wi, so that each fi is actually a monic polynomial in Yn with
coefficients in R{X∗, Y ′}ε′ . We now use the inductive hypothesis to apply Lemma
8.5 to f , thereby proving case 2.
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Next we assume b > (0, 0) (recall that b > (0, 0) implies m > 1 by definition of
b(f)). By Proposition 4.14, after permuting the first m coordinates if necessary,
there are γ > 0 and singular blow-up substitutions s0 := sγ

m,m−1 and s∞ := s
1/γ
m−1,m

such that b(s0f) < b and b(s∞f) < b. Note that the corresponding maps s0, s∞ :
Im,n,∞ −→ Rm+n are given by

s0(x, y) = (x′, xγ
m−1xm, y),

s∞(x, y) = (x1, . . . , xm−2, x
1/γ
m xm−1, xm, y).

Take δ > 0 such that δ is s0f -admissible as well as s∞f -admissible and
max(δ, δγ+1, δ(1/γ)+1) ≤ ε.

By the inductive hypothesis (∗) holds for s0f and s∞f in place of f with an
(m,n)-corner V0 ⊆ int(Im,n,δ) and an (m,n)-corner V∞ ⊆ int(Im,n,δ) in place of U
respectively. Then case (ii) of Lemma 8.6 implies that s0(V0) ∪ s∞(V∞) ⊆ Im,n,ε

and that (∗) holds for f with s0(V0) ∪ s∞(V∞) in place of U .
The problem now is that s0(V0) ∪ s∞(V∞) is not in general an (m,n)-corner.

But we know there is a τ0 > 0 such that int(Im,n,τ0) is contained in V0. The image
under s0 of int(Im,n,τ0) is contained in s0(V0), i.e. s0(V0) contains the set

D0 =
{

(x, y) ∈ int(Im,n,τ0) : xm < τ0x
γ
m−1

}
.

The same argument for s∞ gives τ > 0 such that the set

D∞ : = {(x, y) ∈ int(Im,n,τ ) : xm−1 < τx1/γ
m }

= {(x, y) ∈ int(Im,n,τ ) : τ−1/γxγ
m−1 < xm}

is contained in s∞(V∞). Writing τ∞ := τ−1/γ , we see that if τ0 > τ∞, then
D0 ∪ D∞ is clearly an (m,n)-corner; hence s0(V0) ∪ s∞(V∞) is an (m,n)-corner,
and we are done. Suppose then that τ0 ≤ τ∞; it remains to cover everything in the
set int(Im,n,∞) \ (D0 ∪D∞) close enough to the origin in Rm+n.

To do this we use regular blow-ups. By lemma 6.5, for any λ > 0 the regular
blow-up substitution rγ

λ satisfies rγ
λf ∈ R{(X ′)∗, (Xm, Y )}µ. (The corresponding

map rγ
λ : Im−1,n+1,∞ −→ R is given by rγ

λ(x, y) = (x′, xγ
m−1(λ + xm), y).) Take

some rγ
λf -admissible δ > 0 with max(δ, δγ(λ+ δ)) ≤ ε.

By the inductive hypothesis, (∗) holds with rγ
λf in place of f and an (m−1, n+1)-

corner Vλ ⊆ int(Im−1,n+1,δ) in place of U . Then Lemma 8.6 implies that (∗) holds
for f with the set rγ

λ(Vλ) ⊆ int(Im,n,ε) in place of U . On the other hand, there is a
τλ ∈ (0, λ) such that int(Im−1,n+1,τλ

) is contained in Vλ, and hence the set

Dλ :=
{

(x, y) ∈ int(Im,n,τλ
) : (λ− τλ)xγ

m−1 < xm < (λ + τλ)xγ
m−1

}
is contained in rγ

λ(Vλ).
Take finitely many λ1, . . . , λK ∈ [τ0, τ∞] such that

[τ0, τ∞] ⊆
K⋃

i=1

(λi − τλi , λi + τλi).

Then D0 ∪D∞ ∪⋃K
i=1Dλi is clearly an (m,n)-corner, and hence

U := s0(V0) ∪ s∞(V∞) ∪
K⋃

i=1

rγ
λi

(Vλi ) ⊆ int(Im,n,ε)

is an (m,n)-corner. Therefore (∗) holds for f with this set U .
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We now extend 8.4 to closed (m,n)-corners; a set U ⊆ Im,n,∞ is called a closed
(m,n)-corner if Im,n,δ ⊆ U for some δ > 0. A point on the boundary of Im,n,∞
has some of its first m coordinates equal to 0, but after a permutation of the first
m coordinates it is of the form (0m−m′ , u, v), where 0m−m′ is the origin in Rm−m′

and (u, v) ∈ int(Im′,n), for some m′ ≤ m. In this way one reduces questions about
sets contained in the boundary of Im,n,∞ to similar questions about sets contained
in int(Im,n,∞). We now formalize this observation as follows.

A set M ⊆ Rm+n is an Rm,n-manifold if there are m′ ≤ m, a polyradius
ρ = (ρ1, . . . , ρm′+n), an Rm′,n,ρ-manifold N ⊆ int(Im′,n,ρ) and a permutation φ of
{1, . . . ,m} such that M = φ({0m−m′} × N). (Here φ acts on Rm+n as specified
in 5.8.) In this situation we will say that the Rm,n-manifold M is obtained
from the Rm′,n,ρ-manifold N . Note that each Rm,n-manifold is a bounded Rm,n-
semianalytic manifold.

8.8 Lemma. Let f ∈ R{X∗, Y }µ and let ε > 0 be f -admissible. Then there is a
closed (m,n)-corner U ⊆ Im,n,ε with the following property:
(∗∗) for every sign condition σ ∈ {−1, 0, 1}µ there are mi ≥ m and ni ≥ n and

connected Rmi,ni-manifolds Mi ⊆ Rmi+ni for i = 1, . . . , k = k(σ) such that

BU (f, σ) = Πm,n(M1) ∪ · · · ∪Πm,n(Mk),

and for each M = Mi,m
′ = mi and n′ = ni the set Πm,n(M) is a manifold

and Πm,n|M : M −→ Πm,n(M) is an analytic isomorphism, and frM is
Rm′,n′-semianalytic and has dimension with dim(frM) < dim(M).

Proof. Let P ⊆ {1, . . . ,m} and define, for δ > 0,

IP
m,n,δ := {(x, y) ∈ Im,n,δ : xi = 0 for i ∈ P, xi > 0 for i ∈ {1, . . . ,m} \ P}.

For the purpose of this proof we call a set U ⊆ Im,n,ε a P -corner if there is
δ ∈ (0, ε) such that IP

m,n,δ ⊆ U . It suffices to find for each P ⊆ {1, . . . ,m} a
P -corner UP ⊆ Im,n,ε for which (∗∗) holds with UP in place of U , because then

U :=
⋃

P⊆{1,...,m}
UP

is a closed (m,n)-corner for which (∗∗) holds.
So let us fix some P ⊆ {1, . . . ,m}. To simplify notation, assume P = {1, . . . , p},

0 ≤ p ≤ m. Let 0p = (0, . . . , 0) be the origin in Rp, let X̃ := (Xp+1, . . . , Xm) and
put f̃ := f(0p, X̃, Y ) ∈ R{X̃∗, Y }µ. By 8.4 applied to f̃ there is an (m−p, n)-corner
U ⊆ int(Im−p,n,ε) for which (∗) holds with f̃ in place of f (and X̃ in place of X ,
m− p in place of m). Then UP := {0p} × U ⊆ Im,n,ε is clearly a P -corner.

We now claim that (∗∗) holds for UP in place of U (we will be done once this claim
is established). To see why this claim holds, let σ ∈ {−1, 0, 1}µ and let M̃1, . . . , M̃k

be the manifolds for which BU (f̃ , σ) = Πm−p,n(M̃1)∪· · ·∪Πm−p,n(M̃k), and which
have the other properties required in (∗) for f̃ in place of f . In particular, each
M̃i is clearly a connected Rmi,ni,ρ(i) -manifold in Rmi+ni with mi ≥ m − p and
ni ≥ n and some polyradius ρ(i) (here we use 7.4). One checks easily that then
each Mi := {0p} × M̃i ⊆ Rmi+p+ni is a connected Rmi+p,ni-manifold, that

BUP (f, σ) = Πm,n(M1) ∪ · · · ∪Πm,n(Mk),

and that the Mi’s have the other properties required to make (∗∗) hold for UP in
place of U .
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8.9 Corollary. Let A ⊆ Rm+n be bounded and Rm,n-semianalytic. Then there
are mi ≥ m and ni ≥ n and connected, bounded, Rmi,ni-semianalytic manifolds
Mi ⊆ Rmi+ni for i = 1, . . . , k such that

A = Πm,n(M1) ∪ · · · ∪Πm,n(Mk),

and for each M = Mi,m
′ = mi and n′ = ni we have:

1. there are a ∈ Rm+n, σ ∈ {−1, 1}m and a connected Rm′,n′-manifold N ⊆
Rm′+n′ such that M = ha,σ(N),

2. Πm,n(M) is a manifold and Πm,n|M : M −→ Πm,n(M) is an analytic iso-
morphism, and

3. frM is Rm′,n′-semianalytic and has dimension with dim(frM) < dim(M).

Proof. By the definition of “Rm,n-semianalytic” and the previous lemma the corol-
lary holds locally at each point of Rm+n, and hence the boundedness of A implies
that it holds globally.

8.10 Remark. Corollary 8.9 implies that every bounded Rm,n-semianalytic set has
dimension not only in the sense of 8.2, but even in the sense of the introduction.

8.11 Definitions and Remarks. Given m,n ∈ N and strictly increasing sequen-
ces ι ∈ {1, . . . ,m}µ and κ ∈ {1, . . . , n}ν with µ ≤ m and ν ≤ n, let Πm,n

ι,κ :
Rm+n −→ Rµ+ν be the projection map given by

Πm,n
ι,κ (x, y) = (xι(1), . . . , xι(µ), yκ(1), . . . , yκ(ν)).

As before, we simply write Πι,κ for Πm,n
ι,κ whenever m and n are clear from the

context.
Let m ≥ k ≥ 0, n ≥ l ≥ 0, and let M be an Rm,n,ρ-manifold of dimension d

for some polyradius ρ = (ρ1, . . . , ρm+n). Take functions h1, . . . , hp ∈ Rm,n,ρ with
p = m+n−d such that M is a basic Rm,n,ρ-set and h1, . . . , hp vanish identically on
M while the gradients ∇h1(z), . . . ,∇hp(z) are linearly independent at each z ∈M .
For strictly increasing sequences ι ∈ {1, . . . ,m}µ and κ ∈ {1, . . . , n}ν with µ ≤ m
and ν ≤ n and µ + ν = d, we let Mι,κ := {z ∈ M : Πι,κ(TzM) = Rd}. Then Mι,κ

is of the form {z ∈ M : hι,κ(z) 6= 0} for some hι,κ ∈ Rm,n,ρ: if ι̃ ∈ {1, . . . ,m}m−µ

and κ̃ ∈ {1, . . . , n}n−ν are strictly increasing sequences such that Im(ι)∩ Im(ι̃) = ∅
and Im(κ) ∩ Im(κ̃) = ∅, then basic linear algebra shows that

Mι,κ =
{
z ∈M : det

(
∂(h1, . . . , hp)

∂(xι̃1 , . . . , xι̃m−µ , yκ̃1 , . . . , yκ̃n−ν )

)
(z) 6= 0

}
;

but the function

hι,κ :=

m−µ∏
j=1

xι̃j

 det
(

∂(h1, . . . , hp)
∂(xι̃1 , . . . , xι̃m−µ , yκ̃1 , . . . , yκ̃n−ν )

)
clearly has the same zeros in int(Im,n,ρ) as det

(
∂(h1,...,hp)

∂(xι̃1 ,...,xι̃m−µ
,yκ̃1 ,...,yκ̃n−ν

)

)
, and by

6.3, parts (4) and (5), and the definition of Rm,n,ρ we have hι,κ ∈ Rm,n,ρ. Hence
each Mι,κ is either empty or an Rm,n,ρ-manifold of dimension d. Moreover, M is
clearly the union of all the Mι,κ’s.

For sequences ι, κ as above, put ι0 := 0, κ0 := 0, and let µ′ ∈ {0, . . . , µ} and
ν′ ∈ {0, . . . , ν} be maximal with ιµ′ ≤ k and κν′ ≤ l respectively. (We do not
explicitly indicate the dependence of µ′ and ν′ on k and l, as it will be clear from
the context.) If we assume that M = Mι,κ and that Πk,l|M has constant rank µ′+ν′,
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then by the rank theorem (see [14], pp. 86,89) each fiber Ma := Π−1
k,l (a) ∩M for

a ∈ Rk+l is either empty or a manifold of dimension d−(µ′+ν′). Moreover, writing
ι′ := (ι1, . . . , ιµ′), ι̃ := (ιµ′+1, . . . , ιµ) and κ′ := (κ1, . . . , κν′), κ̃ := (κν′+1, . . . , κν),
we note that Πι̃,κ̃|Ma is an immersion. (To see this, note that for z ∈ Ma the
tangent space TzMa is a subspace of TzM of dimension e := d − (µ′ + ν′) such
that Πk,l(TzMa) = 0. Let v1, . . . , ve be a basis of TzMa; then Πι,κ(v1), . . . ,Πι,κ(ve)
are linearly independent in Rd, and Πι′,κ′(v1) = · · · = Πι′,κ′(ve) = 0. Hence
Πι̃,κ̃(v1), . . . ,Πι̃,κ̃(ve) are linearly independent in Re.) It follows that if C is a
connected component of Ma, then Πι̃,κ̃(C) is open in Re and hence has nonempty
frontier if e ≥ 1, which implies (since C is bounded) that frC 6= ∅ if e ≥ 1.

8.12 Fiber Cutting Lemma. Let m ≥ k ≥ 0 and n ≥ l ≥ 0. Assume that M is
an Rm,n,ρ-manifold for some polyradius ρ, and that moreover M = Mι,κ for some
fixed strictly increasing sequences ι ∈ {1, . . . ,m}µ, κ ∈ {1, . . . , n}ν with µ > k or
ν > l, and that rank(Πk,l|TzM ) = µ′+ν′ for all z ∈M . Then there is an Rm,n,ρ-set
A ⊆M with dim(A) < d such that Πk,l(M) = Πk,l(A).

Proof. Note that µ > k or ν > l implies µ′ + ν′ < d.
First observe that there is g ∈ Rm,n,ρ such that g is strictly positive on all of

M and identically zero on frM : choose a set of equations and strict inequalities
from Rm,n,ρ describing M , and let g be the product of all functions making up the
inequalities of this description, together with the functions xi, ρi−xi for i = 1, . . . ,m
and yj + ρm+j , ρm+j − yj for j = 1, . . . , n.

Next, by the last remark preceding this lemma, for each a ∈ Πk,l(M) the fiber
Ma := Π−1

k,l (a)∩M is a manifold of dimension d−(µ′+ν′) > 0. Also by that remark,
frC 6= ∅ for each connected component C ofMa, and thus g|Ma has critical points on
each connected component of Ma, since g is positive on Ma and vanishes identically
on frMa; since g|Ma is analytic, the set of its critical points has empty interior in
Ma. Let A be the set of all critical points of g|Ma for all a ∈ Πk,l(M), i.e.

A = {z ∈M : z is a critical point of g|Ma , a = Πk,l(z)} .
Then clearly Πk,l(A) = Πk,l(M), and A is an Rm,n,ρ-set, so by 8.9 A has dimension.
Since A has empty interior in M , we have dim(A) < dim(M). This finishes the
proof of the fiber cutting lemma.

If M ⊆ Rm+n is a manifold of dimension d and k ≤ m and l ≤ n, we define

r(M) := max{rank(Πk,l|TzM ) : z ∈M} ≤ d.

(Again, we do not indicate explicitly the dependence of r(M) on k, l, m and n.)

8.13 Lemma. Let M ⊆ Rm+n be an Rm,n-manifold of dimension d, and let k ≤ m
and l ≤ n. Then

(∗) there are bounded, Rmi,ni-semianalytic manifolds Ni ⊆ Rmi+ni satisfying
dim(Ni) ≤ d, mi ≥ m and ni ≥ n for i = 1, . . . , K, and there are bounded,
Rpj ,qj -semianalytic sets Aj ⊆ Rpj+qj satisfying dim(Aj) < d, pj ≥ m and
qj ≥ n for j = 1, . . . , L, such that

Πk,l(M) = Πk,l(N1) ∪ · · · ∪Πk,l(NK) ∪ Πk,l(A1) ∪ · · · ∪Πk,l(AL),

and for each N = Ni there are strictly increasing sequences ι ∈ {1, . . . , k}µ

and κ ∈ {1, . . . , l}ν with µ+ ν = dim(N), such that Πι,κ|N is an immersion.
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Proof. We prove this lemma by induction on r(M) simultaneously for all k, l,m, n.
One easily checks (as in the proof of Lemma 8.8) that if M is obtained from an
Rm′,n,ρ-manifold N , it is enough to prove (∗) with N in place of M and a possi-
bly smaller k. We will therefore assume that M is an Rm,n,ρ-manifold for some
polyradius ρ.

The initial case r(M) = 0 is trivial (since then Πk,l is constant on each component
of M), so below we assume r(M) > 0 and that the lemma holds for lower values of
r(M).

Let ι ∈ {1, . . . ,m}µ, κ ∈ {1, . . . , n}ν be strictly increasing sequences such that
Mι,κ 6= ∅, µ+ ν = d and µ′ + ν′ = r(M). Note that if µ ≤ k and ν ≤ l, 8.13 holds
trivially with K = 1, L = 0 and Mι,κ in place of both M and N1. So we assume
that µ > k or ν > l. Then since Mι,κ is open in M , for every z ∈Mι,κ,

r(M) = µ′ + ν′ ≤ rank(Πk,l|TzMι,κ) ≤ r(M),

and hence 8.13 with Mι,κ in place of M follows from the fiber cutting lemma. It is
therefore enough to prove (∗) with

M̃ := M \
⋃
ι,κ

µ′+ν′=r(M)

Mι,κ

in place of M .
Note first that for every z ∈ M̃ , rank(Πk,l|TzM ) < r(M). Since M̃ is clearly an

Rm,n,ρ-set, we may apply Corollary 8.9 with M̃ in place of A. Denote by Mλ ⊆
Rmλ+nλ the manifolds obtained from 8.9 for M̃ . Since for each λ the projection
Πm,n|Mλ

: Mλ −→ Πm,n(Mλ) ⊆ M̃ is an analytic isomorphism, it follows that
for each w ∈ Mλ, z = Πm,n(w), we have rank(Πmλ,nλ

k,l |TwMλ
) ≤ rank(Πk,l|TzM ) <

r(M), i.e. r(Mλ) < r(M). By 8.9 again each Mλ is equal to ha,σ(Hλ) for some
a ∈ Rmλ+nλ , σ ∈ {−1, 1}mλ and some Rmλ,nλ

-manifold Hλ, and clearly r(Hλ) =
r(Mλ). Therefore by the inductive hypothesis (∗) holds with each Hλ in place of
M , and one easily verifies that then (∗) holds with each Mλ in place of M . This
finishes the proof of the lemma.

8.14 Proposition. Let A ⊆ Rm+n be a bounded, Rm,n-semianalytic set, and let
k ≤ m and l ≤ n. Then there are connected, bounded Rmi,ni-semianalytic manifolds
Ni ⊆ Rmi+ni with mi ≥ m and ni ≥ n for i = 1, . . . , J , such that

Πk,l(A) = Πk,l(N1) ∪ · · · ∪Πk,l(NJ)

and for each N = Ni, m′ = mi and n′ = ni we have:
1. frN is Rm′,n′-semianalytic and has dimension with dim(frN) < dim(N);
2. dim(N) ≤ k + l, and there are strictly increasing sequences ι ∈ {1, . . . , k}µ

and κ ∈ {1, . . . , l}ν with µ+ ν = d := dim(N) such that Πι,κ|N : N −→ Rd is
an immersion.

Proof. By induction on e := dim(A); if e = 0 then A is finite by 8.9, so the theorem
is trivial in this case. So we assume e > 0 and that the theorem holds for lower
values of e.

Note first that if there is a bounded Rm̃,ñ-semianalytic set E ⊆ Im̃+ñ for some
m̃ ≥ m and ñ ≥ n such that A = Πm,n(E) and 8.14 holds with E, m̃ and ñ in place
of A, m and n respectively, then 8.14 also holds for A, m and n; and if A is a finite
union of Rm,n-semianalytic sets each satisfying 8.14 in place of A, then again 8.14
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also holds for A. By 8.9 and the inductive hypothesis, reasoning as at the end of
the previous proof, and increasing m and n if necessary, we may therefore reduce
to the case that A is a bounded, connected, Rm,n-manifold M of dimension d.

Applying Lemma 8.13 to M (with m,n, k, l), let N1, . . . , NK and A1, . . . , AL be
as in (∗) for M . Since for each j = 1, . . . , L we have dim(Aj) < e, the inductive
hypothesis together with the above implies that we may even reduce to the case
where M = Ni for some i ∈ {1, . . . , K} (again increasing m and n if necessary), i.e.
condition (2) of 8.14 holds with M in place of N .

Now we again apply 8.9 with M in place of A, and we let N (with corresponding
m′ ≥ m and n′ ≥ n) be one of the Mi’s thus obtained from 8.9. We now claim that
conditions (1) and (2) of 8.14 hold for this N , which together with the fact that N
is a connected, bounded Rm′,n′-manifold then finishes the proof of 8.14.

Since Πm,n|N : N −→ Πm,n(N) is an analytic isomorphism, Πm,n(N) ⊆ M and
Πι,κ|M is an immersion, we see that Πm′,n′

ι,κ |N is an immersion, which establishes
(2). Condition (1) follows from condition (3) of 8.9 with N in place of M .

8.15 Corollary. Every Λ-set A ⊆ Ip has the Λ-Gabrielov property.

Proof. Note first that if A ⊆ Im+n in Corollary 8.9 (resp. Proposition 8.14), then
each Mi (resp. Ni) can be taken to be a subset of Imi+ni (multiply the coordinates
xm+1, . . . , xm′ , yn+1, . . . , yn′ by some small enough δ > 0 and use the remarks in
7.2). Therefore Corollary 8.15 follows from 8.14 with m = p and n = 0.

Theorem A. The expansion Ran∗ is model complete and o-minimal.

Proof. Since any Λ-set A ⊆ Ip is a bounded Rp-semianalytic set, A is quantifier-
free definable in Ran∗ by a remark in 7.2. The theorem then follows in view of
Corollaries 8.15 and 2.9.

As a consequence of 2.9 and the way we proved Theorem A we have

8.16 Proposition. If A ⊆ Rm is bounded and definable in Ran∗ , then there are
n ≥ m and a bounded Rn-semianalytic set B ⊆ Rn with A = Πm(B).

9. Polynomial Boundedness

From now on we work in the structure Ran∗ ; in particular, “definable” means
“definable in Ran∗”. In this section we prove Theorem B, which characterizes
definable 1-variable functions. The main step towards this goal is the curve selection
result 9.6, whose proof is along the lines of Tougeron’s treatment of curve selection
in [15] and [16]. To deduce Theorem B from this curve selection we also need to
construct the “compositional inverse” of certain elements of R{T ∗}; see 9.9. Here
T is a single indeterminate. Note that R{T ∗} is a valuation ring with residue field
R and value group R. Let Frac(R{T ∗}) denote the fraction field of R{T ∗}; we make
it into an ordered field as follows: for 0 6= g ∈ R{T ∗}, put g > 0 if g(T ) =

∑
bγT

γ

with bord(g) > 0.

9.1 Lemma. The local ring R{T ∗} is henselian, i.e. given any

f(T,W ) = Wn + a1(T )Wn−1 + · · ·+ an(T ) ∈ R{T ∗}[W ]

with f(0, 0) = 0 and (∂f/∂W )(0, 0) 6= 0, there is α(T ) ∈ R{T ∗} such that α(0) = 0
and f(T, α(T )) = 0.
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Proof. Let f(T,W ) be as in the lemma. Considering f(T,W ) as an element of
R{T ∗,W}, this means that f is regular in W of order 1. Hence by 5.10, f(T,W ) =
u(T,W )(W − α(T )) for some unit u ∈ R{T ∗,W} and some α ∈ R{T ∗}, and the
lemma follows with this α.

9.2 Corollary. The field Frac(R{T ∗}) is real closed. Every f ∈ Frac(R{T ∗})\{0}
is of the form T rg(T ) for some r ∈ R and g ∈ R{T ∗} with g(0) 6= 0.

Proof. By 9.1 and the remarks preceding it, using [13].

Before we can proceed to curve selection, we need to make sense of substituting a
positive generalized power series in one variable in another generalized power series.

9.3 Definition and remarks. Let h ∈ R{T ∗} with h(0) = 0, and let r > 0. Then
we define

(1 + h)r :=
∞∑

k=0

(
r

k

)
hk;

note that (1 + h)r is a well defined element of R{T ∗} by 5.7.
Now let 0 < g =

∑
bγT

γ ∈ R{T ∗}, and write g = bγ0T
γ0(1 + h) with γ0 =

ord(g) ≥ 0, bγ0 > 0, and h ∈ R{T ∗} with h(0) = 0. Then we define, for any r > 0,

gr := brγ0
T rγ0(1 + h)r.

More explicitly, h = b−1
γ0

∑
γ>γ0

bγT
γ−γ0 = b−1

γ0

∑
θ>0 bγ0+θT

θ, so

hk = b−k
γ0

 ∑
θ1+···+θk=γ
θ1,...,θk>0

(bγ0+θ1 · · · bγ0+θk
)

T γ .

Hence gr =
∑
br,γT

γ with

br,γ =
∑

k

(
r

k

)
br−k
γ0

 ∑
θ1+···+θk=γ−rγ0

θ1,...,θk>0

bγ0+θ1 · · · bγ0+θk

 .(∗)

(Note that since supp(g) is well ordered, the right-hand side of equality (∗) is
actually a finite sum, and that it equals 0 if γ < rγ0.)

For any small enough τ > 0 we have by 5.5 that ‖h‖τ < 1; let us fix such a
number τ . Then by 5.7 and 5.2

‖(1 + h)r‖τ ≤
∞∑

k=0

∣∣∣∣(rk
)∣∣∣∣ ‖h‖k

τ .

By (†) in the proof of 6.5 there is a constant C > 0 depending only on ‖h‖τ (not on
r), such that ‖gr‖τ ≤ C‖g‖r

τ ; indeed, it follows from (†) in the proof of 6.5 that for
any D ∈ (0, 1) the constant C := 3

1−D works whenever ‖h‖τ ≤ D. By the binomial
formula we also get for t ∈ (0, τ) that g(t) > 0 and gr(t) = (g(t))r .

9.4 Lemma. Let f ∈ R{X∗, Y }ρ,σ for some polyradii ρ = (ρ1, . . . , ρm) and σ =
(σ1, . . . , σn).
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1. Let n ≥ 1, g ∈ R{T ∗} and suppose ‖g‖τ < σn, where τ > 0. Then
there are τ ′ ∈ (0, τ ] and a series h(X,T, Y ′) ∈ R{(X,T )∗, Y ′}ρ,τ ′,σ′ , Y ′ =
(Y1, . . . , Yn−1), such that

h(x, t, y′) = f(x, y′, g(t))

for every (x, t, y′) ∈ int(Im+1,n−1,(ρ,τ ′,σ′)).
2. Let m ≥ 1, 0 < g ∈ R{T ∗} and suppose ‖g‖τ < ρm, where τ > 0. Then

there are τ ′ ∈ (0, τ ] and a series h(X ′, T, Y ) ∈ R{(X ′, T )∗, Y }ρ′,τ ′,σ, X ′ =
(X1, . . . , Xm−1), such that

h(x′, t, y) = f(x′, g(t), y)

for every (x′, t, y) ∈ int(Im,n,(ρ′,τ ′,σ)).

Remark. (Here we assume the lemma is true.) We note that by 6.4 the series
h(X,T, Y ′) ∈ R{(X,T )∗, Y ′} (respectively h(X ′, T, Y ) ∈ R{(X ′, T )∗, Y }) is unique
in the sense that it depends only on f ∈ R{X∗, Y } and g ∈ R{T ∗}, but not on
choices of ρ, σ, τ with f ∈ R{X∗, Y }ρ,σ and ‖g‖τ < σn (resp. ‖g‖τ < ρm). We
will therefore simply denote h(X,T, Y ′) by f(X,Y ′, g(T )) (resp. h(X ′, T, Y ) by
f(X ′, g(T ), Y )). In particular, for any f ∈ R{X∗, Y } with n ≥ 1 (resp. m ≥ 1) and
any g ∈ R{T ∗} with g(0) = 0 the power series f(X,Y ′, g(T )) (resp. f(X ′, g(T ), Y )
with g > 0) is well defined.

These substitutions behave as expected. For example, let f, g ∈ R{T ∗}, f(0) 6= 0,
g(0) = 0, g > 0; then 1

f(g) = 1
f (g) in R{T ∗}, as is clear from 6.4. Below we shall

freely use facts of this nature.

Proof of 9.4. We distinguish two cases.
Case 1: g(0) = 0.
(1) Writing f(X,Y ) =

∑∞
k=0 fk(X,Y ′)Y k

n with fk ∈ R{X∗, Y ′} for k ∈ N, we
define

h(X,T, Y ′) :=
∞∑

k=0

fk(X,Y ′)g(T )k;

note that h ∈ R[[(X,T )∗, Y ′]] since ord(g) > 0. Convergence of h follows easily from
the assumptions on g, and the equation of part (1) holds obviously if f has finite
support, and hence by 6.2 for general f .

(2) To simplify notation, we assume throughout the rest of case 1 that m = 1
and n = 0; the general case is treated similarly. Write f(X) =

∑
arX

r and
g(T ) =

∑
bγT

γ . Let γ0 := ord(g) > 0, and define

h(T ) := f(0) +
∑
r>0

arg(T )r = f(0) +
∑
γ>0

cγT
γ ,

where, for γ > 0,

cγ :=
∑
r≥0

arbr,γ ,

with br,γ as in (∗) of 9.3. For these definitions of h(T ) and cγ to make sense, we
first need to show that the last sum is actually a finite sum, and that cγ 6= 0 only
on a well ordered set of γ’s. Since the proofs for these two statements are almost
the same, we only prove the first one.

Note that br,γ = 0 for γ < rγ0. Assume for a contradiction that γ > 0 and that
there is a sequence {ri}i∈N of distinct real numbers such that aribri,γ 6= 0 (hence
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ri ≤ γ/γ0 for all i). By passing to a subsequence, we may as well assume (using
the fact that f has good support) that the sequence {ri} is strictly increasing.
Next, by (∗) there are for each i ∈ N a natural number k(i) ≥ 0 and real numbers
θi,1, . . . , θi,k(i) > 0 such that θi,1 + · · · + θi,k(i) = γ − riγ0 and bγ0+θi,j 6= 0 for
j = 1, . . . , k(i). Since the sequence γ − riγ0 is strictly decreasing, one easily checks
that then there is a strictly decreasing sequence {θi}i∈N such that bθi 6= 0, which
contradicts the fact that supp(g) is well ordered.

Next we show that h converges: by 5.5 and the last remark in 9.3 there are
τ ′ ∈ (0, τ ] and C > 0 such that ‖gr‖τ ′ ≤ C‖g‖r

τ ′ (with C depending only on ‖g‖τ ′,
not on r), and hence by 5.7

‖h‖τ ′ ≤ |f(0)|+
∑
r>0

|ar|‖gr‖τ ′ ≤ C‖f‖ρ.

The remaining equation of part (2) follows from the last remark of 9.3 if f has
finite support, and hence by 6.2 it holds for general f .

Case 2: g(0) 6= 0. We only give a proof of part (1) in this case, since the proof
of part (2) is similar.

Write g = b0 + g̃ with b0 ∈ (0, σn) and g̃ ∈ R{T ∗} with g̃(0) = 0. By 6.6, part
(2), there is a series h̃ ∈ R{X∗, Y } such that for every σ′n ∈ (0, σn − |b0|) we have
h̃ ∈ R{X∗, Y }(ρ,σ′,σ′n) and

h̃(x, y) = f(x, y′, b0 + yn)

for every (x, y) ∈ Im,n,(ρ,σ′,σ′n). Now apply part (1) with h̃, g̃ and (σ′, σ′n) in place
of f , g and σ respectively.

Let f ∈ R{X∗, Y }µ with µ ∈ N, let ε > 0 be f -admissible, and let U ⊆ Im,n,ε. We
then denote by (∗∗) the statement (∗) of 8.4 together with the following statement:
for every M = Mi, m′ = mi and n′ = ni (with Mi, mi and ni as in (∗)), and every
z ∈ frM ,

(†) there are δ > 0 and g = (g1, . . . , gm′+n′) ∈ R{T ∗}m′+n′
δ such that g(t) ∈ M

for every t ∈ (0, δ) and g(0) = z.
We can now strengthen Proposition 8.4 as follows.

9.5 Proposition. Let f ∈ R{X∗, Y }µ with µ ∈ N, and let ε > 0 be f -admissible.
Then there is an (m,n)-corner U ⊆ int(Im,n,ε) for which (∗∗) holds.

We proceed as in the proof of Proposition 8.4; in particular, we first need to
establish the following two facts.

Sublemma 1. Let m ≥ 0, n ≥ 1 be fixed and assume 9.5 holds for all m′ ≤ m and
n′ < n in place of m and n. Let f = (f1, . . . , fµ) ∈ R{X∗, Y ′}[Yn]µ be such that
each fi is monic in Yn. Then there is for each f -admissible ε > 0 an (m,n)-corner
U ⊆ int(Im,n,ε) for which (∗∗) holds.

Proof. We follow the proof of 8.5 with (∗∗) in place of (∗) and work with the notation
established in that proof. To finish the proof of Sublemma 1, we assume that (†)
holds for the manifold M that we fixed in the proof of 8.5 and every z ∈ frM ,
and we show that then (†) also holds with N in place of M for each N = Nκ with
−ε < ξκ < ε and each N = (Nκ, Nκ+1) with −ε ≤ ξκ < ξκ+1 ≤ ε, and for every
z ∈ frN .
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Let z ∈ frN , and let w be the image of z under the projection (x, u, y, v) 7→
(x, u, y′, v) : Rm′+n′+1 −→ Rm′+n′ .

Case 1: N = Nκ with −ε < ξκ < ε. By case 1 of the proof of 8.5 we have
w ∈ frM . By hypothesis there are τ > 0 and h = (h1, . . . , hm′+n′) ∈ R{T ∗}m′+n′

τ

such that h(t) ∈ M for t ∈ (0, τ) and h(0) = w; below we write h̃ = (h1, . . . , hm,
hm′+1, . . . , hm′+n−1). Define the auxiliary set

Ñ := {(s, t) ∈ R2 : 0 < s < τ, t = ξ(h̃(s))} ⊆ R2,

and for simplicity of notation assume that there is i ∈ {1, . . . , µ} such that, after
shrinking τ if necessary, φ(S, T ) := fi(h̃(S), T ) vanishes identically on Ñ (in general,
this is true for some ∂νfi/∂Y

ν
n (h̃(S), T ) with ν < degYn

f , and the proof is then
similar). Note that φ ∈ R{S∗}τ [T ] is monic in T . Hence by 9.2, and after decreasing
τ if necessary, φ factors as

φ(S, T ) = (T − α1(S)) · · · (T − αl(S))ψ(S, T )

with αi ∈ R{S∗}τ , ψ ∈ R{S∗}τ [T ], such that ψ(s, t) > 0 for all (s, t) ∈ (0, τ) × R.
It follows from the o-minimality of Ran∗ that, after decreasing τ once more, there
is j ∈ {1, . . . , l} such that φ(s, αj(s)) ∈ Ñ for all s ∈ (0, τ) and αj(0) = ξ(h̃(0)). It
is now easy to check that (†) holds with N in place of M , with δ := τ and

g := (h1, . . . , hm′+n−1, αj , hm′+n, . . . , hm′+n′).

Note that h1, . . . , hm′+n′ do not depend on κ.
Case 2. N = (Nκ, Nκ+1) with −ε ≤ ξκ < ξκ+1 ≤ ε. If z ∈ Nκ ∪ Nκ+1

then (†) holds trivially with N in place of M , so by case 2 of the proof of 8.5
we may assume that z ∈ frNκ ∪ frNκ+1 ∪ G, and hence again w ∈ frM . Write
z = (x, u, y′, t, v), so w = (x, u, y′, v). Let t1 < t2 be such that (x, u, y′, t1, v) ∈ frNκ

and (x, u, y′, t2, v) ∈ frNκ+1. By case 1 above we have τ > 0 and

h = (h1, . . . , hm′+n−1, α1, hm′+n, . . . , hm′+n′),

h′ = (h1, . . . , hm′+n−1, α2, hm′+n . . . , hm′+n′)

in R{T ∗}m′+n′+1
τ such that h(t) ∈ Nκ and h′(t) ∈ Nκ+1 for t ∈ (0, τ) and h(0) =

(x, u, y′, t1, v), h′(0) = (x, u, y′, t2, v). Then (†) holds with N in place of M , where
δ := τ and

g := (h1, . . . , hm′+n−1, α1 + c(α2 − α1), hm′+n, . . . , hm′+n′),

where c := t−t1
t2−t1

.

Sublemma 2. Let f ∈ R{X∗, Y }µ, and let ε > 0 be f -admissible. Let S, φ, m̃, ñ
and δ > 0 be as in Lemma 8.6. Assume that δ is φf -admissible and that (∗∗) holds
with φf in place of f , δ in place of ε and some (m̃, ñ)-corner V ⊆ int(Im̃,ñ,δ) in
place of U . Then φ(V ) ⊆ int(Im,n,ε), and (∗∗) holds for f with U = φ(V ).

Proof. As in the previous sublemma, we follow the proof of 8.6 with (∗∗) in place
of (∗), and again we use the notation established in the proof of 8.6. So we assume
in addition that (†) holds for M and every z ∈ frM , and we show that then (†)
holds with N in place of M for every z ∈ frN . But this follows readily from the
definition of N and from 9.4.
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Proof of 9.5. The proof of 8.4 (section 8.7) goes now through almost literally for
9.5, with some obvious adaptations: replace (∗) by (∗∗) and the references to 8.5
and 8.6 by references to Sublemma 1 and Sublemma 2 respectively.

9.6 Curve selection. Let A be a definable subset of Rn, and let 0 ∈ frA. Then
there are ε > 0 and g = (g1, . . . , gn) ∈ R{T ∗}n

ε such that g(t) ∈ A for every t ∈ (0, ε)
and g(0) = 0.

Proof. We may of course assume that A is bounded. Note first that if 9.6 holds
with A, then 9.6 also holds with Πm(A) in place of A and m in place of n, for
any m ≤ n. Hence by 8.16 we may assume that A is Rn-semianalytic, and by the
definition of “Rn-semianalytic”, we may even assume that A is a basic Rn,τ -set for
some τ > 0.

Since A = BIn,τ (f, σ) for some f ∈ R{X∗}µ
τ ′ with τ ′ > τ and some σ ∈

{−1, 0, 1}µ, there is by 9.4 an Rn′,ρ-manifold M ⊆ Rn′ for some n′ ≥ n and
ρ > 0, such that 0 ∈ fr Πn(M). But M is bounded, so there is z ∈ frM with
Πn(z) = 0, and again by 9.4 there are ε > 0 and h = (h1, . . . , hn′) ∈ R{T ∗}n′

ε such
that h(t) ∈M for all t ∈ (0, ε) and h(0) = z. Now take g := (h1, . . . , hn).

Before we can deduce Theorem B from the curve selection, we need to show that
the “compositional inverse” of f ∈ R{T ∗} with f(0) = 0 and f > 0 exists in R{T ∗}.
9.7 Remark and definition. Let X be a single indeterminate and write ∂ for ∂1. Let
ρ̃ > ρ > τ > 0, and let f ∈ R{X∗}ρ̃. By 5.9 and 6.7, each derivative (fρ)(k) exists
and is analytic in (0, ρ), and for any |t| < min(τ, ρ− τ),

fρ(τ + t) = fρ(τ) + (fρ)′(τ)t +
1
2!

(fρ)′′(τ)t2 + . . . ,

where the right hand side is an absolutely convergent series. Thus by 5.9 and 6.3,

fρ(τ + t) = fρ(τ) + (∂f)ρ(τ)
(
t

τ

)
+

1
2!

(∂2f)ρ(τ)
(
t

τ

)2

+ . . . .

We define

T̃ f(X,Y ) := f(X) + ∂f(X) · Y +
1
2!
∂2f(X) · Y 2 + · · · ∈ R[[X∗, Y ]].

By the remark after 5.9 we have, with s := ρ/ρ̃ and C := |s log s|−1 > 1,

‖∂kf‖ρ ≤ Ckkk‖f‖ρ̃ ≤ (3C)kk!‖f‖ρ̃,

so for every σ ∈ (0, 1
3C ) we have ‖T̃ f‖ρ,σ ≤ 1

1−3Cσ‖f‖ρ̃ < ∞. Hence with |t| <
min( τ

3C , ρ− τ) we have

f(τ + t) = T̃ f

(
τ,
t

τ

)
.

We now want to prove a similar equation with τ and t replaced by suitable series in
R{T ∗}. Note that if g, h ∈ R{T ∗} with ord(h) ≥ ord(g), g 6= 0, then h/g ∈ R{T ∗}
also.

9.8 Lemma. Let X be a single indeterminate, and let f ∈ R{X∗}. Assume g, h ∈
R{T ∗} with g > 0 and ord(h) > ord(g) > 0. Let T̃ f be defined for f as in 9.7.
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Then f(g + h) and T̃ f(g, h
g ) are in R{T ∗}, and

f(g + h) = T̃ f

(
g,
h

g

)
.

Proof. Use 9.4, 9.7 and 6.4.

9.9 Lemma. Let 0 < f ∈ R{T ∗} with f(0) = 0. Then there is g ∈ R{T ∗} such
that g > 0, g(0) = 0 and f(g(T )) = T .

Proof. Write f(T ) = aγT
γ + h(T ) with γ > 0, aγ > 0 and h ∈ R{T ∗} with

η := ord(h) > γ. Note first that if 1
aγ
f(g(T )) = T with 0 < g ∈ R{T ∗}, g(0) = 0,

then by 9.4 and 6.4 we have f(g(T/aγ)) = T as well, so we may assume that aγ = 1;
and similarly, if f1/γ(g(T )) = T , then f(g(T 1/γ)) = T , so we may even assume that
γ = 1. We may also assume that h 6= 0, so 1 < η <∞. Put α := 1

2 (η − 1) > 0.

Claim. There are ρ, τ > 0 with τ < 1, τ
1−τα < ρ and ‖f‖2ρ < ∞, and there are

εn, δn ∈ R{T ∗}τ for n ∈ N, such that ε0(T ) = T , δ0(T ) = f(T )− T , and
(�) ord(εn) > 1 + 2nα if n > 0, ord(δn) > 1 + 2n+1α, ‖εn‖τ ≤ τ1+nα, and

‖δn‖τ ≤ 1
12 τ

1+(n+1)α, and with gn :=
∑n

i=0 εi we have gn > 0, ord(gn) = 1
and

f(gn) = T + δn.

Assume for the moment that the claim holds. Let g :=
∑∞

n=0 εn ∈ R{T ∗}τ ; then
‖g‖τ < ρ, so f(g) ∈ R{T ∗}τ ′ for some τ ′ ∈ (0, τ ] by 9.4. Hence for any t ∈ [0, τ ′]
we have limn→∞ gn(t) = g(t) and limn→∞ δn(t) = 0, so by the continuity of f ,

f(g(t)) = lim
n→∞ f(gn(t)) = lim

n→∞(t+ δn(t)) = t,

which together with 6.4 finishes the proof of the lemma.
Before we proceed to prove the claim, we note that f ′(T ) := ∂f(T )/T ∈ R{T ∗}

by 5.9 and that f ′(0) = 1, so the multiplicative inverse 1
f ′ is in R{T ∗} as well.

Proof of the claim. Put C := | 12 log 1
2 |−1 > 1, A := 72 · (6C)2 > 12, and choose

ρ > 0 such that ‖f‖σ ≤ 2σ for every σ ∈ (0, 2ρ] and ‖ 1
f ′ ‖ρ ≤ 2. Let τ := 2

3ρ and
assume (shrinking ρ if necessary) that τα ≤ 1

12A and 1
1−τα ≤ 3

2 . Note that further
decreasing ρ does not affect the above inequalities.

We now proceed by induction on n.
Initial step. We put ε0(T ) := T and δ0(T ) := f(T ) − T ; then ord(ε0) = 1,

ord(δ0) = η > 1 + α, ‖ε0‖τ = τ , and decreasing ρ if necessary we may assume that
‖δ0‖τ ≤ 1

Aτ
1+α. Note that now (�) holds for n = 0.

Inductive step. Let n > 0 and assume that we are given δi, εi ∈ R{T ∗}τ for
i = 0, . . . , n− 1, such that (�) holds with each i in place of n. Note first that

‖gn−1‖τ ≤ τ

1− τα
≤ 3

2
τ = ρ;

if gn−1 = T (1 + hn−1) with hn−1(0) = 0, then ‖gn−1‖τ = τ(1 + ‖hn−1‖τ ), so

‖hn−1‖τ =
‖gn−1‖τ

τ
− 1 ≤ 1

2
.

Hence from the last remark in 9.3 (with D = 1/2) we get for any r ≥ 0 that
‖gr

n−1‖τ ≤ 6‖gn−1‖r
τ ≤ 6ρr, and hence for any F ∈ R{T ∗}ρ̃ with ρ̃ > ρ that

‖F (gn−1)‖τ ≤ 6‖F‖ρ.(I)
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By 9.8 and the inductive hypothesis we can write, for h ∈ R{T ∗} with ord(h) >
ord(gn−1) = 1,

f(gn−1 + h) = f(gn−1) + f ′(gn−1)h+
∑
k≥2

1
k!
∂kf(gn−1)

(
h

gn−1

)k

= T + δn−1 + f ′(gn−1)h+
∑
k≥2

1
k!
∂kf(gn−1)

(
h

gn−1

)k

.

Put εn := −δn−1(f ′(gn−1))−1. Then ord(εn) = ord(δn−1) > ord(gn−1), and by the
remark after 9.4, the assumptions on ρ, and (I) we have ‖ 1

f ′(gn−1)‖τ ≤ 6‖ 1
f ′ ‖ρ ≤ 12,

i.e.

‖εn‖τ ≤ 12‖δn−1‖τ ≤
{

1
Aτ

1+α if n = 1,
τ1+nα if n > 1.

Replacing h above by εn, we get

f(gn−1 + εn) = T + δn,

where δn :=
∑

k≥2
1
k!∂

kf(gn−1)
(

εn

gn−1

)k

. By the inductive hypothesis, for k ≥ 2
we have

ord

(
∂kf(gn−1)

(
εn
gn−1

)k
)
≥ 1 + k(ord(εn)− ord(gn−1))

> 1 + 2(1 + 2nα− 1)

= 1 + 2n+1α;

hence ord(δn) > 1 + 2n+1α. Next note that, by the inductive hypothesis and the
assumptions on ρ,∥∥∥∥ εn

gn−1

∥∥∥∥
τ

=
1
τ

∥∥∥∥ εn
1 + hn−1

∥∥∥∥
τ

≤ ‖εn‖τ
1
τ

(
1 + ‖hn−1‖τ + ‖hn−1‖2τ + . . .

)
≤ ‖εn‖τ

1
τ − τ‖hn−1‖τ

≤ 2
τ
‖εn‖τ

≤
{

2
Aτ

α if n = 1,
2τnα if n > 1,

(II)

and by the remark after 5.9 (with s = 1/2), (I), and the assumptions on ρ,

‖∂kf(gn−1)‖τ ≤ 6‖∂kf‖ρ ≤ 6Ckkk‖f‖2ρ ≤ 24(3C)kk!ρ.(III)
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Thus using (II) and (III) gives, for n = 1,

‖δ1‖τ ≤
∑
k≥2

1
k!
‖∂kf(g0)‖τ

∥∥∥∥ ε1g0
∥∥∥∥

τ

≤ 24ρ
∑
k≥2

(3C)k(
2
A
τα)k

≤ 24ρ · (6C)2
τ2α

A2
· 1

1− 6C
A τα

≤ 36τ · (6C)2
τ2α

A2
· 2

≤ 1
12
τ1+2α,

and similarly, for n > 1,

‖δn‖τ ≤
∑
k≥2

1
k!
‖∂kf(gn−1)‖τ

∥∥∥∥ εn
gn−1

∥∥∥∥
τ

≤ 24ρ
∑
k≥2

(3C)k(2τnα)k

≤ 36τ(6C)2τ2nα · 1
1− 6Cτnα

≤ Aτ · τατ (n+1)α

≤ 1
12
τ1+(n+1)α,

so (�) holds for n with εn and δn.

Theorem B. Let ε > 0, and let f : (0, ε) −→ R be definable in Ran∗ . Then there
are a series F (T ) ∈ R{T ∗} and an r ∈ R such that f(t) = trF (t) for all sufficiently
small t > 0.

Proof. Assume first that limt→0 f(t) = 0. Then (0, 0) ∈ fr Γ(f), so by 9.6 there
are τ ∈ (0, ε) and g1, g2 ∈ R{T ∗}τ such that (g1(t), g2(t)) ∈ Γ(f) for all t ∈ (0, τ)
and g1(0) = g2(0) = 0. By 9.9 there is h ∈ R{T ∗} such that h > 0, h(0) = 0 and
g1(h(T )) = T . Then it is clear that the desired result holds with F (T ) := g2(h(T ))
and r = 0.

If limt→0 f(t) = c <∞, then the theorem follows easily from the case above by
considering f − c. If limt→0 |f(t)| = ∞, then the theorem follows similarly from the
first case by considering 1

f .

9.10 Corollary. The expansion Ran∗ of the real field is polynomially bounded.

It is easy to see that for any definable set A ⊆ Rn, the dimension dim(A) agrees
with the dimension of A in the sense of o-minimal structures. Using this observation
and “cell decomposition” for o-minimal structures (see for example [8]), we obtain
the following consequence of Theorem B:

9.11 Corollary. If A ⊆ Rn is definable (in Ran∗) and dim(A) ≤ 1, then A is
Rn-semianalytic.

For subsets of R2 the condition “dim(A) ≤ 1” can be omitted, and the conclusion
strengthened:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4420 LOU VAN DEN DRIES AND PATRICK SPEISSEGGER

9.12 Corollary. If A ⊆ R2 is definable, then A is R1,1-semianalytic.

10. Concluding Remarks

1. Let 0 < δ < ε and let f(T ) ∈ R{T ∗}ε. Then the function fδ : [0, δ] −→ R
is definable in Ran∗ , but in general not in Ran,exp. This is because a necessary
condition for fδ to be definable in Ran,exp is for supp(f) to be contained in a finitely
generated additive subgroup of R, by Proposition 4.13 and the idea of the proof of
Corollary 4.14 in [7]. Clearly, many well ordered subsets of [0,∞) are not contained
in any finitely generated additive subgroup of R, and for each well ordered subset
S of [0,∞) there is a power series f ∈ R{T ∗}2 with supp(f) = S: for example, if
S = {γn : n ∈ N}, we can take f(T ) =

∑∞
n=0 2−n−γnT γn .

2. Theorems A and B of this paper go through (with the same proofs) if the
requirement of “good support” for the series F (X) considered in the introduction is
strengthened to “supp(F ) ⊆ S1×· · ·×Sm with Si ⊆ [0,∞) such that |Si ∩ [0, R]| <
∞ for all positive real R and i = 1, . . . ,m”. One might wonder if this variant of our
results cannot be achieved more directly as in [3] via a suitable preparation theorem
for the power series rings involved. We are not aware of any useful preparation
theorem of this nature. In any case, the non-noetherianity of these power series
rings would seem to be another obstacle in applying this method.

In [3] it is shown that Ran admits elimination of quantifiers in its natural language
augmented by a symbol for the reciprocal function. We have no reason to believe
that the analogous statement for Ran∗ is true.

3. A natural next step would be to show that the expansion Ran∗,exp of Ran∗

is model complete and o-minimal. (Note that in this expansion the Riemann zeta
function on (1,∞) is definable.) One way to attempt this is as follows.

Let Γ be an ordered vector space over R. There is a natural way to expand
the generalized formal power series field R((tΓ)) into a structure R((tΓ))an∗ for the
natural language of Ran∗ , so that Ran∗ is a substructure of R((tΓ))an∗ . If one could
show that Ran∗ � R((tΓ))an∗ for all Γ, then the same arguments as in [6] would give
us that Ran∗,exp is model complete and o-minimal. However, we have not been able
to prove that Ran∗ � R((tΓ))an∗ for all Γ, though it seems quite plausible to us.
The second author has obtained a complete axiomatization of the (model complete)
theory Th(Ran∗) and has proved that Ran∗ is existentially closed in its extension
R((tΓ))an∗ , which implies in particular that R((tΓ))an∗ is a substructure of a model
of Th(Ran∗).
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