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Abstract

Five-minute returns from FTSE-100 index futures contracts are used to
obtain accurate estimates of daily index volatility from January 1986 to
December 1998. These realized volatility measures are used to obtain infer-
ences about the distributional and autocorrelation properties of FTSE-100
volatility. The distribution of volatility measured daily is similar to lognormal
whilst the volatility time series has persistent positive autocorrelation that
displays long-memory effects. The distribution of daily returns standardized
using the measures of realized volatility is shown to be close to normal unlike
the unconditional distribution.
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The realized volatility of FTSE-100
futures prices

1 Introduction

The distribution of asset returns has often been modeled by mixtures of
normal distributions that have different volatility parameters. The distri-
butional and autocorrelation properties of volatility are then important to
traders when pricing options because different specifications will give differ-
ent theoretical prices. This paper uses high-frequency returns from FTSE-
100 futures contracts to deduce the distribution and the autocorrelations of
FTSE-100 volatility.

The influential empirical study of cotton futures prices and trading volumes
by Clark (1973) is the foundation for two conjectures: first that an appropri-
ate distribution for daily volatility is lognormal and second that daily returns
are conditionally normal given the level of daily volatility. The unconditional
distribution of returns is then a leptokurtic mixture distribution that has fat
tails relative to the normal distribution. Tauchen and Pitts (1983) provided
further theoretical analysis and results for T-Bill future prices. Taylor (1986)
extended Clark’s model by proposing that the logarithm of volatility follows a
first-order autoregressive process, based upon analysis of the autocorrelations
of squared daily returns from futures contracts and other assets. However,
empirical investigation of Clark’s conjectures using daily returns has limited
potential to provide decisive conclusions because daily volatility is then an

unobservable latent variable.



Andersen, Bollerslev, Diebold and their co-authors have recently used
high-frequency returns to obtain accurate estimates of daily volatility. They
show that Clark’s two distributional conjectures are close to the empirical
distributions, both for spot foreign exchange returns (Andersen, Bollerslev,
Diebold, and Labys, 2000a,b) and for returns from the Dow Jones Industrial
Average (DJIA) index (Ebens, 1999) and its constituent stocks (Andersen,
Bollerslev, Diebold, and Ebens, 2000). Furthermore, there is strong empirical
evidence for long memory structure in the volatility process that is generally
consistent with the stochastic volatility specifications of Breidt, Crato, and
De Lima (1998).

This paper refines the methodology of Andersen, Bollerslev, Diebold, and
Labys (2000a,b) and applies it to a futures market for the first time. It uses
thirteen years of five-minute returns from FTSE-100 index futures contracts
to estimate daily volatility and hence describe the distribution and the time
series properties of FTSE-100 volatility. The estimates of daily volatility
are more accurate than the simple estimates used in previous papers and,
furthermore, they take account of the relatively substantial changes in the
index during the hours that the futures market is closed. Section 2 describes
the FTSE-100 transaction data from which five-minute returns are defined.
These are used in Section 3 to estimate the intraday volatility pattern that
can be used to improve the accuracy of estimates of realized volatility. These
estimates are defined in Section 4, followed by discussion of their distribution
and time series properties. The distribution of daily returns standardized by
daily realized volatility is described in Section 5 followed by conclusions in

Section 6.



2 Data

2.1 Transaction prices

FTSE-100 volatility has been calculated from the record of floor transaction
prices for FTSE-100 futures contracts sold on compact disk (CD) by the
London International Financial Futures Exchange (LIFFE). Their CDs also
include electronic transaction prices for approximately an hour after floor
trading stops that are not used in this study; neither are bid and ask floor
prices used. Each line in the LIFFE data files provides a time recorded to
an accuracy of one second and also a trading volume when the price refers
to a transaction.

The longest time period considered is from 2 January 1986 until 29
December 1998. Some days that were not holidays are missing, particu-
larly in the earlier years. A total of 31 days are missing of which 22 are in
1987 and 1988. The CD that we used contains 2.97 million transactions of
which 2.85 million were floor transactions. Trading volume was relatively
low in the initial years and has increased from 0.12 million contracts in 1986
to 4.59 million contracts in 1998.

At any time most trading activity is concentrated in a single contract,
usually nearest to delivery. Returns are calculated from the nearest contract,
except on the days before expiry and that include expiry when the next
contract is used. Hence returns are nearly always calculated from the prices
of the contract that has the highest trading volume.

The record of transactions has been edited in a number of ways. Days
that only have transactions for part of the normal trading day are excluded
entirely; 28 days are excluded, most being on December 24 and December

31. All floor transactions that are timed outside floor trading hours and all



transactions that are recorded as having zero volume are excluded; 5,494
transactions are deleted. On 17 days in 1990 the transaction times are re-
corded without minutes and seconds. For these days, transaction times from
previous days were used to produce approximations to the missing informa-
tion.

More problematic are a small number of misrecorded transaction prices.
On some occasions it is clear from a sequence of three prices that the middle
price is almost certainly wrong, for example the sequence 2600, 3600, 2600
is indicative of a mistake in the first digit. We have identified 56 suspicious
prices using simple outlier filters and inspection of time series plots of returns
and prices. All these transactions have been deleted, the majority being
before 1989. Although we are confident that the deletions are mistakes there

may be mistakes that have escaped detection.

2.2 Intraday returns

All results have been obtained from five-minute returns, as this frequency is
generally acknowledged to be the highest that avoids distortions from micro-
structure effects such as the bid-ask spread. Two methods have been used in
previous work to define returns and both are evaluated here. The first uses
the latest price before each five-minute mark whilst the second interpolates
between the latest price before and the consecutive price after the five-minute
mark. The first method is used here unless stated otherwise.

The number of five-minute returns computed for a day depends on the
trading hours for futures contracts and these have changed occasionally.
Trading was from 09:35 to 15:35 for the short period from 2 January un-
til 24 April 1986, from 09:05 to 16:05 for the four years from 28 April 1986
until 23 March 1990, from 08:35 to 16:10 for the eight years from 26 March



1990 to 17 July 1998 and from 08:35 to 16:30 for the remaining few months
until December 1998. Hence there are 72, 84, 91 or 95 five-minute returns
for a day depending on the trading hours.

Table 1 summarizes the statistical properties of the 285,960 five-minute
returns in the complete time series (1986-1998) and the 188,825 five-minute
returns during the eight-year period (1990-1998) when trading was from 08:35
to 16:10. It can be seen first that the skewness and the kurtosis are much
higher for the longer period, because of the crash in October 1987, and
second that the frequency of zero returns is much higher for the longer period
because trading volumes were relatively low before 1990. For these reasons
we now discuss the results obtained for the shorter period. The average
returns are small and are not significantly different from zero at the 20%
level. The distribution of the returns is almost symmetric and has fat tails
and a substantial peak at zero. Although 22.3% of the five-minute returns
calculated without interpolating prices are zero, only 2.65% of the five-minute
intervals contain no transactions.! A few returns are substantial with extreme
values of —1.7% on 5 December 1997 and 3.0% on 5 October 1990.

The autocorrelations of the returns are very close to zero. Bid-ask bounce
might be expected to create negative dependence between consecutive returns
but there is no evidence for such an effect in Table 1. The first autocorrelation
of five-minute returns calculated from interpolated prices is 0.0356 compared
with 0.0013 when the latest prices are used. Hence we prefer to use the
latest prices when defining returns and we apply this definition throughout
the remainder of the paper. The autocorrelations of absolute returns are
positive and significant at many lags, commencing with 0.2345 for consecutive

absolute returns.

IFor interpolated prices the proportion of zero returns with no trades is 1.19%.



3 Intraday volatility

3.1 Intraday volatility multipliers

The FTSE-100 index is more volatile when the market opens, when mac-
roeconomic news is released in the UK and the US and when the American
equity markets are open. Intraday volatility is modeled by assuming there
is a fixed multiplicative effect, that may vary across the days of the week.
Let r,;, 0 < j < n, represent a set of n + 1 intraday returns for day ¢, such
that j = 0 represents the closed-market period from the close on day t — 1
until the open on day ¢, 7 = 1 represents the five minutes commencing at the
open, ..., concluding with j = n representing the final five minutes that end
when the floor market closes. Let the daily return r, and the latent level of

volatility o; for a day t be defined by

n
= Z'r’t,j and  wvar(roy) = af.
=0

Multiplicative volatility terms are defined by supposing that

n
var(ry;loe) = N\jo;  with YA = 1.
j=0
Thus A; is the proportion of a trading’s day total return variance that is
attributed to period 7, here assuming that intraday returns are uncorrelated
and, to simplify notation, that the multipliers are the same for all days ¢.

The proportion of the open-market variance is defined by



Aj n
K; = with K; = 1.
J 1_AO jzl J

3.2 Estimates

Simple estimates of the variance proportions, following Taylor and Xu (1997),

are given by,

. S . S,

Aj = SRR ZtZtO,JT,?,k and kj = S thtjrik
where the summations over days ¢ are for some appropriate set of days S.
The set S might be all days, or all Mondays, etc. 2 We give most attention to
the eight-year period from 26 March 1990 to 17 July 1998 during which time
n was constant and equal to 91. Although the number of five-minute returns
is constant we divided this period in two, from 26/03/1990 to 17/11/1993
and from 18/11/1993 to 17/07/1998, when we estimated the intradaily volat-
ility multipliers, due to changes in the release times of UK macroeconomic
announcements from 11:30 to 09:30.3

In the remainder of Section 3 we discuss the period from November 1993

to July 1998. The closed-market proportion \q is substantial, particularly
when S is restricted to Mondays. For all days Ao is 30.7%, increasing to 38.3%

when the closed-market period is from Friday’s close to Monday’s open.

2Sets S are restricted to those days for which UK local time is five hours ahead of
Eastern US local time, i.e. we exclude a few days every year when local times differ by
four hours.

3The Central Statistical Office changed their announcement times on 23/08/1993, the
Bank of England changed on 03/09/1993, and the labour market statistics started to be
released at 09:30 from 18/11/1993.



Figure 1 shows the estimates &;, calculated by day of the week. It is im-
mediately apparent that volatility is high at the open with #; almost 8% on
Mondays and between 4% and 6% on other days. Volatility then declines until
the interval 09:30 to 09:35 when announcements are often made about im-
portant UK macroeconomic indicators followed by a generally steady decline
until a sharp increase in the interval from 13:30 to 13:35 that often includes
major US announcements. Volatility falls after these announcements and
subsequently increases for the remainder of the London trading hours, with
a local peak from 14:15 to 14:20 on some days (again reflecting US news)
and an end-of-week spike from 16:05 to 16:10 on Fridays. Tse (1999) has
provided similar figures for a much shorter period, without distinguishing
between days of the week. The impact of US macroeconomic news released
at 08:30 local time, documented in detail by Ederington and Lee (1993) for
US futures contracts, is clearly also important for the UK equity market and
usually occurs at 13:30 in London.

Andersen and Bollerslev (1997) use regression methodology to produce
smooth variance multipliers. Their Flexible Fourier Functions (FFF) have
been used to produce smoothed estimates ij and /; as the fitted values when
the multipliers j\j and /; are regressed on a constant, linear, quadratic, sinus-
oidal and dummy variables; we use trigonometric functions at 12 frequencies
and dummy variables for the five-minute intervals ending at 09:35 or 11:35,
13:35 and 14:20 and we rescale the fitted values to ensure their sums are
unity. * Figure 2 illustrates the FFF multipliers #; when they are estimated
ignoring day-of-the-week effects. The smooth multipliers k; are very similar

to the simple estimates &;.

4Slightly different multipliers are used on the few days that the UK is four hours ahead
of the Eastern US, when the two US news dummy variables are each moved by one hour.
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Figure 1: Five-minute open-market variance proportions for the FTSE-
100 futures index, by day of the week, for the period from 18/11/1993 to
17/07/1998.
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4 Realized volatility

4.1 Computational methods

The realized variance for trading day ¢, from the close on day t — 1 to the
close on day t, is estimated by weighting the intraday squared returns, as

follows °

n
A2 2
07 =2 Wiry;:
j=0

To ensure conditionally unbiased estimates when intraday returns are
uncorrelated, so that E[62|o2] = o2, it is necessary to apply the constraint
Yo Ajw; = 1. Taylor and Xu (1997), Andersen, Bollerslev, Diebold, and
Labys (2000a) and related papers simply use w; = 1 for all intraday periods
j. The estimate 67 is then a consistent and unbiased estimate of “integ-
rated” volatility ¢ but it will not have the least variance when n is finite.

Consequently, we also consider other weights. It is shown in the Appendix

that if 3-7_ Ajw; = 1 then the variance of the estimate 67 is minimized when

1
YT N,

In particular, the optimal weight wq for the closed market return is much

less than for the other returns because \q is substantial. When wq is con-

’Returns are not mean adjusted because the difference between E[r7 ;] and var(ry ;) is
negligible.

SWhen o follows a diffusion process, the realized volatility -7, r7

t,j
integrated volatility, j:il 0%(s)ds, as n — oo when innocuous regularity conditions are
assumed (Andersen, Bollerslev, Diebold, and Labys, 2000a).

converges to the

11



strained to be zero, the optimal weights become

Realized variances have been obtained using several sets of weights, in

particular results are reported when either

or

W = - 1<j<n
(1 — Xo)ni;
= O7 ] =

with separate multipliers estimated for each day of the week. These sets of

weights are referred to respectively as equal weights and optimal weights.

4.2 Summary statistics

Table 2 summarizes the distribution of daily realized volatility obtained using
five-minute returns from March 1990 to July 1998, for both equal weights and
optimal weights. The daily numbers have been annualized by multiplying &,
by v/251. The average annual standard deviation equals 14.2% using equal
weights and 15.1% using optimal weights. The average value of 25167 equals
(16.2%)? using either set of weights. This is close to the annualized variance

of daily returns, (15.5%)?, hence any bias caused by autocorrelation among

12



intraday returns is small. Unless stated otherwise the following remarks
apply to the annualized numbers calculated using the optimal weights.

There are several outliers, the most extreme being on 28 October 1997
when annualized volatility equals 152% using equal weights and 81% using
optimal weights; it is noteworthy that US volatility was exceptionally high
on both 27 and 28 October 1997 (Ebens, 1999). FTSE-100 volatility was
high around these dates and exceeded 30% on 23, 28, 29, 30 and 31 October.
Three of the highest estimates, all above 50%, are for the day that Sterling
left the Exchange Rate Mechanism (ERM) of the European Monetary System
and the two following days (16, 17 and 18 September 1992). Also, of the 20
estimates that exceed 40%, 11 are in the period from August to December
1998.

The distribution of annualized volatility is skewed to the right and highly
leptokurtic with a sample kurtosis of 19 for the optimal weights. Con-
sequently, Table 2 also presents summary statistics for the logarithms of
daily realized volatility, In(6¢). It can be deduced from the summary statist-
ics for In(6y) that 6, calculated from the optimal weights is a more accurate
estimate of o, than 6, calculated from equal weights.” Figures 3 and 4 are
plots of the annualized time series /2516, for the longer time period from
January 1986 to December 1998, respectively with a linear scale and a log-
arithmic scale for the volatility numbers. 8 The exceptionally high volatility

during the 1987 crash is clearly visible. °

"Let 62 = 02(1+4uy) with u; the zero-mean measurement error. Then In(6?) = In(o?)+
us — 1/2u? + ... and hence a more accurate estimate has a higher value of E[ln(67)] and
a lower value of var[ln(67)].

8Four sets of weights are used, depending on the hours that futures are traded as defined
in Section 2.2.

9Realized volatility peaked at 365% on Tuesday 20 October 1987 and was also above

100% on 19, 21, 23, and 27 October.
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4.3 The distribution of daily volatility

The distribution of In(6;) from March 1990 to July 1998 is almost symmetric
and approximately Gaussian when the optimal weights are used, the skew-
ness and kurtosis then being 0.44 and 3.71 respectively; these moments are
however significantly different from the Gaussian values of 0 and 3, the stand-
ard errors of the estimates being 0.054 and 0.108 respectively. The kurtosis is
much higher at 5.96 when equal weights are used, although this falls to 4.22
if the overnight period is excluded to give estimates of open-market volatility.
Figure 5 shows the empirical distribution of In(4;) when the optimal weights
are used. The continuous curves overlaying the histogram are firstly a nor-
mal density that matches the mean and standard deviation (dotted curve)
and secondly the density estimate based upon Gaussian kernels and band-
width equal to 0.1 (solid curve); the kernel estimate is more smooth than
that provided by the standard bandwidth of 0.06 for this data (Silverman,
1986, page 48).

There are several possible explanations for the excess kurtosis in the dis-
tribution of In(d6;). First, there is the extreme outlier, second In(é;) is an
accurate but nevertheless imperfect estimate of In(o;) and third it is, of
course, possible that the distribution of In(o;) has excess probability in the
right tail relative to the normal distribution, possibly reflecting occasional
financial crises.

The skewness and kurtosis estimates are similar to those reported for
the open-market period in the US. Our open-market figures of 0.55 and 4.22
for equal weights and 0.46 and 3.81 for optimal weights can be compared
with 0.75 and 3.78 for the DJIA index from 1993 to 1998 (Ebens, 1999),
and medians of 0.19 and 3.89 for the 30 DJIA stocks during the same period
(Andersen, Bollerslev, Diebold, and Ebens, 2000). For the 24-hour spot FX

15
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Figure 5: The distribution of the logarithm of realized volatility for the
FTSE-100 index from 1990 to 1998.

market the estimates of Andersen, Bollerslev, Diebold, and Labys (2000a)
are 0.35 and 3.27 for the DM/$ rate and 0.28 and 3.47 for the Yen/$ rate.

4.4 Temporal dependence

Figure 6 shows the autocorrelations of the time series of daily realized volatil-
ity In(dy) from March 1990 to July 1998, calculated using the optimal weights.
Positive dependence is observed for 180 lags, or about nine months. There is
a clear although minor seasonal effect based upon the five days of the week
that shows itself on the figure as the local peaks at lags 5, 10, 15, 20 and 25.

The maximum autocorrelation on Figure 6 is at the first lag and equals
0.65. This value is equal to the first-lag autocorrelation of approximately 0.65
reported by both Ebens (1999) for the DJIA and by Andersen, Bollerslev,
Diebold, and Labys (2000a) for FX.

16



0.700 — -

0.600 -

Autocorrelations

Lags

Figure 6: Autocorrelations of the logarithm of realized volatility for the
FTSE-100 index from March 1990 to July 1998.

The augmented Dickey-Fuller test provides highly significant evidence
that the realized volatility process does not contain a unit root. Hence we
consider I(d) processes with d < 1. The slow decline in the autocorrelations
of the realized volatility series suggests a long memory process, as reviewed
by Baillie (1996). Two standard methods provide conclusive evidence that a
long memory component exists in the volatility series. These methods have
been applied to the series In(d;) obtained from the optimal weights, adjusted
by removing the appropriate day-of-the-week mean mjq), j(¢) € {1,...,5},
from each observation.

First, consider the variance St of the sum of T consecutive observations.

These variances follow a scaling law for long memory processes such that

17
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T~ G — constant, as T — oo, with d > 0,

whilst short memory processes have d = 0. Figure 7 shows that (n(Sr) is
essentially a linear function of (n(T") over the range 1 < T < 128. From the
slope of this function, d is estimated to be 0.42.

Second, consider the spectral density f(w) of the process that generates

the observations. For a long memory process,

w* f(w) — constant, as w — 0.
The Geweke-Porter-Hudak (GPH) estimate of d is provided by regressing

18
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the logarithm of the periodogram estimate of the spectral density against
In(w) over a range of frequencies w (Geweke and Porter-Hudak, 1983). We
use frequencies %, with j =1,2,...,n% 6 = 0.8 and n = 2075 observations,
to obtain an estimated d equal to 0.43 with a standard error of 0.031. Figure
8 shows the estimated degree of fractional integration d as a function of
the number of periodogram ordinates n?, and also displays 95% confidence
intervals for d.

The estimates of d for the FTSE data are similar to those reported in
Ebens (1999) and by Andersen, Bollerslev, Diebold, and Labys (2000a). Both
these studies estimate d to be between 0.35 and 0.45.

0.43

A simple long memory filter (1 — L)"*® explains almost all of the depend-

ence in the realized volatility. The autocorrelations of

19
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are near zero, as shown on Figure 9. Table 3 contains some descriptive

statistics for the filtered series.

5 The distribution of standardized daily re-
turns

Table 4 summarizes the distribution and autocorrelations of standardized
daily returns r; = @ from March 1990 to July 1998, with ¢, calculated
using either equal weights or the optimal weights. The autocorrelations of

the r; are very small and are not significantly different from zero. Table 4

20



also provides the same summary statistics for the daily returns r;. It is noted
that the average daily return is 0.000483 or about 12% per annum. As the
average five-minute return is negative (approximately —3% per annum, see
Table 1) all of the gains from long futures positions during the sample period
occurred when the market was closed.

The kurtosis of the daily returns is 4.81 so that they are not normally
distributed. The kurtosis of the standardized daily returns is however 2.77 for
the optimal weights, so that standardizing the returns brings the distribution
much nearer to the normal. Although near to normal, both the skewness and
kurtosis are significantly different from the normal values of 0 and 3 at the
2% significance level. The kurtosis figure of 2.77 is similar to the 2.75 of
Ebens (1999) for the DJIA index, less than the median of 3.13 for the DJIA
stocks (Andersen, Bollerslev, Diebold, and Ebens, 2000) and more than the
2.41 for FX given by Andersen, Bollerslev, Diebold, and Labys (2000b).

Figure 10 shows the empirical distribution of 7} when the optimal weights
are used. The continuous curves overlaying the histogram are once more the
matched normal density (dotted curve) and the kernel density estimate with
bandwidth equal to 0.25 (solid curve). It can be seen that some of the non-
normality is simply a consequence of zero returns that reflect the minimum

tick equal to 0.5 index points; 37 of the 2075 daily returns are zero.

6 Conclusions

This study of five-minute returns from FTSE-100 futures provides several
conclusions about FTSE-100 volatility measured at the daily frequency. Neither
the distribution of the logarithm of volatility nor that of returns standard-

ized by realized volatility is exactly normal. A lognormal distribution for
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Figure 10: The distribution of the daily standardized returns of the FTSE-
100 index futures from March 1990 to July 1998.

volatility is not predicted by any theory. It is nevertheless interesting that
the distribution is near to lognormal with the main discrepancy being an ex-
cess probability of extremely high levels of volatility. A normal distribution
for standardized returns might be expected from the central limit theorem.
The divergence of the empirical distribution from the normal is minor and
may simply reflect the fact that futures prices are a discrete process. These
distributional conclusions are the first reported for the volatility of futures
prices using high frequency-data and are also the first that take account of
substantial price changes when the market is closed.

The time series behavior of FTSE-100 realized volatility is best described
by a long memory process. The logarithms of daily volatility display substan-
tial autocorrelations that do not decrease rapidly towards zero as the time

lag increases, as occurs for short memory processes such as ARMA models.
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Instead, fractional differencing of daily volatility provides a filtered series
that is almost uncorrelated so that a simple long memory process provides a
parsimonious model for volatility.

The conclusions about the distribution and the autocorrelation structure
of volatility have implications for researchers, traders and regulators. The
shape of the unconditional distribution of volatility restricts the diffusion
models for volatility that are credible when options are priced with volatility
assumed to be stochastic. The temporal behavior of volatility has immedi-
ate implications for the term structure of implied volatility that need to be
researched. Volatility forecasts can be derived by filtering realized volatility
using the fractional differencing filter and their information content can be
compared with that of implied volatilities that are known to forecast well
in comparisons with short memory ARCH forecasts. The relatively high
frequency of very high levels of volatility, and the consequent possibilities of
extreme returns, are quantified by the methods in this paper and thus should

be useful to risk managers.
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Appendix

Note to referees : this appendiz can be deleted if the proof is considered to
be either too easy or too technical for the journal, in which case the appendix
can be made available as a web document.

The optimal weights presented in Section 4.1 are obtained by assuming
that squared intraday returns 7}2, ; are the product of the multiplier \;, the
unobservable daily variance o7 and a residual term e; ; such that

2 2
Tt = Ajo €t

with the e;; independent and identically distributed, with mean 1 and vari-
ance v. Then the weights w; are to be chosen to define

Ut = Z w],rt_]
so that both
n
El6}|o7] = o7, ie. > Ajw; =1,
=0

and the conditional variance of the estimator is minimized, namely

n
var(at|at) = vaar(z Ajw;eq ;)
j=0

= athAQ 2
Introducing a Lagrange multiplier 6 and defining

n

Zn: wj + 003 Ajw; — 1)

then
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and hence all these partial derivatives can only be zero when Ajw; is the
same for all intervals j, i.e. when

YT DN
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86-98 90-98
Latest Interpolated Latest Interpolated
Average -0.00000132 -0.00000137 -0.00000111 -0.00000111
Standard Deviation 0.00103 0.00098 0.00086 0.00082
Skewness -2.9510 -3.2526 0.2302 0.4817
Kurtosis 462.0078 541.0832 25.2162 40.5652
Minimum -0.0896 -0.0914 -0.0172 -0.0168
20/10/1987 20/10/1987 05/12/1997 05/12/1997
Maximum 0.0577 0.0595 0.0303 0.0374
20/10/1987 20/10/1987 05/10/1990 05/10/1990
Number of zeros 81 565 43 626 42 135 16 263
Number of observations 285 960 285 960 188 825 188 825
Autocorrelations
- Returns
Lag 1 -0.0290 0.0080 0.0013 0.0356
Lag 2 0.0097 0.0168 -0.0175 -0.0142
Lag 3 -0.0282 -0.0302 -0.0159 -0.0165
Lag 4 -0.0128 -0.0119 -0.0085 -0.0090
Lag 5 -0.0214 -0.0231 -0.0037 -0.0039
- Absolute returns
Lag 1 0.3264 0.3572 0.2345 0.2582
Lag 2 0.2687 0.2973 0.2046 0.2248
Lag 3 0.2721 0.2943 0.1863 0.2022
Lag 4 0.2517 0.2685 0.1695 0.1823
Lag 5 0.2277 0.2344 0.1620 0.1748

Returns are calculated either from the latest prices before five-minute marks or
after interpolating between prices before and after the marks. The complete time-
series is from January 1986 until December 1988. The shorter time-series is from
March 1990 to July 1998.

Table 1: Summary statistics for five-minute FTSE-100 returns.
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Equal weights

Optimal weights

Annual Std. Dev. in(o¢) Annual Std. Dev. In(oy)
Average 0.1423 -4.7914 0.1512 -4.7081
Standard Deviation 0.0749 0.3665 0.0562 0.3266
Skewness 6.1626 1.0352 2.4747 0.4362
Kurtosis 78.4180 5.9581 18.5100 3.7122
Minimum 0.0529 -5.7019 0.0586 -5.9999
02/09/1996 02/09/1996 12/03/1997 12/03/1997
Maximum 1.5151 -2.3473 0.8145 -2.9679
28/10/1997 28/10/1997 28/10/1997 28/10/1997
Number of observations 2075 2075 2075 2075
Augmented Dickey-Fuller Test -7.3283 -5.5959 -5.5364 -4.9600
Autocorrelations
Lag 1 0.4468 0.5656 0.6109 0.6493
Lag 2 0.3446 0.4876 0.4977 0.5455
Lag 3 0.3404 0.4797 0.4764 0.5345
Lag 4 0.2908 0.4388 0.4598 0.5451
Lag 5 0.2488 0.4511 0.4774 0.5787

Squared five minute returns and the squared closed-market return are weighted
and aggregated to define realized daily variances. The weights are either all equal
or are optimal choices that minimize the variances of the volatility estimates.
Summary statistics are tabulated for both annualized realized volatility (assuming
251 trading days in a year) and the logarithms of daily realized volatility. Asterisks
indicate test statistics significant at the 1% level.

Table 2: The distribution of realized volatility for FTSE-100 futures from
March 1990 to July 1998.
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Filtered series

Average

Standard Deviation
Skewness

Kurtosis

Minimum

Maximum

Number of observations
Autocorrelations

Lag 1

Lag 2

Lag 3

Lag 4

Lag 5

Ljung-Box(20)

0.000072
0.205131
0.8194
5.5550

-0.7999
23/12/1994

1.3226
28/10/1997

2075

-0.0532
(0.0173)

-0.0407
(0.0530)

0.0388
(0.0620)

-0.0222
(0.1892)

0.0096
(0.3522)

30.4895
(0.0623)

The volatility series was filtered using the fractional integration filter (1 —

L)0'43.

Asterisks indicate test statistics significant at the 1% level. The numbers in par-

entheses are the levels of significance of the autocorrelation statistics.

Table 3: Descriptive statistics for the series defined by filtering the logarithms

of daily realized volatility.
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Daily Returns

Standardized daily returns

Equal weights

Optimal weights

Average 0.0005 -0.0035 0.0199
(0.0122) (0.4375) (0.1701)
Standard Deviation 0.0098 1.0003 0.9500
Skewness 0.1614* 0.0064 0.1573*
(0.0013) (0.4526) (0.0017)
Kurtosis 4.8084* 2.4692* 2.7729
(0.0000) (0.0000) (0.0174)
Minimum -0.0449 -2.9536 -2.5551
05/10/1992 17/07/1992 02/01/1991
Maximum 0.0496 3.1770 4.1357
10/04/1992 01/07/1997 30/12/1991
Tests for normality
x2, 50 bins 56.8900 85.3429* 64.5063
(0.1529) (0.0005) (0.0458)
Jarque-Bera 291.7512* 24.3731%* 13.0145*
(0.0000) (0.0000) (0.0015)
Kolmogorov-Smirnov 1.1460* 1.3032* 1.1706*
Anderson-Darling 3.5376 * 2.9670* 1.9494*
Number of observations 2075 2075 2075
Autocorrelations
- Returns
Lag 1 0.0112 -0.0076 -0.0079
(0.3041) (0.3640) (0.3589)
Lag 2 -0.0114 -0.0171 -0.0293
(0.3018) (0.2174) (0.0913)
Lag 3 -0.0214 -0.0297 -0.0322
(0.1648) (0.0878) (0.0710)
Lag 4 -0.0169 -0.0172 -0.0172
(0.2202) (0.2169) (0.2163)
Lag 5 -0.0333 -0.0162 -0.0306
(0.0648) (0.2307) (0.0814)
Ljung-Box(20) 25.8996 21.6526 22.8192
(0.1692) (0.3597) (0.2978)

Daily futures returns from March 1990 to July 1998 are standardized by dividing
mean-adjusted returns by daily realized volatilities. Realized volatilities are the
square roots of realized variances, defined by aggregating weighted, squared five-
minute returns and the squared closed-market return. The weights are either
all equal or are the optimal choices that minimize the measurement error of the
realized variances. Asterisks indicate test statistics that are significant at the 1%
level. The numbers in parentheses are levels of significance of the test statistics.

Table 4: The distributions of FTSE-100 futures daily returns and daily stand-
ardized returns.

30



