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Abstract. In this work, we propose the rebound attack, a new tool for
the cryptanalysis of hash functions. The idea of the rebound attack is
to use the available degrees of freedom in a collision attack to efficiently
bypass the low probability parts of a differential trail. The rebound at-
tack consists of an inbound phase with a match-in-the-middle part to
exploit the available degrees of freedom, and a subsequent probabilistic
outbound phase. Especially on AES based hash functions, the rebound
attack leads to new attacks for a surprisingly high number of rounds.
We use the rebound attack to construct collisions for 4.5 rounds of the
512-bit hash function Whirlpool with a complexity of 2120 compression
function evaluations and negligible memory requirements. The attack can
be extended to a near-collision on 7.5 rounds of the compression function
of Whirlpool and 8.5 rounds of the similar hash function Maelstrom. Ad-
ditionally, we apply the rebound attack to the SHA-3 submission Grøstl,
which leads to an attack on 6 rounds of the Grøstl-256 compression func-
tion with a complexity of 2120 and memory requirements of about 264.

Keywords: Whirlpool, Grøstl, Maelstrom, hash function, collision at-
tack, near-collision

1 Introduction

In the last few years the cryptanalysis of hash functions has become an important
topic within the cryptographic community. Especially the attacks and tools for
the MD4 family of hash functions (e.g. MD5, SHA-1) have reduced the security
provided by these commonly used hash functions [2, 3, 4, 24, 26, 27]. Most of the
existing cryptanalytic work has been published for this particular line of hash
function design. In the NIST SHA-3 competition [19], whose aim is to find an
alternative hash function to SHA-2, many new hash function designs have been
proposed. This is the most recent and most prominent case showing that it is
very important to have tools available to analyze other design variants as well.
Our work contributes to this toolbox.



1.1 Preview of Results

Our main result is the introduction of a technique for hash function cryptanal-
ysis, which we call the rebound attack. We apply it to both block cipher based
and permutation based constructions. In the rebound attack, we consider the
internal cipher of a hash or compression function as three sub-ciphers. Let E
be a block cipher, then E = Efw ◦ Ein ◦ Ebw. Alternatively, for a permutation
based construction, we decompose a permutation P into three sub-permutations
P = Pfw ◦ Pin ◦ Pbw.
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Fig. 1. A schematic view of the rebound attack. The attack consists of an in-
bound and two outbound phases.

The rebound attack can be described by two phases (see Fig. 1):

– Inbound phase: Is a meet-in-the-middle phase in Ein (or Pin), which is
aided by the degrees of freedom that are available to a hash function crypt-
analyst. We term the combination of meet-in-the-middle technique and ex-
ploitation of degrees of freedom leading to very efficient matches match-in-
the-middle approach.

– Outbound phase: In this second phase, we use truncated differentials in
both forward- and backward direction through Efw and Ebw (or Pfw and
Pbw) to obtain desired collisions or near-collisions. If the truncated differ-
entials have a low probability in Efw and Ebw, we can repeat the inbound
phase to obtained more starting points for the outbound phase.

We apply the rebound attack on several concrete hash functions where the
application on Whirlpool is probably the most relevant. Whirlpool is the only
hash function standardized by ISO/IEC 10118-3:2003 (since 2000) that does
not follow the MD4 design strategy. Furthermore, Whirlpool has been evaluated
and approved by NESSIE [20]. Whirlpool is commonly considered to be a con-
servative block-cipher based design with an extremely conservative key schedule.
The employed wide-trail design strategy [5] makes the application of differential
and linear attacks seemingly impossible. No cryptanalytic results on the hash
function Whirlpool have been published since its proposal 8 years ago.

Offsprings of Whirlpool are Maelstrom and to some extent several SHA-3
candidates, including Grøstl. The results of the attack on these hash functions
are summarized in Table 1. For the types of attacks, we adopt the notation
of [15].
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Table 1. Summary of results of the attacks on reduced hash functions Whirlpool,
Grøstl-256 and Maelstrom. The full versions have 10 rounds each. All attacks,
except the attacks on Grøstl-256, have negligible memory requirements.

hash
rounds

computational memory
type section

function complexity requirements

Whirlpool

4.5 2120 216 collision 3

5.5 2120 216 semi-free-start collision 3

7.5 2128 216 semi-free-start near-collision 3

Grøstl-256 6 2120 264 semi-free-start collision 4

Maelstrom
6.5 2120 216 free-start collision A

8.5 2128 216 free-start near-collision A

1.2 Related Work

The rebound attack can be seen to have ancestors from various lines of research,
often related to block ciphers:

– Firstly, differential cryptanalysis of block cipher based hash functions. Rij-
men and Preneel [23] describe collision attacks on 15 out of 16 rounds on
hash functions using DES. For the case of Whirlpool, there is an observation
on the internal block cipher W by Knudsen [13]. Khovratovich et al. [11]
studied collision search for AES-based hash functions.

– Secondly, inside-out techniques. As an application of second order differential
attacks, inside-out techniques in block-cipher cryptanalysis were pioneered
by Wagner in the Boomerang attack [25].

– Thirdly, truncated differentials. In the applications of the rebound technique,
we used truncated differentials in the outbound parts. Knudsen [12] proposed
truncated differentials as a tool in block cipher cryptanalysis, which recently
have been applied to the hash function proposal Grindahl [14] by Peyrin [21].

1.3 Outline of the Paper

In the following section, we start with a description of the attacked hash func-
tions. For the sake of presentation and concreteness, we immediately apply the
rebound attack to the hash function Whirlpool in Sect. 3. In Sect. 4, we apply
the rebound attack on Grøstl. The application of the attack to Maelstrom is
postponed to App. A. We conclude in Sect. 5.

2 Description of the Hash Functions

In this section we give a short description of the hash functions to be analyzed
in the remainder of this paper. We describe the hash function Whirlpool first,
and continue with the description of the hash function Grøstl.
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2.1 The Whirlpool Hash Function

Whirlpool is a cryptographic hash function designed by Barreto and Rijmen
in 2000 [1]. It is an iterative hash function that processes 512-bit input mes-
sage blocks with compression functions and produces a 512-bit hash value. The
Whirlpool compression function basically consists of two parts: the key schedule
and the state update transformation. The underlying block cipher W operates
in the Miyaguchi-Preneel mode [17] as shown in Fig. 2. A detailed description
of the hash function is given in [1].
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Fig. 2. A schematic view of the Whirlpool compression function. The block
cipher W is used in Miyaguchi-Preneel mode.

The 512-bit block cipher W uses a 512-bit key and is similar to the Advanced
Encryption Standard (AES) [18]. Both the state update transformation and the
key schedule of W update an 8 × 8 state S of 64 bytes in 10 rounds each. The
round transformations are very similar to the AES round transformations and
are briefly described here:

– the non-linear layer SubBytes (SB) applies an S-Box to each byte of the state
independently

– the cyclical permutation ShiftColumns (SC) rotates the bytes of column j
downwards by j positions

– the linear diffusion layer MixRows (MR) multiplies the state by a constant
matrix

– the key addition AddRoundKey (AK) adds the round key and/or the round
constants cr (AC) of the key schedule

In each round, the state is updated by round transformation ri as follows:

ri ≡ AK ◦MR ◦ SC ◦ SB.
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In the remainder of this paper, we will use the outline of Fig. 3 for one
round. We denote the resulting state of round transformation ri by Si and the
intermediate states after SubBytes by S′i, after ShiftColums by S′′i and after
MixRows by S′′′i . The initial state prior to the first round is denoted by S0.
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Fig. 3. One round ri of the Whirlpool compression function with 8 × 8 states
Si−1, S′i, S

′′
i , S′′′i , Si and round key input Ki.

After the last round of the state update transformation, the initial value or
previous chaining value Ht−1 = S0, the message block Mt, and the output value
of the last round S10 are XORed, resulting in the final output of the Whirlpool
compression function, Ht = Ht−1 ⊕Mt ⊕ S10.

2.2 The Grøstl Hash Function

Grøstl was proposed by Gauravaram et al. as a candidate for the SHA-3 com-
petition [9], initiated by the National Institute of Standards and Technology
(NIST). Grøstl is an iterated hash function with a compression function built
from two distinct permutations (see Fig. 4). Grøstl is a wide-pipe design with
proofs for the collision and preimage resistance of the compression function [8].
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Fig. 4. The compression function of Grøstl. P and Q are 2n-bit permutations
for an n-bit hash value.
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The two permutations P and Q are constructed using the wide trail design
strategy and borrow components from the AES. The design of the two permu-
tations is very similar to the block cipher W used in Whirlpool instantiated
with a fixed key input. Both permutations update an 8× 8 state of 64 bytes in
10 rounds each. The round transformations are very similar to the AES round
transformations and are briefly described here:

– AddRoundConstant (AC) adds different one-byte round constants to the
8× 8 states of P and Q

– the non-linear layer SubBytes (SB) applies the AES S-Box to each byte of
the state independently

– the cyclical permutation ShiftBytes (ShB) rotates the bytes of row j left by
j positions

– the linear diffusion layer MixBytes (MB) multiplies the state by a constant
matrix

In each round, the state is updated by round transformation ri as follows:

ri ≡MB ◦ ShB ◦ SB ◦AC

3 Rebound Attack on Whirlpool

In this section, we present details of the rebound attacks applied to the hash
function Whirlpool. First, we will give an overview of the attack strategy which
is the basis for the attacks on 4.5, 5.5 and 7.5 rounds. The main idea of the
attacks is to use a 4-round differential trail [6], which has the following sequence
of active S-boxes: 1→ 8→ 64→ 8→ 1. Note that the differential probability in
each round is proportional to the number of active S-boxes. Using the Rebound
Attack we can cover the most expensive middle part using an efficient match-
in-the-middle approach (inbound phase). In the outbound phase, the trail is
extended and the two ends of the trail are linked using the feed-forward of the
hash function.

3.1 Attack Overview

The core of the attack is a 4 round trail of the form 1→ 8→ 64→ 8→ 1. This
trail has the minimum number of active S-boxes and has the best differential
probability according to the wide trail design strategy. In the rebound attack,
we first split the block cipher W into three sub-ciphers W = Efw ◦ Ein ◦ Ebw,
such that most expensive part of the differential trail is covered by the efficient
inbound phase Ein. Then, the outbound phase (Efw, Ebw) has a relatively low
probability and can be fulfilled in a probabilistic way:

Ebw = SC ◦ SB ◦AK ◦MR ◦ SC ◦ SB
Ein = MR ◦ SC ◦ SB ◦AK ◦MR

Efw = AK ◦MR ◦ SC ◦ SB ◦AK

The two phases of the rebound attack consists of basically four steps:
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– Inbound phase
Step 1: start with 8-byte truncated differences at the MixRows layer of

round r2 and r3, and propagate forward and backward to the S-box
layer of round r3.

Step 2: connect the input and output of the S-boxes of round r3 to form
the three middle states 8→ 64→ 8 of the trail.

– Outbound phase
Step 3: extend the trail both forward and backward to give the trail 1 →

8→ 64→ 8→ 1 through MixRows in a probabilistic way.
Step 4: link the beginning and the end of the trail using the feed-forward

of the hash function.

If the differences in the first and last step are identical, they cancel each
other through the feed-forward. The result is a collision of the round-reduced
compression function of Whirlpool. See Fig. 5 for an overview of the attack.
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Fig. 5. A schematic view of the attack on 4 rounds of Whirlpool with round key
inputs and feed-forward. Black state bytes are active.

3.2 Collision Attack for 4.5 Rounds

The collision attack on 4.5 rounds of Whirlpool is the starting point for all
subsequent attacks. If the differences in the message words are the same as in
the output of the state update transformation, the differences cancel each other
through the feed-forward. In other words, we will construct a fixed-point (in
terms of differences) for the block cipher in the state update. The outline of the
attack is shown in Fig. 5 and the sequence of truncated differences has the form:

1 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 1 r4.5−−→ 1

In the following, we analyze the 4 steps of the attack in detail.

Precomputation. In the match-in-the-middle part (Step 2) we need to find a
differential match for the SubBytes layer. In a precomputation step, we compute
a 256 × 256 lookup table for each S-box differential (input/output XOR differ-
ence table). Note that only about 1/2 of all S-box differentials exist. For each
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possible S-box differential, there are at least two (different) values such that the
differential holds. A detailed description of the distribution of S-box differentials
is given in App. B.

Step 1. We start the attack by choosing a random difference with 8 active
bytes of state S′′2 prior to the MixRows layer of round r2. Note that all active
bytes have to be in the diagonal of state S′′2 (see Fig. 5). Then, the differences
propagate forward to a full active state at the input of the next SubBytes layer
(state S2) with a probability of 1. Next, we start with another difference and
8 active bytes in state S′′′3 after the MixRows transformation of round r3 and
propagate backwards. Again, the diagonal shape ensures that we get a full active
state at the output of SubBytes of round r3.

Step 2. In Step 2, the match-in-the-middle step, we look for a matching in-
put/output difference of the SubBytes layer of round r3 using the precomputed
S-box differential table. Since we can find a match with a probability of 1/2 for
each byte, we can find a differential for the whole active SubBytes layer with a
probability of about 2−64. Hence, after repeating Step 1 of the attack about 264

times, we expect to find a SubBytes differential for the whole state. Since we get
at least two state values for each S-box match, we get about 264 starting points
for the outbound phase. Note that these 264 starting points can be constructed
with a total complexity of about 264. In other words, the average computational
cost of each match-in-the-middle step is essentially the respective computation
of the round transformations.

Step 3. In the outbound phase, we further extend the differential path backward
and forward. By propagating the matching differences and state values through
the next SubBytes layer, we get a truncated differential in 8 active bytes for
each direction. Next, the truncated differentials need to follow a specific active
byte pattern. In the case of the 4 round Whirlpool attack, the truncated dif-
ferentials need to propagate from 8 to one active byte through the MixRows
transformation, both in the backward and forward direction.

The propagation of truncated differentials through the MixRows transfor-
mation is modelled in a probabilistic way. The transition from 8 active bytes to
one active byte through the MixRows transformation has a probability of about
2−56 (see App. C). Note that we require a specific position of the single active
byte to find a match in the feed-forward (Step 4). Since we need to fulfill one
8→ 1 transitions in the backward and forward direction, the probability of the
outbound phase is 2−2·56 = 2−112. In other words, we have to repeat the inbound
phase about 2112 times to generate 2112 starting points for the outbound phase
of the attack.

Step 4. To construct a collision at the output of this 4 round compression
function, the exact value of the input and output difference has to match. Since
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only one byte is active, this can be fulfilled with a probability of 2−8. Hence, the
complexity to find a collision for 4 rounds of Whirlpool is 2112+8 = 2120. Note
that we can add half of a round (SB,SC) at the end for free, since we are only
interested in the number of active bytes. Remember that we can construct up to
2128 starting points in the inbound phase of the attack, hence we have enough
degrees of freedom for the attack. Note that the values of the key schedule are not
influenced. Hence, the attack works with the standard IV and we can construct
collisions for 4.5 rounds of the hash function of Whirlpool.

3.3 Semi-Free-Start Collision Attack for 5.5 Rounds

We can extend the collision attack on 4.5 rounds to a semi-free-start collision
attack on 5.5 rounds of Whirlpool. The idea is to add another full active state
in the middle of the trail. We use the additional degrees of freedom of the key
schedule to fulfill the difference propagation through two full active S-box trans-
formations. Note that the outbound part of the attack stays the same and the
new sequence of active S-boxes is:

1 r1−→ 8 r2−→ 64 r3−→ 64 r4−→ 8 r5−→ 1 r5.5−−→ 1
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Fig. 6. In the attack on 5.5 rounds we first choose random values of the state
S′4 to propagate backwards (Step 2a) and then, use the degrees of freedom from
the key schedule to solve the difference propagation of the S-box in round r3
(Step 2b).

Step 1. Figure 6 shows the inbound part of the attack in detail. Again, we can
choose from up to 264 initial differences with 8 active bytes at state S′′2 and S′′′4
each, and linearly propagate forward to S2 and backward to S′4 until we hit the
first S-box layer. Then, we need to find a matching SubBytes differential of two
consecutive S-box layers in the match-in-the-middle phase.

Step 2. To pass the S-box of round r4 in the backward direction, we choose one
of 2512 possible values for state S′4. This also determines the input values and
differences of the SubBytes layer (state S3). Then, we propagate the difference
further back to state S′3, which is the output of the S-box in round r3. The 512
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degrees of freedom of the key schedule input K3 between the two S-boxes allow
us to still assign arbitrary values to the state S′3. Hence, the correct difference
propagation of the S-box in round r3 can be fulfilled by using these additional
degrees of freedom to choose the state S′3 as well. The complexity of the attack
does not change and is determined by the 2120 trials of the outbound phase.

The outbound phase (Step 3 and Step 4) of the 5.5 round attack is equivalent
to the 4.5 round case. However, we cannot choose the round keys, and hence the
chaining values, anymore since they are determined by the difference propagation
of the S-box of round r3. Therefore, this 5.5 round attack is only a semi-free-start
collision attack on the hash function of Whirlpool.

3.4 Semi-Free-Start Near-Collision Attack for 7.5 Rounds

The collision attack on 5.5 rounds can be further extended by adding one round
at the beginning and one round and at the end of the trail (see Fig. 7). The
result is a semi-free-start near-collision attack on 7.5 rounds of the hash function
Whirlpool with the following number of active S-boxes:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 64 r5−→ 8 r6−→ 1 r7−→ 8 r7.5−−→ 8

Since the inbound phase (Step 1 and Step 2) is identical to the attack on 5.5
rounds, we only discuss the outbound phase (Step 3 and Step 4) here.
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Fig. 7. In the attack on 7.5 rounds we extend the trail by one more round at
the beginning and 1.5 rounds at the end to get a semi-free-start near-collision of
Whirlpool.

Step 3. The 1-byte difference at the beginning and end of the 4 round trail
will always result in 8 active bytes after one MixRows transformation. Hence,
we can go backward one round and forward 1.5 rounds with no additional costs.
We add a half round at the end to get a similar pattern of 8 active S-boxes due
to the ShiftColumns transformation. Note that we cannot get an exact match of
active S-boxes and get therefore only a semi-free-start near-collision.

Step 4. Using the feed-forward, the position of two active S-boxes match and
cancel each other with a probability of 2−16. Hence, the total complexity of
our semi-free-start near-collision is about 2112+16 = 2128. Note that the generic
(birthday) complexity of a near-collision on 52 bytes is 2

52·8
2 = 2208.
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4 Rebound Attack on Grøstl

In this section, we extend the attack on Whirlpool to the SHA-3 proposal Grøstl.
Although the hash function is built from similar components as Whirlpool, the
attack does not apply equally well. The available degrees of freedom of the
second permutation cannot be used in the attack on the first permutation as in
Whirlpool. Note that we can still apply the attack on 4.5 rounds of Whirlpool to
the compression function of Grøstl-256 and get the same complexity of about
2120.

4.1 Semi-Free-Start Collision for 5 Rounds

We can improve the Rebound Attack on Grøstl-256 by using differences in the
second permutation as well. In the attack on 5 rounds, we use the following
differential trail for both permutations:

8 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 8 r5−→ 64

By using an equivalent differential trail in the second permutation one can find
a collision for the compression function of Grøstl-256 reduced to 5 rounds with
a complexity of 264, see Fig. 8.
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Fig. 8. Attack on Grøstl-256 reduced to 5 rounds using two equivalent trails in
both permutations P and Q.

For each permutation, we can find 264 inputs following this differential with a
complexity of about 264 and negligible memory requirements, see Sect. 3. Hence,
the differential trail holds with probability 1 on average in both P andQ. In order
to get a semi-free-start collision of Grøstl-256 reduced to 5 rounds, we require
that the differences at the output of round 5 are equal. Since the MixBytes
transformation is linear it is sufficient that the differences before MixBytes in
round 5 are equal. Furthermore, to prevent that the feed-forward destroys the
collision again, we do not allow any differences in H. Hence, all differences are
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due to differences in the message M and we require these differences at the input
of round 1 to be equal as well.

For the attack to work, differences in 16 bytes need to be equal. A straight-
forward implementing of the attack would result in a complexity of about 2128.
However, the complexity can be significantly reduced by applying a meet-in-
the-middle attack. In detail, by generating 264 differential trails for P and 264

differential trails for Q we expect to find a matching input and output. This
results in a semi-free-start collision for Grøstl-256 reduced to 5 rounds. The
attack has a total complexity of about 264 evaluations of P and Q and memory
requirement of 264. Note that the memory requirements of the attack can be sig-
nificantly reduced by memory less variants of the meet-in-the-middle attack [22].

4.2 Semi-Free-Start Collision for 6 Rounds

The attack can be extended to 6 rounds using an extended differential trail for
P and Q, see Fig. 9. For this attack, we use a trail with the following sequence
of active bytes:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 8 r5−→ 8 r6−→ 64

Note that this trail holds with a probability of 2−56 on average. Hence, we can
find a collision for the compression function of Grøstl-256 reduced to 6 rounds
with a complexity of about 256+64 = 2120, and memory requirements of 264 to
match the beginning and end of each trail. In contrast to the attack on 5 rounds,
we do not see how the connection of the two permutations can be implemented
in a memory-less way.
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Fig. 9. Attack on Grøstl-256 reduced to 6 rounds using two equivalent trails in
both permutations P and Q.

Note that we could add a half round (ShB,MB) in the beginning of Grøstl-
256, similar to the end of the trail. However, we only consider variants by re-
ducing rounds at the end of the compression function. Trying to attack more
rounds of the Grøstl-256 compression function quickly does not leave enough
degrees of freedom to succeed, or results in a computational complexity above
2128, which is above the security claims of the designers.
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5 Conclusion and Open problems

In this paper, we propose a new tool for the toolbox of hash function crypt-
analysts: The rebound attack. We have successfully attacked 7.5 rounds of the
Whirlpool compression function, 6 rounds of the Grøstl-256 compression func-
tion, and 8.5 rounds of the Maelstrom compression function (App. A).

The idea in these attacks is to use the available degrees of freedom in a
collision attack to efficiently bypass the devastating effects of the wide-trail de-
sign strategy on differential-style attacks for a feasible number of rounds. More
degrees of freedom (like the increased key-size in the Maelstrom block cipher)
makes equation solving (and hence the match-in-the-middle step) easier and
allows to cover even more rounds.

Most AES-based SHA-3 candidates are natural candidates for applications
of the rebound attack. To this end, we can refer to preliminary results which
break Twister-512 [16]3.

The idea seems applicable to a wider range of hash function constructions.
For the outbound part of the rebound attack we used truncated differentials in all
our examples. However, the rebound technique does not constrain the property
used in the outbound part. It would be interesting to see if other non-random
properties (e.g., correlations or algebraic relations) could also be used with the
rebound attack.
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A Rebound Attack on Maelstrom

In this section, we apply the attack of Whirlpool to Maelstrom.

A.1 Description of the Hash Function

Maelstrom [7] is a hash function very similar to Whirlpool. It has a simpler key
schedule, works on 1024-bit message blocks and uses the Davies-Meyer mode
instead of Miyaguchi-Preneel. The internal block cipher of Maelstrom works
on 512-bit blocks with a 1024-bit key schedule. The additional 512 degrees of
freedom in the key schedule can be used to attack one more round (up to 8.5
rounds) of the compression function of Maelstrom.

A.2 Attack on 8.5 Rounds

Since Maelstrom uses the Davies-Meyer mode, we can only get a free-start col-
lision for the hash function. However, the additional degrees of freedom of the
key schedule allow us to add another round in the inbound part. The sequence
of active S-boxes for the 8.5 round attack on Maelstrom is then:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 64 r5−→ 64 r6−→ 8 r7−→ 1 r8−→ 8 r8.5−−→ 8 (1)

The extension is essentially the same as for the 7.5 round attack on Whirlpool.
We add another state with 64 active bytes in the middle of the trail. This means,
that we now have to fulfill the difference propagation of three S-box layers with
64 active bytes each. Same as in Sect. 3.3, we can fulfill one S-box propagation
using the 512 degrees of freedom of the state itself. Since the second S-box
difference propagation uses only 512 degrees of freedom from the key schedule,
there are another 512 degrees of freedom left to fulfill the difference propagation
of the third S-box. The complexity of the attack does not change and is 2128 for
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the 512-bit hash function Maelstrom. Furthermore, the semi-free-start collision
attack on 5.5 rounds of Whirlpool can be extended to a 6.5 rounds free-start
collision attack of Maelstrom with the same complexity of 2120.
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Fig. 10. In the attack on Maelstrom we use the additional degrees of freedom
of the key schedule to pass three S-box layers (Step 2a,2b,2c).

B Probability and Conditions of S-box Differentials

In this section we analyze differentials of the Whirlpool and AES S-boxes in
detail. For a fixed differential (∆a,∆b) with ∆a = x ⊕ y and ∆b = S(x) ⊕
S(y), we get the probability P (∆b = S(∆a)) ∼ 1/2. This can be verified by
enumerating through all 256 × 256 input/output pairs (x, y) and (S(x), S(y)).
Table 2 gives a distribution of possible S-box differentials for the Whirlpool and
AES S-boxes [10]. Note that for each possible S-box differential, we get at least
the two symmetric values (x, y) and (y, x). In the case of Whirlpool, we get
for a small fraction of differentials even 8 possible pairs. This corresponds to the
maximum probability distribution of the Whirlpool S-box, which is 8·2−8 = 2−5.

Table 2. The number of differentials and possible pairs (x, y) for the Whirlpool
and AES S-boxes. The first row shows the number of impossible differentials and
the last row corresponds to the zero differential.

# (x, y) Whirlpool AES

0 39655 33150
2 20018 32130
4 5043 255
6 740 -
8 79 -

256 1 1

C Propagation of Truncated Differentials in MixRows
and MixBytes

Since the MixRows operation is a linear transformation, standard differences
propagate through MixRows in a deterministic way. The propagation only de-
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pends on the values of the differences and is independent of the actual value of
the state. In case of truncated differences only the position, but not the value of
the difference is determined. Therefore, the propagation of truncated differences
through MixRows can only be modelled in a probabilistic way. Note that the
MixBytes operation of Grøstl has the same properties as MixRows.

The MDS property of the MixRows transformation ensures that the sum
of the number of active input and output bytes is at least 9. Hence, a non-zero
truncated difference with one active byte will propagate to a truncated difference
with 8 active bytes with a probability of 1. On the other hand, a truncated
difference with 8 active bytes can result in a truncated difference with one to 8
active bytes after MixRows. However, the probability of a 8→ 1 transition with
predefined positions is only 2−7·8 = 2−56 since we require 7 out of 8 truncated
differences to be zero. Table 3 is similar to the table of [21] and shows the
probabilities for all 81 cases with a fixed position of truncated differences. Note
that the probability of any x → 8 transition (1 −

∑7
i=1 P (x→ i) ∼ 2−0.0017) is

approximated by 1 in this paper. Note that the probability only depends on the
direction of the propagation of truncated differences.

Table 3. Approximate probabilities for the propagation of truncated differences
through MixRows with predefined positions. Di denotes the number of active
bytes at the input and Do the number of active bytes at the output of MixRows.
Probabilities are base 2 logarithms.

Do \Di 0 1 2 3 4 5 6 7 8

0 0 × × × × × × × ×
1 × × × × × × × × −56

2 × × × × × × × −48 −48

3 × × × × × × −40 −40 −40

4 × × × × × −32 −32 −32 −32

5 × × × × −24 −24 −24 −24 −24

6 × × × −16 −16 −16 −16 −16 −16

7 × × −8 −8 −8 −8 −8 −8 −8

8 × 0 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017
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