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Abstract 

 
In our work, we have analyzed various malware detection techniques and methods for mobile devices and study how 
these techniques have been changed over the years. The work has investigated viruses and other forms of malware that 
have affected the mobile market and how malware analysts have proposed various suitable solutions to detect them 
efficiently. Android-based mobile devices are our prime goal because of high usage, cost-effective, easy to handle and 
use, and most importantly easily allow third-party applications in their framework. This work also discusses modern 
threats, the magnitude of their influence, and how they were discovered alongside analysis of said threats.  
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1. Introduction 

 

In the modern world, mobile phones have become so 
popular and it is difficult to imagine the life of mankind 
without them. The number of mobile users has risen from 
4.15 billion in 2015 to a projected 4.78 billion users in 2020. 
Researchers in Checkpoint have examined different 
Android malware attacks in the first 6 months of 2019 to 
find out that hackers are targeting smartphones 50% more 
than the other years. These findings are highlighted in the 
Cyber Attack Trends: 2019 Mid-Year Report [1]. The main 
intent of hackers is malicious advertising of the Android 
devices, credential thefts, and surveillance of users. 
Research has found that Malware builders are also available 
underground to build on the malware. They follow 
distribution techniques similar to the spreading of normal 
desktop-based malware applications. This pattern is proved 
to be effective almost 65% of the time without the user 
knowing that their device has been affected. Due to the 
pervasive nature of Android, the threats against it are rising 
day by day and so there is a need to reliably detect and 
classify tools. Before understanding in-depth, the different 
malware attacks, it is necessary to understand the Android 
operating system [2, 3, 62]. 
 
 
2. Background 

 
  With the rise of mobile phones in the 2000s, it took a mere 
3 years for malware to begin developing for the same. They 
started with variations of Cabir, a harmless worm at first, it 
eventually developed into a family of viruses that targeted 
the Symbian OS. By 2006, the malware had spread to every 
platform. Even Android, despite being completely new in 
2008, could only evade them for two years. From SMS 
Fraud to location transmitting Trojans, when 2011 ended, 

Android had crossed Symbian and J2ME to become the lead 
platform for malware. This is also the year that saw the first 
Man in the Middle attacks hit the mobile platform. Despite 
many advances in both detection techniques and security 
features since then, Malwares have only grown more 
complex. At their peak, they could record full conversations 
and all private exchanges and upload them at will. Just last 
year in 2019 Kaspersky detected approximately 3,503,952 
malicious installation packages, 69,777 new mobile trojans, 
and 68,362 new mobile ransomware trojans. Android 
continues to be the leading platform and considering that it 
owns 70% of the smartphone market, that title is unlikely to 
go away. Malware creation has become exceedingly profit-
driven. According to 2017 statistics, in the Carbon Black 
report [4], malware authors earn $163,000 per year, which 
is more than double the average salary for a software 
developer working on legal projects [5, 6, 54]. 

 

 

3. Android Operating System 
 
Android OS is an open-source, Linux kernel-based 
operating system that was initially released in 2008. In 
2014, the original Dalvik virtual machine that used a Just in 
Time (JIT) compiler was replaced by Android Runtime, a 
new virtual machine that used an Ahead of Time compiler. 
In 2017, a JIT compiler was also added to Android Runtime. 
These constant changes have taken a toll on malware 
detection frameworks [7, 45,59]. A mobile antivirus app has 
a limited amount of permissions granted by the OS for what 
it can analyze; due to this, mobile virus or malware 
detection rarely takes place on a device and a signature-
based approach is considered preferable. The variation in 
hardware, versions, and custom additions by individual 
companies may have paved the path to a wide range of 
Android products and massive market domination but it has 
prevented unity within the platform and has left devices 
fragmented and exposed to many threats [8]. The effect of 
the changes between the OS versions was studied and it was 
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concluded that having a universal malware classifier for all 
the versions reduced accurate detection rates. For higher 
security and accuracy, the changes must be kept in mind and 
antiviruses made accordingly [9, 44, 53]. 

 
 

4. Evolution of Mobile Malware 
 
Recently Kaspersky released the statistics for mobile malware 
for the year 2017-18 [10] as shown in figure 1.  From this 
graph, it is observed that much mobile malware is either Risk 
Tools or Trojan Droppers. Risk Tools are locally operating 
programs that are used to conceal files, hide and terminate 
running processes or remotely access resources. They’re not 
inherently malicious but are used for by cybercriminals for 
crimes like cryptocurrency mining. Trojan Droppers are used 
to install or update malicious programs in the victim’s device. 
They usually consist of a bundle of unrelated malware, often 
including a hoax to distract from the real effects of the bundle.  
Undetectable trojans are much harder to create than a dropper 
and hence new droppers are often made to carry and deploy 
pre-existing trojans. Mobile malware has evolved to vary 
from traditional malware a lot [11]. Mobile security principles 
although derived from traditional desktop-based malware 
have to be adapted to the differences in the two systems.  For 
example, mobile devices have comparatively scarce resources 
like battery or processing power and varying applications that 
can limit static analysis. Through a study from Symantec, in 
the year 2014, an average of 272 new malware was discovered 
attacking the Android Operating System every month, these 
numbers have been significantly higher in recent years. 

Android devices are also increasing in popularity due to 
which they are becoming a desirable target [12]. We can see 
as per Fig 1, 80% of the Android malware are forms of 
Trojans. In March 2020, AV-Test, an Independent IT-
Security Institute, conducted tests on various Antiviruses and 
monitored the performance of each antivirus to detect 
malware and also its false positive detection rate. All the 
products were in their updated versions and had their standard 
protection layers. The objective of this study was to identify 
the best antiviruses that can detect malicious software on the 
mobile. It also revealed that the built-in malware protection 
for android, Google Play Protect was not enough protection 
and fell short on both protection and usability [57].   
 
 
5. Android Malware Traits 

 
A mobile worm is a type of mobile malware that makes use 
of the physical movements of the host to propagate among 
various mobile networks. This principle is similar to real-life 
worms but the difference is that applications in Android can 
easily be installed by either a touch or a swipe, unlike PCs that 
use a keyboard or mouse. Hence, static analysis of mobiles 
becomes more difficult because these swipe patterns must 
also be considered (degree of touch). Also, mobile devices are 
prone to multiple connections and have other features that 
traditional desktop systems lack such as SMS, Bluetooth, 
General Packet Radio Service (GPRS), 3G, and even 
Multimedia Messaging Services along with access to the web 
browsers. Tools such as GPS, Camera, and Compass can also 
be tracked by this malware. A common trait that Android 
malware carry is that they send background messages to 
remote numbers most likely like a toll number so that the 
attackers can easily access information anonymously [13].  
         

 
Fig. 1. Mobile Malware Statistics Released by Kaspersky for 2017-18 
[10] 

 
 
 This trait was observed when gaming applications like 
Angry Birds, Luxury Car Parking, Firefighting Simulator 
(etc.) were revealed to be scams. As a result, Google had to 
remove 13 such applications from the Play Store. These 
applications automatically hide and generate a fake store 
called Game Center which cannot be deleted by the user. They 
also start sending SMS messages once the game begins. The 
attackers charge roughly 15 GBP per text which the user 
needs to pay. Attackers choose applications that look 
attractive on the outside but have no purpose when a user tries 
to play the game. This is how malware authors gain profit and 
have popularized their malware across the whole Android 
platform. In general, Android malware is often spread via 
phishing, social engineering, or downloading from the 
internet [14]. They then launch a Privilege Escalation attack 
on the mobile device. A privilege escalation attack is a type 
of attack where a bug or design flaw is exploited in the 
operating system or software that enables them to gain access 
to the resources that are normally protected [15]. In the 
Android OS, the vulnerability is the kernel through which the 
malware gains root access to the system. 
 

 
Fig. 2. Applications interact in an Android device 

 
 
 Figure 2 depicts a privilege escalation attack on the 
Android device. The malware has access to the lower and 
higher-privileged sections of the OS [16]. This is how the data 
is sent to the attackers and how spyware/bots can easily be 
monitored remotely. These bots can also be responsible for 



Kakelli Anil Kumar, A. Raman, C. Gupta and R. R. Pillai/Journal of Engineering Science and Technology Review 13 (4) (2020) 240 - 248 

 242 

DOS (Denial of Service) attacks by rerouting the traffic of 
packets to different addresses. They can also overuse the 
resources and tamper with other files. Given below is the 
Android OS architecture. The 4 layers- Applications, 
Application Framework, Libraries, and the Linux Kernel are 
indicated and the system calls between them are also shown 
in Fig. 2. Android architecture is modified using a Linux 
based Kernel and has mainly 4 layers as shown above. The 
Java written applications are run in isolation. After 2019, 
since Android’s latest version is 10.0, and Ahead of Time 
(ART), the compiler-based compilation is used for 
compilation in each of their virtual machines. The hardware 
consists of an ARM processor (Advanced RISC Machine) 
that is integrated with a memory chip and other different 
processors along with features such as GPS and Bluetooth. To 
access the device each of the applications must be granted 
permissions by the Android Permission System when they are 
installed. This is the general agreement that users see when 
they install any new application. Once the application is 
installed, the permissions are granted by the kernel and they 
can interact with each other through API calls [17]. The main 
components of Android are the content providers and the 
receiving broadcasts as shown in figure 3. Content providers 
are responsible for providing access control mechanisms for 
the process by grouping them into structured sets that are 
enforced by security mechanisms [18, 61]. Broadcasting of 
services occurs in the background and the user’s activities are 
the most visible component that handles the user’s actions 
(e.g. Touch and activation of applications).  

 
Fig. 3. Android Operating System Architecture 

 
 

6. Android Malware Statistics 

 
The most recent mobile malware that was popular in 2019 is 
given below. According to Kaspersky reports [19], the major 
malware that affected 2019 was potentially unwanted 
software like Adware and Risk Tool. For example, xHelper is 
a popular malware that cannot be removed even if the 
Android phone is the factory reset. It affected around 45,000 
Android phones in October 2019. This malware used 
encryption in its full implementation and because of this it 
could not be traced by antiviruses that use behavioral analysis 
to locate malware from figure 4. xHelper evolved from 
displaying ads for monetary benefits to installing other 
malware into the device and is considered by experts to be a 
work in progress. xHelper infecting an Android phone is 
shown below. Other malware that was dangerous in 2019 was 
Trojan Droppers and Bankers [20]. For example, Trojan-
Dropper.AndroidOS.Necro.n, Trojan.AndroidOS.Boogr.gsh 
and Trojan.AndroidOS.Hiddapp.ch. 
 

  
Fig 4. Variations of Malicious Downloads by Android users  

 
 

7. Malware Detection Techniques 

 
The research on security in mobile environments builds on 
decades of traditional malware research, however, the need to 
optimize has led to a focus on developing more targeted, 
robust, and effective ways to classify malware in smart 
devices [21]. One of the better-known methods is the use of 
antivirus products. However, since they are limited by 
smartphone permissions like any other application, they are 
considered to be not as effective. Malware detection in 
antiviruses is usually signature-based [22]. A malware 
signature is a sequence of bytes to identifies the malware’s 
presence, i.e. it exists in an infected file and doesn’t in 
uninfected ones [23]. Obfuscation is used often by malware 
developers to escape this analysis and so although still called 
signatures, antivirus entries in their databases to classify 
malware have become far more complex and advanced. P. 
Vinod et Al [24] proposed an Android framework for better 
user trust of mobile users. The proposed system has used 
machine learning to investigate the system calls used mobile 
malware of Andriod. The experimentation has been 
conducted on the synthesized system calls and generated area-
under-curve of accuracy 99.9% and also received better 
classifier accuracy [60]. 
 
Static analysis is another well-known method of malware 
detection. It examines the malware’s code without executing 
it and despite the limitations may reveal several paths of 
execution. Obfuscation can be used here again to limit or 
remove access to malware codes in mobiles [46, 63]. Android 
malware also tends to involve plenty of runtime activity that 
can’t be detected via this method. The source code for 
Android apps is usually inaccessible and so most mobile 
detection frameworks analyze the bytecode in the application 
package (APK). McLaughlin et al [25] proposed a novel 
Android malware detection system that uses a deep 
convolutional neural network (CNN). The classification [52] 
of malware is based on static analysis of the raw opcode 
sequence from the disassembly of the program. Features that 
indicate which malware is being looked at can be learned by 
feeding the CNN with raw opcode sequences of known 
malware. Once the network is fully trained, it’s capable of 
scanning 3000 files per second when executed on the Nvidia 
GTX 980 GPU. However, the accuracy rate of detections was 
greatly less than desired on large (5000 samples, 80% 
accuracy) and very large (20000 samples, 87% accuracy) 
datasets.   Li et al [26] wanted to combat the high rate of 
malware production with a scalable malware detection 
approach that can effectively and efficiently identify malware 
apps [56]. They suggested the use of their self-developed 
Significant Permission IDentification (SigPID) system. 
SigPID works by extracting and analyzing android 
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permissions based on three levels of pruning, leading to the 
mining of the most significant permissions that can be 
effective in distinguishing malware from non-malware. It 
uses machine-learning-based algorithms to classify different 
families of malware and non-malware. When SigPID (using 
22 permissions) was compared to a baseline approach that 
analyzes all permissions, the results indicated that over 90% 
accuracy could be acquired in detecting malware, which is 
very close to the accuracy of the baseline classification. 
SigPID however was 4 to 32 times faster. 
 
Dynamic Analysis runs the programs in a controlled 
environment to determine malicious intents. Unlike static, it 
only shows one path per execution- a better result is 
achievable by further stimulation. Android apps [55] are 
highly interactive, dynamic analysis helps trigger intents that 
would have otherwise remained concealed. Wang et al [27] 
has proposed a light-weight framework for the identification 
of the Android-malware. A mobile app is based on a multi-
level network to analyze the network traffic at the server end. 
Machine learning is used for Android malware detection for 
better accuracy of 97.89%. The results have focused on an in-
depth analysis of malware behavior.  M. A. El-Zawawy [28] 
has focused on Andriod apps and their vulnerabilities. NIV is 
the prominent vulnerability that may try to gain the app 
permissions for getting the crash reports to information steal. 
The proposed work has focused on the implementation of the 
detector for NIV to the Androids APIs. NIVD is efficient and 
faster and detected many prominent vulnerabilities.  
  
Hybrid Analysis methods combine static and dynamic 
analysis for more efficient detection to increase code 
coverage [51]. Static analysis is utilized to discover possible 
activity paths and assesses danger. Dynamic analysis is then 
guided through these paths to log and analyze the 
maliciousness of the result. Yuan et al [29] created an android 
app that implements an online deep-learning-based android 
malware detection engine, DroidDetector. It combines 
elements present in static analysis and dynamic analysis and 
is capable of applying both techniques to characterize 
malware. The results produced by the app show that deep 
learning is a suitable technique for characterizing Android 
malware especially when training data is available. It is 
capable of achieving over 96% detection accuracy, which is 
higher than that of more traditional machine learning 
techniques. 
 
 
8. Advances in Malware Detection 
 
Dynamic analysis-based methods were much more 
experimented on than static ones [47]. Isohora et al [30] has 
conducted a dynamic analysis on the Android kernel layer 
using a log collector and the logs produced from the collector. 
There was also a little bit of machine learning used in the form 
of Shabtai et al [24] using Andromaly, a system that 
continuously monitors networks and classifies malware as 
malicious using machine learning algorithms. Using this 
dynamic system to monitor the whole mobile while 
minimizing CPU and memory usage and watching out for 
spikes in processor usage is very similar to how the current 
“Windows Defender” functions, showing that this dynamic 
method was also very slightly experimented on during the 
early 2010s. Yang et al [28] used dynamic analysis, in the 
form of behavioral analysis to detect malware using two 
common methods malware employs to steal money, 

notification suppression, and hardcoded exfiltration methods. 
A few years later, Yuan et al [29] created an app called 
DroidDetector to use both dynamic and static methods and a 
deep learning algorithm to characterize malware extremely 
accurately. This app showed that deep learning was a viable 
machine learning algorithm to be used in future projects. As 
the years passed, the detection techniques and tools used 
changed. Research papers became more focused on static 
analysis as the prime method for identification as it’s easier 
and cheaper to do in mass. McLaughlin et al [25] used a 
Convolutional Neural Network that was trained on the opcode 
created by the disassembly of previously identified malware 
samples. Resulting in a CNN capable of analyzing over 3000 
files per second, unfortunately, the lower accuracy result 
proved that Yuan’s deep learning implementation might be a 
more optimal algorithm for malware detection. This 
eventually led to Li et al [26] creating their SigPID system 
that statically analyzes permissions using several pruning 
levels to optimally and efficiently classify malware. The 
accuracy this system provided was similar to that of Yuan’s 
DroidDetector but also had the speed of McLaughlin’s CNN. 
At this point, static analysis and machine learning-based 
algorithms became highly favored for all future papers. 
Malware authors turned more towards countering static 
methods using obfuscation techniques. Millar et al [30] 
created DANdroid, a malware detection model that uses a 
Discriminative Adversarial Network (DAN), that did this by 
focusing on being resilient to four popular obfuscation 
techniques. Qian Han et al [31] created a Feature 
transformation-based Android Malware detector (FARM), 
that is aimed at efficiently detecting rooting malware, 
spyware, and banking trojans. The three feature 
transformations introduced in this paper are extremely hard to 
reverse engineer and hence make evasion by malware 
developers harder. There has also been researching into 
evolving the earlier methods of dynamic analysis that were 
considered inefficient. Alzaylaee et al [32] presented a state-
based input generation approach called DL-Droid. It enhances 
code coverage and is accurate up to 97.8% while using 
dynamic analysis only and if static is added this number 
increases to 99.6%, outperforming several traditional 
techniques.   
 
 
9. Modern Android Threats and Analysis 

 
In today’s world, there are many types of Android malware 
that have created a lot of trouble for Android users. Each of 
this Android Malware uses different strategies to infect the 
devices [48, 49, 50].  
 
xHelper: 

xHelper is the latest form of Android Malware that has 
infected more than 45,000 Android devices over the past 6 
months [33]. This malware first started showing up in May 
2019. Symantec reports that xHelper apps started rising from 
March 2019. They felt that back then the malware’s code was 
relatively easy to analyze and it was used to visit 
advertisements. This helped users to trust the app and 
download it. It was only later that people noticed that the 
xHelper’s code gradually changed. Initially, the application 
could connect to a C & C server (Command and Control 
Server) and this was written with the application code itself. 
But later it was observed that the application is connected to 
an encrypted payload to evade signature detection. In the 
code, empty classes were also added which was not present 
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before. It is believed that each class in the malware represents 
a mobile service provider. For example, there was a class 
named “Jio” indicating that this class attacks Jio users alone. 
So far, this malware has infected users in India, the US, and 
Russia [34]. xHelper hides once installed and secretly 
downloads other threats and also displays advertisements. 
This application is very persistent and this application can 
reinstall itself even when the user uninstalls it from his device. 
It hides by not showing up on system launcher. An important 
thing to notice is that xHelper does not have a regular user 
interface it is an application component and so it can cause 
more harm being undercover. A sample of the source code for 
xHelper is shown in figure 5. Also, xHelper cannot be 
launched manually, it is launched by external events like 
when another application gets installed or uninstalled or when 
the device is charging. In case the application is detected, it 
restarts its service. It also registers itself as a foreground 
service and lowers its chances of being destroyed when it’s in 
memory. Once xHelper has gained control of the device, it 
connects to the attacker’s C & C server and waits for the 
attacker to give his commands. The attacker can either steal 
the data or prepare for a ransomware attack. 
 

 
Fig. 5. Possible events to trigger xHelper 

 
 The xHelper malware works in the following manner: 
 
1. Once xHelper is easily installed and connects to an 

encrypted payload and it adds modules/classes that were 
not present before. It also hides and starts bombarding the 
user with various advertisements. 

2. Once xHelper does this, it removes itself from the 
application launcher and connects to the C&C server to 
connect the attacker and follow their commands. The 
attacker can then steal data, host another malicious attack, 
or gain administrator-level access also. 

3. Even if the user tries to uninstall xHelper it will not be 
removed because it does not have a regular user interface 
and is launched by external events. Examples of such 
events are the device charging, the device not charging, 
the device rebooting, another application being installed, 
an application being removed, or even when the device's 
connection is changed. 

 
 Overall, xHelper is a very dangerous malware that 
destroyed the phones of almost 33,000 phones in India. 
xHelper can be stopped by using SSL certificate pinning for 
any communication between the device and the attacker users 
can use Jio Security which is backed up by Norton Mobile 
Security to prevent this attack. When this malware was 
examined using VirusTotal [35] as shown in Fig 6. Anubis 
Banking Trojan is a malware that was popular in 2018 but its 
true effect was only shown in 2019 from figures 6, 7, and 8. 
Anubis was first used for cyberespionage and later was re-
coded to become a banking Trojan that combines information 

theft and ransomware routines. In mid-January 2019, a unique 
feature of this malware was that this malware will only begin 
its execution once the motion sensors that detect the Android 
device are moved. 
 This strategy effectively avoids this malware to get 
detected by many sandboxes that use static and dynamic 
analysis to understand the features of the malware. The 
Anubis malware follows a series of steps which causes it to 
be very effective [36, 37]. 
 

Fig. 6. Detection of xHelper in VirusTotal 

 
Fig. 7. Details of the xHelper malware 

 

 
Fig. 8. Attack of xHelper Malware on an Android device 

 
 

1. The attack starts with a phishing email, that appears to be 
from a trusted contact where users must download an 
invoice. 

2. When the E-mail link is opened from an Android device a 
typical APK file (Fattura002873.apk) is downloaded in 
the background. 

3. Once this is done, the normal Google Play Protect screen 
appears to the user, but this is not the genuine one. This 
Google Play Protect is accepted, gives access to the 
application to disable the actual Google Play Protect. 

4. Once this is done, Anubis scans the device for any 
financial applications or any online shopping applications 
like Amazon or Flipkart. 
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5. Once the application is chosen, Anubis creates a fake 
login screen for that application, this causes Anubis to 
perform various tasks such as capturing screenshots, 
recording audio, initiating calls, changing the 
administrator settings, and even opening specific URLs.  

 
 Anubis is also a keylogger and can be initiated once the 
attacker has gained full control of the device as shown in 
figure 9. Anubis can also attack a specific application by 
monitoring the activity of the targeted application and then 
the attacker can damage the WebView feature that displays 
applications on a web page. By doing this, Anubis can 
perform phishing attacks using attack vectors and also send 
the notification strings in the device to the C & C server as 
per the figure 10. 

 
Fig. 9. Block diagram of the Anubis Trojan Backdoor 
 

 
Fig. 10. Number of Victims affected by Anubis 

 
 So far Anubis has been present in applications like 
CurrencyConvertor, BatterySaverMobi which when 
installed can trigger Anubis by the motion of the device [38]. 
The only solution to Anubis given is that users must limit the 
installation of applications on their devices and only use 
applications from trusted developers as shown in figure 11. 
 Agent Smith Malware is a newly discovered variant of 
Android malware that replaces real apps with tainted fake 
versions that flood the devices with ads. So far Agent Smith 
has only been used to push ads, but respected security 
professionals agree that it can be used for far more nefarious 
purposes [39, 40]. There is a multitude of different apps that 
infect an Android system with the Agent Smith malware, 
these are usually acquired from unofficial or cracked Android 
app stores. Checkpoint Software Technologies says that the 
malware-filled apps were downloaded on more than 25 
million devices operating across the US, UK, and India. 15 
million of those users are based in India. Unlike most other 
forms of Android malware, no variant of it currently steals 
any form of user data or credentials, but it is known to replace 
genuine versions of popular apps like “Whatsapp”, 
“Facebook”, “Flipkart” and “Amazon” [41]. These corrupted 
versions of the famous apps were created from hackers 
stealing the source code of those apps and replacing code 
from the original program to allow for adware and forcing the 

app to be disconnected from the real app’s servers. This 
prevented security updates from going through and 
automatically repairing and securing the app [42].  Research 
has narrowed down the point of origin to a third-party app 
store known as “9apps.com”, owned by China’s Alibaba. The 
malware possesses the ability to hide its icon from the 
launcher and is known to be capable of impersonating any 
popular existing apps on a device, making the malware’s 
potential to harm nearly endless. Below are details about how 
the malware comes to infect a system also shown in figure 12. 
 

 
Fig. 11. Fake BatterySaverMobi application 

 
1. Users download an app from the store, these apps are 

typically games or adult-themed apps 

2. The app then silently installs the malware, pretending to 
be a Google updating tool. No icon appears during this 

installation, not on the lock screen or the notification bar. 
3. During the installation, the malicious app scans the 

device for popular apps such as Opera Browser, 
Whatsapp, Facebook, Twitter, Amazon, etc. 

4. The app updates the code of those famous apps to allow 
for the aggressive monetized ads to be served to the user 

5. The ads themselves were not found to be harmful, but it is 
assumed that the hackers gain money per-click, as typical 

for a pay-per-click system 
 

There is a possibility that the hackers intend to move to 
the official google play store, this was evidenced by dormant 
code found in 11 popular apps on the play store found by 
Check Point researchers. 
 Agent Smith has a modular structure and consists of 6 
different modules each with its function. The first module is 
the loader, it extracts and runs the core module of the 
malware. The core module communicates with the command 
and control server, which it then uses to retrieve the 
predetermined list of popular apps that the device is scanned 
for. Since the core module looks to the C&C server for a list, 
the list of apps can be very easily updated by the hacker, 
which allows for easy upgrading of the malware. The boot 
module is the next component that acts. If any application 
from the list is found on the device, the malware utilizes the 
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Janus vulnerability to inject the boot module into the detected 
application. The next time the infected application is run, the 
boot module will run the patch module which hooks the 
methods from known ad software development kits to its 
implementation as shown in figure 13. The initial attack 
vector used by Agent Smith is the 9Apps market. It uses over 
360 dropper variants to maximize profits and is commonly 
known to infect the same devices repeatedly. There are 
estimated to be around 2.8 billion infections in total. The 
majority of the droppers on 9Apps are games, but adult 
entertainment, media player apps, photo utility apps, and even 
system utility apps are used. The most popular instance of a 
dropper is a game called “Kiss Game: Touch Her Heart”. The 
algorithm of malware update installation and detailed 
statistics on the infection distribution shown in Table 1 and 2 
shows that India was the target region of the malware.  
 

 
Fig. 12. Agent Smith’s Attack  

 
 Triada is a modular mobile Trojan that uses the user’s 
root admin access to substitute different system files. It exists 
on the system’s RAM and so cannot be found easily. What is 
unique about this malware is that smaller Trojan’s like Ztorg, 
Leech, and Gopro if infected in the device can download 
bigger more dangerous malware, Triada. 
 

Fig. 13. Modular Structure of Agent Smith 

 

Table 1. Algorithm for the malicious updates 

1. creates a new bundle object 
2. apk_path, inflect_pkg and fake_name values the 

bundle object holds are replaced by values given 
by the malware author 

3. A new activity is started and its class name is set 
to “Android” 

4. a new component is created which is an android 
package installer.  

5. a component is a malicious update that is later 
installed  

 

Table 2. Devices infected with Agent Smith country-wise 
Country Total 

Devices 

Total 

Infection 

Event 

Count 

Avg 

App 

Swa

p 

Avg 

Droppe

rs Per 

Device 

Avg 

Months 

Device 

Remain

Per 

Devi

ce 

ed 

Infecte

d 

India 15,230,1

23 

2,017,873,

249 

2.6 1.7 2.1 

Banglad
esh 

2,539,91
3  

208,026,88
6  

2.4 1.5  2.2 

Pakistan 1,686,21
6 

94,296,907 2.4 1.6 2 

Indonesi

a 

572,025 67,685,983 2 1.5 2.2 

Nepal 469,274 44,961,341 2.4 1.6 2.4 
US 302,852 19,327,093 1.7 1.4 1.8 

Nigeria 287,167 21,278,498 2.4 1.3 2.3 
Hungary 282,826 7,856,064 1.7 1.3 1.7 
Saudi 

Arabia 

245,698 18,616,259 2.3 1.6 1.9 

Myanma
r 

234,338 9,729,572 1.5 1.4 1.9 

 
 Triada once installed tries to get information about the 
device such as the OS version, a model of the device, amount 
of space in the SD card, and all the applications installed on 
the device. Similar to the other malware are discussed, it sends 
all this to a C & C server which is built by the attackers. 
Kaspersky has detected around 17 C & C servers and 4 
different domains used by this malware. Once the data gets 
analyzed, the C & C server sends a configuration file that 
consists of the passcode/PIN of the Android device, the list of 
modules to be installed, the time of contact with the server. 
After getting these details, Triada installs certain modules and 
makes sure that they are kept in the short memory, hence the 
detection of Triada is very difficult. The unique feature of 
Triada is that other than the above actions, Triada has found a 
way to modify the [10] Zygote process in an Android device 
from figure 14. The Zygote process of an Android device is 
the core process in the Android OS that forms the 
blueprint/template for every Android application. So, if the 
Zygote gets infected by Triada, the malware literally can 
control the launch and usage of every application in the 
Android device. 
 

 
Fig. 14. Normal Zygote Flow Execution for Android apps 

 
 Triada also substitutes the different system functions and 
hides its modules from the currently running 
applications/processes. Thus, the system does not find any 
strange processes running and so it doesn’t raise the alarm. 
Triada also reads the outgoing SMS and filters any 

incoming ones. This can be a huge problem because many 
transactions rely on SMS over an Internet connection because 
to send an SMS, the Internet is not required. Triada can 
modify these SMS so that the money is sent to the malware 
authors and not to the owner of the product. This way Triada 
steals money either from the users, in case they have not 
completed their purchase or from the owner of the product in 
case they have finished the purchase of the product. The way 
Triada works is that it can affect a lot of users. As it is spread 
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through smaller Trojans, Triada affected almost every user 
among 10 Android users during the second half of 2015 as per 
figure 15. So, the only way to protect from Triada is to 
constantly update the device in case any patch occurs, install 
mobile anti-viruses and most of all have a good security 
solution. 
 

Fig. 15. Triada infected to Android versions 
 

Lotoor is a threat that targets Android devices silently and 
looks for different vulnerabilities that are present in the 
device. If any vulnerability is found, Lotoor exploits that and 
will use that to get administrator privileges. In case Lotoor is 
successful in doing this, it can [43]: 
1. Collect sensitive data from the device 

2. Monitor the installation of applications 
3. Disable the security present in the device 

4. Alter the settings on the device 
 

 Further, Lotoor can be present in the mobile device as 
rageagainstthecage and exploid. To prevent being attacked 
by Lotoor, all the applications must be updated and install an 
antivirus for the device.  
 
 
10. Conclusion and Future Plans 

 
Over the years, malware authors have gotten increasingly 
craftier, but anti-malware authors have done the same. The 
cycle used to be set in stone; a new malware is born, it rises 
to fame, and it is then patched out. This life cycle is the life 
cycle of all popular malware we have seen so far. However, 
this article has demonstrated how anti-malware authors have 
attempted to break this cycle by moving more towards 
preventative measures, anti-malware systems that can predict 
and eliminate malware before it even executes, over the 
lacking cure-based system, eliminating the malware after the 
damage is done. Some modern threats were analyzed, 
showing how malware authors are also stepping up their 
game, creating “silent” malware and even malware capable of 
wearing disguises. Our review work is continuing to follow 
the recent advances and updates in the field of malware and 
their analysis for android and iOS versions of mobile 
environments.  
 
This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License  
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