

Journal of Engineering Science and Technology Review 13 (4) (2020) 240 - 248

Research Article

The Recent Trends in Malware Evolution, Detection and Analysis for Android

Devices

Kakelli Anil Kumar, A. Raman, C. Gupta and R. R. Pillai

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

Received 21 May 2020; Accepted 31 July 2020

Abstract

In our work, we have analyzed various malware detection techniques and methods for mobile devices and study how
these techniques have been changed over the years. The work has investigated viruses and other forms of malware that
have affected the mobile market and how malware analysts have proposed various suitable solutions to detect them
efficiently. Android-based mobile devices are our prime goal because of high usage, cost-effective, easy to handle and
use, and most importantly easily allow third-party applications in their framework. This work also discusses modern
threats, the magnitude of their influence, and how they were discovered alongside analysis of said threats.

Keywords: Malware, Android, Evolution of Mobile Malware, Modern Threats, Detection Techniques

1. Introduction

In the modern world, mobile phones have become so
popular and it is difficult to imagine the life of mankind
without them. The number of mobile users has risen from
4.15 billion in 2015 to a projected 4.78 billion users in 2020.
Researchers in Checkpoint have examined different
Android malware attacks in the first 6 months of 2019 to
find out that hackers are targeting smartphones 50% more
than the other years. These findings are highlighted in the
Cyber Attack Trends: 2019 Mid-Year Report [1]. The main
intent of hackers is malicious advertising of the Android
devices, credential thefts, and surveillance of users.
Research has found that Malware builders are also available
underground to build on the malware. They follow
distribution techniques similar to the spreading of normal
desktop-based malware applications. This pattern is proved
to be effective almost 65% of the time without the user
knowing that their device has been affected. Due to the
pervasive nature of Android, the threats against it are rising
day by day and so there is a need to reliably detect and
classify tools. Before understanding in-depth, the different
malware attacks, it is necessary to understand the Android
operating system [2, 3, 62].

2. Background

 With the rise of mobile phones in the 2000s, it took a mere
3 years for malware to begin developing for the same. They
started with variations of Cabir, a harmless worm at first, it
eventually developed into a family of viruses that targeted
the Symbian OS. By 2006, the malware had spread to every
platform. Even Android, despite being completely new in
2008, could only evade them for two years. From SMS
Fraud to location transmitting Trojans, when 2011 ended,

Android had crossed Symbian and J2ME to become the lead
platform for malware. This is also the year that saw the first
Man in the Middle attacks hit the mobile platform. Despite
many advances in both detection techniques and security
features since then, Malwares have only grown more
complex. At their peak, they could record full conversations
and all private exchanges and upload them at will. Just last
year in 2019 Kaspersky detected approximately 3,503,952
malicious installation packages, 69,777 new mobile trojans,
and 68,362 new mobile ransomware trojans. Android
continues to be the leading platform and considering that it
owns 70% of the smartphone market, that title is unlikely to
go away. Malware creation has become exceedingly profit-
driven. According to 2017 statistics, in the Carbon Black
report [4], malware authors earn $163,000 per year, which
is more than double the average salary for a software
developer working on legal projects [5, 6, 54].

3. Android Operating System

Android OS is an open-source, Linux kernel-based
operating system that was initially released in 2008. In
2014, the original Dalvik virtual machine that used a Just in
Time (JIT) compiler was replaced by Android Runtime, a
new virtual machine that used an Ahead of Time compiler.
In 2017, a JIT compiler was also added to Android Runtime.
These constant changes have taken a toll on malware
detection frameworks [7, 45,59]. A mobile antivirus app has
a limited amount of permissions granted by the OS for what
it can analyze; due to this, mobile virus or malware
detection rarely takes place on a device and a signature-
based approach is considered preferable. The variation in
hardware, versions, and custom additions by individual
companies may have paved the path to a wide range of
Android products and massive market domination but it has
prevented unity within the platform and has left devices
fragmented and exposed to many threats [8]. The effect of
the changes between the OS versions was studied and it was

JOURNAL OF

Engineering Science

and Technology Review

 www.jestr.org

Jestr

r

*E-mail address: anilsekumar@gmail.com
ISSN: 1791-2377 © 2020 School of Science, IHU. All rights reserved.
doi:10.25103/jestr.134.25

Kakelli Anil Kumar, A. Raman, C. Gupta and R. R. Pillai/Journal of Engineering Science and Technology Review 13 (4) (2020) 240 - 248

 241

concluded that having a universal malware classifier for all
the versions reduced accurate detection rates. For higher
security and accuracy, the changes must be kept in mind and
antiviruses made accordingly [9, 44, 53].

4. Evolution of Mobile Malware

Recently Kaspersky released the statistics for mobile malware
for the year 2017-18 [10] as shown in figure 1. From this
graph, it is observed that much mobile malware is either Risk
Tools or Trojan Droppers. Risk Tools are locally operating
programs that are used to conceal files, hide and terminate
running processes or remotely access resources. They’re not
inherently malicious but are used for by cybercriminals for
crimes like cryptocurrency mining. Trojan Droppers are used
to install or update malicious programs in the victim’s device.
They usually consist of a bundle of unrelated malware, often
including a hoax to distract from the real effects of the bundle.
Undetectable trojans are much harder to create than a dropper
and hence new droppers are often made to carry and deploy
pre-existing trojans. Mobile malware has evolved to vary
from traditional malware a lot [11]. Mobile security principles
although derived from traditional desktop-based malware
have to be adapted to the differences in the two systems. For
example, mobile devices have comparatively scarce resources
like battery or processing power and varying applications that
can limit static analysis. Through a study from Symantec, in
the year 2014, an average of 272 new malware was discovered
attacking the Android Operating System every month, these
numbers have been significantly higher in recent years.

Android devices are also increasing in popularity due to
which they are becoming a desirable target [12]. We can see
as per Fig 1, 80% of the Android malware are forms of
Trojans. In March 2020, AV-Test, an Independent IT-
Security Institute, conducted tests on various Antiviruses and
monitored the performance of each antivirus to detect
malware and also its false positive detection rate. All the
products were in their updated versions and had their standard
protection layers. The objective of this study was to identify
the best antiviruses that can detect malicious software on the
mobile. It also revealed that the built-in malware protection
for android, Google Play Protect was not enough protection
and fell short on both protection and usability [57].

5. Android Malware Traits

A mobile worm is a type of mobile malware that makes use
of the physical movements of the host to propagate among
various mobile networks. This principle is similar to real-life
worms but the difference is that applications in Android can
easily be installed by either a touch or a swipe, unlike PCs that
use a keyboard or mouse. Hence, static analysis of mobiles
becomes more difficult because these swipe patterns must
also be considered (degree of touch). Also, mobile devices are
prone to multiple connections and have other features that
traditional desktop systems lack such as SMS, Bluetooth,
General Packet Radio Service (GPRS), 3G, and even
Multimedia Messaging Services along with access to the web
browsers. Tools such as GPS, Camera, and Compass can also
be tracked by this malware. A common trait that Android
malware carry is that they send background messages to
remote numbers most likely like a toll number so that the
attackers can easily access information anonymously [13].

Fig. 1. Mobile Malware Statistics Released by Kaspersky for 2017-18
[10]

 This trait was observed when gaming applications like
Angry Birds, Luxury Car Parking, Firefighting Simulator
(etc.) were revealed to be scams. As a result, Google had to
remove 13 such applications from the Play Store. These
applications automatically hide and generate a fake store
called Game Center which cannot be deleted by the user. They
also start sending SMS messages once the game begins. The
attackers charge roughly 15 GBP per text which the user
needs to pay. Attackers choose applications that look
attractive on the outside but have no purpose when a user tries
to play the game. This is how malware authors gain profit and
have popularized their malware across the whole Android
platform. In general, Android malware is often spread via
phishing, social engineering, or downloading from the
internet [14]. They then launch a Privilege Escalation attack
on the mobile device. A privilege escalation attack is a type
of attack where a bug or design flaw is exploited in the
operating system or software that enables them to gain access
to the resources that are normally protected [15]. In the
Android OS, the vulnerability is the kernel through which the
malware gains root access to the system.

Fig. 2. Applications interact in an Android device

 Figure 2 depicts a privilege escalation attack on the
Android device. The malware has access to the lower and
higher-privileged sections of the OS [16]. This is how the data
is sent to the attackers and how spyware/bots can easily be
monitored remotely. These bots can also be responsible for

Kakelli Anil Kumar, A. Raman, C. Gupta and R. R. Pillai/Journal of Engineering Science and Technology Review 13 (4) (2020) 240 - 248

 242

DOS (Denial of Service) attacks by rerouting the traffic of
packets to different addresses. They can also overuse the
resources and tamper with other files. Given below is the
Android OS architecture. The 4 layers- Applications,
Application Framework, Libraries, and the Linux Kernel are
indicated and the system calls between them are also shown
in Fig. 2. Android architecture is modified using a Linux
based Kernel and has mainly 4 layers as shown above. The
Java written applications are run in isolation. After 2019,
since Android’s latest version is 10.0, and Ahead of Time
(ART), the compiler-based compilation is used for
compilation in each of their virtual machines. The hardware
consists of an ARM processor (Advanced RISC Machine)
that is integrated with a memory chip and other different
processors along with features such as GPS and Bluetooth. To
access the device each of the applications must be granted
permissions by the Android Permission System when they are
installed. This is the general agreement that users see when
they install any new application. Once the application is
installed, the permissions are granted by the kernel and they
can interact with each other through API calls [17]. The main
components of Android are the content providers and the
receiving broadcasts as shown in figure 3. Content providers
are responsible for providing access control mechanisms for
the process by grouping them into structured sets that are
enforced by security mechanisms [18, 61]. Broadcasting of
services occurs in the background and the user’s activities are
the most visible component that handles the user’s actions
(e.g. Touch and activation of applications).

Fig. 3. Android Operating System Architecture

6. Android Malware Statistics

The most recent mobile malware that was popular in 2019 is
given below. According to Kaspersky reports [19], the major
malware that affected 2019 was potentially unwanted
software like Adware and Risk Tool. For example, xHelper is
a popular malware that cannot be removed even if the
Android phone is the factory reset. It affected around 45,000
Android phones in October 2019. This malware used
encryption in its full implementation and because of this it
could not be traced by antiviruses that use behavioral analysis
to locate malware from figure 4. xHelper evolved from
displaying ads for monetary benefits to installing other
malware into the device and is considered by experts to be a
work in progress. xHelper infecting an Android phone is
shown below. Other malware that was dangerous in 2019 was
Trojan Droppers and Bankers [20]. For example, Trojan-
Dropper.AndroidOS.Necro.n, Trojan.AndroidOS.Boogr.gsh
and Trojan.AndroidOS.Hiddapp.ch.

Fig 4. Variations of Malicious Downloads by Android users

7. Malware Detection Techniques

The research on security in mobile environments builds on
decades of traditional malware research, however, the need to
optimize has led to a focus on developing more targeted,
robust, and effective ways to classify malware in smart
devices [21]. One of the better-known methods is the use of
antivirus products. However, since they are limited by
smartphone permissions like any other application, they are
considered to be not as effective. Malware detection in
antiviruses is usually signature-based [22]. A malware
signature is a sequence of bytes to identifies the malware’s
presence, i.e. it exists in an infected file and doesn’t in
uninfected ones [23]. Obfuscation is used often by malware
developers to escape this analysis and so although still called
signatures, antivirus entries in their databases to classify
malware have become far more complex and advanced. P.
Vinod et Al [24] proposed an Android framework for better
user trust of mobile users. The proposed system has used
machine learning to investigate the system calls used mobile
malware of Andriod. The experimentation has been
conducted on the synthesized system calls and generated area-
under-curve of accuracy 99.9% and also received better
classifier accuracy [60].

Static analysis is another well-known method of malware
detection. It examines the malware’s code without executing
it and despite the limitations may reveal several paths of
execution. Obfuscation can be used here again to limit or
remove access to malware codes in mobiles [46, 63]. Android
malware also tends to involve plenty of runtime activity that
can’t be detected via this method. The source code for
Android apps is usually inaccessible and so most mobile
detection frameworks analyze the bytecode in the application
package (APK). McLaughlin et al [25] proposed a novel
Android malware detection system that uses a deep
convolutional neural network (CNN). The classification [52]
of malware is based on static analysis of the raw opcode
sequence from the disassembly of the program. Features that
indicate which malware is being looked at can be learned by
feeding the CNN with raw opcode sequences of known
malware. Once the network is fully trained, it’s capable of
scanning 3000 files per second when executed on the Nvidia
GTX 980 GPU. However, the accuracy rate of detections was
greatly less than desired on large (5000 samples, 80%
accuracy) and very large (20000 samples, 87% accuracy)
datasets. Li et al [26] wanted to combat the high rate of
malware production with a scalable malware detection
approach that can effectively and efficiently identify malware
apps [56]. They suggested the use of their self-developed
Significant Permission IDentification (SigPID) system.
SigPID works by extracting and analyzing android

Kakelli Anil Kumar, A. Raman, C. Gupta and R. R. Pillai/Journal of Engineering Science and Technology Review 13 (4) (2020) 240 - 248

 243

permissions based on three levels of pruning, leading to the
mining of the most significant permissions that can be
effective in distinguishing malware from non-malware. It
uses machine-learning-based algorithms to classify different
families of malware and non-malware. When SigPID (using
22 permissions) was compared to a baseline approach that
analyzes all permissions, the results indicated that over 90%
accuracy could be acquired in detecting malware, which is
very close to the accuracy of the baseline classification.
SigPID however was 4 to 32 times faster.

Dynamic Analysis runs the programs in a controlled
environment to determine malicious intents. Unlike static, it
only shows one path per execution- a better result is
achievable by further stimulation. Android apps [55] are
highly interactive, dynamic analysis helps trigger intents that
would have otherwise remained concealed. Wang et al [27]
has proposed a light-weight framework for the identification
of the Android-malware. A mobile app is based on a multi-
level network to analyze the network traffic at the server end.
Machine learning is used for Android malware detection for
better accuracy of 97.89%. The results have focused on an in-
depth analysis of malware behavior. M. A. El-Zawawy [28]
has focused on Andriod apps and their vulnerabilities. NIV is
the prominent vulnerability that may try to gain the app
permissions for getting the crash reports to information steal.
The proposed work has focused on the implementation of the
detector for NIV to the Androids APIs. NIVD is efficient and
faster and detected many prominent vulnerabilities.

Hybrid Analysis methods combine static and dynamic
analysis for more efficient detection to increase code
coverage [51]. Static analysis is utilized to discover possible
activity paths and assesses danger. Dynamic analysis is then
guided through these paths to log and analyze the
maliciousness of the result. Yuan et al [29] created an android
app that implements an online deep-learning-based android
malware detection engine, DroidDetector. It combines
elements present in static analysis and dynamic analysis and
is capable of applying both techniques to characterize
malware. The results produced by the app show that deep
learning is a suitable technique for characterizing Android
malware especially when training data is available. It is
capable of achieving over 96% detection accuracy, which is
higher than that of more traditional machine learning
techniques.

8. Advances in Malware Detection

Dynamic analysis-based methods were much more
experimented on than static ones [47]. Isohora et al [30] has
conducted a dynamic analysis on the Android kernel layer
using a log collector and the logs produced from the collector.
There was also a little bit of machine learning used in the form
of Shabtai et al [24] using Andromaly, a system that
continuously monitors networks and classifies malware as
malicious using machine learning algorithms. Using this
dynamic system to monitor the whole mobile while
minimizing CPU and memory usage and watching out for
spikes in processor usage is very similar to how the current
“Windows Defender” functions, showing that this dynamic
method was also very slightly experimented on during the
early 2010s. Yang et al [28] used dynamic analysis, in the
form of behavioral analysis to detect malware using two
common methods malware employs to steal money,

notification suppression, and hardcoded exfiltration methods.
A few years later, Yuan et al [29] created an app called
DroidDetector to use both dynamic and static methods and a
deep learning algorithm to characterize malware extremely
accurately. This app showed that deep learning was a viable
machine learning algorithm to be used in future projects. As
the years passed, the detection techniques and tools used
changed. Research papers became more focused on static
analysis as the prime method for identification as it’s easier
and cheaper to do in mass. McLaughlin et al [25] used a
Convolutional Neural Network that was trained on the opcode
created by the disassembly of previously identified malware
samples. Resulting in a CNN capable of analyzing over 3000
files per second, unfortunately, the lower accuracy result
proved that Yuan’s deep learning implementation might be a
more optimal algorithm for malware detection. This
eventually led to Li et al [26] creating their SigPID system
that statically analyzes permissions using several pruning
levels to optimally and efficiently classify malware. The
accuracy this system provided was similar to that of Yuan’s
DroidDetector but also had the speed of McLaughlin’s CNN.
At this point, static analysis and machine learning-based
algorithms became highly favored for all future papers.
Malware authors turned more towards countering static
methods using obfuscation techniques. Millar et al [30]
created DANdroid, a malware detection model that uses a
Discriminative Adversarial Network (DAN), that did this by
focusing on being resilient to four popular obfuscation
techniques. Qian Han et al [31] created a Feature
transformation-based Android Malware detector (FARM),
that is aimed at efficiently detecting rooting malware,
spyware, and banking trojans. The three feature
transformations introduced in this paper are extremely hard to
reverse engineer and hence make evasion by malware
developers harder. There has also been researching into
evolving the earlier methods of dynamic analysis that were
considered inefficient. Alzaylaee et al [32] presented a state-
based input generation approach called DL-Droid. It enhances
code coverage and is accurate up to 97.8% while using
dynamic analysis only and if static is added this number
increases to 99.6%, outperforming several traditional
techniques.

9. Modern Android Threats and Analysis

In today’s world, there are many types of Android malware
that have created a lot of trouble for Android users. Each of
this Android Malware uses different strategies to infect the
devices [48, 49, 50].

xHelper:

xHelper is the latest form of Android Malware that has
infected more than 45,000 Android devices over the past 6
months [33]. This malware first started showing up in May
2019. Symantec reports that xHelper apps started rising from
March 2019. They felt that back then the malware’s code was
relatively easy to analyze and it was used to visit
advertisements. This helped users to trust the app and
download it. It was only later that people noticed that the
xHelper’s code gradually changed. Initially, the application
could connect to a C & C server (Command and Control
Server) and this was written with the application code itself.
But later it was observed that the application is connected to
an encrypted payload to evade signature detection. In the
code, empty classes were also added which was not present

Kakelli Anil Kumar, A. Raman, C. Gupta and R. R. Pillai/Journal of Engineering Science and Technology Review 13 (4) (2020) 240 - 248

 244

before. It is believed that each class in the malware represents
a mobile service provider. For example, there was a class
named “Jio” indicating that this class attacks Jio users alone.
So far, this malware has infected users in India, the US, and
Russia [34]. xHelper hides once installed and secretly
downloads other threats and also displays advertisements.
This application is very persistent and this application can
reinstall itself even when the user uninstalls it from his device.
It hides by not showing up on system launcher. An important
thing to notice is that xHelper does not have a regular user
interface it is an application component and so it can cause
more harm being undercover. A sample of the source code for
xHelper is shown in figure 5. Also, xHelper cannot be
launched manually, it is launched by external events like
when another application gets installed or uninstalled or when
the device is charging. In case the application is detected, it
restarts its service. It also registers itself as a foreground
service and lowers its chances of being destroyed when it’s in
memory. Once xHelper has gained control of the device, it
connects to the attacker’s C & C server and waits for the
attacker to give his commands. The attacker can either steal
the data or prepare for a ransomware attack.

Fig. 5. Possible events to trigger xHelper

 The xHelper malware works in the following manner:

1. Once xHelper is easily installed and connects to an

encrypted payload and it adds modules/classes that were
not present before. It also hides and starts bombarding the
user with various advertisements.

2. Once xHelper does this, it removes itself from the
application launcher and connects to the C&C server to
connect the attacker and follow their commands. The
attacker can then steal data, host another malicious attack,
or gain administrator-level access also.

3. Even if the user tries to uninstall xHelper it will not be
removed because it does not have a regular user interface
and is launched by external events. Examples of such
events are the device charging, the device not charging,
the device rebooting, another application being installed,
an application being removed, or even when the device's
connection is changed.

 Overall, xHelper is a very dangerous malware that
destroyed the phones of almost 33,000 phones in India.
xHelper can be stopped by using SSL certificate pinning for
any communication between the device and the attacker users
can use Jio Security which is backed up by Norton Mobile
Security to prevent this attack. When this malware was
examined using VirusTotal [35] as shown in Fig 6. Anubis
Banking Trojan is a malware that was popular in 2018 but its
true effect was only shown in 2019 from figures 6, 7, and 8.
Anubis was first used for cyberespionage and later was re-
coded to become a banking Trojan that combines information

theft and ransomware routines. In mid-January 2019, a unique
feature of this malware was that this malware will only begin
its execution once the motion sensors that detect the Android
device are moved.
 This strategy effectively avoids this malware to get
detected by many sandboxes that use static and dynamic
analysis to understand the features of the malware. The
Anubis malware follows a series of steps which causes it to
be very effective [36, 37].

Fig. 6. Detection of xHelper in VirusTotal

Fig. 7. Details of the xHelper malware

Fig. 8. Attack of xHelper Malware on an Android device

1. The attack starts with a phishing email, that appears to be
from a trusted contact where users must download an
invoice.

2. When the E-mail link is opened from an Android device a
typical APK file (Fattura002873.apk) is downloaded in
the background.

3. Once this is done, the normal Google Play Protect screen
appears to the user, but this is not the genuine one. This
Google Play Protect is accepted, gives access to the
application to disable the actual Google Play Protect.

4. Once this is done, Anubis scans the device for any
financial applications or any online shopping applications
like Amazon or Flipkart.

Kakelli Anil Kumar, A. Raman, C. Gupta and R. R. Pillai/Journal of Engineering Science and Technology Review 13 (4) (2020) 240 - 248

 245

5. Once the application is chosen, Anubis creates a fake
login screen for that application, this causes Anubis to
perform various tasks such as capturing screenshots,
recording audio, initiating calls, changing the
administrator settings, and even opening specific URLs.

 Anubis is also a keylogger and can be initiated once the
attacker has gained full control of the device as shown in
figure 9. Anubis can also attack a specific application by
monitoring the activity of the targeted application and then
the attacker can damage the WebView feature that displays
applications on a web page. By doing this, Anubis can
perform phishing attacks using attack vectors and also send
the notification strings in the device to the C & C server as
per the figure 10.

Fig. 9. Block diagram of the Anubis Trojan Backdoor

Fig. 10. Number of Victims affected by Anubis

 So far Anubis has been present in applications like
CurrencyConvertor, BatterySaverMobi which when
installed can trigger Anubis by the motion of the device [38].
The only solution to Anubis given is that users must limit the
installation of applications on their devices and only use
applications from trusted developers as shown in figure 11.
 Agent Smith Malware is a newly discovered variant of
Android malware that replaces real apps with tainted fake
versions that flood the devices with ads. So far Agent Smith
has only been used to push ads, but respected security
professionals agree that it can be used for far more nefarious
purposes [39, 40]. There is a multitude of different apps that
infect an Android system with the Agent Smith malware,
these are usually acquired from unofficial or cracked Android
app stores. Checkpoint Software Technologies says that the
malware-filled apps were downloaded on more than 25
million devices operating across the US, UK, and India. 15
million of those users are based in India. Unlike most other
forms of Android malware, no variant of it currently steals
any form of user data or credentials, but it is known to replace
genuine versions of popular apps like “Whatsapp”,
“Facebook”, “Flipkart” and “Amazon” [41]. These corrupted
versions of the famous apps were created from hackers
stealing the source code of those apps and replacing code
from the original program to allow for adware and forcing the

app to be disconnected from the real app’s servers. This
prevented security updates from going through and
automatically repairing and securing the app [42]. Research
has narrowed down the point of origin to a third-party app
store known as “9apps.com”, owned by China’s Alibaba. The
malware possesses the ability to hide its icon from the
launcher and is known to be capable of impersonating any
popular existing apps on a device, making the malware’s
potential to harm nearly endless. Below are details about how
the malware comes to infect a system also shown in figure 12.

Fig. 11. Fake BatterySaverMobi application

1. Users download an app from the store, these apps are

typically games or adult-themed apps

2. The app then silently installs the malware, pretending to
be a Google updating tool. No icon appears during this

installation, not on the lock screen or the notification bar.
3. During the installation, the malicious app scans the

device for popular apps such as Opera Browser,
Whatsapp, Facebook, Twitter, Amazon, etc.

4. The app updates the code of those famous apps to allow
for the aggressive monetized ads to be served to the user

5. The ads themselves were not found to be harmful, but it is
assumed that the hackers gain money per-click, as typical

for a pay-per-click system

There is a possibility that the hackers intend to move to
the official google play store, this was evidenced by dormant
code found in 11 popular apps on the play store found by
Check Point researchers.
 Agent Smith has a modular structure and consists of 6
different modules each with its function. The first module is
the loader, it extracts and runs the core module of the
malware. The core module communicates with the command
and control server, which it then uses to retrieve the
predetermined list of popular apps that the device is scanned
for. Since the core module looks to the C&C server for a list,
the list of apps can be very easily updated by the hacker,
which allows for easy upgrading of the malware. The boot
module is the next component that acts. If any application
from the list is found on the device, the malware utilizes the

Kakelli Anil Kumar, A. Raman, C. Gupta and R. R. Pillai/Journal of Engineering Science and Technology Review 13 (4) (2020) 240 - 248

 246

Janus vulnerability to inject the boot module into the detected
application. The next time the infected application is run, the
boot module will run the patch module which hooks the
methods from known ad software development kits to its
implementation as shown in figure 13. The initial attack
vector used by Agent Smith is the 9Apps market. It uses over
360 dropper variants to maximize profits and is commonly
known to infect the same devices repeatedly. There are
estimated to be around 2.8 billion infections in total. The
majority of the droppers on 9Apps are games, but adult
entertainment, media player apps, photo utility apps, and even
system utility apps are used. The most popular instance of a
dropper is a game called “Kiss Game: Touch Her Heart”. The
algorithm of malware update installation and detailed
statistics on the infection distribution shown in Table 1 and 2
shows that India was the target region of the malware.

Fig. 12. Agent Smith’s Attack

 Triada is a modular mobile Trojan that uses the user’s
root admin access to substitute different system files. It exists
on the system’s RAM and so cannot be found easily. What is
unique about this malware is that smaller Trojan’s like Ztorg,
Leech, and Gopro if infected in the device can download
bigger more dangerous malware, Triada.

Fig. 13. Modular Structure of Agent Smith

Table 1. Algorithm for the malicious updates

1. creates a new bundle object
2. apk_path, inflect_pkg and fake_name values the

bundle object holds are replaced by values given
by the malware author

3. A new activity is started and its class name is set
to “Android”

4. a new component is created which is an android
package installer.

5. a component is a malicious update that is later
installed

Table 2. Devices infected with Agent Smith country-wise
Country Total

Devices

Total

Infection

Event

Count

Avg

App

Swa

p

Avg

Droppe

rs Per

Device

Avg

Months

Device

Remain

Per

Devi

ce

ed

Infecte

d

India 15,230,1

23

2,017,873,

249

2.6 1.7 2.1

Banglad
esh

2,539,91
3

208,026,88
6

2.4 1.5 2.2

Pakistan 1,686,21
6

94,296,907 2.4 1.6 2

Indonesi

a

572,025 67,685,983 2 1.5 2.2

Nepal 469,274 44,961,341 2.4 1.6 2.4
US 302,852 19,327,093 1.7 1.4 1.8

Nigeria 287,167 21,278,498 2.4 1.3 2.3
Hungary 282,826 7,856,064 1.7 1.3 1.7
Saudi

Arabia

245,698 18,616,259 2.3 1.6 1.9

Myanma
r

234,338 9,729,572 1.5 1.4 1.9

 Triada once installed tries to get information about the
device such as the OS version, a model of the device, amount
of space in the SD card, and all the applications installed on
the device. Similar to the other malware are discussed, it sends
all this to a C & C server which is built by the attackers.
Kaspersky has detected around 17 C & C servers and 4
different domains used by this malware. Once the data gets
analyzed, the C & C server sends a configuration file that
consists of the passcode/PIN of the Android device, the list of
modules to be installed, the time of contact with the server.
After getting these details, Triada installs certain modules and
makes sure that they are kept in the short memory, hence the
detection of Triada is very difficult. The unique feature of
Triada is that other than the above actions, Triada has found a
way to modify the [10] Zygote process in an Android device
from figure 14. The Zygote process of an Android device is
the core process in the Android OS that forms the
blueprint/template for every Android application. So, if the
Zygote gets infected by Triada, the malware literally can
control the launch and usage of every application in the
Android device.

Fig. 14. Normal Zygote Flow Execution for Android apps

 Triada also substitutes the different system functions and
hides its modules from the currently running
applications/processes. Thus, the system does not find any
strange processes running and so it doesn’t raise the alarm.
Triada also reads the outgoing SMS and filters any

incoming ones. This can be a huge problem because many
transactions rely on SMS over an Internet connection because
to send an SMS, the Internet is not required. Triada can
modify these SMS so that the money is sent to the malware
authors and not to the owner of the product. This way Triada
steals money either from the users, in case they have not
completed their purchase or from the owner of the product in
case they have finished the purchase of the product. The way
Triada works is that it can affect a lot of users. As it is spread

Kakelli Anil Kumar, A. Raman, C. Gupta and R. R. Pillai/Journal of Engineering Science and Technology Review 13 (4) (2020) 240 - 248

 247

through smaller Trojans, Triada affected almost every user
among 10 Android users during the second half of 2015 as per
figure 15. So, the only way to protect from Triada is to
constantly update the device in case any patch occurs, install
mobile anti-viruses and most of all have a good security
solution.

Fig. 15. Triada infected to Android versions

Lotoor is a threat that targets Android devices silently and
looks for different vulnerabilities that are present in the
device. If any vulnerability is found, Lotoor exploits that and
will use that to get administrator privileges. In case Lotoor is
successful in doing this, it can [43]:
1. Collect sensitive data from the device

2. Monitor the installation of applications
3. Disable the security present in the device

4. Alter the settings on the device

 Further, Lotoor can be present in the mobile device as
rageagainstthecage and exploid. To prevent being attacked
by Lotoor, all the applications must be updated and install an
antivirus for the device.

10. Conclusion and Future Plans

Over the years, malware authors have gotten increasingly
craftier, but anti-malware authors have done the same. The
cycle used to be set in stone; a new malware is born, it rises
to fame, and it is then patched out. This life cycle is the life
cycle of all popular malware we have seen so far. However,
this article has demonstrated how anti-malware authors have
attempted to break this cycle by moving more towards
preventative measures, anti-malware systems that can predict
and eliminate malware before it even executes, over the
lacking cure-based system, eliminating the malware after the
damage is done. Some modern threats were analyzed,
showing how malware authors are also stepping up their
game, creating “silent” malware and even malware capable of
wearing disguises. Our review work is continuing to follow
the recent advances and updates in the field of malware and
their analysis for android and iOS versions of mobile
environments.

This is an Open Access article distributed under the terms of the Creative
Commons Attribution License

References

[1] https://research.checkpoint.com/2019/cyber-attack-trends-2019-

mid-year-report/

[2] P. Yan and Z. Yan, “A survey on dynamic mobile malware
detection,” Software Quality Journal, (2018).

[3] Q. Zhou, F. Feng, Z. Shen, R. Zhou, M. Y. Hsieh, and K. C. Li, “A

novel approach for mobile malware classification and detection in
Android systems,” Multimedia Tools and Applications, (2019).

[4] https://www.carbonblack.com/2017/12/20/carbon-black-2017-

threat-report-non-malware-attacks-ransomware-continue-spotlight/
[5] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic

malware analysis in the modern era—A state of the art survey,” ACM

Computing Surveys, (2019).
[6] N. K. Gyamfi and E. Owusu, “Survey of Mobile Malware Analysis,

Detection Techniques and Tool,” in 2018 IEEE 9th Annual

Information Technology, Electronics and Mobile Communication

Conference, IEMCON 2018, (2019).
[7] P. Bhat and K. Dutta, “A survey on various threats and current state

of security in android platform,” ACM Computing Surveys. (2019).
[8] J. F. Lalande, V. V. T. Tong, M. Leslous, and P. Graux, “Challenges

for Reliable and Large Scale Evaluation of Android Malware

Analysis,” in Proceedings International Conference on High

Performance Computing and Simulation, HPCS, (2018).
[9] Nguyen-Vu L., Ahn J., Jung S., Android fragmentation in malware

detection. Comput. Secur. Vol 87, pp. 9-10. (2019)
[10] https://www.kaspersky.com/blog/triada-trojan/11481/
[11] M. Wazid, S. Zeadally, and A. K. Das, “Mobile Banking: Evolution

and Threats: Malware Threats and Security Solutions,” IEEE

Consumer Electronics Magazine, (2019).
[12] T. Chakraborty, F. Pierazzi, and V. S. Subrahmanian, “EC2:

Ensemble Clustering and Classification for Predicting Android
Malware Families,” IEEE Transactions on Dependable and Secure

Computing, (2020).

[13] G. Shrivastava and P. Kumar, “SensDroid: Analysis for Malicious
Activity Risk of Android Application,” Multimedia Tools and

Applications, (2019).

[14] A. A. A. Samra, H. N. Qunoo, F. Al-Rubaie, and H. El-Talli, “A
survey of static android malware detection techniques,” in IEEE 7th

Palestinian International Conference on Electrical and Computer

Engineering, (2019).

[15] G. Meng, M. Patrick, Y. Xue, Y. Liu, and J. Zhang, “Securing
Android App Markets via Modeling and Predicting Malware Spread
between Markets,” IEEE Transactions on Information Forensics and

Security, (2019).
[16] K. Basu, P. Krishnamurthy, F. Khorrami, and R. Karri, “A

Theoretical Study of Hardware Performance Counters-Based

Malware Detection,” IEEE Transactions on Information Forensics

and Security, (2020).
[17] X. Chen et al., “Android HIV: A Study of Repackaging Malware for

Evading Machine-Learning Detection,” IEEE Transactions on

Information Forensics and Security, (2020).
[18] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian,

and M. Conti, “Similarity-based Android malware detection using
Hamming distance of static binary features,” Future Generation

Computer Systems, (2020).

[19] https://securelist.com/mobile-malware-evolution-2019/96280/
[20] N. I. Aminuddin and Z. Abdullah, “Advances in Computing and

Intelligent System Android Trojan Detection Based on Dynamic

Analysis,” Advances in Computing and Intelligent System, (2019).
[21] M. Shahpasand, L. Hamey, Di. Vatsalan, and M. Xue, “Adversarial

Attacks on Mobile Malware Detection,” in AI4Mobile 2019 IEEE 1st

International Workshop on Artificial Intelligence for Mobile, pp. 17–
20, (2019).

[22] F. Mercaldo and A. Santone, “Deep learning for image-based mobile

malware detection,” Journal of Computer Virology and Hacking

Techniques, (2020).
[23] J. Hwang, J. Kim, S. Lee, and K. Kim, “Two-Stage Ransomware

Detection Using Dynamic Analysis and Machine Learning
Techniques,” Wireless Personal Communications, (2020).

[24] P. Vinod, A. Zemmari, and M. Conti, “A machine learning based

approach to detect malicious android apps using discriminant system
calls,” Futue Generation Computing Systems, (2019).

[25] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P.

Miller, S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé, G. J. Ahn,
“Deep Android Malware Detection”, ACM, 301–308. (2017).

Kakelli Anil Kumar, A. Raman, C. Gupta and R. R. Pillai/Journal of Engineering Science and Technology Review 13 (4) (2020) 240 - 248

 248

[26] Li J., Sun L., Yan Q., Li Z., Srisa-an W., Ye H., “Significant

permission identification for machine-learning-based android
malware detection:, IEEE Transactions on Industrial Informatics,
14(7), 3216-3225. (2018).

[27] S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng, and Z. Jia, “A mobile
malware detection method using behavior features in network
traffic”, Journal of Network and Computer Applications. (2019).

[28] M. A. El-Zawawy, E. Losiouk, and M. Conti, “Do not let Next-Intent
Vulnerability be your next nightmare: type system-based approach to
detect it in Android apps,” International Journal of Information

Security, (2020).
[29] Yuan Z., Lu Y., Xue Y., Droiddetector: android malware

characterization and detection using deep learning. Tsinghua Science

and Technology, 21(1), 114-123. (2016).
[30] S. Millar, N. McLaughlin, J. Martinez del Rincon, P. Miller, Z. Zhao,

DANdroid: A Multi-View Discriminative Adversarial Network for

Obfuscated Android Malware Detection. CODASPY ’20.
Association for Computing Machinery, pp353–364. (2020)

[31] Q. Han, V. S. Subrahmanian and Y. Xiong, Android Malware

Detection via (Somewhat) Robust Irreversible Feature
Transformations, in IEEE Transactions on Information Forensics and
Security. (2020).

[32] M. K. Alzaylaee, S. Y. Yerima, S. Sezer, DL-Droid: Deep learning
based android malware detection using real devices, Computers &
Security, Vol 89, (2020).

[33] https://www.republicworld.com/technology-news/apps/beware-
xhelper-malware-infects-45000-devices-over-the-past-6-
months.html

[34] https://symantec-enterprise-blogs.security.com/blogs/threat-

intelligence/xhelper-android-malware
[35] https://www.virustotal.com/gui/
[36] M. Mehra and D. Pandey, “Event triggered malware: A new

challenge to sandboxing,” in 12th IEEE International Conference

Electronics, Energy, Environment, Communication, Computer,

Control: (E3-C3), 2016.

[37] https://blog.trendmicro.com/trendlabs-security-intelligence/anubis-
android-malware-returns-with-over-17000-samples/

[38] https://www.zdnet.com/article/these-malicious-android-apps-will-

only-strike-when-you-move-your-smartphone/
[39] D. Hassan and M. Might, “A Similarity-Based Machine Learning

Approach for Detecting Adversarial Android Malware, (2014).

[40] https://blog.avast.com/agent-smith-malware
[41] https://www.cybersecurity-insiders.com/meet-the-agent-smith-

malware/

[42] https://www.enigmasoftware.com/lotoor-removal/
[43] https://www.microsoft.com/en-us/wdsi/threats/malware-

encyclopedia description?Name=Exploit:Unix/Lotoor

[44] A. Qamar, A. Karim, and V. Chang, “Mobile malware attacks:
Review, taxonomy & future directions,” Futur. Gener. Comput.

Syst., (2019).

[45] E. J. Alqahtani, R. Zagrouba, and A. Almuhaideb, “A survey on
android malware detection techniques using machine learning
Algorithms,” (2019).

[46] K. Tian, D. Yao, B. G. Ryder, G. Tan, and G. Peng, “Detection of
Repackaged Android Malware with Code-Heterogeneity Features,”
(2020).

[47] G. D’Angelo, M. Ficco, and F. Palmieri, “Malware detection in

mobile environments based on Autoencoders and API-images,” J.

Parallel Distrib. Comput., (2020).
[48] A. Mehtab et al., “AdDroid: Rule-Based Machine Learning

Framework for Android Malware Analysis,” Mob. Networks Appl.,
(2020).

[49] C. Raghuraman, S. Suresh, S. Shivshankar, and R. Chapaneri, “Static

and dynamic malware analysis using machine learning,” Advances
in Intelligent Systems and Computing, (2020).

[50] M. Odusami, O. Abayomi-Alli, S. Misra, O. Shobayo, R.

Damasevicius, and R. Maskeliunas, “Android Malware Detection: A
Survey,” (2018).

[51] M. Choudhary and B. Kishore, “HAAMD: Hybrid Analysis for

Android Malware Detection,” In proceeding of International
Conference on Computer Communication and Informatics (2018).

[52] Fan, Ming, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua

Zheng, and others, ‘Android Malware Familial Classification and
Representative Sample Selection via Frequent Subgraph Analysis’,
IEEE Transactions on Information Forensics and Security, (2018).

[53] Feng, Pengbin, Jianfeng Ma, Cong Sun, Xinpeng Xu, and Yuwan
Ma, ‘A Novel Dynamic Android Malware Detection System with
Ensemble Learning’, IEEE Access, (2018).

[54] Khanmohammadi, Kobra, Neda Ebrahimi, Abdelwahab Hamou-
Lhadj, and Raphaël Khoury, ‘Empirical Study of Android
Repackaged Applications’, Empirical Software Engineering, (2019).

[55] Gao, Jun, Li Li, Pingfan Kong, Tegawende F. Bissyande, and Jacques
Klein, ‘Understanding the Evolution of Android App
Vulnerabilities’, IEEE Transactions on Reliability, (2019).

[56] Blanc, William, Lina G. Hashem, Karim O. Elish, and M. J. Hussain

Almohri, ‘Identifying Android Malware Families Using Android-
Oriented Metrics’, in Proceedings 2019 IEEE International

Conference on Big Data, (2019).

[57] Giovannitti, Eliana, Luca Mannella, Andrea Marcelli, and Giovanni
Squillero, ‘Evolutionary Antivirus Signature Optimization’, in
Proceedings of 2019 IEEE Congress on Evolutionary Computation,

CEC 2019, (2019) .
[58] Niveditha, V. R., T. V. Ananthan, D. Usha, K. Amandeep Singh, A.

Pooja, M. F. Zeenath Fathima Majeed, and others, ‘Android Malware

Inspection: Based on Memory Forensics’, Journal of Advanced

Research in Dynamical and Control Systems, (2019).
[59] Brayan Benett, A. S., L. Ranjitha, K. Vinushanth, R. Sam Abisherk,

and Amila Nuwan Senarathne, ‘Security Platform for Mobile OS’, in
2019 International Conference on Advancements in Computing,

ICAC 2019, (2019).

[60] Liu, Kaijun, Shengwei Xu, Guoai Xu, Miao Zhang, Dawei Sun, and
Haifeng Liu, ‘A Review of Android Malware Detection Approaches
Based on Machine Learning’, IEEE Access, (2020).

[61] Sunali Jogsan, ‘A Survey on Permission Based Malware Detection
in Android Applications’, International Journal of Engineering

Research, (2020).

[62] Shalabi, Eman, ‘On Malware Detection on Android Smartphones’,
International Journal for Research in Applied Science and

Engineering Technology, (2020).

[63] Duong, Lai Van, Tisenko Victor Nikolaevich, Do Hoang Long,
Nguyen Quang Dam, and Nguyen Quoc Hoang, ‘Detecting
Malicious Applications on Android is Based on Static Analysis

Using Deep Learning Algorithm’, International Journal of Advanced

Trends in Computer Science and Engineering, (2020).

