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Abstract. In this paper, a two-stage HMM-based recog-
nition method allows us to compensate for the possible
loss in terms of recognition performance caused by the
necessary trade-off between segmentation and recogni-
tion in an implicit segmentation-based strategy. The first
stage consists of an implicit segmentation process that
takes into account some contextual information to pro-
vide multiple segmentation-recognition hypotheses for a
given preprocessed string. These hypotheses are verified
and re-ranked in a second stage by using an isolated digit
classifier. This method enables the use of two sets of
features and numeral models: one taking into account
both the segmentation and recognition aspects in an im-
plicit segmentation-based strategy, and the other consid-
ering just the recognition aspects of isolated digits. These
two stages have been shown to be complementary, in the
sense that the verification stage compensates for the loss
in terms of recognition performance brought about by
the necessary tradeoff between segmentation and recog-
nition carried out in the first stage. The experiments on
12,802 handwritten numeral strings of different lengths
have shown that the use of a two-stage recognition strat-
egy is a promising idea. The verification stage brought
about an average improvement of 9.9% on the string
recognition rates. On touching digit pairs, the method
achieved a recognition rate of 89.6%.

Keywords: String recognition — Slant normalization —
Contextual information — Hidden Markov models — Ver-
ification stage

1 Introduction

An important subject of research in the field of docu-
ment analysis and recognition has been the recognition
of numeral strings. The principal motivation is the wide
variety of potential applications, such as ZIP codes, bank
checks, tax forms and census forms. The challenge is to
recognize numeral strings of unknown length which are
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Fig. 1. Difficulties in recognizing numeral strings: a size vari-
ation; b slanted numerals; ¢ broken numerals; d overlapping
numerals; e touching numerals

not neatly written. Some possible difficulties contribut-
ing to the unsatisfactory performance of many methods
for recognizing handwritten numeral strings are shown in
Fig. 1.

The more conventional methods attempt to segment
the numeral string into individual numerals prior to a
recognition step (segmentation-based methods). In these
methods, broken numerals represent a significant prob-
lem, since their parts need to be grouped to form a mean-
ingful component that is able to represent an individual
numeral. Usually, a set of heuristic rules is used to group
parts of broken numerals. These rules normally take into
account information like height, width and position of ad-
jacent connected components, plus the distance between
them. Examples of the effort required to group broken
parts of numerals can be found in [10,30]. Another diffi-
cult task for segmentation-based methods consists of seg-
menting touching numerals. Many studies have addressed
just this problem [13,33,34]. However, these studies have
revealed that segmenting touching numerals without the
aid of a recognizer is often unreliable. In addition, the use
of heuristics to drive a blind search for digits in strings
reduces the accuracy of the segmentation-based methods.

The segmentation-free methods have demonstrated
their advantages in dealing with broken and touching nu-
merals. Notice that “segmentation-free” does not mean
that no segmentation process is involved. It means rather
that the segmentation process is performed with the aid
of a numeral recognizer. The recognition can be per-
formed simultaneously with the segmentation process
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(implicit segmentation) [12,15,20,21,26], or afterwards,
in order to search for the best way to assemble primi-
tive segments to form the string (explicit segmentation)
[8,23,24,25].

Usually, in explicit segmentation-based methods an
over-segmentation strategy is used to segment a string
into primitive segments, which are classified as digits or
parts of digits. A further recognition process is used to
merge these primitive segments to form a string. In such
a method, we still have the string segmentation prior to
the recognition step. The difference from segmentation-
based methods is that, here, the objective is to obtain
primitive segments and not “numeral like” components.
However, it is clear that this method still does not repre-
sent well a good compromise between segmentation and
recognition processes. In fact, a correct recognition of-
ten depends on a correct segmentation. By contrast, a
correct segmentation also requires a correct recognition.
Thus, we can say that these statements have a “chicken
and egg” relationship, and they should be approached
simultaneously.

An alternative aimed at avoiding the prior seg-
mentation of the string has been the use of implicit
segmentation-based methods to integrate segmentation
and recognition processes. A promising approach to
achieve this has been based on Hidden Markov Models
(HMMSs). This approach was originally developed in the
field of speech recognition [27], where it has been applied
with much success. More recently, Bose and Kuo [1] and
Elms et al. [6] have shown the benefits of applying it to
recognizing printed words. In [26], the method proposed
by Elms et al. [6] is adapted for handwritten numeral
strings. From these studies, we may conclude that such an
approach is a promising way of integrating segmentation
and recognition to deal with the difficulties encountered
in processing handwritten numeral strings. However, we
can also observe some cost attached to this integration,
which is an open problem in such an approach. This cost
is a loss in recognition performance caused by combin-
ing segmentation with recognition. In other words, the
problem is that a set of features and models that show
promising performance in terms of segmentation usually
do not show similar performance in terms of recognition,
and vice versa. By contrast, to integrate them it is nec-
essary to define features and numeral models to contem-
plate both the segmentation and recognition aspects si-
multaneously. Moreover, a feature set must be extracted
from a numeral string image in the same way that it is
from an isolated digit image. In summary, the challenge
is to find some way to compensate for the loss in recog-
nition performance resulting from the necessary tradeoff
between segmentation and recognition carried out in an
implicit segmentation-based method.

The proposed method for recognizing handwritten nu-
meral strings provides a way of combining segmentation
and recognition taking into account this necessary trade-
off. The method is based on a two-stage recognition strat-
egy that enables the use of two sets of features and nu-
meral models: one taking into account both the segmenta-
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tion and recognition aspects in an implicit segmentation-
based process, and another considering just the recogni-
tion aspects in a further verification process.

This paper consists of five sections. In Sect. 2,
the proposed method, which can be categorized as a
segmentation-free approach, is described in detail. This
description starts with a general overview, then each
stage and the corresponding modules are described. Sec-
tion 3 presents a rigorous experimental protocol for im-
plementing and evaluating the proposed string recog-
nition method. Experiments are performed considering
isolated digits, numeral strings of different lengths and
touching digit pairs extracted from the NIST SD19
database. Section 4 presents a brief discussion, while
Sect. 5 presents the conclusion and future works.

2 Overview of the method

A general overview of the proposed method is presented
in Fig. 2. In the SCB (String Contextual-Based) stage,
a given numeral string is first preprocessed in order to
correct slant, smooth the string contour and calculate
the string bounding box. Subsequently, the FFE (Fore-
ground Feature Extraction) module scans the string im-
age from left to right, while a feature vector based on
foreground information is calculated for each column
in the string bounding box. This vector is mapped to
a discrete symbol available in a previously constructed
codebook. The output of the FFE module is a sequence
of discrete observations representing the entire numeral
string. The length of this sequence corresponds to the
number of columns in the string bounding box. In the
SR (Segmentation-Recognition) module, numeral HMMs
(Hidden Markov Models) trained on isolated digits (A?,
AL .00 X)), but considering string contextual infor-
mation, are matched to the observation sequence pro-
vided by the FFE module. The objective is to find the
N best segmentation-recognition paths (hypotheses) us-
ing an implicit segmentation-based strategy. For each
segmentation-recognition hypothesis, the following infor-
mation is provided: string length (number of digits), seg-
mentation points, recognition result of each string seg-
ment and the string recognition score.

The segmentation-recognition hypotheses generated
by the SCB stage are re-ranked in the Verification Stage.
Basically, this second stage consists of an HMM-based
digit classifier trained on isolated digits without taking
into account any string contextual information. A new
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set of features combines foreground and background in-
formation to improve the recognition performance of the
numeral HMMs. Moreover, 10 additional numeral HMMs
(A0, AL ..., A2)) based on the rows of the numeral im-
ages are combined with the column-based models (A\Y,,
AL, ..., AY.) to ensure an accurate representation of the
digit classes.

The verification process starts in the FBFE (Fore-
ground/Background Feature Extraction) module, in
which the segmentation points provided by the first stage
are used to define string segments and calculate their
bounding boxes. Then, for a given segment, a feature vec-
tor combining foreground and background information
is extracted from each column of the segment bound-
ing box. This vector is mapped to a discrete symbol in
a previously constructed codebook. A similar process is
carried out for the rows of the segment. The output of
the FBFE module consists of two sequences of discrete
observations for each segment: column-based and row-
based sequences. In the Verification module, the first step
is to select the column (A9, AL, ..., A9.) and row (A9,
AL, ..., X)) models corresponding to the segment to
be verified. This is done by using the recognition result
of each string segment provided by the SCB stage. The
selected models are scored using the corresponding se-
quence of observations extracted by the FBFE module.
The output probabilities of both column and row mod-
els are combined by summing their logarithms (logs). A
string score is obtained by summing the score of each seg-
ment of the numeral string. This string verification score
is added to the score of the corresponding segmentation-
recognition hypothesis obtained from the SCB stage in
order to re-rank it.

2.1 String Contextual-Based (SCB) stage

As previously described, the general objective of this
stage is to provide the N best segmentation-recognition
paths or hypotheses for a given numeral string. To this
end, it is composed of three modules: Preprocessing, Fore-
ground Feature Extraction (FFE) and Segmentation-
Recognition (SR). The main characteristic of this stage
is the use of an implicit segmentation-based strategy to
integrate segmentation and recognition processes. It has
been shown that this is a promising strategy for deal-
ing with the string difficulties previously presented, since
this allows us to avoid a prior segmentation of the string
into digits without the aid of a recognizer. In addition,
this stage contains numeral HMMs trained on isolated
digits, but considering contextual information (CI) re-
garding slant and intra-string size variations. The main
purpose of using such a CI is to ensure an accurate rep-
resentation of numeral strings.

2.1.1 Preprocessing module. In this module, the string
slant is corrected in order to reduce the script variability.
The method proposed in [2] has also shown to be really
helpful in alleviating overlapping between adjacent digits

which may interfere with the column-based features ex-
tracted from them. The smoothing method described in
[31] is used, before and after slant correction, to reduce
possible artifacts on the string contour. The last step of
this module concerns the calculation of the string bound-
ing box.

2.1.2 Foreground Feature Extraction (FFE) module. In
the implicit segmentation strategy of the SCB stage, a
preprocessed string image is scanned from left to right,
while numeral HMMSs are matched to it by means of the
Level Building Algorithm [28]. Thus, it is necessary to
compute a feature vector as a function of an independent
variable through the use a windowing scheme [6,9,19].
Similar to [6] in our windowing scheme a feature vector
is calculated for each column of the digit or string image.
With this scheme, the problem of defining the size of
a frame or sliding window is avoided, as is the overlap
from one frame to the next. In addition, the use of frames
which are usually divided into cells, can make the features
more dependent on size normalization methods, which
may cause distortions in the digit strokes, broken digits
or even generate new touching cases. To compensate for
not using a zoning scheme based on frames and cells, the
relative position of each feature from the top of the digit
or string bounding box is computed. This measure is size
invariant and it can simulate a zoning scheme.

The FFE module computes a feature vector composed
of 34 foreground features. This feature vector is mapped
to one of the 256 possible discrete symbols available in a
codebook previously constructed by using the K-means
vector quantization process [17,18]. The output of the
FFE module is a sequence of discrete symbols represent-
ing a given numeral string. The length of the sequence
corresponds to the width (number of columns) of the
string bounding box.

The set of features is extracted from the foreground
pixels of the string image. Even knowing that background
information may provide a strong recognition perfor-
mance, its use is avoided since the objective is to jointly
maximize segmentation and recognition performances of
the implicit segmentation strategy proposed in the SCB
stage. To calculate background features, we need to know
a priori the boundaries of each digit inside the string.
However, this is one of the objectives of the SCB stage.

The proposed foreground feature set is composed of
local and global features extracted from each string col-
umn. The local features are based on transitions from
background to foreground pixels, and vice versa. For each
transition, the mean direction and corresponding vari-
ance are obtained by means of the statistic estimators
defined in [29]. These estimators are more suitable for
directional observations, since they are based on a circu-
lar scale. For instance, given the directional observations
a; = 1% and ay = 3599, they provide a mean direction
(@) of 0° instead of 180° calculated by conventional esti-
mators. Let aq,...,a4,...,ay be a set of directional observa-
tions with distribution F'(c;) and size N. Figure 3 shows
that a; represents the angle between the unit vector OP;
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Fig. 3. Circular mean direction @ and variance S, for a dis-
tribution F(a;)

and the horizontal axis, while P; is the intersection point
between OP; and the unit circle.
The Cartesian coordinates of P; are defined as:

(cos(ay),sin(w;)) (1)

The circular mean direction @ of the N directional
observations on the unit circle corresponds to the direc-
tion of the resulting vector (R) obtained by the sum of
the unit vectors (OPy,...,0P;,...,0OPy). The center of
gravity (C, S) of the N coordinates (cos(c;), sin(a;)) is
defined as:

(cos(a)) (2)
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_These coordinates are used to estimate the mean size
of R, as:

R=1/(C+5% (4)

Then, the circular mean direction can be obtained by
solving one of the following equations:

=l QA

(5)

= @l

cos(@) = or sin(@) =

Finally, the circular variance of @ is calculated as:

Se=1—-R with 0<5,<1 (6)

To estimate @ and S, for each transition of a numeral
image, we have considered {0°, 45°, 90°, 135°, 180°, 225°,
270°, 315°} as the set of directional observations, while
F(a;) is computed by counting the number of successive
black pixels over direction «; from a transition until the
encounter of a white pixel. In Fig. 4 the transitions in a
column of numeral 5 are enumerated from 1 to 6, and the
possible directional observations from transitions 3 and 6
are shown. This directional information is very important
since it give us some insight into the local shape of the
digit stroke.

Image column

Transitions
(1-6)

Fig. 4. Transitions in a column image of numeral 5, and the
directional observations used to estimate the mean direction
for transitions 3 and 6

In addition to this directional information, we have
calculated two other local features: a) relative position
of each transition with respect to the top of the digit
bounding box, and b) whether the transition belongs to
the outer or inner contour, which shows the presence of
loops in the numeral image. The first feature is used to
compensate for the lack of a zoning scheme in our fea-
ture extraction method. The second is used to detect the
presence of loops, which are very discriminative for hand-
written numerals. Since for each column eight possible
transitions are considered, at this point the feature vec-
tor is composed of 32 features.

The global features are based on the vertical projec-
tion (VP) of black pixels for each column, and the deriva-
tive of VP between adjacent columns. These features pro-
vide the foreground pixel density of each column and
the difference between adjacent columns that may give
us some insight into the characteristic strokes of a digit.
This constitutes a total of 34 features extracted from each
column image and normalized between 0 and 1.

2.1.8 Segmentation-Recognition (SR) module. This mod-
ule integrates segmentation and recognition through the
use of an implicit segmentation-based strategy. It does so
using the Level Building Algorithm (LBA) described in
[6], which is responsible for matching numeral HMMs to
the preprocessed string represented as a sequence of dis-
crete symbols provided by the FFE module. In order to
obtain the N-best candidate strings, we keep track of the
K candidates at each level of the LBA instead of keep-
ing just the globally best candidate as described in [6].
Since in the LBA, we have computed all reference pattern
distances already (as needed to determine the best dis-
tance), all that is required is additional storage (to keep
track of the array of K-best distances) and the book-
keeping to determine the N-best strings, as described in
details in [28].

To ensure an accurate representation of a numeral
string, the numeral HMMs (A2, AL....; \?) are trained on
a special data set extracted from the original NIST SD19.
To create this data set, an automatic process based on a
digit classifier is described in [2,3]. In this process, a hand-
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Fig. 6. Left-to-right HMM with 5 states

written numeral string is selected and segmented into dig-
its when all of its components are recognized as isolated
digits. Moreover, the string recognition result must cor-
respond to that labeled by NIST. The objective is to
obtain a data set in which the isolated digits have a link
to their original strings. This enables the use of string
contextual information during training of numeral mod-
els on the isolated digits. The general idea is to keep the
same experimental conditions during system training and
testing.

Contextual information used during training concerns
string slant and intra-string size variations. To consider
slant contextual information, we use the slant estimated
from the original string to correct the isolated digits used
for training the implicit segmentation-based method used
in the SCB stage.

To deal with intra-string size variation, we have con-
sidered the distances or blank spaces on top and bottom
of some digits in the string (see Fig. 5) as contextual in-
formation. For this purpose, features are extracted from
each training sample (isolated digit) by taking into ac-
count the height of its original string bounding box in-
stead of the height of its own bounding box. Moreover,
to deal with inter-string size variation, we use only size-
invariant features in the FFE module.

The use of contextual information has shown to be
a promising strategy to obtain an accurate representa-
tion of numeral strings by using models based on iso-
lated digits. We can see the contribution to recognition
performance in Sect. 3.

2.1.4 Numeral models. The topology of the numeral
models is defined taking into account the recognition of
handwritten text and the use of LBA. This means a left-
right model without initial or end-states. Figure 6 shows
the initial 5-state HMM topology used in the baseline
SCB stage, in which the number of states was experi-
mentally defined.

The same, or similar, topology can be found in re-
lated works. In [6], the authors use it to model char-
acter classes to recognize fax-printed words. The same
structure is used for modeling numeral classes to recog-
nize handwritten numeral strings in [26]. Another similar
HMM topology, with additional skip transitions, is used
for modeling airline vocabulary in [28]. In all the above,
the LBA is used as a recognition algorithm.
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Fig. 7. Distributions of observations among the HMM states
computed during model training

As we can see, the HMM topology used in the baseline
system does not present additional states (initial or end-
states) to enable the concatenation of numeral models,
since these are not necessary in the LBA framework. In
the SR module, 10 numeral models independently trained
on isolated numerals are used to recognize strings, and
the LBA is responsible for finding the best sequence of
these models for a given numeral string. However, this
topology does not allow us to model the interaction be-
tween adjacent numerals in strings. Moreover, in the pre-
liminary experiments on numeral strings in Sect. 3, we
can observe a significant loss in terms of recognition per-
formance as the string length increases (see Table 5). In
order to better understand the behavior of these numeral
models, the distribution of observations among the HMM
states is computed during their training on 50,000 iso-
lated numerals (5,000 samples per class).

Figure 7 presents the distributions for digit classes
seven and nine as a b-state HMM without end-state.
These unbalanced distributions of observations among
the states, associated with the presence of a self-
transition with probability value equal to 1.0 in the last
HMM state (s5), have a negative impact on the segmenta-
tion performance of the SR module, as described in [3]. To
deal with this problem and also adapt the numeral models
to a string-based training, we include an end-state in the
HMM topology (see Fig. 8). The new models show a bet-
ter distribution of the observations among their states, as
we can see in Fig. 7 (5-state HMM with end-state), and
avoid a self-transition with probability value equal to 1.0
in the state 5 (s5). The end-state does not absorb any
observation, and it is useful to concatenate the numeral
models during a string-based training. The positive im-
pact of this modification on the HMM topology to the
string recognition is shown in Sect. 3 and also in [3].

Based on this new topology, we can pay some atten-
tion to the possibility of integrating handwriting-specific
knowledge into the model structure to obtain an accurate
representation of numeral strings. In addition, the final
length of each numeral HMM (number of states) was re-
defined through the use of the scheme described in [32].
This scheme estimates a range for the length of each nu-
meral HMM taking into account statistics estimated from
the length of the observation sequences on the training
database. Table 1 shows the final length of each numeral
model.

2.1.5 Space model. With the objective of obtaining an
accurate representation of numeral strings, we investigate



Alceu de S.Britto et al.: The recognition of handwritten numeral strings using a two-stage HMM-based method 107

Fig. 8. 5-state HMM with an end-state

Table 1. Final length of each numeral HMM

Number of states
13
6
14
14
15
13
15
15
14
16

Numeral model
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Fig. 9. Concatenation of numeral models during string-based
training

a way of integrating some contextual information in the
numeral models regarding the inter-digit spaces. For this
purpose, we use a two-step training mechanism, in which
numeral models previously trained on isolated digits are
submitted to a string-based training. In the second step
of this training mechanism, a space model is built into
the numeral models.

The strategy of building the space model into the nu-
meral models instead of using an independent model is
an important one in the LBA framework, since possi-
ble future problems when the method is generalized for
unknown-length strings will be avoided. An independent
space model would represent one more model competing
at each LBA level, which must be taken into account to
estimate the string length (number of digits).

The space model is trained on digit pairs extracted
from the NIST database. In this training, for a given digit
pair the corresponding numeral models are concatenated
by using the end-state. In fact, the end-state of the first
model is replaced with the first state of the second model
(see Fig. 9). For the space model experiment, we use a
two step-training mechanism: 1) 10 numeral models are
trained first on isolated digits, 2) the numeral models
are submitted to a string-based training using digit pairs
(DPs) extracted from the NIST database.

The DP database is balanced in terms of number of
naturally segmented, overlapping and touching numerals.
The NIST series hsf-0 to hsf-8 were used to provide the
training and validation samples. Table 2 shows the num-
ber of samples in the training and validation sets, and
also presents the number of samples representing each
string class.

Just the space model parameters are estimated during
the second-step training. The parameters corresponding

Table 2. Digit pair database (strings composed of 2 digits)

Validation
1,800(51.4%)
1,000(28.6%)

700(20.0%)
3,500(100.0%)

String samples
Naturally segmented
Touching digits
Overlapping digits
Total

Training
8,000(53.3%)
4,000(26.7%)
3,000(20.0%)

15,000(100.0%)

to the numeral models are kept the same as estimated
during the first training step based on isolated numerals.
The corresponding experimental results are reported in
Sect. 3.

2.2 Verification stage

The second stage of the proposed method consists of
two modules: the Foreground/Background Feature Ex-
traction (FBFE) and the Verification modules. The main
component of this stage consists of an HMM-based digit
classifier trained on isolated digits without taking into
account any string contextual information. A new set of
features combines foreground and background informa-
tion to provide numeral HMMs with high recognition
performance. Moreover, 10 additional numeral HMMs
(A0, AL ..., A?)) based on the rows of the numeral im-

vry Suro”
ages are combined with the column-based models (A\Y,,
AL, .., M%) to accurately represent the digit classes. The
objective is to use these new models and the Viterbi’s
algorithm [28] to verify and re-rank the segmentation-

recognition paths provided by the SCB stage.

2.2.1  Foreground/Background  Feature  Extraction
(FBFE) module. The verification stage starts in this
module, in which the segmentation points provided by
the first stage are used to define string segments and
calculate the corresponding bounding boxes. Then, for
a given segment, this module extracts a feature vector
combining foreground and background information
for each column in the segment bounding box. This
feature vector is mapped to one of 256 possible discrete
symbols available in a codebook previously constructed
by using the K-means algorithm. A similar process
is carried out for the rows of the segment. Thus, the
output of the FBFE module consists of two sequences
of discrete observations for each segment: column-based
and row-based sequences.

The feature vector computed for each column and
for each row of the digit image is composed of 47 fea-
tures: the 34 foreground features used in the SR module,
plus 13 background features. The background features
are based on concavity information. These features are
used to highlight the topological and geometrical proper-
ties of the digit classes. Each concavity feature represents
the number of white pixels that belong to a specific con-
cavity configuration.

The label for each white pixel is chosen based on the
Freeman code with four directions. Each direction is ex-
plored until the encounter of a black pixel or the lim-
its imposed by the digit bounding box. A white pixel is
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Fig. 10. Example of concavity features
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and the zoning scheme provided by col-
umn and row models

labeled if at least two consecutive directions find black
pixels. Thus, we have 9 possible concavity configurations
(see Fig. 10). Moreover, we consider four more configu-
rations, in order to detect more precisely the presence
of loops. The total length of this feature vector is then
13. The concavity vector is normalized between 0 and 1,
by the total of the concavity codes computed for each
column or row of the digit image. The column-based and
row-based models provide a way of combining foreground
and background features in the zoning scheme as shown
in Fig. 10.

2.2.2 Verification module. This module is based on the
Viterbi’s algorithm described in [28]. Each digit class is
represented by two numeral HMMs: one based on the
image columns (A%, AL....., A.) and other based on
the image rows (A),., AL ... A9 ) of digit images. In this
module, the first step concerns the selection of the column
and row models corresponding to the string segment to
be verified. This is done using the segment recognition
result provided by the SCB stage. The selected pair of
models is scored using the Viterbi’s algorithm and the
sequence of observations extracted by the FBFE module.
The output probabilities of both the column and row
models are combined by summing their logs. This results
in a segment score. A string score can be obtained by
summing the score of each segment. This new string score
calculated in the Verification module is added to the score
of the segmentation-recognition hypothesis obtained from
the SCB stage. The final resulting score is used to re-rank
the string segmentation-recognition hypothesis.

To explain this further, let us to consider the N
segmentation-recognition hypotheses provided by the
SCB stage as (srhi,...,srhy), where each srh; is a
structure composed of the following fields: string length
(M), segmentation points (spi1,...,Spim—1), recognition
result of each string segment (71,...,7:0), and the score

of the segmentation-recognition hypothesis (SCBsrh;).
In the Verification stage, the first step carried out by
the FBFE module, in which the segmentation points
(spi1,- .- ,Spine—1) are used to define each segment (seg;;)
and its bounding box. A feature vector is extracted from
each column and row of seg;; taking into account its
bounding box. The column and row based feature vec-
tors are quantized in order to generate two sequences
of discrete observations representing each seg;;, respec-
tively (see Fig. 11). The Verification module uses the
recognition result r;; of the corresponding segment to
select the column- and row-based numeral HMMs, A%
and A7, which are scored using the respective sequence
of observations. A segment recognition score (segsc;;) is
estimated by summing the log of the probability of the
column and row numeral models. The verification string
score is obtained by:

M
Vstr; = Z segsc;; (7)
j=1

Finally, the segmentation-recognition score of the
SCB stage (SCBsrh;) and that obtained in the Verifi-
cation stage (Vstr;) are combined as:

Finalstr; = SCBsrh; + Vstr; (8)

The resulting string score (Finalstr;) is used to re-
rank the i*? string recognition hypothesis.

2.2.8 Numeral models. The digit classes are represented
by 20 models: 10 column-based (A0., Al.,..., A).) and
10 row-based (A0, AL ....., A2 ) models. They have the
same end-state topology used for the numeral models of
the SR module. The optimization scheme defined in [32]
is also used to define the final length (number of states)

of these models (see Table 3). However, they differ from
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Fig. 11. A numeral string, the segmentation points (sp;), a
segment and its corresponding bounding box (segs) and the
column and row-based feature extraction

Table 3. Number of states of the numeral models

Digit class Column-based model Row-based model

0 13 14
1 6 16
2 14 16
3 14 20
4 15 18
5 13 19
6 15 18
7 15 18
8 14 20
9 16 21

the SR models in the sense that they are trained without
considering any string contextual information and using
a feature set based on both foreground and background
information.

Moreover, there is no space model inside them. The
objective is to obtain numeral models which are more
powerful in terms of isolated digit recognition perfor-
mance than those used in the SR module.

We can see in both stages of the proposed method
the use of discrete HMMs. We have decided to imple-
ment discrete HMMs to be sure that in both SCB and
Verification stages, there will be enough data for train-
ing. This strategy is important to allow the modelling
of specific handwriting-knowledge related to the interac-
tion between adjacent digits in strings (such as inter-digit
spaces). In addition, it is also important to ensure porta-
bility to the proposed method.

3 Experimental results

In this section, experiments undertaken during the course
of development of the proposed method are detailed. In
the first set of experiments, string recognition is based on
an informed strategy, i.e., the string length (number of
digits) is known. The objective of using this strategy is to
evaluate the system under different conditions, while at
the same time adjusting some important aspects regard-
ing string normalization, feature extraction and HMM
parameters. A non-informed strategy is used in the fi-
nal experiments. It is important to point out that all the
experiments were conducted considering a zero-level re-
jection.

The protocol used to implement and evaluate the
proposed method consists of three steps. In the first

step, which is called SCB Stage Construction and Eval-
uation, we construct a baseline system composed of
the Preprocessing, Forward Feature Extraction (FFE)
and Segmentation-Recognition (SR) modules represent-
ing the first stage of the proposed numeral string recogni-
tion method. The second step of the evaluation protocol
is called Verification Stage Construction and Evaluation.
The objective is to re-rank the N best segmentation-
recognition hypotheses of the SCB stage by using a veri-
fication strategy. The general idea here being to evaluate
the SCB stage with respect to segmentation and recog-
nition of numeral strings, and to include a further veri-
fication step to check and re-rank its results. In the last
step of the evaluation protocol the system is evaluated
using a non-informed strategy, where the string length is
unknown. An error analysis is also presented.

3.1 Databases

The isolated numerals used in these experiments come
from the NIST SD19, we use 50,000 numeral samples for
training, 10,000 for validation and 10,000 for testing. The
training samples were extracted from hsf 0, hsf-1 and
hsf-2, the validation samples from hsf-7 and the testing
samples from hsf_4. The codebooks used in the proposed
method were generated based on the 50,000 numeral sam-
ples of the training set (5,000 per class). In the SCB
stage, for example, since a feature vector is calculated for
each image column, more than 1,500,000 feature vectors
were used in the vector quantization process (consider-
ing around 30 columns per image in average). A similar
number of feature vectors is processed during the con-
struction of the codebooks used in the Verification Stage
(column and row-based codebooks).

The experiments using numeral strings are based on
12,802 samples extracted from the hsf 7 series of NIST
SD19 and distributed into 6 classes of strings: 2_digit
(2,370), 3_digit (2,385), 4_-digit (2,345), 5.digit (2,316),
6-digit (2,169) and 10_digit (1,217). These strings ex-
hibit different problems, such as touching, overlapping
and fragmentation. In addition, to evaluate the system
in terms of touching digits we use a subset of data con-
taining 2,069 touching digit pairs (TDPs) also extracted
from NIST SD19.

3.2 SCB stage — construction and evaluation

This section corresponds to the first step of the evalu-
ation protocol, in which the SCB stage is improved at
each new experiment. In the experiments on string nor-
malization, both slant normalization techniques with and
without contextual information are developed and eval-
uated. Moreover, the advantage of using contextual in-
formation instead of a size normalization method to deal
with the intra-string size variation is shown. These exper-
iments also show that the foreground features proposed
in the FFE module are really unaffected by inter-string
size variation.
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Table 4. Slant normalization experiments — isolated digit
recognition (%)

Experiments Validation Testing
Without slant normalization 93.1 86.2
Slant normalization without CI 95.9 93.0
Slant normalization with CI 95.8 92.6

Table 5. Slant normalization experiments — string recognition
results (%)

String Without slant ~ Slant normal.  Slant normal.
class normalization without CI with CI
2_digit 77.6 80.9 84.2
3_digit 66.3 70.6 75.1

4 _digit 57.0 64.4 69.2
5_digit 49.3 53.1 61.1
6_digit 43.5 47.3 58.1
10_digit 17.4 31.0 34.4
Global 55.1 60.5 66.4

In addition, we evaluate the impact of adding an end-
state to the HMM structure. Some experiments show the
improvement obtained by considering a space model built
into the numeral models. In the final experiments, the
HMM parameters are optimized.

8.2.1 Baseline system. The experiments start with the
construction of a baseline system, which corresponds to
the SCB stage. In this version, the HMM parameters and
codebook size were experimentally defined. The best re-
sults were obtained with 5-states discrete left-right nu-
meral HMMs and a codebook of 64 entries. The feature
vector is composed of foreground features extracted from
the image columns (34-vector) as previously described.
The SR module corresponds to an LBA. It is used to
give the best segmentation-recognition path for a given
numeral string. There is no verification module in the
baseline system.

3.2.2 Experiments on slant normalization. These exper-
iments are designed to answer the following question:
what is the real contribution to numeral string recogni-
tion achieved by using string slant to normalize isolated
digits used to train the numeral models of the SCB stage?
To this end, the baseline system is used to compare recog-
nition performance by considering no slant normaliza-
tion, slant normalization without contextual information
and with contextual information (CI). In the experiment
based on slant normalization without contextual informa-
tion, each isolated numeral used for training the numeral
HMNMs is slant-corrected using the slope estimated from
its own image. In contrast, when contextual information
is used, the slope for each isolated numeral is estimated
as the slope calculated for its original string.

Table 4 presents some preliminary recognition results
for isolated digits. We can observe that contextual in-
formation does not contribute to the recognition of slant
normalized isolated numerals, since the digit origin is not
helpful information in this case.

72 Hd HH

Fig. 12. a Original string; b String bounding box after slant
normalization; ¢ Training samples linked to their original
string and the bounding box used for feature extraction

Table 6. Size normalization experiments — isolated digit
recognition (%)

Experiments Validation  Testing
Without size normalization 95.8 92.6
Size normalization 95.2 92.2
IntraSSV 94.8 91.1

Table 7. Size normalization experiments — string recognition
results (%)

String Without size Size IntraSSV
class normalization normalization

2_digit 84.2 84.2 85.3
3_digit 75.1 75.6 78.1

4 _digit 69.2 69.9 71.3
5_digit 61.1 64.0 66.3
6_digit 58.1 59.7 63.8
10_digit 34.4 40.7 44.0
Global 66.4 68.0 70.4

On the other hand, Table 5 shows very interesting re-
sults for numeral strings. Normalizing without contextual
information has brought an improvement of 5.4% in the
global string recognition rate, while the use of contextual
information allows an improvement of 11.3%, both com-
pared to the experiments without slant normalization

3.2.8 Experiments on size mormalization. In these ex-
periments, we evaluate two strategies to deal with the
intra-string size variation: a) the use of a non-linear
size normalization method described in [16], to normalize
each numeral string along the vertical axis by using the
mean digit height (45 pixels) calculated from the training
database; b) the use of contextual information regard-
ing intra-string size variation (IntraSSV) during train-
ing of the numeral models. In the last strategy, features
from each training sample representing an isolated digit
are extracted taking into account the height of its origi-
nal string bounding box instead of the height of its own
bounding box (see Fig. 12). Moreover, we consider the
foreground features as size invariant. This means that
nothing is done to deal with inter-string size variation.

Table 6 shows that the foreground features really do
not vary with inter-string size variation. Moreover, the
experiment based on IntraSSV loses in terms of numeral
recognition, which is possible since the use of this addi-
tional contextual information increases the numeral vari-
ability. In contrast, this experiment brought a further im-
provement of 4% to the global string recognition rate (see
Table 7), even with a small loss in terms of isolated nu-
meral recognition performance.

The experiments considering the use of a size nor-
malization method have shown some improvement, but
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Table 8. End-state experiments — string recognition results

(%)

String HMM without HMM with
class end-state end-state
2_digit 85.3 87.7
3_digit 78.1 82.4
4_digit 71.3 78.1
5_digit 66,3 75.6
6_digit 63.8 71.6
10_digit 44.0 60.6
Global 70.4 77.5

not so relevant as the one brought by the use of IntraSSV
for training the numeral models. This is due to additional
touching digits and distortions in the digit strokes caused
by the size normalization method.

3.2.4 Contribution of an end-state in the HMM topology.
These experiments show that the HMM topology with
end-state does not bring a significant improvement in the
recognition of isolated numerals (about 0.7%). On the
other hand, it brought about a 7.1% improvement in the
global string recognition rate (see Table 8).

This is due a better distribution of the observations
among the HMM states, and a better estimation of the
self-transition probability in the last HMM state. Conse-
quently, the LBA provides a more precise match of nu-
meral models to the observation sequence. This means a
better definition of string segmentation points.

8.2.5 Contribution of a space model. In these experi-
ments, the digit pair database and the two-step train-
ing mechanism described in Sect. 2 are used to evaluate
the use of a space model. This corresponds to an addi-
tional state in the numeral HMM structure. The follow-
ing strategies are evaluated: 1) the use of one space model
for each numeral class; and 2) the use of one space model
representing all numeral classes. In both strategies, the
numeral models are first trained on isolated digits. Subse-
quently, the space model parameters are estimated during
the second-step training on digit pairs. The parameters
corresponding to the numeral models are kept the same
as estimated during the first training step on isolated nu-
merals.

Table 9 summarizes all these experiments. It can be
observed that the space model brings about some im-
provement for each string class. The recognition perfor-
mance of both strategies is almost the same, which shows
that the space model is not dependent on digit class.

8.2.6 Optimization of the HMM parameters. The scheme
described in [32] for defining the HMM length is used to
redefine the number of states of the numeral HMMs in
the SCB stage. In addition, a new codebook is evaluated.
The best results are achieved by using the values shown in
Table 3, and a codebook with 256 entries. Table 10 shows
the impact on the recognition performance for isolated
digits, while Table 11 does so for numeral strings. In these
experiments, we did not consider the space model.

Table 9. Space model experiments — string recognition results

(%)

String HMM with HMM with HMM with
class end-state end-state and  end-state and
space model*  space model**
2_digit 87.7 87.9 87.9
3_digit 82.4 82.7 82.6
4 _digit 78.1 78.4 78.4
5_digit 75.6 76.0 76.1
6_digit 71.6 72.0 72.0
10_digit 60.6 61.1 61.3
Global 77.5 77.8 77.8

(*one space model by digit class)
(**one space model for all digit classes)

Table 10. Different HMM configurations — isolated digit
recognition (%)

Experiments Validation Testing
Baseline system 95.6 91.7
Optimized HMMs & 256-codebook 96.7 94.0

Table 11. HMM parameters optimization — string recognition
results (%)

String Baseline  Optimized
class system system
2_digit 87.7 89.8
3_digit 82.4 84.4
4_digit 78.1 80.3
5_digit 75.6 78.0
6_digit 71.6 75.8
10_digit 60.6 66.2
Global 77.5 80.3

We update the space model experiments considering
the new HMM parameters. One space model representing
all numeral classes is considered in Table 12.

3.8 Verification stage — construction and evaluation

As previously indicated, the verification module is com-
posed of 20 numeral HMMs: 10 based on the columns
and 10 based on the rows of the digit images. These com-
plementary HMM models are used as an isolated digit
classifier for re-ranking the segmentation-recognition hy-
potheses provided by the SCB stage.

The same scheme used for optimizing the numeral
HMMs of the SR module is applied to define the length
of these new HMM models. The best result is obtained by
using the values in Table 3. The codebook composed of
256 entries has provided the best results. Table 13 shows
the recognition results for isolated digits when the column
and row models are combined. They are combined by
summing the log of the final probability of each model
calculated using Viterbi’s algorithm.
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Table 12. String recognition results after optimizing the
HMM parameters and using a space model (%)

String System without System with
class space model space model
2_digit 89.8 90.2
3_digit 84.4 85.8
4_digit 80.3 81.6
5_digit 78.0 79.9
6_digit 75.8 76.7
10_digit 66.2 68.4
Global 80.3 81.6

Table 13. Combination of column and row models — isolated
digit recognition(%)

Validation Testing
Column based features 98.4 96.5
Row based models 98.4 97.0
Combination(column x row) 99.0 98.0

Table 14. SCB stage — numeral string recognition results (%)

Class Top Top Top Top Top

mH @ B @ 6
2_digit 90.2 953 969 972 974
3_digit 85.8 91.9 928 932 933
4 _digit 81.6 89.3 91.1 91.8 91.9
5_digit 79.9 87.6 89.5 90.5 90.6
6_digit 76.7 85.8 87.3 884 88.8
10_digit 68.4 73.6 742 744 744
Global  81.6 88.5 90.0 90.6 90.8
TDPs 79.5 88.4 91.6 92.6 93.1

8.4 Recognition results of known-length strings

During these experiments the SR module provides the
10 best segmentation-recognition paths for each numeral
string. In the Verification stage, the FBFE module uses
the segmentation points of each path as delimiters in the
preprocessed string image to calculate new features based
on columns and rows for each string segment. The recog-
nition result of the first stage is verified using the new set
of features and numeral HMMs available in the Verifica-
tion stage. We combine the recognition results of the SCB
and Verification stages as described in Sect. 2.2. Table 14
shows the top 5 recognition results of the first stage of
our system, while Table 15 presents the top 5 recogni-
tion results after the Verification stage. The last line of
these tables shows the recognition results for Touching
Digit Pairs (TDPs) using a database composed of 2,069
samples extracted from NIST database.

We can see a significant improvement in the recog-
nition performance by using the Verification stage. The
main reason is that the foreground features and the nu-
meral HMMs based on contextual information of the SCB
stage may contemplate both segmentation and recogni-
tion tasks in an implicit segmentation approach, but they
do not provide a strong enough recognition power.

Table 15. SCB + Verification stage — numeral string recog-
nition results (%)

Class Top Top Top Top Top

nH @2 6 @ 6
2_digit 95.2 97.5 98.3 98.4 985
3_digit 92.6 95.6 96.1 96.2 96.2
4 _digit 92.1 953 959 96.0 96.1
5_digit 90.0 93.9 945 94.6 94.7
6_digit 90.0 94.0 94.8 949 95.0
10_digit 86.9 90.3 90.3 90.4 90.4
Global 91.5 948 954 955 95.6
TDPs 89.6 94.3 953 95.7 95.8

8.5 Recognition results of unknown-length strings

So far, the string recognition has been based on an in-
formed strategy, i.e., the string length (number of digits)
is known. The objective of using this strategy was to
evaluate the system in different conditions, while at the
same time adjusting some important aspects regarding
string normalization, feature extraction and HMM pa-
rameters. In the experiments reported in this section, a
non-informed strategy is used, i.e., the string length is
unknown.

To deal with this problem, we have defined a string
length predictor based on Bayes theory described in [11].
It uses the minimum-error-rate decision rule to predict
the string length (number of digits) given the width of the
string bounding box (sbb) in terms of number of columns.
A set of string classes is defined as

w = {2_digit, 3_digit, 4_digit, 5_digit, 6 _digit, 10_digit },

in which class #_digit corresponds to strings composed
of # digits. The a priori probabilities of these classes
are considered ambiguous, i.e., P(2_digit) = P(3_digit)
= P(4.digit) = P(5_digit) = P(6_digit) = P(10_digit).
The parameters of a Gaussian pdf are estimated for each
class by using a training set composed of 44,256 hand-
written numeral strings extracted from the NIST SD19
database. Then, a string length classifier is designed to
classify the sbb_width into M classes of string lengths by
using M discriminant functions g;(sbb_width), comput-
ing the similarities between the unknown data sbb_width
and each string class w;, and selecting the class w; cor-
responding to

j#Fi (9)

Figure 13 shows the scheme of this classifier, where
the decision rule is to maximize the a posteriori proba-
bility.

The same testing set composed of 12,802 numeral
strings used to evaluate the recognition method is used
to test this string length predictor. Figure 14 shows the
classification results. It is possible to observe that when
the right decision is considered in the best 3 hypothe-
ses, the performance of the string length predictor is
very promising. Thus, the top 3 decisions of the string

g (sbb_width) > g;(sbb_width) for all
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Table 17. Confusion matrix — isolated digit recognition of
the SCB stage
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Fig. 13. The classifier used to predict the string length from
the width of the string bounding box (sbb_width)
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Fig. 14. Classification results of the sbb_width into length
classes using the proposed classifier

Table 16. Recognition of unknown-length strings using the
length predictor (%)

Class Top Top Top Top Top

H @ B @ G
2_digit 94.8 97.1 979 98.0 98.1
3_digit 91.6 94.6 95.0 95.0 95.0
4_digit 91.2 94.2 948 949 94.9
5_digit 88.3 921 92.6 927 928
6_digit 89.0 92.8 93.5 93.5 93.6
10_digit 86.9 90.3 90.3 904 904
Global 90.6 93.8 944 945 94.5
TDPs 88.9 93.5 94.8 953 95.7

length predictor are used to determine the L parame-
ter of the LBA. For instance, if the top 3 decisions be-
long to the 3_digit, 4_digit and 5_digit classes, then five
levels are constructed by the LBA and after that the
probabilities of each segmentation-recognition hypothe-
sis corresponding to these string lengths are compared.
The segmentation-recognition hypothesis with the high-
est probability is chosen. Table 16 shows the recognition
results when the string length is predicted using the pro-
posed string length classifier.

3.6 Error analysis

Table 17 shows the confusion matrix computed from the
isolated digit recognition results of the SCB stage. This
matrix confirms that the numeral models of the SCB
stage are not powerful enough in terms of recognition

0 1 2 3 4 5 f 7 g 9
W bost 0 029 0 1 0 9 0 20 0 5 g
™ Comparison [ ™| hypotheses 1 1] 950 1 1 1] 0 0 2 0 1
2 9 9 el 4 3 1 1 74 5 7
3 0 0 21 930 0 75 3 16 2 4
4 f 5 1 3 950 2 g 13 0 30
5 7 1 1 7 0 597 26 0 2 2
f 29 0 2 0 f 0 a09 0 1 0
7 0 4 1 3 13 0 0 574 0 2
g 4 0 4 2 2 13 33 12 951 15
9 16 1 ] 0 17 7 0 9 4 931

Table 18. Confusion matrix — isolated digit recognition of
the Verification stage

0 1 2 3 4 5 f 7 g 9
0 088 0 0 0 0 0 3 0 2 0
1 0 D86 0 0 0 0 1 0 0 0
2 1 3 093 3 0 0 1] a1 0 0
3 1 0 1 095 0 7 0 12 1 2
4 2 2 1 0 083 0 0 2 0 23
5 0 1 0 1 0 971 24 1 0 1
f f 1 0 0 2 0 D66 0 1 0
7 0 1 4 0 1 0 0 961 0 1
g 2 1 1 1 0 12 f 2 095 0
9 0 1] 0 0 14 10 1] 1 1 964

performance of isolated digits. Their weakness are re-
lated to the feature extraction method used in this stage,
the objective of which is to maximize the likelihood of
segmentation and recognition of numeral strings in an
implicit segmentation-based process. Lots of confusions
are shown, e.g., 2-7, 3-5, and many others in Table 17.
However, we observed that the SCB stage is often able to
find the right segmentation points for a given string, even
without achieving the right recognition. This is possible,
given the similar length of the observation sequences rep-
resenting the digit classes involved in these confusing sit-
uations.

In order to overcome this problem, more discrimina-
tive features are necessary, such as holes, concavities or
zoning-based features. However, most of these features
require the digit bounding box or the boundaries of each
digit inside the string to be calculated. Otherwise, one
digit may interfere with the calculation of the adjacent
ones. However, finding the digit boundaries in the string
is the objective of the SCB stage.

The confusion matrix in Table 18 shows that com-
bining column and row numeral models to represent
each digit class provides an interesting recognition per-
formance. The background features based on concavities
have shown to be a promising way to distinguish between
classes 2-7 and 3-5. However, there are still some confu-
sions between classes, e.g., 2-7, 4-9, and 5-6.

Table 19 shows the system mistakes related to the
recognition of handwritten numeral strings categorized
as: a) segmentation caused by touching problems; b) seg-
mentation caused by overlapping problems; ¢) digit recog-
nition; and d) to the presence of noise in the string im-
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Table 19. Summary of the system mistakes (%)

Segmentation  Touching 21.2
Overlapping 11.6
Natural segmented 0.8 33.6

Recognition 62.1

Noise 4.3

Table 20. Examples of incorrectly recognized strings (some
examples of segmentation cuts)

fH"#P R4187 [84297) EWﬁi PIEPE(I0EIE) J2253 13223038
& 88 (26
33633 33072 (37077) e 521 95537(45537)
¢ F e o
id 47534 (97339) 13211(13210) vou¥ &0114(50118)
29 7
72478 TT4TR(F2472) A3} 72937012531) H’H’" TRATATSE L

Table 21. Examples of correctly recognized strings

eplagtal 4503 #19 8419 25 o
f 38 s S TR,
T4R s¢ i GIB7E g7z

7433
25 o' 25 1035%
2336

m 36 3¢ 76540 ¥azaz 43733

scow §7,

BRITH g 1044 T a0

ages. The segmentation mistakes are most of the time
related to touching or overlapping problems.

As expected the worst segmentation problem con-
cerns touching digits (21.2%). Few segmentation mistakes
(0.8%) occurred in naturally segmented strings and they
are due to the lack of samples for training the space
model. The digit pair database is not representative of
strings of different lengths.

However, most of the mistakes in the applying the
method are due to recognition problems (62.1%). Few
mistakes are related to presence of noise in the string
images. Table 20 shows some examples of incorrectly rec-
ognized strings, while Table 21 presents some examples
of correctly recognized strings.

4 Discussion

The first set of experiments have shown that the use of
contextual information to provide the same conditions
during training and testing is a promising strategy in
an implicit segmentation-based method. The use of slant
normalization brought about an improvement of 5.4% to
the global string recognition rate, while the use of slant
normalization based on contextual information allowed
an improvement of 11.3%.

The strategies used to deal with size variation have
also taken into account the implicit segmentation-based
method of the SCB stage. The experiments have shown
that training the numeral HMMs taking into account the

intra-string size variation is more promising than using
a non-linear size normalization method. With this con-
textual information during training of the numeral mod-
els, we avoid the possible distortions on the digit strokes
caused by a non-linear size normalization method. These
experiments have shown that the use of size normaliza-
tion brought an improvement of 1.6% on the recognition
performance, while the use of IntraSSV as contextual in-
formation brought about an improvement of 4%.

The HMM topology with an end-state has ensured a
more precise definition of the string segmentation cuts
by the LBA. The experiments have shown that although
it does not bring about a significant improvement in
the recognition of isolated numerals (about 0.7%), it did
bring about an improvement of 7.1% in the global string
recognition rate. This additional state also enabled the
use of a two-step training mechanism to incorporate fur-
ther string contextual information in the numeral mod-
els. We can observe that the space model brought about
some improvement in terms of recognition performance
for each string class. Even without such significant re-
sults, these experiments have shown that an investiga-
tion on modeling other kinds of interactions between ad-
jacent digits, such as touching and overlapping, may be a
promising way of obtaining an accurate string represen-
tation.

The scheme used for optimizing the HMM parame-
ters of the numeral models in the SCB stage provides a
further improvement of 2.8% in the global string recogni-
tion rate. In this optimization scheme, we have redefined
the number of states of the numeral HMMs and also the
codebook size.

After all these experiments had been conducted to
construct and evaluate the SCB stage, the final recog-
nition rates for strings composed of 2, 3, 4, 5, 6, and
10 digits were: 90.2%, 85.8%, 81.6%, 79.9%, 76.7%, and
68.4%, respectively.

The Verification stage has been shown to make a sig-
nificant contribution to string recognition performance
[4]. After this stage, the final recognition rate of known-
length strings composed of 2, 3, 4, 5, 6, and 10 digits were:
95.2%, 92.6%, 92.1%, 90.0%, 90.0%, and 86.9%, respec-
tively. This means an improvement on the global string
recognition rate of 9.9%. Similarly, the recognition rate
of touching digit pairs (TDPs) had improved from 79.5%
to 89.6%.

The strategies used to consider unknown-length nu-
meral strings showed a small loss in terms of recognition
performance compared to the previous results. The most
promising results were obtained using the string length
predictor. The final recognition rates of strings composed
of 2,3, 4,5, 6, and 10 digits were: 94.8%, 91.6%, 91.2%,
88.3%, 89.0%, and 86.9%, respectively. This means a loss
in terms of global recognition rate of 0.9%.

Table 22 shows a comparison of the proposed method
with other methods. Even considering only methods eval-
uated on numeral strings extracted from NIST database,
the comparison with other methods is delicate in some
cases because of the uncertainty concerning the exact
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Table 22. Performance of numeral strings based data in NIST
SD19

Reference String  Recog. Error Reject. #
class rate rate rate  samples
%) (%) (%)

Keeler & 2_digit 87.0 1.0 12.0 1,000
Rumelhart  3_digit 84.0 1.0 15.0 1,000
[12] 4 _digit 76.0 1.0 23.0 1,000
5_digit 71.0 1.0 28.0 1,000
6_digit 62.0 1.0 37.0 1,000

10_digit NA NA NA NA

Matan 2_digit 94.2 1.0 4.8 1,000
et al. [21] 3-digit 87.9 1.0 11.1 1,000
4_digit 79.9 1.0 19.1 1,000
5_digit 75.6 1.0 23.4 1,000
6_digit 63.3 1.0 35.7 1,000
10_digit NA NA NA NA
Ha 2_digit 96.2 3.8 0.0 981
et al. [10] 3_digit 92.7 7.3 0.0 986
4_digit 93.2 6.8 0.0 988
5_digit 91.1 8.9 0.0 988
6_digit 90.3 9.7 0.0 982
10_digit NA NA NA NA
Oliveira 2_digit 95.6 4.4 0.0 2,370
et al. [24] 3_digit 93.0 7.0 0.0 2,385
4.digit 902 9.8 0.0 2,345
5_digit 89.0 11.0 0.0 2,316
6_digit 88.5 11.5 0.0 2,169
10_digit 84.8 15.2 0.0 1,217
Procter & 2,...,6 and
Elms [26] 10_digit 74.2 25.8 0.0 1,400
Proposed 2_digit 94.8 5.2 0.0 2,370
method 3_digit 91.6 8.4 0.0 2,385
4_digit 91.3 8.7 0.0 2,345
5_digit 88.3 11.7 0.0 2,316
6_digit 89.1 10.9 0.0 2,169
10_digit 86.9 13.1 0.0 1,217

Table 23. Performance of touching digit pairs (TDPs) ex-
tracted from NIST SD19

Reference Recog. Error Reject. #
rate rate rate samples
(%) (%) (%)

Chi et al. [5] 89.2 10.8 0.0 3,355

Yu & Yan [34] 89.7 10.3 0.0 3,355

Zhou et al. [35] 85.7 3.5 10.8 4,395

Proposed method 89.6 10.4 0.0 2,069

data being used and the different number of samples.
The comparison with the method proposed by Oliveira
et al. [24] is more interesting, since the authors have used
the same testing set. Table 23 presents a comparison for
touching digit pairs.

5 Conclusions and future work

We have described a two-stage HMM-based method for
recognizing handwritten numeral strings. With the first
stage, we showed that the use of an implicit segmenta-
tion strategy is a promising way to deal with the string

difficulties. The reason is that it avoids the need to define
heuristics to group parts of broken digits or to separate
touching digits, such as those used in the segmentation-
based methods. However, there is some cost attached to
this strategy related to the loss in terms of recognition
performance caused by joining segmentation and recogni-
tion processes. During the experiments, it was possible to
observe that the feature set and numeral models defined
in the first stage (SCB), which have often been shown to
be capable of finding the right segmentation points, are
not strong enough in terms of recognition performance.
With the second stage, we showed the contribution to
handwritten numeral string recognition performance of
considering a further verification step, which is used to
re-rank the hypotheses of the first stage. Verification com-
pensates for the loss in terms of recognition performance
resulting from the necessary tradeoff between segmenta-
tion and recognition carried out in the implicit segmen-
tation method.

This two-stage method has enabled the use of two dif-
ferent feature sets and numeral models: one taking into
account both segmentation and recognition aspects in an
implicit segmentation-based strategy, and the other con-
sidering only the recognition aspects of isolated digits.
In other words, the Verification stage is used to comple-
ment the SCB stage, in the sense that their features and
numeral models are strong in terms of recognition per-
formance.

We may improve the performance of the proposed
method by further development in a number of areas.
A simple improvement would be to develop a rejec-
tion mechanism. In addition, we can improve the per-
formance of the proposed method by further investigat-
ing feature sets, since this method enables the combi-
nation of different features at each stage. For instance,
a new set of foreground features can be defined to im-
prove the segmentation-recognition performance of the
first stage, while new features with powerful recognition
performance can be evaluated in the second stage. In ad-
dition, the construction of the codebooks must receive
more attention — different vector quantization processes
and codebook lengths should be evaluated.

In a similar way, further work can be carried out to
improve the numeral models of each stage. For instance,
in the first stage, it would be interesting to investigate a
way of integrating additional contextual information into
the numeral models regarding the interaction between
adjacent numerals in strings.

A final consideration regarding the computing time.
We did not take into account the computing time during
the experiments. However, the N-best algorithm has been
evaluated as the most time-consuming module of the pro-
posed method. To minimize this problem, the technique
proposed in [14] can be evaluated.
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