
REVIEW

The recombinant expression systems
for structure determination of eukaryotic
membrane proteins

Yuan He1,2, Kan Wang3, Nieng Yan1,2&

1 State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua university, Beijing 100084, China
2 Center for Structural Biology, School of Medicine, Tsinghua university, Beijing 100084, China
3 China-Japan Friendship Hospital, Beijing 100029, China
& Correspondence: nyan@tsinghua.edu.cn (N. Yan)

Received May 16, 2014 Accepted June 16, 2014

ABSTRACT

Eukaryotic membrane proteins, many of which are key
players in various biological processes, constitute more
than half of the drug targets and represent important
candidates for structural studies. In contrast to their
physiological significance, only very limited number of
eukaryotic membrane protein structures have been
obtained due to the technical challenges in the genera-
tion of recombinant proteins. In this review, we examine
the major recombinant expression systems for eukary-
otic membrane proteins and compare their relative
advantages and disadvantages. We also attempted to
summarize the recent technical strategies in the
advancement of eukaryotic membrane protein purifica-
tion and crystallization.

KEYWORDS eukaryotic membrane proteins,
recombinant expression, structural biology, integral
membrane proteins (IMPs), fluorescence detected size
exclusion chromatography (FSEC), protein purification and
crystallization

INTRODUCTION

It is estimated that approximately 30% of the protein-coding
genes are for integral membrane proteins (IMPs) in human
(Overington et al., 2006; Murray et al., 2012). IMPs are
critical players for many important physiological processes
including metabolism, signal transduction, and energy
conversion and utilization (Krogh et al., 2001). Aberrant
expressions and activities of IMPs are associated with a
variety of diseases such as cancer, Alzheimer’s disease,

and metabolic diseases (Ishikawa et al., 2004; Sanders and
Myers, 2004; Overington et al., 2006; Aisenbrey et al.,
2008; Bkaily and Al-Khoury, 2014). IMPs constitute more
than 50% of the US Food and Drug Administration (FDA)-
approved drug targets (Russell and Eggleston, 2000;
Yildirim et al., 2007). Structures of eukaryotic membrane
proteins are actively pursued for structure-based drug
development.

In contrast to their physiological and pathophysiological
significance, the progress on the structure biology of IMPs,
particularly eukaryotic IMPs, has been relatively slow. By the
end of March 2014, in total 466 unique membrane protein
structures have been reported (Snider and Stephen, 2014),
the majority of which are of prokaryotic origins. With respect
to eukaryotic IMPs, more than half of the determined struc-
tures are for proteins obtained from endogenous sources
(Bill et al., 2011). These proteins, exemplified by the electron
transport chain complexes (Tsukihara et al., 1996; Xia et al.,
1997; Sun et al., 2005), ATP synthases (Abrahams et al.,
1994; Liu et al., 2004; Amunts et al., 2007), and photosys-
tems (Kurisu et al., 2003; Liu et al., 2004; Amunts et al.,
2007), usually exist in abundance and are biochemically
stable, hence representing ideal candidates for structural
analysis. However, the total types of endogenously abundant
eukaryotic IMPs are limited. The majority of IMPs exist in low
copies in the host species. Therefore, structural determina-
tion of most eukaryotic IMPs requires recombinant expres-
sion of the target proteins. The first atomic-resolution
structure of a eukaryotic IMP obtained through recombinant
expression, Kv1.2, was reported in 2005 (Long et al., 2005).
Ever since, less than seventy structures have been obtained
for eukaryotic IMPs generated through recombinant
expression systems (Fig. 1).
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Out of the many challenges facing structural study of
eukaryotic IMPs, production of sufficient quantities of well-
behaved recombinant proteins represents the real technical
bottleneck. Embedded in lipid bilayers, the structural integrity
and proper functions of IMPs rely on the interactions with
surrounding lipids (Phillips et al., 2009), which stabilize
membrane proteins, provide lattice contacts, and in some
occasions function as indispensable co-factors (van Meer
et al., 2008). Recombinant expression of membrane proteins
therefore requires a proper membrane environment.
Whereas Escherichia coli proved to be the best host for most
of prokaryotic IMPs of known structures, eukaryotic IMPs,
with very few exceptions, requires eukaryotic expression
systems including yeast, baculovirus-infected insect cells,
and mammalian cells (Bill et al., 2011; Snider and Stephen,
2014).

In this review, in the hope of extracting some general
principles on the expression and crystallization of eukaryotic
membrane proteins, we examine the expression systems for
the eukaryotic IMPs whose structures are obtained, attempt
to summarize and compare the advantages and disadvan-
tages of the representative recombinant expression sys-
tems, and delineate the detailed information in eukaryotic
membrane protein purification and crystallization (Table 1).

RECOMBINANT EXPRESSION SYSTEMS
FOR EUKARYOTIC MEMBRANE PROTEINS

The recombinantly expressed eukaryotic IMPs of known
structures were obtained from four systems: E. coli, yeasts
(Pichia Pastoris and Saccharomyces cerevisiae), insect
cells, and mammalian cells. These expression systems have
their respective advantages and disadvantages. The choice
of an appropriate expression system remains empirical, lar-
gely depending on the biochemical and biological properties
of the target proteins (Bernaudat et al., 2011). Among the
recombinantly expressed eukaryotic IMPs whose structures
have been solved, 4 were expressed in E. coli, 20 in yeast,

35 in insect cells, and 3 in mammalian cells. Below we will
discuss these four expression systems.

E. coli

As the most frequently exploited recombinant expression
system, E. coli BL21 (DE3) has the obvious advantage of
rapid replication, time-saving operation, inexpensive cost,
and mature and easy genetic manipulations (Sahdev et al.,
2008). E. coli C43 (DE3) and C41 (DE3) strains were
developed for over-expression of membrane proteins (Mi-
roux and Walker, 1996; Dumon-Seignovert et al., 2004).
Indeed, these E. coli strains were employed to over-express
the large majority of prokaryotic IMPs whose structures were
finally obtained. However, as the prokaryotic expression
systems, they may lack the essential lipids, molecular
chaperons, and post-translational modifications that are
required for the correct membrane insertion, folding, and
function of eukaryotic IMPs (Sahdev et al., 2008). As a
result, only 4 structures were obtained for eukaryotic IMPs
expressed in E. coli (Table 2). Despite the challenge to
express eukaryotic membrane proteins in E. coli, research-
ers attempted to overcome these hurdles with codon-opti-
mization (Burgess-Brown et al., 2008) and protein fusion
with Mistic or GlpF tag to promote protein expression (Ae-
geanSoftware, 2005; Drew et al., 2006; Neophytou et al.,
2007), and co-expression of post-translational machineries
to facilitate protein folding (Mironova et al., 2005; Mijakovic
et al., 2006). Regardless of the effort, E. coli may not be an
ideal system for eukaryotic IMP expression.

Yeast

Among the many yeast species, Pichia Pastoris (Pichia) and
Saccharomyces cerevisiae (S. cerevisiae), which have been
genetically well characterized, are the major systems to
overexpress eukaryotic IMPs (Strausberg and Strausberg,
2001; Bornert et al., 2012). Schizosaccharomyces pombe is
also employed for overexpression of IMPs, but not as widely
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Figure 1. The development trends in recombinant expression eukaryotic membrane proteins. The structure number of

eukaryotic membrane protein is limited by some obstacles such as low yield and instability in detergents. Since the first eukaryotic

membrane protein structure was determined in 2005, over sixty structures have been emerged until now.
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Table 2. E. coli as an expression system for eukaryotic membrane protein

Expression systems No. Protein Species PDB code Reference

E. coli Bl21(DE3) 1 FLAP Homo sapiens 2Q7 M 2Q7R Ferguson et al., 2007

C43 (DE3) 2 PfAQP Plasmodium falciparum 3C02 Newby et al., 2008

Bl21(DE3) 3 Kir3.1-prokaryotic Kir
channel chimera

Streptomyces lividans 2QKS Nishida et al., 2007

Bl21(DE3) 4 Cytochrome b561 Arabidopsis thaliana 4O6Y, 4O79,
4O7G

Lu et al., 2014

Table 3. Yeast as an expression system for eukaryotic membrane protein*

Expression systems No. Protein Species PDB code Reference

Yeast Pichia
Pastoris

1 Kv1.2 with β subunit Drosophila
melanogaster

2A79 Long et al., 2005

2 Kv1.2-Kv2.1 paddle Rattus norvegicus 2R9R Long et al., 2007

3 Kv2.1paddle-Kv1.2 (F233 W) Rattus norvegicus 3LNM Tao et al., 2010

4 Kir2.2 Inward-Rectifier Gallus gallus 3JYC Tao et al., 2009

5 GIRK2 (Kir3.2) channel Mus musculus 3SYO Whorton and
MacKinnon, 2011

6 K2P1.1 (KWIK-1) Homo sapiens 3UKM Miller and Long,
2012

7 K2P4.1 (TRAAK) Homo sapiens 3UM7 Brohawn et al., 2012

8 Calcium release-activated
calcium channel

Drosophila
melanogaster

4HKR Xiaowei Hou, 2012

9 SoPIP2;1 Spinacia oleracea 1Z98 2B5F Tornroth-Horsefield
et al., 2006

10 HsAQP5 Homo sapiens 3D9S Horsefield et al.,
2008

11 HsAQP4 Homo sapiens 3GD8 Ho et al., 2009

12 P-Glycoprotein M. musculus 3G5U,
3G60,
3G61

Aller et al., 2009

13 P-Glycoprotein Caenorhabditis
elegans

4F4C Jin et al., 2012

14 LTC4S Homo sapiens 2PNO Ago et al., 2007

15 Histamine H1 receptor Homo sapiens 3RZE Shimamura et al.,
2011

S. cerevisiae 16 AHA2 (H+ pump) Arabidopsis
thaliana

3B8C Pedersen et al.,
2007

17 VrH+-Ppase Vigna radiata 4A01 Lin et al., 2012

18 NRT1.1 Arabidopsis
thaliana

4CL4 Parker and
Newstead, 2014

19 CAAX protease Ste24p Saccharomyces
mikatae

4IL3 Pryor et al., 2013

20 PiPT Piriformospora
indica

4J05 Pedersen et al.,
2013

* For some proteins like GPCR and potassium channel, only the representative ones are listed.
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Table 4. Insect cell as an expression system for eukaryotic membrane protein*

Expression systems No. Protein Species PDB code Reference

Insect
cell

S. frugiperda 1 β2AR (Fab) Homo sapiens 2R4R 2R4S Rasmussen et al., 2007

2 β2AR (T4L) Homo sapiens 2RH1 Cherezov et al., 2007

3 β2AR-agonist complex Homo sapiens 3PDS Rosenbaum et al., 2011

4 β2AR-GS complex Homo sapiens 3SN6 Rasmussen et al.,
2011a, b

5 A2A adenosine receptor Homo sapiens 3EML Jaakola et al., 2008

6 CXCR4 Homo sapiens 3ODU
3OE8

Wu et al., 2010

7 Dopamine D3 receptor Homo sapiens 3PBL Chien et al., 2010

8 Sphingosine 1-phosphate
receptor subtype 1

Homo sapiens 3V2 W
3V3Y

Hanson et al., 2012

9 M2 muscarinic
acetylcholine receptor

Homo sapiens 3UON Haga et al., 2012

10 M3 muscarinic
acetylcholine receptor

Rattus norvegicus 4DAJ Kruse et al., 2012

11 κ-Opioid receptor Homo sapiens 4DJH Wu et al., 2012

12 μ-Opioid receptor Mus musculus 4DKL Manglik et al., 2012

13 δ-Opioid receptor Mus musculus 4EJ4 Granier et al., 2012

14 N/OFQ receptor Homo sapiens 4EA3 Thompson et al., 2012

15 CCR5 Homo sapiens 4MBS Tan et al., 2013

16 PAR1 Homo sapiens 3VW7 Zhang et al., 2012

17 5-HT1B/2B serotonin
receptor

Homo sapiens 4IAR 4IB4 Wang et al., 2013a, b;
Wacker et al., 2013

18 Smoothened receptor Homo sapiens 4JKV Wang et al., 2013a, b

19 Glucagon receptor Homo sapiens 4L6R Siu et al., 2013

20 Metabotropic glutamate
receptor1

Homo sapiens 4OR2 Wu et al., 2014

21 P2X4 Danio rerio
(Zebra fish)

3I5D 3H9 V
4DW1

Kawate et al., 2009;
Hattori and Gouaux,
2012

22 ASIC1 Gallus gallus 2QTS 3HGC Jasti et al., 2007;
Gonzales et al., 2009

23 GluA2 Rat 3KG2 3KGC Sobolevsky et al., 2009

24 GLuClα Caenorhabditis
elegans

3RHW, 3RIF,
3RI5 3RIA

Hibbs and Gouaux, 2011

25 CX26 Homo sapiens 2ZW3 Maeda et al., 2009

26 UT-B Bos taurus 4EZC
4EZD

Levin et al., 2012

27 ZMPSTE24 Homo sapiens 4AW6 Quigley et al., 2013

28 ABCB10 Homo sapiens 4AYT Shintre et al., 2013

29 Caludin-15 Mus Musculus 4P79 Suzuki et al., 2014

30 NRT1.1 Arabidopsis thaliana 4OH3 Sun et al., 2014

Trichoplusia ni 31 β1 adrenergic receptor Meleagris gallopavo 2VT4 Warne et al., 2008

32 NTS1 Neurotensin
Receptor

Rattus norvegicus 4GRV White et al., 2012

33 CmClC Cyanidios-
chyzonmerolae

3ORG Feng et al., 2010

34 Corticotropin-releasing
factor receptor

Homo sapiens 4K5Y Hollenstein et al., 2013

35 GLUT1 Homo sapiens 4PYP Deng et al., 2014

* For some proteins like GPCR and potassium channel, only the representative ones are listed.
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as Pichia and S. cerevisiae (Yang et al., 2009). During the
past thirty years, yeast has proved to be a useful expression
system: 15 eukaryotic IMP structures have been determined
for proteins expressed in Pichia expression system and 5 by
S. cerevisiae. Most of the structurally available eukaryotic
channels such as potassium channels and water channels
were expressed in yeast, as listed in Table 3.

Pichia is considered the best expression system among
yeast species (Cereghino and Cregg, 2000). Several ele-
ments contribute to its increasing applications, including the
simplicity of genetic manipulation, the high yield of heterolo-
gous protein, the cost-effective chemical reagents, as well as
the ability of post-translational modifications (Macauley-Pat-
rick et al., 2005). For these reasons, Pichia is a more suitable
expression system for producing eukaryotic IMP than E. coli.
Pichia shares the advantage of the molecular and genetic
manipulation withS. cerevisiae, yet it adds extra advantage of
10- to 100- fold biomass out of the same cultural volume
comparing with S. cerevisiae (Macauley-Patrick et al., 2005).

The improved techniques and the commercial availability
together promote the development of Pichia (Cereghino and
Cregg, 2000). Pichia is a methylotrophic yeast, capable of
utilizing methanol as its sole carbon source (Yurimoto and
Sakai, 2009). A promoter derived from the alcohol oxidase I
(AOXI), which is the first-step enzyme in the methanol
metabolism, strictly controls the expression of the foreign
proteins (Macauley-Patrick et al., 2005). The commercial
vector pPICZ (or pPICZα) takes advantage of the AOXI
promoter, being induced by methanol (Li et al., 2007). AOXI
promoter is prevailing than other promoters like PMA1 and
GPD1 for its strong and highly inducible ability (Cereghino
and Cregg, 2000). After the vector is readily prepared and
transformed into the competent cells, the target gene can be
inserted into the Pichia genome in high efficiency via
homologous recombination to generate stable cell lines, and
then the colonies with multiple copies that exhibit the highest
protein expression level will be screened out through zeocin-
spread plates (Daly and Hearn, 2005). This zeocin selective

marker for transformation selection is important regarding to
the convenience of genetic manipulation in yeast. All the
procedure typically takes about 10–15 days for a complete
procedure from subcloning to protein expression. A potential
disadvantage of the yeast culture concerns the difficulty in
cell disruption due to the thick and hard cell walls.

Insect cell

The baculovirus infected insect cell system is undoubtedly
the dominant heterologous expression system for obtaining
eukaryotic IMPs (Contreras-Gomez et al., 2014). The most
common method for generating recombinant baculovirus is
based on the site-specific transposition of an expression
cassette into a baculovirus shuttle vector (bacmid) that is
amplified in E. coli (Ciccarone et al., 1998). The process is
very convenient: clone the target gene into the pFastBac
vector which uses the strong AcMNPV polyhedron (PH) as
the promoter for high level protein expression, then trans-
form the pFastBac vector into DH10Bac E. coli competent
cells. DH10Bac cells possess a baculovirus shuttle vector
(bacmid) with a transposon site and a helper plasmid, thus
can help the pFastBac vector to have a transposition on the
bacmid. Once the transposition occurs and the recombinant
bacmid is generated, the bacmid could be isolated and
purified for transfection. After the insect cells are cultured
into a desired confluence, they are transfected by the puri-
fied bacmid DNA to generate a recombinant baculovirus that
used for preliminary expression test (Contreras-Gomez
et al., 2014). The pFastBac is ampicillin resistance and
Bacmid is kanamycin resistance, and these selective mark-
ers provide expedience for this baculovirus expression sys-
tem. It takes approximately 3–4 weeks to complete these
procedures for initial protein expression test.

There are two most popular insect cell lines used for IMP
expression, Spodoptera frugiperda (Sf9) and Trichoplusia ni
(Hi5). Heterologous proteins have disparate performances
on the yield and behavior when expressed in these two cell

Table 5. Mammalian cell as an expression system for eukaryotic membrane protein

Expression system No. Protein Species PDB code Reference

Mammalian HEK293 1 Rodopsin Homo sapiens 2J4Y Standfuss et al., 2007

2 RhCG Homo sapiens 3HD6 Gruswitz et al., 2010

3 Dopamine transporter Homo sapiens 4M48 Penmatsa et al., 2013

Table 6. Comparison among four expression system

E. coli Yeast (Pichia) Insect cell (Sf9) Mammalian cell (HEK293)

Duration time before cell cultivation (Days) 3–5 6–8 25–30 Transient: 3–5 Stable: at least 30

Cell cultivation time for 1L test (Days) 1–2 3–7 2–4 2–4

Cost for 1L test ($) in China 15–20 20–25 200–250 200–250

Number of available eukaryotic IMP structures 4 20 34 3
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lines (Unger and Peleg, 2012). Till now, 30 structures were
obtained for eukaryotic IMPs from Sf9 expression system
and 5 from Hi5 (Table 4).

After the protein IL-2 was first expressed in large scale
with the baculovirus-infected insect cells in 1985, this system
has been quickly accepted and widely used (Smith et al.,
1983; Maeda et al., 1985). Owing to the convenience of
scale up, safety and accuracy (Kost et al., 2005), the ba-
culoviral insect cell system has yielded the largest number of
eukaryotic IMPs up to date (Table 4). Notably, among the 35
eukaryotic IMP structures, 23 are of G-protein coupled
receptors (GPCR) (Table 4). The insect cell system has been
the prevailing expression system for eukaryotic IMP. How-
ever, the cost for the cultural medium may represent a
serious roadblock for most laboratories.

Mammalian cell

Mammalian expression system has become one of the
popular recombinant protein production systems for its
proper post-translational modification and human protein-like
structure assembly (Khan, 2013). HEK (human embryo kid-
ney) and CHO (Chinese hamster ovary) are two broadly
used cell lines for recombinant expression. These two cell
lines are extensively applied by researchers to do functional
assay such as the electrophysiological assay (Kawate et al.,
2009). Both these two cell lines can be applied for transient
and stable transfections (Zhu, 2012). For the transient
transfection approach, it is relative easier to reach to a rea-
sonable protein expression level, but this expression level
may vary from batch to batch. On the other hand, although
the proteins have higher productivity and less variation in the
stable transfection method, it is very time consuming (one
month at least) (Condreay et al., 1999; Baldwin et al., 2003).
Consequently, it is a balance for scientists to choose
between these two transfection methods.

HEK293 is a specific cell line originally derived from HEK
cells, while the number “293” comes from Graham’s habit of
numbering his experiments (Louis et al., 1997). Large scale,
transient transfection of HEK293 in suspension culture is a
reliable way to generate milligram quantities of recombinant
eukaryotic IMPs. When the gene of interest is ligated into the
vector pcDNA3 or pCMV5, the complete plasmid is then trans-
fected into the HEK293 cells and the cells are harvested after
48 h (Thomas and Smart, 2005). The whole procedure is more
or less similar to that of the insect cell system, only with a couple
of exceptions. For example, 5%–10% CO2 is required for
maintaining the HEK293 cells, and the culture temperature is
37°C for HEK293 but not 27°C as for insect cells. The overall
process usually requires one to twoweeks from initial cloning to
small scale test for the transient expression.However, ascribe to
the lowyield, slowgrowth rate andhigher cost of complexmedia
(Sunley and Butler, 2010), the number of eukaryotic IMP struc-
tures generated based on the mammalian cells is very limited.
So far, only threeeukaryotic IMPstructuresare from this system,
and two of them are obtained from HEK293 cells (Table 5).

The BacMam system has to be mentioned for its safety,
reproducibility and efficiency (Dukkipati et al., 2008). The bac-
uloviruses are engineered by inserting a mammalian expres-
sion cassette for delivering foreign genes in mammalian cells.
Their non-replicating property makes they are safe and well-
tolerated by mammalian cells. BacMam system gains wide-
spread use for its safety and rapid manipulation (Reeves et al.,
2002; Baconguis and Gouaux, 2012). Depending on the cell
type, cell division rate and transduction efficiency, it lasts 5–
14 days to detect the gene expression (Dukkipati et al., 2008).
The dopamine transporter structure was determined by the
BacMam system (Penmatsa et al., 2013).

From the foregoing discussion, it is concluded that every
expression system has their distinctive properties for protein
expression. We compare their relative merits for an intui-
tional understanding of each system which can help
researchers to make the best choice for their proteins
expression (Table 6).

HOMOLOGUE SCREEN

Eukaryotic membrane proteins are very difficult to yield in
large quantities, and most of them tend to be unstable in the
presence of detergents. As a result, identification of well-
expressed proteins is very essential. Homologue screen is
widely applied for researchers to discover well-behaved
proteins (Kawate et al., 2009; Xiaowei Hou, 2012).

Fluorescence detected size exclusion chromatography
(FSEC) is a powerful method for homologue screen (Drew
et al., 2006; Newstead et al., 2007). Compared with the com-
monprotocols,GFP fusionmembraneproteinscanbedetected
by measuring fluorescence in whole cells during the over-
expression process. It saves time to help people preclude
proteins that havenoexpressionor lowexpression level.Also, it
is much easier to assess the integrity of proteins by detecting
the fluorescence inSDSpolyacrylamide gels. Moreover, FSEC
could be employed to figure out the most stable detergents in
initial detergent screen. Considering these benefits, this tech-
nology is very widely applied (Jasti et al., 2007; Gonzales et al.,
2009;Kawateet al., 2009;Sobolevsky et al., 2009). TakingP2X
receptor as an example (Kawate et al., 2009), because of its
aggregation and instability problems, researchers applied this
method to screen 35 orthologs and finally got one species
whichwas fit for crystallization. FSEC is proven to be one of the
most robust methods to facilitate the identification of appropri-
ate candidates for solving the structures of eukaryotic mem-
brane proteins.

OPTIMAL CONSTRUCTS DESIGN

Optimizing constructs is very beneficial for getting the well-
packed crystals. One way for optimizing constructs is to “cut
off”. Limited proteolysis is a conventional method to find the
optimal constructs. Besides, it is worth noting that either
N-terminal tag or C-terminal tag is removed before crystalli-
zation in most crystallization cases (Long et al., 2005; Long
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et al., 2007; Gonzales et al., 2009; Maeda et al., 2009;
Sobolevsky et al., 2009; Tao et al., 2009). For instance, the
desensitized ASIC1 was crystallized by removal of 25
N-terminal and 64 C-terminal residues (Jasti et al., 2007).

The contrary way for optimizing constructs is to “add up”. T4
lysozyme (T4L) insertion and Fab/nanobody replacement are
applied to produce stable proteins. The T4L fragment is soluble
enough to effectively increase the solvent-exposed area,
thereby facilitating protein-protein interactions and generating
novel crystal packing interfaces (Cherezov et al., 2007). Fab/
nanobody, which are generated from monoclonal antibodies,
can reduce the protein flexibility and improve the conforma-
tional homogeneity (Zhouet al., 2001;Rasmussenet al., 2007).
GPCR is one of the most successful cases employing T4L and
Fab/nanobody to the ultimate structure determination (Ras-
mussen et al., 2007; Rasmussen et al., 2011a, b).

Mutagenesis is an alternative way for constructs design.
In order to improve the crystallization behavior and stabilize
the tetrameric state of the glutamate receptor GluA2, point
mutations were introduced, preventing non-specific aggre-
gation and disulphide bond formation (Sobolevsky et al.,
2009). And E329Q was introduced in order to stabilize
GLUT1 in a certain conformation (Deng et al., 2014). Plus,
glycosylation is the most common post-translational modifi-
cation of eukaryotic membrane proteins and leads to heter-
ogeneity of proteins. Thus, mutating of glycosylation sites or
deglycosylation by enzymes is an essential step for crys-
tallization (Deng et al., 2014).

DETERGENTS, LIPIDS AND CRYSTALLIZATION

We have summarized the detergents used for protein puri-
fication and crystallization from Table 1. 51 eukaryotic
membrane proteins can be extracted from DDM or DM
(Fig. 2A), suggesting DDM/DM are the detergents suitable
for the extraction process of the majority of eukaryotic
membrane proteins. Collaterally, nearly half of the eukaryotic
membrane protein crystals are obtained from DDM/DM,
indicating DDM/DM are worthy of a trial for crystallization in

the first place (Fig. 2B and Table 1). Apart from these con-
ventionally applied detergents, new detergents have also
been developed to meet the new requirements. For exam-
ple, when purifying β2 adrenergic receptor-Gs protein, the
authors stabilized protein complex by exchanging DDM with
a newly developed maltose neopentyl glycol detergent
MNG-3 (NG310, Anatrace) to prevent the complex dissoci-
ated from original detergent DDM (Chae et al., 2010; Ras-
mussen et al., 2011a, b).

It is worth noting that additional lipids are able to help
crystal packing. There are three ways of lipid combinations.
The first is mixing lipids with detergent(s) in hanging or sitting
drop during crystallization. Take mammalian voltage-
dependent shaker family potassium channel as an example,
the author utilized 0.1 mg/mL 3:1:1 POPC: POPE: POPG
throughout purification and crystallization to obtain crystals
(Long et al., 2005). The second approach is lipid cubic phase
(LCP) method. The lipid cubic phase is a dynamic structure
consisting of a highly organized single lipid bilayer pervaded
by an inter-connected aqueous channel (Landau and Ro-
senbusch, 1996). Martin has an elaborate discussion about
LCP method which we will not go into details in this review
(Caffrey and Cherezov, 2009). The crystal structure of β2AR-
GS complex was determined by the use of 7.7 MAG as the
host lipid for crystallization (Rasmussen et al., 2011a, b). The
third way is bicelle method, which is regarded as an inter-
mediate approach between the traditional detergent crys-
tallization method and the rigid LCP method. Bicelle can be
considered as a lipid bilayer disc that formed by a long chain
lipid and a short chain lipid or detergent (Agah and Faham,
2012). The general composition is 3:1 DMPC: CHAPSO.
Several protein structures were determined utilizing bicelle
method (Rasmussen et al., 2007; Payandeh et al., 2011).

Last but not the least, we will elaborate a few messages for
the crystallization of eukaryotic membrane protein drawn from
Table 1: (a) Protein concentration: almost all the protein con-
centration for crystallization is above 5 mg/mL. (b) Crystalliza-
tion temperature: if we expel the LCP method that is routinely
crystallized at 20 ± 2°C, nearly half of the eukaryoticmembrane

DDM/DM
OG/NG
MNG-3
Others

DDM/DM

OG (NG)

MNG-3

Cymal5/6/7

C12E8/C12E7

C8E4

Digitonin

C11Thio

A B
4%

6%

8%

82%

13%
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3%

3%
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Figure 2. Detergents used for extraction and crystallization of eukaryotic membrane proteins. (A) Detergents for protein

extraction and purification. DDM/DM can be applied for most eukaryotic membrane proteins in extraction step. (B) Detergents for

protein crystallization. DDM/DM is the major detergent for the crystallization of eukaryotic membrane proteins.
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proteins are crystallized at low temperature, especially on 4°C.
At cold temperature, for protein with “normal” solubility, protein
will be more soluble in high salt and precipitate from lower
concentration of the precipitant reagents, and also the equilib-
rium diffusion rate occurs more slowly. These manifest that
crystallization at lower temperature is absolutely an indis-
pensable trial. (c) Crystallization methods: hanging drop or sit-
ting drop crystallization method is the main and conventional
approach for most eukaryotic membrane protein. LCP method
is an up-rising star which is extensively applied in determining
the GPCR’s structures which we have mentioned before.
Remarkably, LCP method is not only propitious to GPCR, but
also is able to be applied for none-GPCR protein structures
determination (Suzuki et al., 2014).

CONCLUSION

In this review, we discuss the benefits and drawbacks of dif-
ferent expression systems for eukaryotic membrane protein,
and illustrate some general methods of recent advances for
eukaryotic membrane protein purification and crystallization.
We hope our work can provide help to those who are inter-
ested and work on eukaryotic membrane proteins. Although
the discussion of eukaryotic membrane protein structure
determined by Cryo-EM or NMR is beyond the scope of this
review, the general methodologies and technical strategies
summarized here also come to an aid in protein yield augment
and sample homogeneity improvement for Cryo-EM and
NMR. They are very powerful tools to solve structures, for
instance, the Cryo-EM was applied to determine TrpV1
structures (Cao et al., 2013; Liao et al., 2013). With the
development of advanced technologies, more and more
eukaryotic membrane protein structures will emerge to
answer the most significant questions in life sciences and
provide the novel pharmaceutical targets in drug design.
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ABBREVIATIONS

β2AR, human β2 adrenergic G-protein-coupled receptor; ABCB10,

ATP-binding cassette (ABC) transporters; AHA2, Arabidopsis

thaliana auto-inhibited H1-ATPase 2; ASIC1, acid-sensing ion

channel 1; CAAX protease Ste24p, C is cysteine redidue, A is an

aliphatic residue and X is any residue. It is a zinc metalloprotease

catalyzing two proteolytic steps in the maturation of yeast mating

pheromone a-factor; C8E4, tetraethyleneglycol monooctyl ether;

C12E7, dodecylheptaglycol; C12E8, polyoxyethylene dodecyl ether;

CHS, cholesteryl hemisuccinate; CmClC, cyanidioschyzon merolae

chloride (Cl–) ions transporter; C11Thio, n-undecyl-β-D-

thiomaltopyranoside; CXCR4, human chemokine receptors; CX26,

connexin 26 gap junction; CYMAL5, 5-cyclohexyl-1-pentyl-β-D-

maltoside; CYMAL6, 6-cyclohexyl-1-hexyl-β-D-maltoside; CYMAL7,

7-cyclohexyl-1-heptyl-β-D-maltoside; DDM, n-dodecyl-β-D-

maltoside; DM, n-decyl-β-D-maltoside; FLAP, 5-lipoxygenase-

activating protein; GIRK2 (Kir3.2), K+ channel: G protein-gated K+

channels; GluA2, a-amino-3-hydroxy-5-methyl-4-isoxazole propionic

acid (AMPA)-sensitive ionotropic glutamate receptor; GLuClα,

caenorhabditis elegans glutamate-gated chloride channel a

(GluCl), an inhibitory anion-selective Cys-loop receptor; HsAQP4,

human aquaporin 4; HsAQP5, human aquaporin 5; Human BK

channel, high-conductance voltage- and Ca21-activated K1

channels; K2P1, two-pore domain potassium (K+) channels;

Kv1.2, voltage-dependent shaker family potassium channel; Kv1.2-

Kv2.1 paddle, ‘paddle-chimaera channel’, voltage-sensor paddle

has been transferred from Kv2.1 to Kv1.2; LTC4S, cysteinyl

leukotrienes; M-Ppase, membrane-integral pyrophosphatases;

MAPEG, membrane-associated proteins in eicosanoid and

glutathione metabolism; MNG, maltose-neopentyl glycol; NG,

n-nonyl-β-D-glucopyranoside; NM, n-nonyl-β-D-maltoside; N/OFQ

receptor, nociceptin/orphanin FQ receptor; OG, n-octyl-β-D-

glucoside; OGNG, octyl glucose neopentyl glycol; P2X4, cation-

selective ion channels gated by extracellular ATP; PAR1, protease-

activated receptor 1; PfAQP, Plasmodium falciparum

aquaglyceroporin; PiPT, a Fungal (Piriformospora indica) high-

affinity phosphate transporter; POPC, 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine; POPE, 1-palmitoyl-2-oleoyl-sn-glycero-

3-phosphoethanolamine; POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoglycero; RhCG, rhesus C glycoprotein; SoPIP2, 1, spinach

plant plasma membrane aquaporin; TRAAK, TWIK-related

arachidonic acid–stimulated K+ channel; UDTM, n-undecyl-β-

maltoside; UT-B, urea transporters-B; VrH+-Ppase, vigna radiate

H1-translocating pyrophosphatases; ZMPSTE24, zinc

metallopeptidase STE24.
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