
THE RECONSTRUCTION OF LARGE

THREE-DIMENSIONAL MESHES

by

Matthew Grant Bolitho

A dissertation submitted to The Johns Hopkins University in conformity with

the requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

March, 2010

c© Matthew Grant Bolitho 2010

All rights reserved

Abstract

Surface reconstruction is the process of creating virtual three-dimensional

representations of real-world objects using data obtained from 3D scanners.

The traditional challenges of surface reconstruction arise from the uncertain

nature of input data. Inaccuracies in scanning devices create noisy data.

Point sampling is often non-uniform. And, accessibility constraints during the

scanning process may leave some regions of the surface devoid of data. Robustly

constructing a surface in the presence of these data anomalies is a difficult problem.

In addition, surface reconstruction methods have recently encountered a new

challenge resulting from developments in 3D scanning techniques. New scanning

technologies have driven a dramatic increase in the size of datasets available for

surface reconstruction, with datasets now exceeding one billion point samples.

As a result, space and time efficiency have become critical in the development

of effective reconstruction algorithms, and the design of streaming and parallel

techniques has become indispensable.

In this dissertation we describe a new technique for surface reconstruction,

ii

ABSTRACT

based on the solution to a Poisson equation. Our approach is designed to meet

the multiple challenges of modern datasets. The method is robust to the types of

noise found in real-world data, allowing the reconstruction of high quality surfaces.

Despite formulating surface reconstruction as a global problem, we also show that

our method can be implemented using only local updates which allows extremely

large reconstruction problems to be solved in a streaming manner. We also exploit

current industry trends towards multi-core and parallel computing by presenting a

parallel implementation of our method that is able to dramatically reduce the time

taken to produce highly detailed reconstructions. We demonstrate the practicality

of our method on several of the largest reconstruction datasets available to date.

Primary Reader: Dr. Michael Kazhdan

Secondary Readers: Dr. Randal Burns and Dr. Szymon Rusinkiewicz

iii

Acknowledgements

iv

Dedication

v

Contents

Abstract ii

Acknowledgements iv

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 3D Scanning . 2

1.2 Surface Reconstruction . 5

1.3 Outline of Dissertation . 10

2 Surface Reconstruction 11

2.1 Discrete Methods . 14

2.1.1 Computational Geometry 14

2.1.2 Alpha Shapes . 14

vi

CONTENTS

2.1.3 Power Crust . 15

2.1.4 Ball Pivoting . 16

2.2 Continuous Methods . 17

2.2.1 Surface Fitting . 17

2.2.1.1 Balloon Fitting 17

2.2.1.2 Fast Level Set Method 18

2.2.1.3 Point Set Surfaces 18

2.2.2 Implicit Function Fitting 19

2.2.3 Local Function Fitting . 20

2.2.3.1 Hoppe et al. 20

2.2.3.2 Volumetric Range Image Processing (VRIP) . . . 21

2.2.3.3 Multi-level Partitions of Unity (MPU) 22

2.2.4 Global Function Fitting 23

2.2.4.1 Blobby Models 23

2.2.4.2 Fast RBF . 24

2.2.4.3 Fast Fourier Transform 26

2.2.4.4 Wavelets . 27

2.2.4.5 Our Approach 28

3 Poisson Surface Reconstruction 29

3.1 The Poisson Idea . 29

3.2 Approach . 32

vii

CONTENTS

3.2.1 Defining the gradient field 33

3.2.2 Approximating the gradient field 34

3.2.3 Solving the Poisson problem 35

3.3 Implementation . 36

3.3.1 Problem Discretization . 37

3.3.1.1 Defining the function space 38

3.3.1.2 Selecting a base function 39

3.3.2 Vector Field Definition . 40

3.3.3 Linear System Definition 41

3.3.4 Iso-Surface Extraction . 43

3.3.5 Non-uniform Samples . 44

3.3.5.1 Estimating local sampling density 45

3.3.5.2 Estimating a samples depth 47

3.3.5.3 Computing the vector field 47

3.3.6 Selecting an iso-value . 49

3.4 Results . 49

3.4.1 Resilience to Noise . 50

3.4.2 Comparison to Previous Work 52

3.4.2.1 Comparison to Wavelet-based approach 54

3.4.2.2 Comparison to the FFT-based approach 56

3.4.2.3 Comparison to VRIP 57

viii

CONTENTS

3.4.2.4 Limitation of our approach 58

3.4.3 Performance and Scalability 60

4 Streaming Surface Reconstruction 64

4.1 Related Work . 67

4.1.1 Out-of-core Surface Reconstruction 67

4.1.2 Stream Processing . 68

4.1.3 Other Out-of-core Processing 68

4.1.4 Out-of-core Linear Solvers 69

4.2 Representation . 69

4.2.1 Implementation . 72

4.3 A Simple Streaming Reconstruction 74

4.3.1 Pre-processing . 76

4.3.2 Octree Construction (k = 1) 77

4.3.3 Vector Field Construction (k = 1) 77

4.3.4 Divergence Computation (k = 2) 78

4.3.5 Poisson System Solution (k = 2) 81

4.3.6 Computing the Iso-Value (k = 1) 82

4.3.7 Extracting the Iso-Surface (k = 2) 82

4.4 An Optimized Implementation . 86

4.4.1 First Pass (k = 6) . 87

4.4.1.1 Buffering Samples 88

ix

CONTENTS

4.4.2 Second Pass (k = 8) . 89

4.4.2.1 Index Dependencies 90

4.4.2.2 Depth Dependencies 90

4.5 Results . 91

4.5.1 Large Datasets . 91

4.5.2 Scalable Memory Use . 93

4.5.3 Computation Times . 98

4.5.4 Streaming Solver Accuracy 100

4.6 Discussion . 100

5 Parallel Surface Reconstruction 105

5.1 Related Work . 107

5.2 Parallel Reconstruction . 108

5.3 Shared Memory . 108

5.3.1 Data Partitioning . 109

5.3.2 Work Distribution . 110

5.3.3 Data Sharing . 112

5.3.3.1 Tree Construction 115

5.3.3.2 Solving the Laplacian 116

5.3.4 Scalability Issues . 117

5.4 Distributed Memory . 120

5.4.1 Data Partitioning . 121

x

CONTENTS

5.4.2 Load Balancing . 123

5.4.3 Replication and Merging of Shared Data 123

5.4.4 Tree Construction . 125

5.4.5 Solving the Laplacian . 126

5.5 Results . 127

5.5.1 Correctness . 128

5.5.2 Skew . 129

5.5.3 Scalability . 131

5.5.4 David . 134

6 Conclusion 137

6.1 Future Work . 140

6.1.1 A GPU Implementation 140

6.1.2 A Surface Reconstruction Benchmark 141

Bibliography 144

Vita 154

xi

List of Tables

3.1 The running time (in seconds), the peak memory usage (in
megabytes), and the number of triangles in the reconstructed model
for the different depth reconstructions of the Dragon model. A
kernel depth of 6 was used for density estimation. 61

3.2 The running time (in seconds), the peak memory usage (in
megabytes), and the number of triangles in the reconstructed
surface of the Stanford Bunny generated by the different methods. 63

4.1 Read and write operations when processing block Sd
i in the various

multilevel streaming computations. 76
4.2 Quantitative results for multilevel streaming reconstructions,

showing input points, octree height D + 1, output mesh triangles,
total execution time (hours), memory use (MB), and total octree
stream size (MB). 92

4.3 Comparison of the data structure size (MB), peak working set
(MB), and running time (hours) for the in-core and streaming
reconstruction algorithms over a range of resolutions for the David
Head model. Running the in-core algorithm beyond a resolution of
2048 was impossible due to its high memory requirements. 103

5.1 A summary of the the size of each output model, and the maximum
and average vertex distance from the serial output of several
different reconstructions of the Bunny dataset at depth 9 created
with the distributed implementation. 127

xii

LIST OF TABLES

5.2 The running time (in minutes), aggregate disk use (in MB),
and peak memory use (in MB) of the shared memory and
distributed memory implementations of the Parallel Poisson
Surface Reconstruction algorithms for the Lucy dataset at depth
12, with dfull = 6 and the David dataset at depth 14 with dfull = 8,
running on one through twelve processors. It was not possible
to run the shared memory implementation on more than eight
processors. 131

xiii

List of Figures

1.1 Four examples of reconstructed objects from different disciplines. . 3
1.2 An example of the reconstruction of the “Bunny” model. Individual

scans of the real object are first aligned and combined before a
surface reconstruction algorithm produces the final model. 5

1.3 Illustrative examples of the different types of data anomalies
present in three-dimensional scan data: a) noise, b) anisotropy,
c) misalignment, d) non-uniformity, and e) missing data. 6

1.4 Two examples showing how multiple types of anomalies combine
in real-world data. 9

2.1 A taxonomy of surface reconstruction methods, based on the
general approach to solving the reconstruction problem. 13

2.2 A categorization of surface reconstruction methods, based on the
type of input data required. 13

3.1 Intuitive illustration of Poisson reconstruction in 2D. 30
3.2 Points from scans of the “Armadillo Man” model (left), our Poisson

surface reconstruction (right), and a visualization of the indicator
function (middle) along a plane through the 3D volume. 36

3.3 A comparison of the reconstruction of a highly non-uniform dataset
using a low resolution (b), high resolution (c) and adaptive
resolution sample density estimation (d). 46

3.4 Reconstructions of an 200,000 point sampling of the “Armadillo
Man” model at depth 9 with varying amounts of random noise
introduced to the position (δ) and normal (θ) component to the
samples. r is the radius of the models bounding sphere. 51

3.5 Reconstructions of the Stanford Bunny using Power Crust (a),
Robust Cocone (b), Fast RBF (c), MPU (d), Hoppe et al.’s
reconstruction (e), Wavelet-based reconstruction (f), FFT-based
reconstruction (g), VRIP (h), and our Poisson reconstruction (i). . 53

xiv

LIST OF FIGURES

3.6 Several views of the reconstruction of the Stanford Bunny model
using the Wavelet technique (using the D4 basis function) and our
method . 55

3.7 Reconstruction of samples from the region around the left eye of
the David model (a), using the fixed-resolution FFT approach (b),
and Poisson reconstruction (c). 56

3.8 Reconstructions of a fragment of the Forma Urbis Romae tablet
using VRIP (left) and the Poisson solution (right). 58

3.9 Reconstructions of the “Happy Buddha” model using VRIP
(left) and Poisson reconstruction (right). Although our method
generates a more accurate reconstruction of the sharp features,
its independence of acquisition modality makes it incapable of
leveraging line-of-sight information to carve out the space between
the legs. 59

3.10 Reconstructions of the Dragon model at octree depths 6 (left), 8
(middle), and 10 (right). 60

3.11 Several images of the reconstruction of the head of Michelangelo’s
David, obtained running our algorithm with a maximum tree depth
of 11. The ability to reconstruct the head at such a high resolution
allows us to make out the fine features in the model such as the
inset iris, the drill marks in the hair, the chip on the eyelid, and
the creases around the nose and mouth. 62

4.1 Example of curve reconstruction in 2D as a sequence of three
multilevel streaming passes over an adaptive quadtree. 65

4.2 Illustration of the multilevel stream structure (top rows) and the
corresponding quadtree nodes (bottom rows) at two moments in
time (i = 3, 4). In-core blocks and nodes are highlighted. 70

4.3 Construction of the out of core octree as points Si are added to the
tree. To process these points, the sub-tree that can be modified
by the processing of points Si is maintained in core (highlighted
in grey and diamond hatching). After the points in Si have been
processed, the nodes that cannot be affected by the processing of
points in Si+1 (grey) are written out to the streams. 74

4.4 Sequence of streaming passes and flow of the out-of-core octree
data, as described in the naive implementation of Section 4.3. . . 75

4.5 Comparing the results of the in-core algorithm (left; depth 11; 4,442
MB peak memory) and streaming algorithm (right; depth 13; 780
MB peak memory). 92

4.6 Views of our reconstruction of the head of Michelangelo’s David.
Maximum tree depth was 13, with a target of 2 samples per node. 94

xv

LIST OF FIGURES

4.7 Views of our reconstruction of Michelangelo’s Awakening statue.
The maximum tree depth was 14 with a target of 2 samples per
node. 95

4.8 The peak working set in our 3 multilevel streaming passes, and in
the in-core algorithm (far left), for a range of reconstructions of the
head of Michelangelo’s David. 96

4.9 Memory use over time for a depth 12 reconstruction of the “Lucy”
statue using two different poses of the model. 97

4.10 The cumulative distribution of geometric error for a depth 12
reconstruction of the “Lucy” statue when compared to the in-core
algorithm of Chapter 3. 99

4.11 Comparison of reconstructing the indicator function of a cow
silhouette from its Laplacian using a single-resolution streaming
solver (a), a traditional conjugate-gradient solver (b), and a
cascadic multigrid solver using multilevel streaming (c). 104

5.1 An illustration of the way data partitions are formed from the tree
using the shared memory approach. Each slice of nodes at each
depth in the tree is partitioned into a regular grid. Data partitions
contain approximately the same amount of the curve (by length)
and are shaded according to which processor they are allocated to.
Each allocation forms a contiguous block in Morton (Z-curve) order. 109

5.2 The speedup of the shared memory parallel approach for the
“Lucy” dataset at depth 12 running on one through eight
processors. The spatial locking and lock-free methods are
compared. The distributed method from section 5.4 is included
for later comparison. 118

5.3 An illustration of the way data partitions are formed from the tree
with p = 4 processors. All nodes in O0, O1 and O2 are shared
among all processors and form the data partition Ofull. The nodes
in remaining depths are split into spatial regions defined by the
x-coordinates {x0, x1, x2, x3, x4} forming the partitions Od

i . Note
that the finer level partitions do not have to be equal in size, but
do need to be allocated on the granularity of the width of nodes at
depth d = dfull. 122

5.4 The distribution of error across the p = 8 model, when compared
to the serial model. The color is used to show δ values over the
surface with δ = 0.0 colored blue and δ = 1.0 colored red. The
scale is non-linear to highlight small values of δ. 128

xvi

LIST OF FIGURES

5.5 The absolute value of the difference between the work allocated
to the processor with most work and the average, expressed as a
function of the height of the full resolution tree (dfull) and the
number of processors. 130

5.6 The speedup of the distributed implementation for the Lucy dataset
at depth 12 and the David dataset at depth 14 running on one
through twelve processors. The shared memory approach from
Section 5.3 in included for comparative purposes. 132

5.7 A reconstruction of the David model at depth 15. 135

xvii

Chapter 1

Introduction

Then this is enough to tell you what I mean by ‘shape’. For I say this
of every shape: a shape is that which limits a solid; in a word, a shape
is the limit of a solid. – Socrates to Meno, (Plato, Meno, 77)

One of the most fundamental concepts within the field of computer graphics is

shape. Any object seen in a computer-generated image, a scientific visualization,

a game or a movie is a shape with a virtual representation that is created,

manipulated and then rendered entirely within a computer.

Many representations of shape are used in computer graphics, ranging from

implicit mathematical formulations to the triangle mesh. A triangle mesh is a

discrete structure that represents a surface as a set of points in three-dimensional

space, connected in groups of three which form the triangular facets of a surface.

Although a surface represented in a discrete manner such as this cannot represent a

smooth surface, sufficiently small triangles can give an approximation of a smooth

1

CHAPTER 1. INTRODUCTION

surface that will be visually indistinguishable when viewed on a movie or computer

screen. Triangle meshes have become the most common representation for surfaces

primarily because the specialized computer hardware used to render interactive

3D scenes use this representation internally.

In the most basic setting, virtual representations of 3D models are created

manually, using modeling packages in which each vertex, edge or face in the mesh

is created and modified individually. Although this provides a high degree of

artistic freedom and works well for small models with thousands of triangles, the

ever-increasing demand for realism in computer-generated scenes has significantly

increased the model complexity, and therefore the time and cost of using these

techniques. New methods for generating models which can automate large parts

of the modeling process and reduce the amount of human interaction required

have become essential.

1.1 3D Scanning

The advent of 3D scanning techniques has significantly changed the way models

are created. Instead of using manual techniques to create virtual representations

of objects, real world objects can be scanned, providing an automated way of

generating highly detailed meshes.

In addition to improving the efficiency of 3D modelling, scanning technologies

2

CHAPTER 1. INTRODUCTION

a) Cuneiform Tablet c) Michelangelo's Davidb) Dental Scanning d) Turbine Blade

Figure 1.1: Four examples of reconstructed objects from different disciplines.

have extended the use of virtual models to a broad group of application domains.

Figure 1.1 highlights four examples of objects that have been scanned for use in

different disciplines. A 3D scan of a cuneiform tablet (Figure 1.1a) allows scholars

to read and interpret the text inscribed in these stone tablets recovered from

archaeological sites dating to the 34th century BC. Scanning a paitent’s teeth

(Figure 1.1b) allows a more accurate fitting of dental implants. A highly detailed

reconstruction of Michaelangelo’s David statue (Figure 1.1c) allows art historians

to study the techniques used to create these masterpieces. And finally, scans of

mechanical parts, such as a turbine blade (Figure 1.1d), can be used for quality

control in the manufacturing industry to detect defects.

One of the most widely used techniques for collecting detailed surface data is

stereo triangulation based range scanning. These scanners use a registered light

source and camera to triangulate points on the surface of an object. Because the

relative positions and orientations of the light source and camera are precisely

known, the three-dimensional location of points on the surface can be computed

3

CHAPTER 1. INTRODUCTION

by combining registration information and the location of features within the

camera’s image plane. Because of the reliance on triangulation, the accuracy of

these type of scanners decreases as the distance between the camera and the object

increases. In practice, however, they are capable of producing high quality scans

with sub-millimeter precision for objects within a range of several meters.

Typically, it is not possible to obtain a complete sampling of an object’s

surface from a single image or scan. To get complete coverage of an object many

overlapping scans from different viewpoints are required. Small objects, such

as the “Bunny” shown in Figure 1.2 may be constructed from only ten scans,

totalling a few hundred thousand samples. Larger objects may contain thousands

of individual scans and total hundreds of millions of samples.

The challenge in combining multiple scans together is that the scans must be

aligned. The classical technique for aligning scans is the iterative closest point

(ICP) [57] algorithm. Given an initial estimation of the alignment of two scans,

the ICP algorithm iteratively reduces the misalignment producing a rigid body

transformation to register the two scans. This pairwise technique can be applied

to all overlapping scans to produce a consistent global alignment. Because some

components of the scanning process can distort scans in non-linear ways, recent

methods (e.g. Brown et al. [12]) further improve the alignment by applying non-

linear transformations to the scans during the registration process.

Although 3D scanning and the subsequent registration of multiple scans

4

CHAPTER 1. INTRODUCTION

Aligned, Combined Scans Reconstructed ModelIndividual Scans

Figure 1.2: An example of the reconstruction of the “Bunny” model. Individual
scans of the real object are first aligned and combined before a surface
reconstruction algorithm produces the final model.

provides high resolution geometry, it does not provide a fully connected mesh

of the surface: each scan is still represented as a separate patch of the surface.

For most uses, a single surface mesh is required.

1.2 Surface Reconstruction

Surface reconstruction is the process of the automated generation of three-

dimensional surfaces from a discrete sampling of the surface of a real object

acquired through 3D scanning. This can be an under-constrained process since the

reconstruction process must infer the shape between the samples, and there may

be many plausible surfaces that can be generated from any given set of samples.

5

CHAPTER 1. INTRODUCTION

a) c)

d)

?

e)

b)

V
ie

w
 D

ir
ec

ti
on

Low Density Low Density

Missing Data

High Density

Regularly Sampled Image Plane

Irregularly Sampled Surface

Figure 1.3: Illustrative examples of the different types of data anomalies present
in three-dimensional scan data: a) noise, b) anisotropy, c) misalignment, d) non-
uniformity, and e) missing data.

One of the largest challenges in reconstructing surfaces robustly and accurately

is dealing with the many anomalies that are present in data that are obtained from

the scanning of real-world objects. There are many aspects to the data that make

the task of reconstruction particularly challenging.

• Noise: (Figure 1.3 a and b) The process of scanning involves capturing

measurements with an imaging device which, unavoidably, introduces noise

into all measurements. This noise manifests itself as uncertainty in the

positions of three-dimensional points or the orientation of surface normals

in the dataset. The level of noise is often variable and related to various

local characteristics of the surface (for example, reflectivity, or translucency)

and to the orientation of the surface in relation to the scanner (for example,

parts of the surface that are more oblique tend to have higher levels of noise).

• Misalignment: (Figure 1.3 c) When the samples are derived from multiple

6

CHAPTER 1. INTRODUCTION

scans, non-linear distortions and the lack of features in regions of scan

overlap can lead to imperfect alignment of scans. The consequence of scan

misalignment in the context of reconstruction is that the same patch of a

surface may be represented by multiple overlapping scans which disagree.

This often creates a situation where a single surface is represented in the

scan data as multiple “sheets” of samples, offset from each other.

• Non-uniformity: (Figure 1.3 d) Although a scan may form a regular

sampling of a grid in sensor space, the transformation of this data into

object space may create a distorted distribution of points. As a consequence,

the density of samples from a single scan may be highly anisotropic.

Additionally, as scans from multiple points of view are combined into the

final dataset, the sampling density becomes non-uniform. On a large scale,

some parts of the object may have been intentionally scanned in more detail

than other parts. On a small scale, the way in which multiple scans coincide

may cause dramatic, localized variations of sampling density (for example,

when an area of the surface is covered by two scans instead of one, the local

sampling density will double). Highly non-uniform datasets are challenging

to reconstruct because one can no longer assume that there exists a single

radius representing the expected distance between neighboring samples.

• Missing data: (Figure 1.3 e) During the process of scanning an object, it is

7

CHAPTER 1. INTRODUCTION

not always possible to capture scans of all parts of the surface, which leaves

coverage holes in the resulting dataset. Such circumstances can arise when

small concavities or hard-to-reach places are not visible to a scanner due

to physical constraints, or merely due to an oversight during the scanning

process. In many contexts, it is desirable to fill holes in the dataset with a

“plausible” surface.

Figure 1.4 provides examples of how multiple anomalies combine in two of the

datasets we use in this dissertation. Figure 1.4a shows a sample of data from

the front feet of the “Bunny” dataset. In this example, we can see and a hole

(1), multiple scans overlapping creating widely varying local sampling densities

(2), and distortion of the regular structure of scans when projected onto the

surface forming anisotropic sampling density (visible as samples forming rows

where the distance between samples within the row is much closer than the

distance between rows) (3). Figure 1.4b shows a sample of data from the left

eye of the “David” dataset. In this example we can see a particularly interesting

case of scan misalignment on the left hand side of the lobe protruding from the

top of the pupil (4) as well as noise, illustrated by the specked appearance of the

shading (5).

In addition to difficulties arising due to noise in the acquisition, the sheer size

of recently acquired datasets creates a new set of challenges. New scanning and

acquisition technologies are driving a dramatic increase in the size of datasets

8

CHAPTER 1. INTRODUCTION

a) b)

Figure 1.4: Two examples showing how multiple types of anomalies combine in
real-world data.

for surface reconstruction. A number of cultural heritage projects, including the

Digital Michelangelo project [34] and Pietà project [9] have scanned sculptures

with datasets approaching one billion point samples each. New computer vision

techniques [50] allow three dimensional point clouds to be extracted from photo

collections; with an abundance of photographs of the same scene available through

online photo sites, the potential for truly massive datasets is within reach. The

size of these datasets presents modern surface reconstruction techniques with a

9

CHAPTER 1. INTRODUCTION

new set of challenges: Processing such large datasets can require thousands of

hours of computing time and hundreds of gigabytes of storage.

1.3 Outline of Dissertation

In Chapter 2, we review a wide range of existing surface reconstruction

techniques and develop a taxonomy to group methods based on their design and

implementation. In Chapter 3 we present the Poisson Surface Reconstruction

algorithm, a new technique for reconstructing surfaces that is computationally

efficient and robust. In Chapter 4 we show that, despite being a global problem,

the Poisson technique can be extended to a streaming computation model,

allowing for the reconstruction of the extremely large datasets available from

large scale 3D scanning projects by only requiring a small subset of the data

to be accessible in memory at any one time. In Chapter 5 we show how the

streaming technique can be adapted to process the octree data in parallel, allowing

faster processing of large datasets on both shared memory and distributed memory

computer systems. We conclude in Chapter 6 with a summary of our work, and

a brief discussion of directions for future scholarship.

10

Chapter 2

Surface Reconstruction

Surface reconstruction has been a well studied problem in computer graphics

and vision and a wide variety of methods have been suggested. The general

approach of a surface reconstruction method can be most broadly categorized

as either discrete or continuous. Discrete methods utilize the pointset directly,

or structures from computational geometry to define the surface. Continuous

methods take either a surface fitting approach, where a surface is fit directly to

the samples, or a function fitting approach, where an implicit function is first fit

to the samples and then used to define a surface.

There are a wide range of methods for scanning. In addition to triangulation

based range scanners, many techniques from computer vision, including shape

from stereo [7] and shape from shading [26] can take images of an object and

produce a three-dimensional representation. Because of this diversity, there are

11

CHAPTER 2. SURFACE RECONSTRUCTION

several different forms in which input data for surface reconstruction can take.

Many techniques make use of these different forms to aid the reconstruction

process. In the most general form, the surface is represented by a point set

P = {p1, ..., pN} where pi ∈ R
3 are a sampling of positions on (or near) a surface.

In addition to position of each sample, many scanning techniques can also provide

information about the orientation of the surface at each sample point. In these

cases, the scan data data forms an oriented point set P = {(p1, n1), ..., (pN , nN)}

where pi, ni ∈ R
3 and ni represents the normal vector at each sample. A more

specialized, but very common form of scan data, is the range image. A range image

is a two-dimensional regular grid R ∈ R
N×M of values where each value represents

the distance from the scanner source to points on a surface. With information

such as the position of the scanner center and the scanner’s orientation, the three-

dimensional location of sample points can be computed from each element of

the range image. Additionally, the implicit array structure provides connectivity

between adjacent points, allowing the range image to represent a quadrangulated

patch of a surface. Using this topology, a range image can also define a per sample

surface normal.

In the remainder of this chapter, we will briefly describe some of the

more significant surface reconstruction methods from the literature following the

taxonomy of Figure 2.1. We also classify each method according to the type of

input data required in Figure 2.2.

12

CHAPTER 2. SURFACE RECONSTRUCTION

Surface Reconstruction

Continuous Discrete

Function FittingSurface Fitting Computational Geometry

Global Function Fitting Local Function Fitting

Co-cone

Signed Distance

Density Field

Signed DistanceIndicator Function Voronoi

DelaunayBalloon Fitting

Point Set Surfaces

Ball Pivoting

Alpha Shapes

Power CrustFFT

VRIP

Blobby Models

Fast RBF

Hoppe et.al.

MPUWavelets

Poisson

Fast Level Set

Figure 2.1: A taxonomy of surface reconstruction methods, based on the general
approach to solving the reconstruction problem.

Oriented Point SetPoint Set Range Images

Alpha Shapes

FFT

VRIP

Blobby Models

Fast RBF

Hoppe et.al.

MPU

Wavelets

PoissonCo-cone

Balloon Fitting

Point Set Surfaces

Ball Pivoting

Power Crust

Fast Level Set

Figure 2.2: A categorization of surface reconstruction methods, based on the type
of input data required.

13

CHAPTER 2. SURFACE RECONSTRUCTION

2.1 Discrete Methods

2.1.1 Computational Geometry

Many of the earliest approaches to surface reconstruction used techniques from

computational geometry. In general, these approaches take a set of points and

compute combinatorial structures such as the Delaunay teterahedralization or

Voronoi diagram. From these partitions of space, a labeling process defines each

partition as either interior or exterior to the shape, and the reconstructed surface

is defined as the set of faces between interior and exterior regions. The surface

that results from this process typically interpolate most or all of the points in P .

2.1.2 Alpha Shapes

Among the first of these was alpha shapes [20]. The alpha-shape Sα(P) of a

point-set P is a simplical complex that can be thought of as a generalization of

the convex hull, parameterized by α. As α → ∞, the alpha shape is the convex

hull of P . As α→ 0, the alpha shape is P itself. For other values of alpha, a set

of shapes are defined which are constructed from the Delaunay tetrahedralization

DT (P). The alpha shape is formed by iteratively removing all exposed edges of

DT (P) where |xi − xj| < α, i 6= j. Faces and tetrahedra are removed from Sα

when one of their corresponding edges or faces is removed.

14

CHAPTER 2. SURFACE RECONSTRUCTION

Although simple to construct, alpha shapes have limited utility in surface

reconstruction, especially when reconstructing from real-world data. Because α is

a global parameter, it can be hard to choose a single α-value that can be used to

extract a good representation of the surface everywhere: this becomes increasingly

challenging when sampling density in P is non-uniform. Additionally, because

Sα(P) is an arbitrary simplical complex, the resulting shape is not guaranteed to

be manifold.

2.1.3 Power Crust

The power crust algorithm [4, 5] reconstructs a surface S by making the

observation that a surface can be represented by it’s medial axis, or skeleton –

MAT (S). The medial axis is defined as the set of all points that are equi-distant

to two or more points on S. The power crust algorithm approximates MAT (S) by

constructing the Vornoni diagram of P , V (P). From V (P) the Voronoi Venice’s

that form poles are used to define the points on the medial axis and are used to

construct a set of polar balls. A vertex v ∈ V (P) is a pole p if it is the farthest

vertex from the center of a Voronoi cell that it belongs to. Each pole defines

a ball centered at p with a radius equal to the distance of p from the nearest

point in P . To compute a surface, the polar balls are used to construct a power

diagram (a Voronoi diagram of the poles, weighted by radius), cells of the power

diagram are labelled as “interior” and the surface (“power crust”) is extracted as

15

CHAPTER 2. SURFACE RECONSTRUCTION

the boundary.

With the power crust algorithm, Amenta et al. also provided theoretical

guarantees. In particular, provided P is sufficiently dense, the surface that

the power crust algorithm reconstructs is a (provably) smooth surface that is

homeomorphic to the surface from which the points were sampled. Formally, a

set of samples is defined to be sufficiently dense when the distance from any surface

point to the nearest sample is at most a small constant ǫ times the distance to

medial axis. Intuitively, this means that P must be more densely sampled in

regions of high curvature, or regions where other parts of the surface are nearby.

2.1.4 Ball Pivoting

The ball pivoting algorithm [8] reconstructs a surface S from a point cloud

P using a ball of radius ρ. The surface is constructed from the set of triangles

constructed from three distinct points in P which can form a ball of radius ρ

without containing any other points from P . The algorithm is implemented by

taking a “seed” ball and successively pivoting the ball across triangle edges until

no more points can be visited. Although this method is highly efficient and can

operate on large datasets, it has a number of practical limitations. Like methods

from computational geometry, this method produces a surface that interpolates

most of the input points, which can reconstruct undesirable sampling noise. In

addition, as with alpha shapes, the value of ρ is constant which reduces the utility

16

CHAPTER 2. SURFACE RECONSTRUCTION

when dealing with non-uniform data.

2.2 Continuous Methods

2.2.1 Surface Fitting

Surface fitting approaches take a set of points and deforms a base shape until

it fits the points.

2.2.1.1 Balloon Fitting

The “Balloon Fitting” method of Chen et al. [15] uses an approach inspired by

the inflation of a balloon. The method takes a point set P as an input, along with

a seed surface S (an icosahedron) that is completely contained inside the desired

surface. S is used to form a mass-spring system where each vertex is connected

to its neighbors via springs. The surface is iteratively grown by increasing the

internal pressure of S, which causes each triangle to inflate in the direction of its

surface normal. To ensure that triangles in S are kept sufficiently small, triangles

are split when the spring force acting between two vertices exceeds some threshold.

Once a triangle in S reaches a point in P , or, has no points in P in front of it (i.e.

a hole) the vertices of the triangle become “anchored” and do not move in future

updates. The surface is complete once all vertices become anchored.

17

CHAPTER 2. SURFACE RECONSTRUCTION

In practice, there are two difficulties with the “Balloon Fitting” method. First,

finding a seed surface automatically is not an easy problem, typically requiring

user intervention. Second, because of the way the surface is inflated to fit the

model, the genus of the surface is restricted to be the genus of the seed surface.

2.2.1.2 Fast Level Set Method

The fast level set method of Zhao et al. [58] takes an implicit approach

to the surface-fitting problem. Given a general input data set (S) that may

contain points, curves or surface patches, a distance function d(x) = dist(x, S)

is computed. Given an arbitrary initial surface Γ, an energy function E(Γ) is

defined using d(x) and the energy flow is used to evolve the surface toward a

better approximation of S.

Because the topological structure of the reconstructed surface is not known

á priori, it is not effective to represent Γ in an explicit form. Instead, this

method uses a level set formulation, allowing the toplogy of the surface to change

throughout the evolution process.

2.2.1.3 Point Set Surfaces

The “Point Set Surfaces” method of Alexa et al. [3] uses the moving least

squares (MLS) projection operator [33] to define a surface M implicitly from a set

of points P . The MLS operator is a projection operator Π that takes a point r and

18

CHAPTER 2. SURFACE RECONSTRUCTION

maps it to the unknown surface S. Given a point r that is near M , the projection

operator is formed by fitting a plane H around r that minimizes the weighted

sum of squared distances to all pi ∈ P . Using the plane H as a parametrization

domain, the surface is locally represented by the graph of a polynomial function

g with approximates the heights of the pi over H. The projection operator is

then defined by projecting r onto H and evaluating g at the projected point to

obtain the height of Π(r) over H. One aspect of this method that is different

to all other methods we discuss in this chapter, is that the reconstructed surface

S is not represented as a mesh, but as a dense collection of points that can be

rendered with point-based rendering methods [35].

2.2.2 Implicit Function Fitting

Function fitting approaches attempt to define a function F : R
3 → R such

that the interior and exterior of the shape can be distinguished and the surface

can be extracted as a level-set of F . In its essence, surface reconstruction via

implicit function fitting is a scattered data interpolation problem [21]: The input

point set forms a set of constraints to which an unknown function F is fit. A

variety of different choices for F have been used, including signed [13, 17,25] and

unsigned [42] distance functions, and the indicator function [31,39].

19

CHAPTER 2. SURFACE RECONSTRUCTION

2.2.3 Local Function Fitting

In contrast to global function fitting approaches in which an input sample

can influence the values of F over the entire domain, in local function fitting

approaches a sample only influences the values of F in a small, localized

neighborhoods. In practice, these approaches tend to be efficient because the

local reconstruction of the surface only needs to consider a small subset of points

from the dataset. The challenge for local methods is defining the locality of a

sample. If the choice of neighborhood is too small, errors in the data, such as

noise and misalignment can result in undesirable artifacts in the resulting surface.

When the neighborhood is large, the solution can become inefficient to compute.

2.2.3.1 Hoppe et al.

The approach of Hoppe et al. [25] was one of the first function fitting

approaches to reconstruct a surface from an unorganized point set (i.e. a set

of three-dimensional points with no normal or topological information). This

approach constructs an approximation to the signed distance function, F , of the

unknown surface. The signed distance function of a surface S, is a scalar function

F : R
3 → R where the value of F (x) is defined as the Euclidean distance of x

from the nearest point on S with points inside S assigned a negative distance,

and points outside assigned a positive distance value. Once F is computed, the

surface is extracted as the zero-set of F using a contouring algorithm.

20

CHAPTER 2. SURFACE RECONSTRUCTION

To define F , each point pi ∈ P is associated with an oriented plane Ti ≡

〈pi, ni〉 = 0 which defines a local linear approximation to the Euclidean distance

function of the surface. Each Ti is estimated by fitting a plane to the k-nearest

points to pi in P . The plane normal is defined as the smallest eigen-vector of the

covariance matrix of the points in the neighborhood.

To define surface normals that are consistently oriented (essential to robustly

construct the signed distance function) an additional step is taken to correctly

orient the tangent planes. To do this, a graph is formed where each tangent plane

Ti forms a node Ni in the graph. Two nodes of the graph Ni and Nj are connected

with an edge when the k-neighborhoods of Ti and Tj have at least one point in

common. Edges are weighted according to the absolute value of the dot product

of ni and nj. Then, a minimal spanning tree of the graph is created and the

normal directions are defined by assigning an (arbitrary) orientation to a node

and propagating the orientation through the tree.

2.2.3.2 Volumetric Range Image Processing (VRIP)

The Volumetric Range Image Processing (VRIP) method [17] reconstructs

surfaces from an aligned set of range images. From each range image Ri, a view

dependent signed distance function di(x) and a corresponding weight function

wi(x) are constructed. Then, a combined distance function D(x) is constructed

as
P

wi(x)dj(x)
P

wi(x)
and a surface is extracted as the iso-surface D−1(0).

21

CHAPTER 2. SURFACE RECONSTRUCTION

To prevent the distance function di of one scan influencing D far away from the

scan, the weight function wi tapers to zero over a small distance called the ramp

size. The ramp size is typically chosen to be half the maximum error expected in

range image distances. Because of the spatial locality of wi, large portions of widi

(and therefore D) are zero. This is exploited to reduce the storage requirements

of D by using run-length encoding.

In general, regions of the surface without range image coverage will not have a

well-defined iso-surface, leaving boundary contours in the reconstructed surface.

To seal some of these holes, VRIP uses space carving to exploit the fact that a range

image not only gives information about where the surface is, but also where it is

not. This is used to label the parts of space at which the view from the scanner is

un-occluded. Carving out the un-occluded regions from the reconstruction volume

results in an effective way for sealing some of these holes.

2.2.3.3 Multi-level Partitions of Unity (MPU)

The MPU [43] method reconstructs an approximation to the signed distance

function from an oriented point set. The signed distance function F is defined as

a set of locally defined functions fi blended together with a set of weights which

form a partition of unity (that is, for a given point x the weights always sum to

one). To construct the local functions fi an octree is used to recursively partition

space. For a given octree node oi, a (piecewise) quadratic approximation Qi is

22

CHAPTER 2. SURFACE RECONSTRUCTION

fit to the samples that fall within the spatial bounds of the octree node. If Qi

is a poor representation of the points (as measured by the Taubin distance [51])

the octree node is split, and the fitting process is repeated for each octant. If

the number of points in an octree node is too small, Qi may not be a robust

representation. In these cases, the next closest points are incrementally included

in computing Qi until a minimum number of points is reached. Once a Qi has

been fit to all nodes in the octree, local signed distance functions fi are computed

from Qi. To form the final implicit function F , the fi are blended together using

the partition of unity.

2.2.4 Global Function Fitting

Global function fitting approaches consider all points when defining the value of

the implicit function at a location. In general, global approaches are more robust,

as a local effects like noise or scan misalignment have a less direct influence on

the value of the function. There have been a number of surface reconstruction

techniques that use global function fitting methods. We briefly describe some of

these approaches.

2.2.4.1 Blobby Models

The concept of the “Blobby Model” was introduced by Blinn [10]. The idea

was that a 3D model can be represented as an iso-surface of a field generated

23

CHAPTER 2. SURFACE RECONSTRUCTION

from a number of primitives: F (x) =
∑N

i=1 bie
−aifi(x) where bi and ai control the

amplitude and fall-off of the primitive and fi is a function that describes the shape

of the primitive (Often, fi(x) = ‖x−xi‖
2, where xi is the origin of the primitive).

The work of Muraki [42] applied Blinn’s work to the context of surface

reconstruction. The problem is, given a range image R, to find a set of primitives

that can generate a blobby model representation of R. Since directly finding N

primitives to fit R is a difficult problem, a greedy approach is used. Starting with

N = 1, primitives are recursively split and an energy minimization problem is

solved to fit the new primitives.

One of the problems with using a blobby model approach for surface

reconstruction is a limitation of the blobby representation itself. First, because

the primitives are smooth functions, objects with sharp features require a large

number of primitives to be represented accurately. Second, because primitives

have global support, local changes may introduce undesirable artifacts in other

regions of F .

2.2.4.2 Fast RBF

The FastRBF approach [13] takes a scattered data interpolation interpretation

of the reconstruction problem. The authors define F to be an approximation to

the signed distance function of the surface. To define F , first, each sample point

pi is used to set a constraint on F such that F (pi) = 0. To avoid the trivial

24

CHAPTER 2. SURFACE RECONSTRUCTION

solution of F = 0, additional constraints are added. “Off surface” points pin
i and

pout
i are defined as pi± δni that form constraints on F such that F (pin

i) = −δ and

F (pout
i) = +δ. Care is taken to ensure that these interior and exterior constraints

do not conflict in regions where the surface folds together. To solve for F , a radial

basis function scheme is used. F is represented as the weighed sum of radial

basis function F (x) =
∑N

i=1 wi φ(‖x − ci‖) where ci is a constraint center, wi is

a weight and φ(x) is a function that has global support. Given the values fi at

the constraint points, a set of weights wi can be found by solving a linear least

squares problem.

Because φ(x) has global support, the linear system to find wi is dense and

poorly conditioned, and is therefore difficult to solve robustly as N grows. To

use radial basis functions to reconstruct surfaces from a large number of points,

a number of optimizations and approximations are used. First, fast multi-pole

methods are used to evaluate F (x). This optimization works by reducing the

number of constraints that need to be evaluated at x by approximating clusters

of centers far from x as a single constraint. Second, a greedy algorithm is used

to iteratively fit a small number of constraints to a given point set in order to

reconstruct the surface to within a desired fitting accuracy.

25

CHAPTER 2. SURFACE RECONSTRUCTION

2.2.4.3 Fast Fourier Transform

The work of Kazhdan [31] was the first function fitting method which used

the indicator function as its choice of implicit function. For a given solid M , the

indicator function χM is a scalar function that is defined as χM(x) = 1 if x ∈ M

and χM(x) = 0 otherwise. The FFT method constructs the indicator function

through an application of Stokes’ theorem, which expresses a volume integral as

a surface integral, a quantity that can be approximated from an oriented point

set. Specifically, the work shows that the Fourier coefficients of the indicator

function can be expressed as surface integrals computed using the oriented point

samples. As a result, the indicator function can be obtained by computing the

Fourier coefficients and running the inverse Fourier transform. The surface is

then extracted from the volume using the marching cubes [37] algorithm. Non-

uniformity in the input point set is handled by weighting the contribution of each

oriented point to the vector field by the result of a kernel density estimator.

Because of its global nature, the FFT method is robust to a variety of

degeneracies in the input data, including noise (in both sample position, and

orientation) and non-uniform sampling. Holes in the input data are plausibly

and smoothly filled in the output mesh. However, a significant disadvantage of

this method is the spatial and temporal complexity. Using an O(r3) regular grid

limits the practicality of the method when reconstructing large models with high

resolution. More recent work by Schall et al. [46] has taken the FFT approach and

26

CHAPTER 2. SURFACE RECONSTRUCTION

used it in an adaptive setting. This approach partitions a large model using an

adaptive octree and computes a number of local FFT’s that get blended for the

final indicator function, in a manner similar to the blending of the MPU approach.

Although this provides a more scalable solution than the original method, the local

decisions used to form and blend local FFT reconstructions can make the method

less robust.

2.2.4.4 Wavelets

The Wavelet based-approach of Manson et al. [39] uses a similar approach as

the FFT method, computing the indicator function from an oriented point set

using Stokes’ theorem. However, instead of using the Fourier basis, this method

uses an orthogonal wavelet basis with compact support. The key observation is

that, in the case of the Fourier basis, computing each Fourier coefficient requires

summation across all of sample points. In contrast, when using a wavelet basis

(with compactly supported basis functions) computing each wavelet coefficient

only requires the summation of samples within the support of the basis.

This approach offers a number of practical advantages over the FFT based

method. First, the algorithm is more efficient. Second, the spatial complexity of

the algorithm is lower, since only wavelet coefficients whose support overlaps the

sample points need to be stored explicitly.

27

CHAPTER 2. SURFACE RECONSTRUCTION

2.2.4.5 Our Approach

The approach that we describe in this dissertation is similar in spirit to

the FFT approach. Like the FFT approach, we reconstruct surfaces by first

constructing an approximation the indicator function χ from a set of oriented

points, and then extracting a surface from χ. We address a number of the

limitations of the FFT approach by using an adaptive function basis formed on

in octree.

28

Chapter 3

Poisson Surface Reconstruction

Reconstructing 3D surfaces from point samples is a well-studied problem in

computer graphics. It allows for the fitting of surfaces to scanned data, the filling

of surface holes, and the re-meshing of existing models. In this chapter, we describe

a surface reconstruction approach that expresses surface reconstruction as the

solution to a Poisson equation.

3.1 The Poisson Idea

Like much previous work, we approach the problem of surface reconstruction

using an implicit function framework. Specifically, like [31] we compute a 3D

indicator function χ (defined as 1 at points inside the model, and as 0 at points

outside), and then obtain the reconstructed surface by extracting an appropriate

29

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

1

1

1

0

0

M

0

0

0

0
0

1

1

1

0

Indicator function

M

Indicator gradient

0 0

0

0

0

0

Surface

M

Oriented points

V

Figure 3.1: Intuitive illustration of Poisson reconstruction in 2D.

iso-surface.

The key insight in our approach is that there is an integral relationship between

oriented points sampled from the surface of a model and the indicator function

of the model. Specifically, the gradient of the indicator function is a vector field

that is zero almost everywhere (since the indicator function is constant almost

everywhere), except at points near the surface, where it points in the direction

of the inward surface normal. Thus, the oriented point samples can be viewed as

samples of the gradient of the model’s indicator function. Figure 3.1 illustrates

this idea in two dimensions.

The problem of computing the indicator function therefore reduces to inverting

the gradient operator; that is, finding the scalar function χ whose gradient best

approximates the vector field ~V defined by the samples (i.e. minχ ‖∇χ − ~V ‖).

Applying the divergence operator, this variational problem transforms into a

30

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

standard Poisson problem:

∆χ ≡ ∇ · ∇χ = ∇ · ~V . (3.1)

We will make these definitions precise in Sections 3.2 and 3.3.

Formulating surface reconstruction as a Poisson problem offers a number of

advantages. Many implicit surface fitting methods first segment the data into

regions for local fitting, and then combine these local approximations using

blending functions. In contrast, Poisson reconstruction is a global solution

that considers all the data at once, without resorting to heuristic partitioning

or blending. Thus, like radial basis function (RBF) approaches, Poisson

reconstruction creates smooth surfaces that robustly fit noisy data. But, whereas

ideal RBFs are globally supported and non-decaying, the Poisson problem admits

a hierarchy of locally supported functions, and therefore its solution reduces to a

well-conditioned sparse linear system.

Moreover, in many implicit fitting schemes, the value of the implicit function

is constrained only near the sample points, and consequently the reconstruction

may contain spurious surface sheets away from these samples. Typically, this

problem is reduced by introducing auxiliary “off-surface” points (e.g. [13, 43]).

With Poisson surface reconstruction, such surface sheets do not arise because the

gradient of the implicit function is constrained at all spatial points. In particular,

it is constrained to zero away from the samples.

31

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

There has been broad interdisciplinary research on solving Poisson problems

and many efficient and robust methods have been developed. One particular

aspect of our problem instance is that an accurate solution to the Poisson equation

is only necessary near the reconstructed surface. This allows us to leverage

adaptive Poisson solvers to develop a reconstruction algorithm whose spatial and

temporal complexities are proportional to the size of the reconstructed surface.

3.2 Approach

The input to the surface reconstruction is an oriented point set P = {si =

(p1, n1), ..., sN = (pN , nN)} that consists of a sample si with a position s.p and an

inward-facing normal s.n, assumed to lie on or near the surface ∂M of an unknown

model M . The goal is to reconstruct a watertight, triangulated approximation to

the surface by approximating the indicator function of the model and extracting

the iso-surface, as illustrated in Figure 3.2.

In the next sections, we derive a relationship between the (smoothed) gradient

of the indicator function and an integral of the normal field over the surface. We

then approximate this surface integral by a summation over the given oriented

point samples. Finally, we reconstruct the indicator function from this gradient

field as the solution to a Poisson problem.

32

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

3.2.1 Defining the gradient field

Because the indicator function is a piecewise constant function, explicit

computation of its gradient field would result in a vector field with unbounded

values at the surface boundary. To avoid this, we convolve the indicator function

with a smoothing filter and consider the gradient field of the smoothed function.

The following lemma formalizes the relationship between the gradient of the

smoothed indicator function and the surface normal field.

Lemma: Given a solid M with boundary ∂M , let χM denote the indicator

function of M , ~N∂M(p) be the inward surface normal at p ∈ ∂M , F̃ (q) be a

smoothing filter, and F̃p(q) = F̃ (q−p) its translation to the point p. The gradient of

the smoothed indicator function is equal to the vector field obtained by smoothing

the surface normal field:

∇
(

χM ∗ F̃
)

(q0) =

∫

∂M

F̃p(q0) ~N∂M(p)dp. (3.2)

Proof: To prove this, we show equality for each of the components of the vector

field. Computing the partial derivative of the smoothed indicator function with

33

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

respect to x, we get:

∂

∂qx

∣

∣

∣

∣

q0

(

χM ∗ F̃
)

(q) =
∂

∂qx

∣

∣

∣

∣

q0

∫

M

F̃ (q − p)dp

=

∫

M

(

−
∂

∂px

F̃ (q0 − p)

)

dp

= −

∫

M

∇ ·
(

F̃ (q0 − p), 0, 0
)

dp

=

∫

∂M

〈(

F̃p(q0), 0, 0
)

, ~N∂M(p)
〉

dp.

(The first equality follows from the fact that χM is equal to zero outside of

M and one inside. The second follows from the fact that (∂/∂qx)F̃ (q − p) =

−(∂/∂px)F̃ (q − p). The last follows from the Divergence Theorem.)

A similar argument shows that the y, and z-components of the two sides are

equal, thereby completing the proof. �

3.2.2 Approximating the gradient field

Of course, we cannot evaluate the surface integral since we do not yet know

the surface geometry. However, the input set of oriented points provides precisely

enough information to approximate the integral with a discrete summation.

Specifically, using the point set P to partition ∂M into distinct patches Ps ⊂ ∂M ,

we can approximate the integral over a patch Ps by the value at point sample s.p,

34

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

scaled by the area of the patch:

∇(χM ∗ F̃)(q) =
∑

s∈P

∫

Ps

F̃p(q) ~N∂M(p)dp

≈
∑

s∈P

|Ps| F̃s.p(q) s.n ≡ ~V (q).

(3.3)

It should be noted that although Equation 3.2 is true for any smoothing filter

F̃ , in practice, care must be taken in choosing the filter. In particular, we would

like the filter to satisfy two conditions: (1) it should be sufficiently narrow so that

we do not over-smooth the data; (2) it should be wide enough so that the integral

over Ps is well approximated by the value at s.p scaled by the patch area. A good

choice of filter that balances these two requirements is a Gaussian whose variance

is on the order of the sampling resolution.

3.2.3 Solving the Poisson problem

Having formed a vector field ~V , we want to solve for the function χ̃ such that

∇χ̃ = ~V . However, ~V is generally not integrable (i.e. it is not curl-free), so an

exact solution does not generally exist. To find the least-squares solution, we

apply the divergence operator to form the Poisson equation:

∆χ̃ = ∇ · ~V (3.4)

35

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

Figure 3.2: Points from scans of the “Armadillo Man” model (left), our Poisson
surface reconstruction (right), and a visualization of the indicator function
(middle) along a plane through the 3D volume.

3.3 Implementation

In this section, we describe our implementation of the Poisson surface

reconstruction algorithm in more detail. We first present our algorithm under

the assumption that the point samples are uniformly distributed over the model

surface. We define a space of functions with high resolution near the surface of

the model and coarser resolution away from it; we express the vector field ~V as

a linear sum of functions in this space; we set up and solve the Poisson equation;

and we extract an iso-surface of the resulting indicator function. The extension

of the algorithm to the case of non-uniformly sampled points is described in the

next section.

36

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

3.3.1 Problem Discretization

First, we must choose the space of functions over which to discretize the

problem. The most straightforward approach is to start with a regular 3D

grid [31]. However, such a uniform structure becomes impractical for fine-detail

reconstruction, since the dimension of the space is cubic in the resolution while

the number of surface triangles grows quadratically.

Fortunately, an accurate representation of the implicit function is only

necessary near the reconstructed surface. This motivates the use of an adaptive

octree, both to represent the implicit function and to solve the Poisson system

(e.g. [23, 38]). Specifically, we use the positions of the sample points to define an

octree O and associate a function Fo to each node o ∈ O of the tree, choosing the

tree and the functions so that the following conditions are satisfied:

1. The vector field ~V can be precisely and efficiently represented as the linear

sum of the Fo;

2. The matrix representation of the Poisson equation, expressed in terms of

the Fo, can be solved efficiently; and

3. A representation of the indicator function as the sum of the Fo can be

precisely and efficiently evaluated near the surface of the model.

37

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

3.3.1.1 Defining the function space

Given a set of point samples P and a maximum tree depth D, we define the

octree O to be the minimal octree with the property that every point sample falls

into a leaf node at depth D. Next, we define a space of functions obtained as the

span of translates and scales of a fixed base function F : R
3 → R. For every node

o ∈ O, we set Fo to be the “node basis function” centered about the node o and

stretched by the size of o:

Fo(q) ≡ F

(

q − o.c

o.w

)

(3.5)

where o.c and o.w are the center and width of node o.

This space of functions FO,F ≡ Span{Fo} has a multi-resolution structure:

functions associated with finer nodes encode higher frequencies, and the function

representation becomes more precise as we near the surface. Note that, because

the space is adaptive, not all coarse functions can be represented as a linear

combination of finer functions. Thus, the functions we will consider will be

represented as linear combinations of nodal basis functions across all levels, not

just the basis functions at the finest level.

38

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

3.3.1.2 Selecting a base function

In selecting a base function F , our goal is to choose a function so that the vector

field ~V , defined in Equation 3.3, can be precisely and efficiently represented as the

linear sum of the node functions {Fo}.

Since a maximum tree depth of D corresponds to a sampling width of 2−D,

the smoothing filter should approximate a Gaussian with variance on the order of

2−D. Thus, F should approximate a Gaussian with unit-variance.

For efficiency, we approximate the unit-variance Gaussian by a compactly

supported function so that: (1) the resulting Divergence and Laplacian operators

are sparse; and (2) the evaluation of a function expressed as the linear sum of Fo

at some point q only requires summing over the nodes o ∈ O that are close to q.

Thus, we set F to be the n-th convolution of a box filter with itself resulting in

the base function F :

F (x, y, z) ≡ (B(x)B(y)B(z))∗n with B(t) =

1 |t| < 0.5

0 otherwise

(3.6)

Note that as n is increased, F more closely approximates a Gaussian and

its support grows larger: in our implementation we use a piecewise quadratic

approximation with n = 3. Therefore, the function F is supported on the domain

[−1.5, 1.5]3 and, for the basis function of any octree node, there are at most

53 − 1 = 124 other nodes at the same depth whose functions have overlapping

39

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

support.

3.3.2 Vector Field Definition

If we were to replace the position of each sample with the center of the leaf node

in which it falls, the vector field ~V could be simply expressed as the linear sum of

{Fo}. This way, each sample would contribute a single term (the normal vector)

to the coefficient corresponding to its leaf’s node function. Since the sampling

width is 2−D and the samples all fall into leaf nodes of depth D, the error arising

from the clamping can never be too big (at most, on the order of half the sampling

width). To allow for sub-node precision, we avoid clamping a sample’s position to

the center of the containing leaf node and instead use interpolation to distribute

the sample across the one ring neighborhood of nodes. In particular, we define

our approximation to the gradient field of the indicator function as:

~V (q) =
∑

o∈OD

Fo(q)vo (3.7)

with

vo =
∑

s∈P

Fo(s.p)s.n (3.8)

where OD is the set of all nodes from the octree at depth D. Note that Fo(s.p)

is only non-zero when o is in the one-ring neighborhood of the node containing

s.p. Thus, in practice, the coefficients of the vector field can be computed by

40

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

“splatting” the normal vector s.n into the one-ring neighborhood of s.p. To ensure

that we have an adequate ability to represent ~V in this way, we construct the

octree so that a node o is in the tree whenever there exists an s ∈ P such that

Fo(s.p) 6= 0.

Since we assume that the samples are uniform, the area of a patch Ps is

constant and ~V is a good approximation, up to a multiplicative constant, of the

gradient of the smoothed indicator function. We will show that the choice of

multiplicative constant does not affect the reconstruction.

3.3.3 Linear System Definition

Having defined the vector field ~V , we would like to solve for the function

χ̃ ∈ FO,F whose gradient is closest to ~V : that is, we would like to solve the

Poisson equation ∆χ̃ = ∇ · ~V . One challenge of solving for χ̃ is that although

χ̃ and the coordinate functions of ~V are in the space FO,F , it is not necessarily

the case that the functions ∆χ̃ and ∇ · ~V are. To address this issue, we need to

solve for the function χ̃ such that the projection of ∆χ̃ onto the space FO,F is

equals the projection of ∇ · ~V . Since, in general, the functions Fo do not form an

orthonormal basis, solving this problem directly is expensive. However, we can

simplify the problem using the Galerkin formulation by solving for the function χ̃

41

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

with:

〈∆χ̃, Fo〉 = 〈∇ · ~V , F0〉 (3.9)

for all o ∈ O. Thus given the |O|-dimensional vector b whose o-th coordinate

is bo = 〈∇ · ~V , Fo〉, the goal is to solve for the function χ̃ such that the vector

obtained by taking the dot product of the Laplacian of χ̃ with each of the Fo is

equal to b.

To express this in matrix form, we let χ̃ =
∑

o xoFo, so that we are solving for

the vector x ∈ R
|O|. Then, we define the |O| × |O| matrix L so that Lx returns

the dot product of the Laplacian with each of the Fo. Specifically, for all o, o′ ∈ O,

the (o, o′)-th entry of L is set to:

Lo,o′ ≡

〈

∂2Fo

∂x2
, Fo′

〉

+

〈

∂2Fo

∂y2
, Fo′

〉

+

〈

∂2Fo

∂z2
, Fo′

〉

. (3.10)

Thus, solving for χ̃ amounts to finding

Lx = b (3.11)

Note that in solving for χ̃, we do not explicitly compute the projection of the

divergence of ~V onto FO,F . We only compute the dot product of the divergence

with each Fo. Since the Fo are compactly supported, this can be done efficiently.

42

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

Note also that the matrix L is sparse and symmetric. (Sparse because the Fo are

compactly supported, and symmetric because
∫

f ′′g = −
∫

f ′g′.)

Furthermore, there is an inherent multiresolution structure on FO,F , so we use

a multigrid approach. The linear system Lx = b is transformed into successive

linear systems Ldxd = bd (solved using conjugate gradients), one per octree

depth d. The solutions at finer depths only consider the residual divergence not

accounted for at coarser depths. More precisely, after solving at depths d′ < d,

the divergence constraints are updated at depth d to subtract those components

of the constraints that have already been satisfied at the coarser resolutions:

bd
o ← bd

o −
∑

d′<d

∑

o′∈Od′

Lo,o′xo′ , (3.12)

where Od denotes the set of octree nodes at depth d. Note that this approach

means that we use a cascadic multigrid solver (i.e. we do no restrict finer solutions

back to coarser solutions).

3.3.4 Iso-Surface Extraction

In order to obtain a reconstructed surface ∂M̃ , it is necessary first to select

an iso-value and then to extract the corresponding iso-surface from the computed

indicator function.

We choose the iso-value so that the extracted surface closely approximates the

43

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

positions of the input samples. We do this by evaluating χ̃ at the sample positions,

and use the average of the values for iso-surface extraction:

∂M̃ ≡ {q ∈ R
3

∣

∣ χ̃(q) = γ} with γ =
1

|S|

∑

s∈P

χ̃(s.p). (3.13)

This choice of iso-value has the property that scaling χ̃ does not change the iso-

surface. Thus, knowing the vector field ~V up to a multiplicative constant provides

sufficient information for reconstructing the surface.

To extract the iso-surface from the indicator function, we use the method of [32]

which is similar to previous adaptations of the Marching Cubes [37] to an octree

representation (e.g. [47, 54, 55]), but supports non-conforming trees, preventing

cracks from arising when coarser nodes share a face with finer ones.

3.3.5 Non-uniform Samples

We now describe the extension of our method to the case of non-uniformly

distributed point samples. As in [31], our approach is to estimate the local

sampling density, and scale the contribution of each point accordingly. However,

rather than simply scaling the magnitude of a fixed -width kernel associated with

each point, we additionally adapt the kernel width. This results in a reconstruction

that maintains sharp features in areas of dense sampling and provides a smooth

fit in sparsely sampled regions. Figure 3.3 illustrates the problems associated with

44

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

using a fixed-width kernel to perform sample density estimation. In (b) and (c), we

can see the reconstructions of the cow using a low and high resolutions (i.e. wider

and narrower kernels) respectively. Because of the highly non-uniform nature of

the input point set, the use of a fixed-width kernel cannot simultaneously produce

a good estimation of sample density in all regions, and one must choose between

accurately capturing sharp features (such as the head) or smoothly reconstructing

the sparsely sampled body. In contrast, the use of adaptive width density kernels,

illustrated in (d), allows both regions to be reconstructed accurately by adapting

the filter width to the sampling density.

3.3.5.1 Estimating local sampling density

Following the approach of [31], we implement the density computation using a

kernel density estimator [45]. The approach is to estimate the number of points in

a neighborhood of a sample by “splatting” the samples into a 3D grid, convolving

the “splatting” function with a smoothing filter, and evaluating the convolution

at each of the sample points.

We implement the convolution in a manner similar to Equation 3.7. For each

depth D̂ ≤ D we compute a density estimator as the sum of node functions at

depth D̂:

WD̂(q) =
∑

o∈OD̂

Fo(q)ko (3.14)

45

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

a) Non-Uniform Point Set

b) Low Resolution Density Estimation

c) High Resolution Density Estimation

d) Adaptive Resolution Density Estimation

Figure 3.3: A comparison of the reconstruction of a highly non-uniform dataset
using a low resolution (b), high resolution (c) and adaptive resolution sample
density estimation (d).

46

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

with

ko =
∑

s∈P

Fo(s.p) (3.15)

Since octree nodes at lower resolution are associated with functions that

approximate Gaussians of larger width, computing WD̂ at each level in the

tree provides a way to estimate sampling density over a wide range of widths.

Furthermore, because the basis functions at depth D̂ form a partition of unity,

the weight WD̂(q) can be viewed as a (local) measure of the number of samples

falling into a node at depth D̂.

3.3.5.2 Estimating a samples depth

Given a user-supplied parameter κ, which determines the number of input

samples that should fall into an octree node, we determine the fractional depth

Depth(s.p) to represent the depth at which a sample point s ∈ P should be

splatted. Specifically, we find the finest level of the tree Dsplat at which the

sampling density WDsplat
(s.p) is greater than κ, and set:

Depth(s.p) ≡ min

D, Dsplat +

log(
WDsplat

(s.p)

κ
)

log(
WDsplat

(s.p)

WDsplat+1(s.p)
)

(3.16)

3.3.5.3 Computing the vector field

Using the density estimator at the splatting depth, we modify the summation

in Equation 3.7 so that each sample’s contribution is proportional to its associated

47

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

area on the surface (4Depth(s.p)). However, adapting only the magnitudes of the

sample contributions results in poor noise filtering in sparsely sampled regions as,

shown in Figure 3.7. Therefore, we also adapt the width of the smoothing filter

F̃ to the local sampling density. Adapting the filter width allows us to retain fine

detail in regions of dense sampling, while smoothing out noise in regions of sparse

sampling.

To do this, we adapt the depth of the basis function with which we splat in a

normal to the local sampling density. For points in regions of low sampling density,

we splat the associated normals in with node functions from coarser nodes (which

have wider support); for points in regions of high sampling density we use the

functions from finer nodes. Using a sample’s fractional depth value, Depth(s.p),

we define δ = Depth(s.p)−⌊Depth(s.p)⌋ and splat the sample normal into depths

D1 = ⌊Depth(s.p)⌋ and D2 = ⌈Depth(s.p)⌉ using linear interpolation. Specifically,

we define:

~V (q) ≡
∑

s∈P

(1− δ)8D1

4Depth(s.p)

∑

o∈N 1
D1(s.p)

(s)

αo,sFo(q)s.n

+
δ8D2

4Depth(s.p)

∑

o∈N 1
D2(s.p)

(s)

αo,sFo(q)s.n

(3.17)

so that the width of the smoothing filter with which s contributes to ~V is

48

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

proportional to the radius of its associated surface patch Ps.

3.3.6 Selecting an iso-value

Finally, we modify the surface extraction step by selecting an iso-value that is

the weighted average of the values of χ̃ at the sample positions:

∂M̃ ≡ {q ∈ R
3

∣

∣ χ̃(q) = γ} with γ =

∑

1
WDsplat

(s.p)
χ̃(s.p)

∑

1
WDsplat

(s.p)

. (3.18)

We weight the iso-value contribution of a point by the reciprocal of a samples

estimated surface patch area so that the final iso-surface more closely matches

samples from areas of high sampling density.

3.4 Results

To evaluate our method, we conducted a series of experiments. Our goal was

to address three separate questions: How well does the algorithm reconstruct

surfaces? How does it compare to other reconstruction methods? And, what are

its performance characteristics?

Much practical motivation for surface reconstruction derives from 3D scanning,

so with the exception of the first experiments, we have focused our experiments

49

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

on the reconstruction of 3D models from real-world data.

3.4.1 Resilience to Noise

One of the advantages of using a global system like the Poisson equation is its

robustness to noise. To evaluate the effect that sampling noise has on our method,

we created a 200,000 point dataset by sampling the surface of the “Armadillo

Man” model and adding varying degrees of random noise to both the position

and normal of samples. For positional noise, we added a random displacement of

a fixed length, δ, to each of the samples. For normal noise, we randomly changed

the orientation of the normal by a fixed angle θ. Figure 3.4 presents a grid of the

reconstruction result obtained on sixteen datasets with different combinations of

δ (in rows) and θ (in columns). We express δ as a proportion of the radius of the

bounding sphere of the model r, and θ as degrees. Note that the reconstruction

depth is 9, so the finest nodes are approximately r
512

in size.

When adding positional noise, we can see that the finer features such as

the patterns on the arms and legs are still well preserved when δ = r
256

. Fine

features are lost when δ = r
64

, and at δ = r
16

the ears, fingers and tail are not

reconstructed correctly. From the columns of Figure 3.4, we can see that our

method is remarkably stable in the presence of normal noise. When θ = 30,

there are no significant artifacts on the reconstructions. As θ increases further,

a rippling can be observed across the surfaces, and when combined with large

50

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

±
 =

 0

µ = 0 µ = 30 µ = 60 µ = 90

2
5
6

r

±
 =

6
4r

±
 =

1
6r

±
 =

Figure 3.4: Reconstructions of an 200,000 point sampling of the “Armadillo Man”
model at depth 9 with varying amounts of random noise introduced to the position
(δ) and normal (θ) component to the samples. r is the radius of the models
bounding sphere.

51

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

amounts of positional noise, parts of the model begin to disconnect (e.g. the ears

and tail).

In addition to being robust to synthetic noise, the results in the rest of this

chapter also highlight our method’s ability to perform well with the types of noise

and other anomalies found in real-world scan data.

3.4.2 Comparison to Previous Work

In order to provide a context for evaluating the performance and reconstruction

abilities of our method, we compare the results of our algorithm to the results

obtained using Power Crust [4], Robust Cocone [18], Fast Radial Basis Functions

(FastRBF) [13], Multi-Level Partition of Unity Implicits (MPU) [43], Surface

Reconstruction from Unorganized Points [25], Volumetric Range Image Processing

(VRIP) [17], the Wavelet-based method of [39], and the FFT-based method of [31].

Our initial test case is the Stanford Bunny raw dataset of 362,000 points

assembled from ten range images. The data was processed to fit the input format

of each algorithm. For example, when running our method, we estimated a

sample’s normal from the positions of its neighbors. Running VRIP, we used

the registered scans as input, maintaining the regularity of the sampling, and

providing the confidence values.

Figure 3.5 compares the different reconstructions. Since the scanned data

contains noise, interpolatory methods such as Power Crust (a) and Robust Cocone

52

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

a) b) c)

d) e) f)

g) h) i)

Figure 3.5: Reconstructions of the Stanford Bunny using Power Crust (a),
Robust Cocone (b), Fast RBF (c), MPU (d), Hoppe et al.’s reconstruction (e),
Wavelet-based reconstruction (f), FFT-based reconstruction (g), VRIP (h), and
our Poisson reconstruction (i).

53

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

(b) generate surfaces that are themselves noisy. Methods such as Fast RBF (c)

and MPU (d), which only constrain the implicit function near the sample points,

result in reconstructions with spurious surface sheets. Non-interpolatory methods,

such as the approach of Hoppe et al. [25] (e), can smooth out the noise, although

often at the cost of model detail. The FFT-based approach (g), VRIP (h), and

our approach (i) all accurately reconstruct the surface of the bunny, even in the

presence of noise. We compare these three methods in more detail below.

3.4.2.1 Comparison to Wavelet-based approach

The Wavelet-based approach of Manson et al. [39] takes an approach similar

to ours in solving the reconstruction problem. Both methods reconstruct surfaces

using an implicit function fitting approach where the choice of implicit function

is the indicator function. The methods differ in how the indicator function

is constructed. The Wavelet method represents the indicator function using a

wavelet-based function space, and is able to compute the wavelet coefficients

directly from the input samples. Our approach constructs and solves a sparse

linear system to compute the indicator function.

Figure 3.6 compares our method to the Wavelet-based approach. Although

apparently reconstructing more fine detail than our method, the wavelet

reconstruction also has axis-aligned contouring effects, which are especially

noticeable when the reconstructed surface is almost parallel to the grid axes (e.g.

54

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

Figure 3.6: Several views of the reconstruction of the Stanford Bunny model using
the Wavelet technique (using the D4 basis function) and our method

55

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

a) b) c)

Figure 3.7: Reconstruction of samples from the region around the left eye of
the David model (a), using the fixed-resolution FFT approach (b), and Poisson
reconstruction (c).

on the tops of the feet and the bottom of the model). Another situation where the

Wavelet method performs poorly is when the input data is highly non-uniform and

contains holes. This is particularly noticeable in the third comparison, showing

the Bunny’s feet. In this case, the wavelet method generates a highly irregular

surface containing disconnected surfaces, tunnels, and loops. Our Poisson method,

although smoother, reconstructs a surface with no unexpected topological changes.

3.4.2.2 Comparison to the FFT-based approach

As Figure 3.5 demonstrates, our Poisson reconstruction (i) closely matches

the one obtained with the FFT-based method (g). Since our method provides an

adaptive solution to the same problem, the similarity confirms that, in adapting

the octree to the data, our method does not discard salient, high-frequency

information.

56

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

Although theoretically equivalent in the context of uniformly sampled data,

our use of adaptive-width filters (Section 3.3.5) gives better reconstructions than

the FFT-based method when reconstructing the non-uniform data commonly

encountered in 3D scanning. As an example, we consider the region around the

left eye of the David model, shown in Figure 3.7(a). The area above the eyelid

(circled in black) is sparsely sampled because it is in a concave region and is seen

only by a few scans. Furthermore, the scans that do sample the region tend to

sample at near-grazing angles resulting in noisy position and normal estimates.

Consequently, fixed-resolution reconstruction schemes such as the FFT-based

approach (b) introduce aliasing artifacts in these regions. In contrast, our method

(c), which adapts both the scale and the variance of the samples’ contributions,

fits a smoother reconstruction to these regions without sacrificing fidelity in areas

of dense sampling.

3.4.2.3 Comparison to VRIP

A challenge in surface reconstruction is the recovery of sharp features. We

compared our method to VRIP by evaluating the reconstruction of sample points

obtained from fragment 661a of the Forma Urbis Romae (30 scans, 2, 470, 000

points) and the Happy Buddha model (48 scans, 2, 468, 000 points) shown in

Figures 3.8 and 3.9. In both cases, we find that VRIP exhibits a “lipping”

phenomenon at sharp creases. This is due to the fact that VRIP’s distance

57

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

Figure 3.8: Reconstructions of a fragment of the Forma Urbis Romae tablet using
VRIP (left) and the Poisson solution (right).

function is grown perpendicular to the view direction, not the surface normal.

In contrast, our Poisson reconstruction, which is independent of view direction,

accurately reconstructs the corner of the fragment and the sharp creases in the

Buddha’s cloak.

3.4.2.4 Limitation of our approach

A limitation of our method is that it does not incorporate information

associated with the acquisition modality. Figure 3.9 shows an example of this

in the reconstruction at the base of the Buddha. Since there are no samples

between the two feet, our method (right) connects the two regions. In contrast,

the ability to use secondary information like line of sight allows VRIP (left) to

58

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

Figure 3.9: Reconstructions of the “Happy Buddha” model using VRIP (left) and
Poisson reconstruction (right). Although our method generates a more accurate
reconstruction of the sharp features, its independence of acquisition modality
makes it incapable of leveraging line-of-sight information to carve out the space
between the legs.

59

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

Figure 3.10: Reconstructions of the Dragon model at octree depths 6 (left), 8
(middle), and 10 (right).

perform the space carving necessary to disconnect the two feet, resulting in a more

accurate reconstruction.

3.4.3 Performance and Scalability

Table 3.1 summarizes the temporal and spatial efficiency of our algorithm on

the “Dragon” model, and images of the reconstructions at depths 6, 8, and 10 are

presented in Figure 3.10. The numerical results indicate that the memory and

time requirements of our algorithm are roughly quadratic in the resolution. Thus,

as we increase the octree depth by one, we find that the running time, the memory

overhead, and the number of output triangles increases roughly by a factor of four.

The running time and memory performance of our method in reconstructing

the Stanford Bunny at a depth of 9 is compared to the performance of related

methods in Table 3.2. Although in this experiment, our method is neither the

60

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

Tree Depth Time (s) Peak Memory (MB) Number of Triangles

6 3 7 4,883
7 6 19 21,000
8 26 75 90,244
9 126 155 374,868
10 633 699 1,516,806

Table 3.1: The running time (in seconds), the peak memory usage (in megabytes),
and the number of triangles in the reconstructed model for the different depth
reconstructions of the Dragon model. A kernel depth of 6 was used for density
estimation.

fastest nor the most memory efficient, its quadratic nature makes it scalable

to higher resolution reconstructions. As an example, Figure 3.11 shows a

reconstruction of the head of Michelangelo’s David at a depth of 11 from a set of

215,613,477 samples. The reconstruction was computed in 1.9 hours and required

5.2GB of RAM, generating a 16,328,329 triangle model. Trying to compute an

equivalent reconstruction with methods such as the FFT approach would require

constructing two voxel grids at a resolution of 20483 and would require in excess

of 100GB of memory.

61

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

Figure 3.11: Several images of the reconstruction of the head of Michelangelo’s
David, obtained running our algorithm with a maximum tree depth of 11. The
ability to reconstruct the head at such a high resolution allows us to make out the
fine features in the model such as the inset iris, the drill marks in the hair, the
chip on the eyelid, and the creases around the nose and mouth.

62

CHAPTER 3. POISSON SURFACE RECONSTRUCTION

Method Time (s) Peak Memory (MB) Number of Triangles

Power Crust 380 2653 554,332
Robust Cocone 892 544 272,662
FastRBF 4919 796 1,798,154
MPU 28 260 925,240
Hoppe et al. 70 330 950,562
VRIP 86 186 1,038,055
Wavelets (D4) 82 280 1,086,234
FFT 125 1684 910,320
Poisson 263 310 911,390

Table 3.2: The running time (in seconds), the peak memory usage (in megabytes),
and the number of triangles in the reconstructed surface of the Stanford Bunny
generated by the different methods.

63

Chapter 4

Streaming Surface

Reconstruction

In Chapter 3, we demonstrated that surface reconstruction from oriented

points can be made more resilient to data errors by casting the problem as a

global Poisson system. Intuitively, the idea is to interpret the oriented points as

samples of the gradient of the model’s indicator function χ (defined as 1 at points

inside the model, and 0 at points outside). Thus, the desired indicator function

is the one whose Laplacian equals the divergence of a vector field ~V constructed

from the oriented points: ∆χ = ∇ · ~V . By representing χ using a basis defined

over an adaptive octree, the Poisson equation is discretized into a sparse linear

system L x = b where the size of the system is proportional to the complexity of

the reconstructed surface. Then, the desired model is extracted as an iso-surface

64

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

Figure 4.1: Example of curve reconstruction in 2D as a sequence of three multilevel
streaming passes over an adaptive quadtree.

of the resulting indicator field.

The fact that Poisson reconstruction has global support would seem to preclude

an easy out-of-core solution, making it challenging to apply the technique to some

of the larger point sets returned by recent scanning technologies. Indeed, for very

large models, not only is the matrix L too large to fit in memory, but the vectors

b and x are also too large. In this chapter, we will show that the reconstruction

process can be implemented efficiently as a sequence of streaming operations,

performed in three passes over out-of-core data. These operations include the

creation of the linear system, its solution, and the final iso-surface extraction.

The 2D example in Figure 4.1 helps to illustrate this streaming process. In this

example, we show four moments in time for each of the three streaming passes

being used to reconstruct the cow. The octree and linear system are constructed

(left), the linear system is solved (middle), and the surface extracted (right) as a

plane sweeps through the reconstruction domain in each pass.

65

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

In general, a streaming approach is advantageous because data is accessed

sequentially from disk, and it is only loaded once. Sequential access is typically

more efficient because it allows for data prefetching. In computer graphics,

streaming computation has been performed over many data types including

triangle meshes, point sets and tetrahedral meshes, as reviewed in Section 4.1.

A unique aspect of our problem is the requirement for an adaptive

multiresolution structure, namely an octree, because a solution over a uniform

3D grid is not scalable [31]. Interestingly, the operations performed on the octree

have different types of inter-level data dependencies and, consequently, no single

linear ordering of the octree nodes is adequate. To overcome these dependencies,

we introduce a multilevel streaming representation in which each level is stored

as a separate stream. A processing pass sweeps over the octree by concurrently

advancing through the multiple streams, iterating at a faster rate through the

finer nodes than the coarser ones. Depending on the operation, information flows

up and/or down the tree, and computations on coarser levels precede or succeed

those on finer levels.

A surprising result is that we are able to solve the sparse Poisson system

L x = b with sufficient accuracy for our reconstruction application in only two

multi-stream passes through the data; one pass to compute the divergence, and

a second pass to solve the linear system. We are able to do this in two passes

thorugh the data because clever scheduling of the computation across levels lets us

66

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

realize a multigrid scheme using Gauss-Seidel updates [11], enabling sufficiently

accurate convergence using only local updates.

Using this method, we are able to obtain reconstructions of highly complex

models (210 million triangles) on a PC with only 1 GB of memory, and

demonstrate scalable performance.

4.1 Related Work

4.1.1 Out-of-core Surface Reconstruction

Several surface reconstruction algorithms lend themselves naturally to out-of-

core computation because their access patterns are highly localized. For instance,

the range-image volumetric merging scheme of Curless and Levoy [17] can easily

be computed independently on blocks of the domain space. For each block,

one conservatively finds the scanned points that can contribute to it. Schemes

based on local neighborhood fitting such as [3, 25] could also be computed in a

streaming traversal, for instance using the scheme of Pajarola [44]. The multilevel

partition of unity (MPU) approach of [43] uses an adaptive octree structure to

blend together estimated implicit surface patches. Its use of local weights should

make it amenable to out-of-core processing. The ball-pivoting algorithm of [8] is

implemented out-of-core by partitioning the domain into slices.

Our work is the first to present an out-of-core implementation of a global

67

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

surface reconstruction technique.

4.1.2 Stream Processing

Much of the streaming work in computer graphics focuses on irregular triangle

meshes [2, 6, 27, 29, 56]. Streaming operations include surface smoothing, mesh

simplification, remeshing, and normal estimation. Streaming has also been

applied to irregular tetrahedral mesh compression [30] and simplification [53].

Pajarola [44] describes stream processing on points. His streaming scheme is able

to find the k-closest neighborhoods of the points, to enable processing operations

such as density computation, normal estimation, and geometric smoothing.

Isenburg et al. [28] stream through a set of points to incrementally construct

a Delaunay triangulation. Whereas prior streaming methods operate at a single

resolution on the data, we introduce a multiresolution streaming framework.

4.1.3 Other Out-of-core Processing

Cignoni et al. [16] introduce an octree-based external memory structure to

store an irregular mesh out-of-core. They describe how to handle triangles that

span octree cell boundaries. Processing a subtree involves loading its adjacent leaf-

nodes into memory. Maintaining random access to the octree nodes is beneficial

for view-dependent rendering, as also shown in [36].

68

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

4.1.4 Out-of-core Linear Solvers

Toledo [52] provides a nice survey of methods for solving linear systems out-

of-core. For sparse systems, most modern methods assume that the system

matrix itself can fit in memory. A common approach is to construct a Cholesky

factorization out-of-core (e.g. [22]). In our problem, even the solution vector

itself is too large to lie in-core. We must therefore resort to simple iterative

updates. However, we show that doing so in a cascadic multigrid setting, with

a per-block Gauss-Seidel scheme, is sufficient to produce adequate accuracy for

surface reconstruction in a single multi-stream pass.

4.2 Representation

In this work, we show that Poisson surface reconstruction can be performed

as a sequence of streaming passes over an out-of-core octree representation.

Each streaming pass traverses the octree, sweeping along the x axis. For an

octree of height D+1, each traversal step is associated with a sweep index 0 ≤ i <

2D defining the sweep plane x = (2i+1)/2D. Because streaming computations are

local, only the subset of the octree intersecting with or near to the sweep plane

needs to be maintained in main memory. Thus, as we advance to sweep index

i + 1, nodes at the back of the tree (with smaller x coordinates) can be removed

from memory, while nodes at the front of the tree need to be loaded in.

69

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

d=0

d=1

d=2

d=3

d=4

i=3

d=0

d=1

d=2

d=3

d=4

i=4

Figure 4.2: Illustration of the multilevel stream structure (top rows) and the
corresponding quadtree nodes (bottom rows) at two moments in time (i = 3, 4).
In-core blocks and nodes are highlighted.

70

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

To implement a data structure that supports this traversal pattern, we must

address the fact that the in-core persistence of nodes depends on their depth, since

coarser nodes are maintained in memory longer than finer ones (see Figure 4.2).

This motivates the construction of a multi-stream octree data structure, consisting

of D + 1 different streams {S0, . . . ,SD}.

Each stream Sd contains all nodes o ∈ Od, and is partitioned into blocks

Sd[0], . . . ,Sd[2d − 1] with the nodes in block Sd[j] all centered on the plane x =

(2j+1)/2d+1. Thus, at the coarsest depth, S0 contains only one block S0[0] which

in turn contains only one node, namely the octree root node. At finer depths, each

block Sd[j] generally contains O(2d) nodes (out of 22d nodes in a complete octree)

because the surface has co-dimension 1.

Figure 4.2 shows a visualization of the multi-stream structure for a quadtree

representation. Each row marked with a depth d = 0 . . . 4 corresponds to a

separate stream Sd, and the rectangles within a row denote the blocks Sd[j]. In

the top two rows of the diagram, we see the data structure at sweep index i = 3.

The in-core blocks which correspond to all the quadtree nodes that intersect the

sweep-plane are highlighted. Note that as we advance to sweep index i = 4 (shown

in bottom two rows), not all streams need to be updated; in this example, it is

only the streams at depths d = 2, 3, 4 that are advanced.

At index i, the sweep plane intersects the nodes contained in Sd[⌊i/2D−d−1⌋],

which we denote by Sd[φd(i)], or simply as Sd
i . More generally, stream processing

71

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

operations may require access to nodes in a small neighborhood of the sweep plane.

If the operation needs access to a k-neighborhood at each depth, we maintain an

in-core octree Oi,k ⊂ O defined as the union

Oi,k =
D
⋃

d=0

Sd
i,k where Sd

i,k =
k

⋃

j=−k

Sd[φd(i) + j]. (4.1)

Thus, Figure 4.2 can be seen to correspond to Oi,0 at i = 3, 4.

An essential property of the in-core octree is that for any node o ∈ Sd
i and

any depth d′ ≤ d, the k-neighborhood of the ancestor of o at depth d′, denoted

Nd′

k (o), is guaranteed to be contained in Oi,k, (i.e. to be in-core). As the sweep

index is advanced from i to i + 1, the in-core octree Oi,k is updated. Specifically,

we compute the set of depths, Di, at which the streams need to be advanced:

Di = {d | φd(i) 6= φd(i + 1)} (4.2)

and for each d ∈ Di we can unload the block Sd[φd(i) − k] and load the block

Sd[φd(i) + k + 1] into memory.

4.2.1 Implementation

We store each stream in a separate file, and using a 64-bit operating system,

reserve contiguous blocks of virtual address space large enough to fully span the

streams. An advantage of using virtual addressing is that, by simple addition with

72

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

a base address, a pointer to a node can be represented by the node’s offset in the

file.

Within each stream, an “active window” between a head pointer and a tail

pointer is mapped to physical memory. To efficiently update these pointers during

the sweep, we store the offset and extent of all blocks in an index structure, which

forms a complete binary tree of height D + 1.

Although we exploit virtual memory addressing, we never rely on the operating

system for demand-based paging, as this can be inefficient. Instead, we explicitly

manage the memory mapping. As the head pointer advances through a stream,

the appropriate pages of virtual memory are committed to physical memory and

read from disk. And, as the tail pointer advances, dirty data is written to

disk and memory pages are uncommitted. Memory management and I/O are

performed asynchronously by a background thread, to allow for lazy write-back

and anticipatory read-ahead. All I/O is performed at the granularity of 1 MB to

maximize disk bandwidth and minimize disk seek overhead.

Additionally, we vertically partition the data for each depth into two separate

streamed files that are advanced in lockstep; one containing the octree topology,

and the other containing the Poisson system data (e.g. vector-field coefficients,

divergence coefficients, solution, density, and iso-value). Since the first file

becomes read-only after creation, it doesn’t need to be written back to disk in

subsequent passes, thereby reducing the I/O workload.

73

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

d=0

d=1

d=2

d=3

d=4

i

Si

Figure 4.3: Construction of the out of core octree as points Si are added to the
tree. To process these points, the sub-tree that can be modified by the processing
of points Si is maintained in core (highlighted in grey and diamond hatching).
After the points in Si have been processed, the nodes that cannot be affected by
the processing of points in Si+1 (grey) are written out to the streams.

4.3 A Simple Streaming Reconstruction

We now describe how Poisson surface reconstruction can be decomposed into

a sequence of streaming passes (Figure 4.4). The focus here is to demonstrate

that, thanks to the compact support of the basis functions Fo, each step of

the reconstruction process involves local computation, and can therefore be

implemented as a streaming pass. In Section 4.4 we show how these individual

steps can be combined more efficiently into just three passes over the out-of-core

data.

The discussion in this section is guided by Table 4.1, which summarizes the

extent of the data that needs to be in-core to process block Sd
i in each step of

reconstruction. The key property that enables streaming reconstruction is that

this data extent is always bounded by a neighborhood k at each depth: all the

necessary data is available if we maintain an in-core octree Oi,k as we sweep over

74

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

Points

fkog

Surface

Vector Field Construction

vof g

xof g

bof gxof g

Divergence Accumulation

Octree Construction

Iso-Value Computation

Iso-Surface Extraction

Laplacian Solver D

Laplacian Solver 1

Laplacian Solver 0

...

Divergence Distribution

Iso-Value Distribution

Iso-Value Accumulation

bof g

°of g

°of g

¡

bof g

Figure 4.4: Sequence of streaming passes and flow of the out-of-core octree data,
as described in the naive implementation of Section 4.3.

75

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

Step Read Write

Octree Construction (d=D−1) Si ko: S
d′

i,1 d′≤d

Vector Field Construction ko: S
d
i,1, Sj φd(j)=φd(i) ~vo: S

d
i,1

Divergence Distribution ~vo: S
d
i bo: S

d′

i,2 d′≤d

Iso-Value Distribution |~vo|: S
d
i γo: S

d′

i,1 d′≤d

Iso-Value Accumulation |~vo|: S
d′

i,1 d′<d γo: S
d
i

Divergence Accumulation ~vo: S
d′

i,2 d′<d bo: S
d
i

Divergence Update xo: S
d′

i,2 d′<d bo: S
d
i

Laplacian Solver bo: S
d
i,2 xo: S

d
i

Iso-Value Computation |~vo|, xo, γo: S
d
i iso-value Γ

Iso-Surface Extraction xo: S
d
i,2, Γ Surface Mesh

Table 4.1: Read and write operations when processing block Sd
i in the various

multilevel streaming computations.

index i.

Below, we briefly review the individual steps of the reconstruction process,

providing the value of the neighborhood k that defines the size of the necessary

in-core octree Oi,k.

4.3.1 Pre-processing

First, we rotate the point set so that the major axis of its covariance matrix

is aligned with the x-axis. The intention is to reduce the size of the cross-

section encountered during the sweep, and hence the peak memory of the in-

core octree Oi,k. We then uniformly scale and translate the points so that they

fit into the unit cube. Finally, we partition the points into subsets Si ⊂ S,

whose x-coordinates lie in the range [i/2D, (i+1)/2D]. This partitioning process

76

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

is essentially a binning process, and is implemented efficiently as a single-input/

multiple-output streaming operation.

Algorithm 4.1 The algorithm to preprocess the pointset.

PointSamples← PCAAlign(PointSamples)
PointSamples← NormalizeBoundingBox(PointSamples)
for all s ∈ PointSamples do

i← s.Position.x× 2D

WriteToBucket(i, s)
end for
PointSamples← nil
for all b ∈ Buckets do

PointSamples← PointSamples + Sort(b)
end for

4.3.2 Octree Construction (k = 1)

At index i, we read in the subset of points Si ⊂ S. For each s ∈ Si and every

depth d, we refine the in-core octree so that the node od(s) ∈ Od containing s and

its one-ring neighbors are all present in Oi,1, adding new nodes as necessary. We

also update the density estimator (Wd) coefficients {ko} by having each sample s

splat a unit value into the one-ring neighborhood of od(s).

4.3.3 Vector Field Construction (k = 1)

At index i we iterate over all samples s ∈ Si. For each s, we evaluate the density

estimators Wd to determine the corresponding depth Dsplat and splat the sample’s

(weighted) normal into the one-ring neighborhoods oDsplat(s) and oDsplat+1(s) to

77

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

Algorithm 4.2 Constructing the tree for slice i

for all s ∈ PointSamples[i] do
o← OctreeRoot
for d = 0 to MaxDepth do

i← OctantIndex(s.Position)
o← GetOrCreateChild(o, i)
RefineNeighbors(o)
N ← GetNeighbors(o, d)
for all o′ ∈ N do

α← GetSplattingWeight(o, o′, s.Position)
o′.k ← o′.k + α

end for
end for

end for

update the vector field coefficients {~vo}.

Because Fo is supported in a one-ring neighborhood of o, Wd(s.p) can be

evaluated without access to ko′ for o′ 6∈ Oi,1.

4.3.4 Divergence Computation (k = 2)

In streaming through a k-neighborhood octree, it is guaranteed that the

neighbors of a node and the neighbors of its ancestors will be in-core. However,

there is no guarantee that the neighbors of its descendants will be within the

working window. As a result, we decompose the divergence computation into two

steps. Following Equation 3.9, at sweep index i:

1. We distribute divergence constraints to nodes at depth d′ ≤ d by iterating

over o′ ∈ N 2
d′(o) and adding 〈∇ · (~voFo), Fo′〉 to bo′ .

78

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

Algorithm 4.3 Constructing the vector field for slice i

for all s ∈ PointSamples[i] do
o← OctreeRoot
for d = 0 to MaxDepth do

N ← GetNeighbors(o, d)
Weight[d]← 0
for all oo ∈ N do

α← GetSamplingWeight(o, oo, s.Position)
Weight[d]← Weight[d] + oo.k × α

end for
i← OctantIndex(s.Position)
o← GetChild(o, i)

end for
d← 0
while Weight[d + 1] > SamplesPerNode and d ≤MaxDepth do

d← d + 1
end while
dd← d + log(Weight[d]/SamplesPerNode)/ log(Weight[d]/Weight[d + 1])
δ ← clamp(dd− d, 0, 1)
NormalWeight = pow(4.0,−dd + (d + 1)× 1.5)
N ← GetNeighbors(o, d + 1)
for all oo ∈ N do

SplatNormal(oo, s.Normal ×NormalWeight× δ)
end for
NormalWeight = pow(4.0,−dd + d× 1.5)
N ← GetNeighbors(o, d)
for all oo ∈ N do

SplatNormal(oo, s.Normal ×NormalWeight× (1− δ))
end for

end for

79

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

2. We accumulate divergence constraints from nodes at depths d′ < d by

iterating over o′ ∈ N 2
d′(o) and adding 〈∇ · (~vo′Fo′), Fo〉 to bo.

Because Fo is supported in a one-ring neighborhood of o, 〈∇ · (~vo′Fo′), Fo〉 6= 0

only if o ∈ N 2
d′(o), so both bo and bo′ can be incremented without access to vo′ for

o′ 6∈ Oi,2.

Algorithm 4.4 Computing the divergence for slice i at depth d

O ← OctreeNodes[d][i]
for all o ∈ O do

Fo← GetNodeFunction(o)
{Distribute}
for dd = 0 to d do

N ← GetNeighbors(o, dd)
for all oo ∈ N do

Foo← GetNodeFunction(oo)
bx ← o.vx × dx(Fo)
by ← o.vy × dy(Fo)
bz ← o.vz × dz(Fo)
oo.b← oo.b + dot(bx + by + bz, Foo)

end for
end for
{Accumulate}
for dd = 0 to d− 1 do

N ← GetNeighbors(o, dd)
for all oo ∈ N do

Foo← GetNodeFunction(oo)
bx ← oo.vx × dx(Foo)
by ← oo.vy × dy(Foo)
bz ← oo.vz × dz(Foo)
o.b← o.b + dot(bx + by + bz, Fo)

end for
end for

end for

80

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

4.3.5 Poisson System Solution (k = 2)

The most straightforward implementation of the cascadic multigrid algorithm

performs two streaming passes for each depth 0 ≤ d ≤ D (from coarsest to finest),

first updating bd in the linear system Ldxd = bd using the solution at depths

d′ < d, and then solving the system. We switch from using a conjugate gradient

solver to using a Gauss-Seidel solver because the Gauss-Seidel method supports

local updates (which the conjugate gradients method does not). We describe this

approach in Section 4.4 and show that it is possible to perform all 2 ×D passes

in a single multilevel streaming pass.

1. We update the divergence coefficients bo for o ∈ Sd
i by iterating over o′ ∈

N 2
d′(o) for all d′ < d and subtracting the value xo′Lo,o′ from bo (following

Equation 3.12).

2. We solve for the values xo with o ∈ Sd
i by performing several iterations over

the nodes in Sd
i and, for each node o, performing the Gauss-Siedel update:

xo ←
bo −

∑

o′∈Od Lo,o′xo′

Lo,o

. (4.3)

Because Fo is supported in a one-ring neighborhood of o, Lo,o′ 6= 0 only if

o′ ∈ Nd′

2 (o). Updating bo and solving for xo can therfore be done without access

to xo′ for o′ 6∈ Oi,2.

81

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

Note that this is not a traditional implementation of a Gauss-Seidel solver

since we perform multiple relaxations of the nodes in Sd
i before proceeding on to

the nodes in Sd
i+1. Nonetheless, as we will discuss later in this chapter, we have

found that the reconstruction results remain accurate.

4.3.6 Computing the Iso-Value (k = 1)

As with the computation of the divergence, we decompose the iso-value

computation into multiple steps. Following Equation 3.13, at sweep index i:

1. We distribute the iso-value contribution to nodes at depths d′ < d by

iterating over o′ ∈ Nd′

2 (o) and adding |~vo′|Fo′(o.center) to γo′ .

2. We accumulate the iso-value contribution from nodes at depths d′ ≤ d by

iterating over o′ ∈ Nd′

2 (o) and adding |~vo|Fo(o
′.center) to γo.

3. We compute the iso-value by adding xoγo to the numerator of γ and adding

|~vo| to the denominator.

4.3.7 Extracting the Iso-Surface (k = 2)

We extract the iso-surface by iterating over the leaf nodes, computing the

value of χ at the eight cell corners, solving for the positions of γ-crossings along

the edges, and extracting the triangulation.

82

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

Algorithm 4.5 Solving the Poisson system for slice i at depth d

O ← OctreeNodes[d][i]
L← EmptySparseMatrix
b← EmptyV ector
j ← 0
{Update divergence, build matrix}
for all o ∈ O do

Fo← GetNodeFunction(o)
for dd = 0 to d do

N ← GetNeighbours(o, dd)
k ← 0
for all oo ∈ N do

Foo← GetNodeFunction(oo)
Lx← dot(d2x(Foo), Fo)
Ly ← dot(d2y(Foo), Fo)
Lz ← dot(d2z(Foo), Fo)
L← Lx + Ly + Lz
if d = dd then

L[j][k]← L
k ← k + 1

else
o.b← o.b− oo.x× L

end if
end for

end for
b[j]← o.b
j ← j + 1

end for
{Solve}
x← Solve(L, b)
{Write back solution to nodes}
j ← 0
for all o ∈ O do

o.x← x[j]
i← j + 1

end for

83

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

Algorithm 4.6 Computing the iso-value for slice i at depth d

O ← OctreeNodes[d][i]
for all o ∈ O do

Fo← GetNodeFunction(o)
{Accumulate}
for dd = 0 to d− 1 do

N ← GetNeighbors(o, d)
for all oo ∈ N do

o.γ ← o.γ + |o.v| × Fo(oo.Center)
end for

end for
{Distribute}
for dd = 0 to d do

N ← GetNeighbors(o, dd)
for all oo ∈ N do

Foo← GetNodeFunction(oo)
oo.γ ← oo.γ + |oo.v| × Foo(o.Center)

end for
end for

end for

The challenge in implementing the iso-surface extraction is the evaluation of χ

at the corners of a leaf node o ∈ Sd
i . Since the value at a corner can be determined

by the values of xo′ ∈ O
d′ with d′ > d, we are not guaranteed to have the necessary

information in-core when processing the node o.

To address this challenge, we observe that because the functions Fo′ are

supported in the one-ring neighborhood of o′, for a corner c ∈ o we have Fo′(c) 6= 0

only if either d′ ≤ d and o′ ∈ Nd′

1 (o), or d′ > d and c is also a corner of o′. Thus,

when o is the finest node adjacent to corner c, χ(c) can be computed using only

values xo′ for o′ ∈ Nd′(o) and d′ ≤ d.

This observation motivates an algorithm for iso-surface extraction that iterates

84

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

over the leaf nodes, from the finest to the coarsest, and stores the evaluation of

χ at the corners in a temporary hash table. For a given corner c of a leaf node

o ∈ Od, we check if there is an entry in the hash table corresponding to c. If

there is not, this implies that there are no nodes at depth d′ > d containing c as a

corner and that the value χ(c) can be computed using only information associated

to nodes in the one-ring neighborhood of the ancestors of node o.

In practice, separate hash tables are associated with the corners of the front

and back of the leaf nodes at each depth. As the sweep plane is advanced, the front

hash table is updated by evaluating the front corners of leaf nodes intersecting

the sweep plane and the back corners of leaf nodes immediately in front of the

sweep plane. For a corner c ∈ o that is also a corner of a node o′ ∈ Od−1, we add

the value χ(c) to the front hash table at depth d− 1. Finally, after extracting the

iso-surface in the current sweep index, we swap the front and back hash tables

and clear the front one. It is also at this point that vertices are finalized [27].

To allow for efficient out-of-core rendering of our mesh, we write to a block-

based streaming mesh format. Unlike the approach of Isenburg et al. [27] we

separate the vertex data and triangle indices into two separate streams, which

store data in blocks of size b. To facilitate the efficient loading and unloading of

data, we also write an index structure that, for each block of triangles, references

the earliest and latest blocks of vertex data that are needed to be able to follow all

vertex indicies in the block. The earliest and latest vertex block indicies are then

85

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

optimized for streaming by making them monotonically increasing, making the

sequence of required vertex data blocks contiguous and always streaming forward

through the data. This index structure makes the process of streaming the mesh

for rendering or post-processing highly efficient. All loading and unloading of

vertex data is controlled by the index, alleviating the need to scan each triangle

as it is processed and maintain fine-grained book-keeping information.

4.4 An Optimized Implementation

In the previous section, we showed that the locality of the Poisson

reconstruction steps allows for stream processing. In this section, we show how

the different streaming passes can be merged into three multilevel streaming

passes. Our approach is motivated by two observations. First, we can merge

streaming steps when there are no conflicting data dependencies. Second, even

when there are dependencies, we may be able to pipeline the steps, resolving

the dependencies with only a small increase in the size of the working set. Due

to the data dependencies, three passes are a lower-bound for our reconstruction

algorithm:

• First Pass: We construct the octree, sample the weighting function, and

the vector field, and perform the distributive half of the divergence and

iso-value weighting calculations.

86

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

• Second Pass We perform the accumulative half of the divergence and

iso-value weighting calculations. Then, for each depth, we perform the

divergence update, construct and solve the Poisson system solution. Finally,

we compute the iso-value.

• Third Pass: We extract the iso-surface.

Because the values of {bo} for coarse nodes are not finalized until late in the

first pass, and because the linear systems at coarser depths need to be solved before

the systems at finer depths, the solving of the Poisson equation cannot begin until

the first pass has completed. This reflects the global nature of the Poisson system,

which requires all the data to have been seen before the solving can commence.

Similarly, the iso-surface extraction cannot being until the iso-value has been

computed, which is not complete until the solution has been completely solved.

4.4.1 First Pass (k = 6)

To merge the processing steps in the first pass, we must resolve the data

dependencies between different steps. We do this by pipelining the steps, delaying

execution of later steps to allow earlier steps to finalize the dependent data.

Using the sizes of the read/write neighborhoods described in Table 4.1, we can

resolve the data dependencies in the first pass by iterating over the sweep indices,

for each i:

87

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

• Constructing the octree for SD−1[i + 5]

and for each d ∈ Di

• Constructing the vector field for Sd[φd(i)]

• Distributing the divergence for Sd[φd(i)− 3]

• Distributing the iso-value contribution for Sd[φd(i)− 3]

Taking into account the size of the write neighborhoods for octree construction

and divergence distribution, the first pass of streaming reconstruction can be

implemented by maintaining the octree Oi,6 in the working set at sweep index i.

4.4.1.1 Buffering Samples

In addition to maintaining a small working octree, our method must also

address the fact that, to implement the vector field construction for block Sd
i ,

the processing step needs access to each sample which lies in the span of Sd
i and

has failed the density test at greater depths.

The exhaustive testing of all samples which lie in the span of Sd
i can be a

computational bottleneck for our system since it requires D passes through the

ordered point set. This is unnecessarily expensive since we expect a sample’s

density estimate to increase by a factor of four as the depth is decremented. The

number of samples processed at depth d, but failing the density test, should drop

by a factor of four, while the number of samples that lie in the span of Sd−1
i should

only increase by a factor of two.

88

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

We address this concern by associating a sample buffer to each depth and

processing the blocks in decreasing depth order. Samples are added into the

buffer at depth D during the octree construction step, and are promoted to the

buffer at depth d − 1 if they fail the density test at depth d in the vector field

construction step. (Points in the depth-d buffer that lie in the span of Sd[φd(i)]

are removed from the buffer at the end of the vector field construction step.)

4.4.2 Second Pass (k = 8)

As in the first pass, we merge the steps in the second pass by pipelining them

to resolve data dependencies. However, since the consolidation of these steps into

a single pass forces us to iterate over the depths before iterating over the sweep

indices, the merging of the divergence update with the Poisson system solution

poses a challenge. For a fixed sweep index, we can no longer treat the individual

steps as atomic because this would result in a circular data dependency: the

modification of {bo} in the divergence update requires access to {xo} set in the

Poisson system solver which, in turn, requires access to {bo}.

We resolve this problem by separately considering the pipelining that needs

to be performed to resolve the data dependencies due to sweep index and due to

depth.

89

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

4.4.2.1 Index Dependencies

Fixing a depth d and assuming no cross-depth data dependencies, we define

the scheduling as we did in the first pass. Iterating over the (depth-relative) sweep

index id, with 0 ≤ id < 2d, we:

• Accumulate the iso-value contribution for Sd[id]

• Accumulate the divergence for Sd[id]

• Update the divergence for Sd[id]

• Solve the Poisson system for Sd[id − 3]

• Compute the iso-value for Sd[id − 4]

4.4.2.2 Depth Dependencies

To resolve the depth-related dependencies, we offset the values of id so that

values required at finer depths are guaranteed to have been set at coarser ones.

Analyzing the size of the read/write neighborhoods shows that the

dependencies can be resolved if the indices satisfy the property id−1 ≥ ⌊id/2⌋+ 6.

Expressing id as an offset from the finest index, id = φd(i
h−1) + δd, and

initializing with δh−1 = 0, we obtain a recursive expression for the offsets:

~δd = {11, . . . , 11, 10, 9, 6, 0}. Thus, setting ih−1 = i− 3, the second reconstruction

pass can be implemented by maintaining the octree Oi,8 in the working set at

sweep index i.

In practice, we can further reduce the memory requirements by observing that

90

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

processing at the finest depths requires a narrower window size. This allows us to

maintain a working octree with fewer stream blocks at the finest depths.

Figure 4.1 shows an example of the three streaming passes for the

reconstruction of a 2D point set, showing the state of the reconstruction at

different sweep indices (indicated by the arrows). As can be seen, the offsetting

of the pipeline steps in the second pass forces coarser nodes to be solved ahead

of the sweep line, resulting in a lower resolution reconstruction emerging to the

right of the sweep index.

4.5 Results

4.5.1 Large Datasets

To evaluate our method, we have reconstructed highly detailed surfaces from

large scanned datasets, as summarized in Table 4.2. All results use a target of

κ = 2 samples per octree node. Figure 4.6 shows a surface reconstruction of

Michelangelo’s David statue from an input of 216M oriented points from raw

scan data. The output surface of 210M triangles was generated at depth 13, and

required only 780 MB of memory. In contrast, the in-core algorithm presented in

Chapter 3 only produced a 20M triangle approximation of this same model (at

depth 11), and required 4.4 GB of memory. Figure 4.5 shows a close-up visual

comparison.

91

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

Figure 4.5: Comparing the results of the in-core algorithm (left; depth 11; 4,442
MB peak memory) and streaming algorithm (right; depth 13; 780 MB peak
memory).

As another example of our algorithm’s ability to reconstruct large models,

Figure 4.7 presents a reconstruction of Michelangelo’s Awakening statue from

391M points from raw scan data. At a maximum depth of 14, our streaming

solution produced a mesh of 431M triangles in 82 hours. Although the storage

required for the out-of-core data structure was 104 GB, our reconstruction

algorithm never required more than 2.1 GB of working memory. Reconstructions

Model Points D + 1 Triangles Time (h) Mem (MB) Disk (MB)

Lucy Statue 95M 12 26.2M 3.1 138 5,135
David Head 216M 13 210M 32.3 780 62,464
Awakening 391M 13 149M 26.6 990 35,840
Awakening 391M 14 431M 82.4 2120 106,496

Table 4.2: Quantitative results for multilevel streaming reconstructions, showing
input points, octree height D + 1, output mesh triangles, total execution time
(hours), memory use (MB), and total octree stream size (MB).

92

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

at this resolution allow us to clearly see fine detail such as chisel markings that

could not be seen at lower resolutions.

4.5.2 Scalable Memory Use

Each of our three multilevel streaming passes only maintains a small window

on the entire data structure at any one time. Figure 4.8 shows how the maximum

size of these windows varies with output resolution. By comparison, the curve for

the in-core algorithm grows so quickly that it exits the graph on the upper left.

Table 4.3 shows the octree size and peak memory use as a function of the

resolution (r = 2D) of the octree. As expected, the total octree size has complexity

O(r2) since the surface has co-dimension 1. However, using the streaming

reconstruction, the size of the in-core window only scales as O(r), allowing the

streaming algorithm to process datasets that far exceed a system’s main memory

capacity.

The unexpectedly large memory use for the coarser resolutions is due to the

buffering of points that occurs during octree construction. When the tree is

artificially restricted to a small depth, many more points fall into the bins Si

traversed at each sweep step. However, this is an atypical scenario.

Memory use is further highlighted in Figure 4.9, which plots memory use

over time through each of the three multilevel streaming passes during the

reconstruction of the Lucy statue. The two different plot curves show how the

93

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

Figure 4.6: Views of our reconstruction of the head of Michelangelo’s David.
Maximum tree depth was 13, with a target of 2 samples per node.

94

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

Figure 4.7: Views of our reconstruction of Michelangelo’s Awakening statue. The
maximum tree depth was 14 with a target of 2 samples per node.

95

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

0 50 100 150 200
0

256

512

768

1,024

1,280

1,536

1,792

2,048

Model Size (Millions of Triangles)

P
ea

k
M

em
or

y
U

se
(M

B
)

Streaming Octree Construction
Streaming Poisson Solver

Streaming Iso-Surface Extraction
In-Core Reconstruction

Figure 4.8: The peak working set in our 3 multilevel streaming passes, and
in the in-core algorithm (far left), for a range of reconstructions of the head of
Michelangelo’s David.

a) Natural Pose b) PCA Aligned Pose

96

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

220

Time Elapsed (Minutes)

M
em

or
y

U
se

(M
B

)

PCA-Aligned
Natural Pose

Figure 4.9: Memory use over time for a depth 12 reconstruction of the “Lucy”
statue using two different poses of the model.

97

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

sweep plane orientation can affect performance. The dashed curve corresponds

to using the x-axis as the sweep direction, with the statue oriented in its original

vertical pose (Figure 4.9a); in this orientation, the intersection of the surface with

the sweep plane can be large, resulting in a peak memory use of 223 MB. The

solid curve corresponds to using the dominant principal direction of the point set

as the sweep direction (Figure 4.9b): this orientation reduces the intersection of

the sweep plane with the surface, resulting in a peak memory use of only 138 MB.

The graph also shows that the three multilevel streaming passes have similar

memory requirements and running times. The graphs do not include the pre-

processing operations for orienting, scaling, and binning the points. However, this

pre-processing is negligible as it requires only about 1% of the total execution

time and uses less memory than the multilevel streaming passes.

4.5.3 Computation Times

Table 4.3 reveals that our streaming algorithm is time-competitive with the

in-core algorithm despite the large amount of I/O. The streaming overhead is

small because the overall process is compute-bound and the stream read-ahead

prevents stalls in computation.

98

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

10−3 10−2 10−1 100

20

40

60

80

100

Geometric Error (In Voxels)

P
er

ce
n
t

of
V

er
ti

ce
s

Figure 4.10: The cumulative distribution of geometric error for a depth 12
reconstruction of the “Lucy” statue when compared to the in-core algorithm of
Chapter 3.

99

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

4.5.4 Streaming Solver Accuracy

Because our streaming solver computes an iterative solution to the Poisson

equation, the numerical accuracy of the solution could impact the geometric

accuracy of the resulting surface mesh. (This topic is discussed further in

Section 4.6.) To test geometric accuracy, we compare the surface mesh generated

by our streaming algorithm to that generated by the in-core algorithm presented in

Chapter 3. Figure 4.10 graphs the cumulative distribution of reconstruction error,

measured as the distance in voxel units from vertices on the reconstructed surface

to the nearest points on the reference surface. Despite the fact that our streaming

cascadic multigrid performs only a single sweep at each level, the resulting surface

mesh is still very accurate – only 8% of the vertices have an error greater than 0.1

voxels, and the maximum error is 0.651 voxels.

4.6 Discussion

Solving the Poisson system in streaming fashion is a challenging task since it

involves a global linear system in which Laplacian values at one point affect the

solution at points faraway. The key ingredient that enables an effective streaming

solution is the use of a cascading multigrid approach.

To demonstrate the importance of a multi-grid solver, Figure 4.11 shows the

quality of solutions to a 2D Poisson problem using three different techniques. The

100

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

first row shows the reconstructions obtained with 1, 4, 16, and 64 iterations of a

Gauss-Seidel solver that streams through the column blocks of the image, much

like one of the single-level streaming passes described in Section 4.4. As shown in

the second row, even if we replace the Gauss-Seidel solver with the more efficient

(but non-streaming) conjugate-gradient solver, the convergence is still too slow,

requiring at least 64 passes through the data to obtain an approximate solution.

In contrast, a cascadic multigrid solver (bottom row) quickly converges to the

indicator function.

For general problems, a multigrid solver typically requires V-cycles, which

could involve more streaming passes, but remarkably, for our reconstruction

problem, a single cascadic pass is usually sufficient. The intuition is that, in

the context of surface reconstruction, the Poisson solution χ approximates an

indicator function, and is thus only used to identify the boundary between the

interior and exterior of an object.

Because the indicator function is a binary function whose value is either 0 or 1,

and the iso-value is approximately 0.5, the reconstruction is sufficiently accurate

if it never differs by more than 0.5 from the indicator function. As shown in the

bottom left reconstruction of Figure 4.11 (and also earlier in Figure 4.10), this

relaxed error condition can be met with just one iteration per level of the cascadic

multigrid solver, allowing us to perform a single streaming pass at each level. And,

one of our key algorithmic contributions is to show that all such passes can be

101

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

combined into a single multilevel streaming pass.

102

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

Octree (MB) Working Set (MB) Time (h)

2D In-Core Streaming In-Core Streaming In-Core Streaming

256 49 48 309 521 0.50 0.53
512 188 168 442 278 0.65 0.68

1024 818 702 1285 213 1.05 1.20
2048 3,695 3,070 4,442 212 2.65 3.33
4096 - 13,367 - 427 - 12.6
8192 - 39,452 - 780 - 32.3

Table 4.3: Comparison of the data structure size (MB), peak working set (MB),
and running time (hours) for the in-core and streaming reconstruction algorithms
over a range of resolutions for the David Head model. Running the in-core
algorithm beyond a resolution of 2048 was impossible due to its high memory
requirements.

103

CHAPTER 4. STREAMING SURFACE RECONSTRUCTION

1 Iteration 4 Iterations 16 Iterations 64 Iterations

RMS: 42% Max: 100% RMS: 41% Max: 100% RMS: 40% Max: 100% RMS: 38% Max: 100%

RMS: 42% Max: 100% RMS: 40% Max: 100% RMS: 37% Max: 100% RMS: 26% Max: 67%

RMS: 2% Max: 19% RMS: 1% Max: 3% RMS: <1% Max: <1% RMS: <1% Max: <1%

a)

b)

c)

Figure 4.11: Comparison of reconstructing the indicator function of a cow
silhouette from its Laplacian using a single-resolution streaming solver (a), a
traditional conjugate-gradient solver (b), and a cascadic multigrid solver using
multilevel streaming (c).

104

Chapter 5

Parallel Surface Reconstruction

In Chapter 4, we were able to express all the computation steps of the Poisson

Surface Reconstruction algorithm as local updates. This locality of data reference

permitted the reconstruction to be performed as a set of streaming operations,

significantly reducing the main memory required to reconstruct extremely large

datasets: the reconstruction of Michelangelo’s Awakening from 391 million data

points only required 2120 megabytes of working memory. Although the streaming

technique makes it possible to reconstruct large models on a commodity computer,

the processing time is still significant: the reconstruction of Awakening required

82 hours of processor time. As datasets increase in size, the processing time could

grow to weeks or months.

To address these practical limitations, we take advantage of the recent

trend in microprocessor evolution toward parallelism. Multi-core processors are

105

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

now commonplace among commodity computers, and highly parallel graphics

hardware provides even higher performance per watt. Traditional single-threaded

algorithms will no longer benefit from Moore’s law, introducing a new age in

computer science in which efficient parallel implementations are required.

This chapter presents an efficient, scalable, parallel implementation of the

Poisson Surface Reconstruction algorithm. The system is designed to run on

modern parallel computer systems, allowing the reconstruction of some of the

largest available datasets in significantly less time than previously possible. We

begin by describing a parallel implementation designed for multi-core systems with

shared memory (i.e. processors sharing a common main memory). We show that,

although simple to implement and effective on dual-core processors, this model

ultimately lacks the scalability required for large problems. Analyzing the shared-

memory implementation provides valuable insight regarding the key properties a

parallel solver must satisfy to demonstrate good speed-up when parallelized across

numerous processors. We then describe a design based on a distributed memory

model. The elimination of frequent data sharing and synchronization allows the

distributed system to scale to twelve processors across multiple machines.

106

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

5.1 Related Work

Despite the increasing presence of commodity parallel computing systems,

there has been comparatively little work on parallel surface reconstruction. Some

surface reconstruction algorithms naturally lend themselves to efficient parallel

implementations.

Many local implicit function fitting methods can be at least partially

parallelized by virtue of the locality of most data dependencies. For example,

the VRIP [17] method can partition the voxel grid across a number of processors.

With an appropriate padding region, all data dependencies become local and each

processor is able to independently construct the distance function and extract the

triangles for a portion of surface. Surface patches can then be zippered together

to form a complete model.

Global implicit function fitting methods often have complex data dependencies

that inhibit parallelism. One notable exception to this is the FFT method [31],

which can be efficiently computed in parallel by virtue of extensive use of Fast

Fourier Transforms, which have well known parallel implementations on a variety

of platforms [1, 40].

Computational geometry approaches can leverage parallel processing by

computing structures such as the Delaunay triangulation in parallel (e.g. [24]).

The work of [59] implements our Poisson method on the GPU, achieving

significant speedups for small datasets. A limitation of the implementation is that

107

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

it requires the entire octree, dataset and supplemental lookup tables to reside in

GPU memory, limiting the maximum size of reconstructions possible. To simplify

the lookup of neighbor nodes in the octree and reduce the total number of node

computations required, the implementation also only uses first-order elements.

5.2 Parallel Reconstruction

When designing the streaming implementation, one of the primary concerns

was minimizing the effect of the I/O required for out-of-core processing. In

particular, this motivated the streaming approach (since streaming I/O is highly

efficient) and the minimization of the number of passes required through the data

(minimizing the total amount of I/O performed). When considering a parallel

implementation, a different set of design concerns prevail: minimizing data sharing

and synchronization.

5.3 Shared Memory

The most straightforward parallelization of the serial streaming implementa-

tion executes node kernel functions in parallel. Almost all of the total computation

time is spent executing node functions across the octree, and the restrictions

placed on node function data dependencies for efficient streaming allow the

functions within a slice to be executed in any order. With slices in large

108

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

x

Figure 5.1: An illustration of the way data partitions are formed from the tree
using the shared memory approach. Each slice of nodes at each depth in the tree
is partitioned into a regular grid. Data partitions contain approximately the same
amount of the curve (by length) and are shaded according to which processor they
are allocated to. Each allocation forms a contiguous block in Morton (Z-curve)
order.

reconstructions typically containing tens- or hundreds of thousands of nodes, there

appears to be ample exploitable parallelism.

5.3.1 Data Partitioning

To allocate work to each of the processors, a data decomposition approach is

used: each processing slice in the octree is partitioned into a coarse m×m grid.

The data partition Os,d
i,j contains all nodes o ∈ O from a given slice (o.d = d, o.x =

s) and partition within a slice i ≤ 2−m × o.y < i + 1 and j ≤ 2−m × o.z < j + 1.

Figure 5.1 summarizes the decomposition of an octree slice into partitions.

Since the data dependencies of a node function are compact, the only shared data

109

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

between partitions within the same level of the tree resides around the perimeter

of each partition.

5.3.2 Work Distribution

To maximize the scalability of the algorithm, we have three main objectives

when allocating data partitions to processors:

• Minimize Skew: The work across all processors should be as evenly

balanced as possible. This ensures that processors are not left unnecessarily

idle whilst waiting for work on other processors to complete.

• Minimize Sharing: The number of boundaries between data partitions

that are assigned to different processors should be minimized. Data sharing

and synchronization needs to be performed whenever two spatially adjacent

partitions are processed on different processors. The cost of data sharing is

minimized when the number of shared boundaries are minimized.

• Maximize Reuse: The assignment of a data partition to a processor should

be consistent from one slice to the next. Attempting to maintain the locality

of a processor’s working set can have caching benefits from the reuse of data.

The allocation of data partitions to processors is performed dynamically at

runtime. To minimize skew, each processor should have approximately the

110

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

same amount of work to perform per slice. One of the challenges in balancing

the workload is due to the way in which the octree is partitioned. Although

the decomposition of the octree space is regular, the distribution of the octree

nodes within the tree is not (since the tree is adaptive). This means that the

simple approach of allocating one data partition to one processor will lead to a

highly skewed and inefficient workload. To avoid this problem, we use a “virtual

processors” approach: we create many more data partitions than processors and

assign a variable number of partitions to each processor, trying to best balance

the workload. The granularity at which the octree is partitioned is a performance

trade-off: a finer decomposition can more evenly balance the workload at the cost

of increasing the amount of shared data as a proportion of the total data. In

practice, we found that a decomposition with at least 16 times the number of

partitions as processors provides the best trade off.

To minimize data sharing and maximize the potential for data reuse, we place

constraints upon the processor to which a given data partition can be assigned.

First, we sort the data partitions using a Morton-order space filling curve (Z-

curve) [41]. Then, we allocate data partitions such that each processor is given

a block of data partitions that are consecutive in Morton-order. This ordering,

illustrated in Figure 5.1, tends to preserve spatial locality for each processor and

reduce the number of partition boundaries shared across processors. Additionally,

since there is typically coherence in the distribution of octree nodes from one slice

111

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

to the next, this allocation technique also preserves coherence across slices, offering

the potential for data reuse.

5.3.3 Data Sharing

The most challenging aspects of parallelizing the execution of node kernel

functions is managing the concurrent update of data. Because our algorithm is

based around a global solution to the reconstruction problem, there is no way to

decompose the problem space into a set of smaller, completely separable problems

that can be trivially merged back together to reach the same solution.

The majority of the updates performed by node functions are an accumulations

of the form: o.x ← o.x + v where o ∈ O is some node in the tree, x is a data

element of o (for example, a weight function coefficient) and v is a scalar value;

or G.x← G.x + v where G.x is a global accumulator (such as the iso-value). The

parallel evaluation of accumulative kernels is straightforward, since only a single

processor updates o.x, and all shared data are read-only. During the execution of

distributive kernels, however, a node o near the boundary of partitions, or a global

value G.x, can be concurrently updated – along the edges of partitions, updates

from two processors are possible; in the corners of partitions, updates from four

processors are possible. Similarly, global values may recieve updates from all

processors. To ensure the correctness of the result of the computation, access to

the shared data must be controlled to ensure that updates from all processors

112

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

are reflected in the final result. Three different techniques can be used to protect

these updates.

Global update concurrency can be eliminated by virtue of the fact that the

accumulation is a linear operator: each processor can maintain a private copy

of a global value, and all private copies can be merged once at the end of the

computation pass. Care must be taken to avoid placing the private copies too

near each other in memory: the hidden cost of false sharing of cache lines may

occur if two processors update two independent memory locations that fall in the

same cache line.

Updates to node data cannot be handled in the same manner as global data due

to the high storage cost of maintaining multiple copies of all node data. Instead,

we tried two different strategies for managing concurrency.

The first approach is to use a traditional mutual exclusion locking scheme.

When a processor needs to update a value o.x, it first acquires a lock, performs the

necessary update, and then releases the lock: only one processor holds the lock at

any one time, so no conflicting updates can occur. Because only updates that occur

near shared partition boundaries can potentially conflict with other processors, we

use a spatially based locking scheme to increase the possible level of concurrency:

locking is performed on the granularity of data partitions. The update of a node

o is protected by a lock corresponding to the data partition the node resides in.

This scheme has the advantage that it allows values in data partitions that are

113

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

spatially separate from each other to be updated without interference. A further

optimization can be made for data partitions that are “interior” to a processor’s

work block: if a data partition does not share an edge or corner with a data

partition assigned to another processor, then no locking need occur since it is not

possible for another processor to need to update its values.

The second approach is to utilize the atomic compare and swap (CAS)

instruction found in many modern microprocessor architectures. Given a memory

address A, a comparison value c and a replacement value x, the processor then

performs the update A← x if and only if A = c, atomically (i.e. the comparison

and the assignment are performed as a single, uninterruptable sequence). This

instruction can be used to construct a lightweight, optimistic, floating-point

atomic accumulation function that can be used in our algorithm. The algorithm

is presented in Algorithm 5.1. The method works by recording the existing value

of c← A and optimistically updating A′ ← c+x. The CAS primitive is then used

to atomically test the current value of A and then attempt to update A ← A′

if the value of A is unchanged (i.e. no other update has occurred from another

processor). If the CAS operation fails, the procedure is repeated. The number

of update attempts will be proportional to the level of contention on the shared

data. Although this technique is vulnerable to the so-called “ABA” problem, such

a situation does not affect the correctness in our situation.

We implemented both of these approaches and present the results in Section 5.3.4.

114

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

Algorithm 5.1 The lock-free accumulate operation for floating-point numbers
repeat

c← A
A′ ← c + x

until CAS(A, c, A′) 6= c

In addition to the most common case of accumulating data in tree nodes or

global variables, there are two other types of concurrent updates in our method

that are worthy of further detail.

5.3.3.1 Tree Construction

In Section 4.3.2, we described the way in which tree nodes are created in an

in-core octree before the nodes are written to the out-of-core node streams. When

implementing this in a parallel setting, we partition the point set using the same

data partitioning scheme that is used for node data: for each slice of points,

we partition the slice into an m × m grid and partition the points according to

the block they fall into. Using this scheme, we can construct the in-core tree

in parallel by simultaneously constructing independent branches of the in-core

tree on different processors. One complication, however, is that to facilitate the

splatting of a point into the tree to create the approximation to the gradient of

the indicator function, we require the one-ring neighborhood of nodes around any

node which contains a point sample to exist in the tree. When points fall near

a partition boundary, this refinement step requires nodes to be created that fall

into a branch of the tree being constructed simultaneously on another processor.

115

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

To prevent race conditions during the allocation and attachment of nodes to the

tree, we again use the atomic compare and swap instruction. The steps to create

a new tree node are presented in Algorithm 5.2. The technique uses the compare

and swap operation to set the child pointer of a tree node to a newly initialized

brood of nodes only if the child pointer is null.

Algorithm 5.2 The lock-free atomic operation for creating in-core tree nodes

if n.children = 0 then
n′ ← CreateNode
n.children = CAS(n.children, 0, n′)
if n.children 6= n′ then

DeleteNode(n′)
end if

end if

5.3.3.2 Solving the Laplacian

Although the process of solving the linear system can be performed using our

concurrent update scheme from Section 5.3.3, we leverage some unique properties

of the solver to eliminate the need to perform synchronization and locking. In the

streaming implementation from Chapter 4, to solve the Laplacian at a given slice

and depth we construct a single linear system L~x = ~b and solve for ~x, the vector

of solution coefficients, using several iterations of Gauss-Siedel updates.

To solve this same problem in parallel, we construct separate linear systems per

processor and solve them independently. Each processor solves for (i.e. updates)

the portion of ~x whose nodes fall within its data partitions. To ensure that

116

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

the solution propagates correctly across data partition boundaries, all processors

share a common ~x so that updates to solution values during solver iterations

are immediately visible to other processors. Note that although this causes

unsynchronized access to shared data, there are two characteristics of our Gauss-

Seidel solver that ensure the accuracy of the solution is maintained. First, the

write of a single solution value (i.e. a single 32-bit word of memory) is an atomic

operation: when other processors read the value, they will either see an old value,

or a new value, not a combination of the two. Second, the solver we are using

is resilient to reading older solution values, mixed with newer values. While

this could lead to a situation in which the subsequent relaxations of previously

relaxed coefficients near the partition boundary read un-relaxed values from their

neighbors, we have found that in practice this is not a problem.

5.3.4 Scalability Issues

Figure 5.2 presents the scalability of the shared memory implementation,

reconstructing the Lucy model at depth 12 from one to eight cores. The processor

cores were arranged in a 2x2x2 configuration: 2 cores per die, 2 dies per package,

with 2 sockets in the machine. Each core has a private 32KB L1 data cache and

each die shares a 6MB L2 data cache. Although the shared memory approach

provides a straightforward implementation, in practice it was found to have two

significant scalability issues.

117

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of Processors

O
b
se

rv
ed

S
p
ee

d
u
p

Ideal Scalaing
Spatial Locking
Lock-Free (CAS)

Distributed

Figure 5.2: The speedup of the shared memory parallel approach for the “Lucy”
dataset at depth 12 running on one through eight processors. The spatial locking
and lock-free methods are compared. The distributed method from section 5.4 is
included for later comparison.

118

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

First, for distributive functions, data are shared not only within a level of the

tree, but across all depths of the tree. At the finest levels, the contention for

shared data is very low: since a very small portion of each partition is shared, the

probability of two processors needing concurrent access to a datum are low. At

the coarser levels of the tree, however, the rate of contention becomes very high

and the data associated with the coarsest levels of the tree are updated by each

processor for every computation. Although particularly noticeable when using

a spatial locking scheme, we found that this problem persisted even when we

used an optimistic, lock-free technique that implemented an atomic floating-point

accumulation.

Second, scalability is limited by the large number of global synchronization

barriers that are required to evaluate multiple functions correctly. Each streaming

pass, P , across the octree is a pipeline of functions P = {N1, N2, ..., Nn} that

are executed in sequence. Although the data dependencies are such that the

evaluation of Ni(o) cannot depend on the result of Ni(o
′), it is possible that Ni

may depend on Nj if i > j. The implication of this in a parallel setting is

that function Ni cannot be evaluated for a particular slice until Nj has completed

processing in dependent slices on all processors, requiring a global synchronization

barrier to be introduced between each function, for each processing slice. For all

but the very largest reconstructions, the overhead of this is prohibitive. Although

this synchronization frequency can be reduced by processing functions over slabs

119

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

of data formed from multiple octree slices, the associated increase in in-core

memory usage results in an undesirable practical limitation on the reconstruction

resolution.

5.4 Distributed Memory

To address the scalability issues that arise from using a shared memory, multi-

threaded, architecture we re-evaluated the initial design and opted instead to

use a distributed memory model. In this approach, each processor shares data

explicitly through message passing, rather than implicitly through shared memory.

The advantages of this model over the shared memory approach are as follows:

• Explicit data sharing: One of the major limitations of the shared memory

approach was that data was frequently, and implicitly shared. In the

distributed approach, each processor maintains a private copy of all data

it needs. Thus, data writes during computation can be performed without

the need for synchronization, and data modified on more than one processor

can be easily and efficiently reconciled at the end of each computation pass.

• Scalable I/O and Memory Bandwidth: Without the need for shared

memory space, the system can be run on computing clusters, offering the

potential for greater scalability, due to the increased memory and I/O

bandwidth, and number of processors.

120

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

To implement our distributed model, we revert to the simple streaming

implementation from Section 4.3 in which each function is implemented as a

separate streaming pass through the data. While this increases the amount of I/O

performed, it alleviates the need for global, inter-slice, synchronization barriers

that are required to allow multiple functions to be evaluated correctly.

5.4.1 Data Partitioning

Instead of fine-grained, slice-level parallelism, the distributed system uses a

coarse-grained approach: the reconstruction domain is partitioned into p slabs

(where p is the number of processors) along the x-axis given by the x-coordinates

X = {x0, x1, x2, ..., xp}. The nodes from depth d in the octree are split into

partitions Od = {Od
1,O

d
2, ...,O

d
p} where Od

p are all nodes o ∈ O such that xp ≤

o.x < xp+1 and o.d = d.

Since the coarse nodes in the tree are frequently shared across all processors,

we designate the first dfull levels in the tree to be part of its own data partition

Ofull, which is not owned by a particular process, and whose processing is carried

out in duplicate by all processors. Since the total data size of Ofull is small, the

added expense of duplicating this computation is significantly smaller than the

cost of managing consistent replication of the data.

Figure 5.3 summarizes the decomposition of the octree into partitions. A

processor Pi is assigned to own and process the nodes inO∗
i in a streaming manner.

121

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

d = dmax

d = dfull

d = 0

x0 x1 x2 x3 x4

O0

O1

O
2

O4
0 O4

1 O4
2 O4

3

O
3

O5
0 O5

1 O5
2 O5

3

Figure 5.3: An illustration of the way data partitions are formed from the tree
with p = 4 processors. All nodes inO0, O1 andO2 are shared among all processors
and form the data partition Ofull. The nodes in remaining depths are split
into spatial regions defined by the x-coordinates {x0, x1, x2, x3, x4} forming the
partitions Od

i . Note that the finer level partitions do not have to be equal in size,
but do need to be allocated on the granularity of the width of nodes at depth
d = dfull.

To allow for data sharing across slabs, processor i has a copy of (some of the) data

in partitions O∗
i−1 and O∗

i+1 from the result of the previous pass through the data,

as well its own copy of Ofull.

Since each function is implemented in a separate streaming pass, the execution

of a function Ni in one data partition can no longer depend on the execution of a

function Nj in another partition, and a global synchronization is only required

between the different streaming passes. In practice, we have found that the

arithmetic density of most functions means the I/O bandwidth required to perform

a streaming pass is more than an order of magnitude smaller than the bandwidth

that modern disk drives can deliver, so processing only a single function per pass

does not noticeably affect performance.

122

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

5.4.2 Load Balancing

Because the octree is an adaptive structure, its nodes are non-uniformly

distributed over space. This presents a challenge when choosing the partition

bounds X in order to most optimally allocate work across all processors. To

minimize workload skew, each partition Od
i should be approximately the same

size (assuming that the processing time of each node is, on average, constant).

Because we wish to perform the allocation of nodes to partitions before the

tree has been created, we use the input point-set to estimate the the density of

nodes in the tree. Since an octree node may not straddle two data partitions,

the partition bounds X must be chosen such that each xi is a multiple of 2−dfull

(i.e. the width of the coarsest nodes in the high resolution tree). We use a simple

greedy algorithm to allocate X: given an ideal partition size of Nideal = N
p
, we

grow a partition starting at x = 0 until the partition size would exceed Nideal. We

then over-allocate or under-allocate the partition depending on which minimizes

|Ni −Nideal|. The procedure is continued along the x-axis until all partition sizes

have been determined.

5.4.3 Replication and Merging of Shared Data

Once data have been modified by a processor, the changes need to be reconciled

and replicated between processors. As discussed previously, the majority of the

123

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

shared updates performed by the reconstructor are of the form o.v = o.v + v; that

is, accumulating some floating-point scalar or vector quantity into tree nodes. The

merge process for a process Pi is as follows:

1. If Pi has written to Oi−1 and Oi+1, send data to Pi−1 and Pi+1 respectively.

2. If Pi−1 and Pi+1 have modified data in Oi, wait for all data to be received.

3. Merge the received data blocks with the data in Oi (an efficient vector

addition operation).

Once data has been reconciled, the updated data can then be redistributed to

other processes as follows:

1. If Oi has been updated and is needed by Pi−1 or Pi+1 in the next pass, send

Oi to the neighboring processors.

2. If Oi−1 and Oi+1 have modified data needed for the next pass, wait for all

updated data blocks.

In practice, there are a number of optimizations that are made to the merge

process. First, because the streams underlying the data partitions are managed

in memory as blocks for disk streaming purposes, only modified blocks need be

sent between processors, not the entire data partition. In fact, only a very small

portion of data in Oi−1 and Oi+1 are ever read from or written to Pi (only the

data in slices immediately adjacent to Oi), so the neighboring data streams are

124

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

sparsely populated during replication. Second, because each processor streams

through the data partitions, changes made to data can be sent asynchronously

to other processing nodes as each block in the stream is finalized, rather than

after the pass is complete, hiding the latency involved in many message passing

operations.

As in the shared-memory model, the tree construction and the solution of the

Laplacian cannot be merged and replicated as efficiently.

5.4.4 Tree Construction

To maximize the parallel processing capability of our system, the construction

of the octree itself is performed in parallel. The input point-set P is partitioned

during pre-processing into segments P = {P1, ...,Pp} where Pi contains all points

xi ≤ p.x < xi+1 (where xi is the partitioning bounds separating the domain of

process Pi−1 from process Pi).

The first challenge presented in the construction of the tree is the different

topological structure created in Ofull by each processor. To facilitate the efficient

merging of data in later steps, it is desirable to have a consistent coarse resolution

tree. Although it is possible to merge each of the coarse resolution trees after the

first pass, we take a simpler approach: because the coarse resolution tree is small,

we pre-construct it as a fully refined octree of depth dfull + 1.

The second challenge is that in the initial phases of the reconstruction, a point

125

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

in partition Pi may affect the creation of nodes outside of Oi (since the normals

are splatted into neighboring nodes). Although this problem could be resolved

by allowing processors to generate nodes outside their partition and then merging

the nodes at the end of the streaming pass, we have opted for a simpler solution.

Recognizing that the points that can create nodes and update data in Oi are in the

bounds xi−δx ≤ p.x < xi+1+δx, (where δx = 2−dfull is the width of the finest-level

nodes in the full octree Ofull), we have processor Pi process this extended subset

of points and only perform the associated updates of nodes in Oi. In practice, this

adds a small computational cost by processing overlapping point data partitions,

but greatly simplifies the creation of the tree.

5.4.5 Solving the Laplacian

To solve the Poisson equation correctly in a parallel setting, we use an approach

inspired by domain decomposition methods [49]. In the serial implementation, the

linear system is solved in a streaming manner using a block Gauss-Siedel solver

(performing Gauss-Siedel relaxations within each block), making a single pass

through the data. Although we can still leverage this technique within each data

partition, the regions of the linear system that fall near the boundaries need special

treatment to ensure that the solution across partitions is consistent and correct.

To avoid the need for the solver in Oi to depend on a solution being computed

in Oi−1, each processor Pi solves a linear system that extends beyond the bounds

126

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

p Vertex Count Triangle Count Max δ Average δ

1 320,944 641,884 - -
2 321,309 641,892 0.73 0.09
4 321,286 641,903 0.44 0.06
8 321,330 641,894 0.98 0.12

Table 5.1: A summary of the the size of each output model, and the maximum and
average vertex distance from the serial output of several different reconstructions
of the Bunny dataset at depth 9 created with the distributed implementation.

of Oi by a small region of padding and, once solutions have been computed by

all processors, the solution coefficients in overlapping regions are linearly blended

together to give a solution which is consistent across partition boundaries.

5.5 Results

To evaluate our method, we designed three types of experiments. In the first,

we validate the equivalence of our parallel reconstruction algorithm to the serial

implementation, and demonstrate that neither correctness nor quality is sacrificed

in the process of parallelization. In the second, we examine the effectiveness and

costs of our load balancing method. In the third, we evaluate the scalability of

our parallel implementation.

127

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

± = 0.0

± = 0.25

± = 1.0

± = 0.5

± = 0.0625

Figure 5.4: The distribution of error across the p = 8 model, when compared to
the serial model. The color is used to show δ values over the surface with δ = 0.0
colored blue and δ = 1.0 colored red. The scale is non-linear to highlight small
values of δ.

5.5.1 Correctness

We wish to ensure that the surface generated by the parallel implementation

is equivalent in quality to the serial implementation. In particular, we want to

ensure that the model does not significantly change as the number of processors

increases, and that any differences that do exist do not accumulate near partition

boundaries.

To test this, we ran an experiment using the distributed implementation,

reconstructing the Stanford Bunny model at depth 9 using 1, 2, 4, and 8

processors. We then compared the model generated with only one processor

Mserial, to the models generated with multiple processors Mi by computing an

error value δ at each vertex of Mi measured as the Euclidean distance to the

nearest point on the triangle mesh of Mserial. The units of δ are scaled to represent

the resolution of the reconstruction so that 1.0δ = 2−d (the width of the finest

128

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

nodes in the tree).

Table 5.1 presents the results of this experiment. Some differences in the

output are expected between different numbers of processors because of the lack

of commutativity of floating-point arithmetic. The results show that, in all cases,

the average error is low and the maximum error is bounded within the size of the

finest tree nodes. They also show that error does not significantly change as the

number of processors increases. The image in Figure 5.4 shows the distribution

of error across the mesh for p = 8, and is typical of our multiple processor results.

The image highlights that error is evenly distributed across the mesh, and that

the only significant error occurs along the shape crease along the bottom of the

bunny’s back leg. These errors are the result of a different choice in triangulation

along the sharper edges of the model (e.g. around the bottom of the Bunny).

5.5.2 Skew

To evaluate the efficiency and cost of our load balancing method we ran the

algorithm on the head of the David for a range of different values for dfull, and

different numbers of processors. The results are presented in Figure 5.5, which

plots |max pi−
P

pi

p
| for 2, 4, 8 and 16 processors, where pi represents the amount

of work allocated to processor i. From these results, we can make a number of

observations.

For this particular dataset, when dfull ≥ 7, the workload is very well balanced,

129

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

2 4 6 8 10 12 14
0

20

40

60

80

100

Height of Full Resolution Tree

S
ke

w
(%

of
to

ta
l
w

or
k
lo

ad
)

2 Processors
4 Processors
8 Processors
16 Processors

Figure 5.5: The absolute value of the difference between the work allocated to the
processor with most work and the average, expressed as a function of the height
of the full resolution tree (dfull) and the number of processors.

even for 16 processors. The total skew in these cases is less than 0.5% of the

total workload. In general, as dfull increases, the skew in the allocation of work to

processors decreases. This is because as dfull increases, the allocation of work can

be performed at finer granularity, offering more opportunity to distribute work

evenly.

There is, however, a cost to choosing a larger value for dfull. Table 5.2 presents

some performance characteristics of a variety of real-world datasets, with different

choices for dfull. Because of the replication of data across processors, the disk use

grows as the number of processors increases. A majority of the extra data storage

130

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

Shared Memory Distributed Memory
Lucy Lucy David

p Time Lock Free Time Time Disk Memory Time Disk Memory

1 183 164 149 5,310 163 1,970 78,433 894
2 118 102 78 5,329 163 985 79,603 888
4 101 68 38 5,368 164 505 81,947 901
6 102 61 26 5,406 162 340 84,274 889
8 103 58 20 5,441 166 259 86,658 903
10 - - 18 5,481 163 229 88,997 893
12 - - 17 5,522 164 221 91,395 897

Table 5.2: The running time (in minutes), aggregate disk use (in MB), and
peak memory use (in MB) of the shared memory and distributed memory
implementations of the Parallel Poisson Surface Reconstruction algorithms for
the Lucy dataset at depth 12, with dfull = 6 and the David dataset at depth 14
with dfull = 8, running on one through twelve processors. It was not possible to
run the shared memory implementation on more than eight processors.

is from Ofull, whose size grows as dfull is increased. For the Lucy model, with

dfull = 6, the size of Ofull is only 18MB. For the David model, with dfull = 8,

it is 1160MB. The best choice for dfull is a value that minimizes workload skew

without unnecessarily increasing the aggregate storage requirements.

5.5.3 Scalability

One of the most desirable properties of a parallel algorithm is scalability.

Scalability is a direct measure of the ability of the algorithm to run efficiently

as the number of processors increases. Table 5.2 shows the running times and

Figure 5.6 shows the speedup of the distributed memory implementations on up

to 12 processors when reconstructing the Lucy dataset (94 million points), and

131

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

10

12

Number of Processors

O
b
se

rv
ed

S
p
ee

d
u
p

Ideal Scaling
Shared Lucy (1 Machine)

Distributed Lucy (1 Machine)
Distributed Lucy (3 Machines)
Distributed David (3 Machines)

Figure 5.6: The speedup of the distributed implementation for the Lucy dataset
at depth 12 and the David dataset at depth 14 running on one through twelve
processors. The shared memory approach from Section 5.3 in included for
comparative purposes.

the David dataset (1 billion points). The best shared memory implementation

from Section 5.3 is included for comparison.

The shared memory implementation was run on a dual quad core workstation

where processor cores were arranged in a 2x2x2 configuration: 2 cores per die, 2

dies per package, with 2 sockets in the machine. Each core has a private 32KB L1

data cache and each die shares a 6MB L2 data cache. The distributed memory

implementation was run on a three machine cluster with quad core processors

and a gigabit Ethernet interconnect. The processor cores in each machine were

132

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

arranged in a 1x2x2 configuration: 2 cores per die, 2 dies per package, with 1

socket per machine. The cache layout is the same as the shared memory machine.

When we examine the scalability of the shared memory implementation, which

uses atomic instructions to manage concurrent updates, we see that the scalability

is severely limited compared to the distributed implementation. One significant

factor affecting the performance is the way in which shared memory data updates

interact with architectural elements of the underlying hardware. When locking

shared data between processors, data that were kept primarily in fast on-chip

memory caches have to be flushed and shared through main memory each time it

is modified to keep separate caches coherent. This forces frequently shared data

to be extremely inefficient to access, with no cache to hide high latency memory

access. Because the distributed implementation does not need to coordinate

writes to the same data, the computation is far more efficient, and cleanly scales

with increasing numbers of processors. The reduced scalability as the number of

processors increases is due to the complete occupancy of all processors on each

machine, causing the algorithm to become memory bandwidth bound.

To highlight the advantages of using multiple machines to run the distributed

implementation, we also ran the distributed implementation on the shared

memory machine. The results of this experiment are shown in Figure 5.6

on the data series labelled “Distributed Lucy (1 machine)”. Although the

distributed implementation performs significantly better than the shared memory

133

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

implementation on the same hardware, the scalability is still limited when

compared to running the distributed method on multiple machines. This is

because the multiple machine configuration offers far greater total disk and

memory bandwidth. When running our algorithm on all 8 processors of a single

machine, some passes through the data streams become I/O bound, and the main

memory bandwidth is insufficient to supply the data necessary to perform compute

bound tasks concurrently.

Table 5.2 also lists the peak in-core memory use and aggregate disk use of the

distributed algorithm. Since the in-core memory use is related to the size of the

largest slices and each data partition is streamed independently, peak memory use

is consistent across all degrees of parallelism.

5.5.4 David

As a final example of the ability of our method to accurately and efficiently

reconstruct the largest datasets available, we reconstructed Michelangelo’s David

from 1,034 million points using a maximum tree depth of 15. Figure 5.7 shows

the reconstructed model, which consists of 1,031 million triangles. The close-up

views of David’s foot (a) and hand (b) emphasize the fine details present. On 12

processors, the reconstruction took 886 minutes and required a maximum of 2,067

MB of main memory. The octree was partitioned with dfull = 8 and required 242

GB of total storage across all nodes. Across all passes of the reconstruction, a

134

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

Figure 5.7: A reconstruction of the David model at depth 15.

135

CHAPTER 5. PARALLEL SURFACE RECONSTRUCTION

total of 2,178 GB of disk I/O was performed. Of the 28 GB of total network I/O,

51 MB was performed synchronously at the end of the data passes.

136

Chapter 6

Conclusion

In this dissertation we have described a new technique for surface

reconstruction that is designed to meet the demands of modern reconstruction

datasets.

In Chapter 3, we described the Poisson Surface Reconstruction technique

which takes a global implicit function fitting approach to solving the surface

reconstruction problem by contructing an approximation to the indicator function

(χ) of the unknown surface. Using an oriented pointset, we construct an

approximation to the gradient of the indicator function (~V ≈ ∇χ), compute the

divergence (∇ ·∇χ) and solve the Poisson problem ∇2χ = ∇ · ~V for the unknown

χ. The reconstructed surface is then extracted as a level-set of χ.

We exploit the fact that the indicator function is constant almost everywhere

(and thus, the gradient is zero almost everywhere), and represent both the

137

CHAPTER 6. CONCLUSION

indicator function and its gradient within an adaptive, hierarchical function space

defined over an octree. This adaptive representation makes the algorithm output-

sensitive and have a spatial complexity of O(n2) and temporal complexity of

O(n2 log n).

Because we use a global approach to the problem, our method is highly robust

to noise and other anomalies found in real-world scan data. Through experiments,

we have shown this method to be competitive in terms of running time and often

superior in quality to a wide range of existing methods. One of the practical

limitations of our method is that the octree-based representation of the indicator

function was required to be in main memory at all times. This limited the

maximum size of reconstructions we could perform.

In Chapter 4, we addressed the challenge of reconstructing extremely large

datasets by introducing a streaming framework to the problem. Using the

knowledge that each computation involved in the Poisson reconstruction method

only requires a small portion of the octree data at any one time, the octree can

be stored on disk and data can be loaded into main memory only when required.

To make the transfer of data to and from disk as efficient as possible, we use a

streaming approach: a given piece of data is read from disk into memory once

when it is first needed for a computation and is written back to disk (thus freeing

memory) after it is no longer needed for further computation. Because data at

different depths of the octree have significantly varying lifetimes, we use a multi-

138

CHAPTER 6. CONCLUSION

level approach to streaming: each level of the tree is managed and streamed

independently. This allows the portion of the octree data in memory at any one

time to be as small as possible. Through pipelining and the use of a cascadic

multigrid solver, the entire reconstruction process is implemented in just three

passes across the octree data.

We demonstrated that our streaming approach removes the limitations on

memory size by reconstructing several large models including Michelangelo’s

Awakening from 431 million data points. For this model, the reconstruction

created an octree containing 106GB of data, while using only 2.1GB of main

memory. Despite needing to stream large amounts of data to and from disk,

the running time was only approximately 20 percent slower than the in-core

implementation.

Finally, in Chapter 5, we extended the streaming technique to run in parallel on

multi-core CPUs and CPU-based computing clusters. We used the knowledge of

data dependencies gained from the streaming work to partition the ocree data and

evaluate a given computation across all nodes in a partition in parallel. Using a

distributed memory model, we resolved the need for frequent data synchronization

by replicating commonly updated data across all processors and merging results

together at the end of a computation pass. We have shown that our distributed

implementation is effective when running on a single computer with multi-core

CPUs or on a computing cluster. On a multi-core, multi-processor workstation

139

CHAPTER 6. CONCLUSION

with 8 cores, we can reconstruct surfaces 6 times faster than the non-parallel

approach, and on a 12 processor cluster, we can reconstruct surfaces 9.3 times

faster.

6.1 Future Work

There are a number of avenues for future work, including extending our parallel

method to run on graphics processing units (GPUs) and developing a rigourous

way for evaluating and comparing surface reconstruction techniques. We now

discuss these ideas in more detail.

6.1.1 A GPU Implementation

Modern graphics processing units (GPUs) are among the most powerful

processing chips that exist today. State of the art GPUs are capable of over

2.5 teraflops of single precision floating-point arithmetic and have in excess of 250

GB/s of memory bandwidth – orders of magnitude more than current multi-core

CPUs. The hardware-based scheduler in a GPU is capable of scheduling tens of

thousands of active, lightweight, hardware threads onto hundreds of processing

cores. Although originally designed and used specifically as specialized hardware

to accelerate the rendering of complex 3D scenes, the GPU has been repositioned

as a high performance general purpose co-processor.

140

CHAPTER 6. CONCLUSION

The work of Zhou et. al. [59] implemented the in-core algorithm that we

presented in Chapter 3 on the GPU. This implementation has shown that the

Poisson Surface Reconstruction method has sufficient inherent data parallelism to

perform well on the GPU, with performance speed-ups sufficient to reconstruct

small models in real-time. A significant limitation of their approach, however,

is that it relies on the entire dataset and octree residing entirely within GPU

memory.

In the future, we would like to explore a GPU implementation that is a hybrid

of the shared-memory and distributed memory approaches from Chapter 5. A

distributed system is required to run a computation across multiple GPUs (even

when they are in the same host) because GPU memory space is private and is

not shared with other GPUs or the host systems. For the computations within a

single GPU a shared memory approach is more appropriate.

6.1.2 A Surface Reconstruction Benchmark

Standardized benchmarks have been used in a variety of disciplines to measure

the relative performance and correctness of algorithms, ranging from measuring

the performance of numerical algorithms as in the LINPACK linear algebra

benchmark [19], to comparing shape-matching [48] and segmentation [14] methods

in computer graphics.

Unfortunately, there has been no standard benchmark established for

141

CHAPTER 6. CONCLUSION

evaluating reconstruction algorithms. The lack of consistency in testing

methodology makes it difficult to make direct comparisons between methods, and

synthetic data experiments often fail to capture the subtle characteristics of real

scanned data, making the test ineffective in measuring real-world reconstruction

ability. Experiments run with real-world data do present a more realistic view,

but error is often hard to measure and quantify, since no ground truth surface is

available, making direct, objective, comparisons between methods difficult. Part

of the challenge is that surface reconstruction is used in numerous applications,

each of which have their own unique requirements.

In the future, we would like to develop a benchmark that would consist of a

battery of carefully designed experiments that, though synthetically generated,

would accurately model individual sources of error found in real-world data. For

example, one test could model non-uniform data by overlaying a set of artificially

generated scans of an object. Because these scans are artificially generated (e.g.

via ray tracing), the influence of other aspects of real data, such as noise and

misalignment can be excluded. The results of each of these experiments would be

measured by a collection of error metrics which would include geometry based

methods that measure the distance between surfaces, as well as image based

methods which could capture preceptual error by comparing renderings of a

ground truth and reconstructed model from different viewpoints under a variety

of lighting conditions.

142

CHAPTER 6. CONCLUSION

We expect such a benchmark to have two main practical uses: First, it

would allow different reconstruction methods to be compared in an objective

way while capturing key aspects of what makes surface reconstruction from real

data a difficult problem. Second, such a benchmark can be used to drive future

development of better surface reconstruction methods by helping identify the

limitations of existing techniques.

143

Bibliography

[1] Agarwal, R. C., Gustavson, F. G., and Zubair, M. A high

performance parallel algorithm for 1-d FFT. In Proceedings of the 1994

Conference on Supercomputing (1994), pp. 34–40.

[2] Ahn, M., Guskov, I., and Lee, S. Out-of-core remeshing of large

polygonal meshes. In Proceedings on the Conference on Visualization (2006),

vol. 12, pp. 1221–1228.

[3] Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and

Silva, C. T. Point set surfaces. In IEEE VIS (2001), pp. 21–28.

[4] Amenta, N., Choi, S., and Kolluri, R. Power crust. Sixth ACM

Symposium on Solid Modeling and Applications (2001), 249–260.

[5] Amenta, N., Choi, S., and Kolluri, R. K. The power crust, unions of

balls, and the medial axis transform. Computational Geometry: Theory and

Applications 19 (2000), 127–153.

144

BIBLIOGRAPHY

[6] Attali, D., Cohen-Steiner, D., and Edelsbrunner, H. Extraction

and simplification of iso-surfaces in tandem. In Symposium on Geometry

Processing (2005).

[7] Barnard, S. T., and Fischler, M. A. Computational stereo. ACM

Compututing Surveys 14, 4 (1982), 553–572.

[8] Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and

Taubin, G. The ball-pivoting algorithm for surface reconstruction. IEEE

Transactions on Visualization and Computer Graphics 5, 4 (1999), 349–359.

[9] Bernardini, F., Rushmeier, H., Martin, I. M., Mittleman, J., and

Taubin, G. Building a digital model of Michelangelo’s Florentine Pietà.

IEEE Computer Graphics and Applications 22 (2002), 59–67.

[10] Blinn, J. F. A generalization of algebraic surface drawing. ACM

Transactions on Graphics 1, 3 (1982), 235–256.

[11] Bornemann, F., and Krause, R. Classical and cascadic multigrid

– a methodological comparison. In Proceedings of the 9th International

Conference on Domain Decomposition Methods (1996), pp. 64–71.

[12] Brown, B. J., and Rusinkiewicz, S. Global non-rigid alignment of 3D

scans. ACM Transactions on Graphics 26, 3 (July 2007), 21.

145

BIBLIOGRAPHY

[13] Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J.,

Fright, W. R., McCallum, B. C., and Evans, T. R. Reconstruction

and representation of 3d objects with radial basis functions. In ACM

Transactions on Graphics, Proceedings of ACM SIGGRAPH (2001), pp. 67–

76.

[14] Chen, X., Golovinskiy, A., and Funkhouser, T. A Benchmark for 3D

Mesh Segmentation. ACM Transactions on Graphics, Proceedings of ACM

SIGGRAPH 28, 3 (8 2009).

[15] Chen, Y., and Medioni, G. Description of complex objects from multiple

range images using an inflating balloon model. Computer Vision Image

Understanding 61, 3 (1995), 325–334.

[16] Cignoni, P., Montani, C., Rocchini, C., and Scopigno, R. External

memory management and simplification of huge meshes. IEEE Transactions

on Visualization and Computer Graphics 9 (2003).

[17] Curless, B., and Levoy, M. A volumetric method for building complex

models from range images. In ACM Transactions on Graphics, Proceedings

of ACM SIGGRAPH (1996), pp. 303–312.

[18] Dey, T., and Goswami, S. Provable surface reconstruction from noisy

samples. In Annual Symposium on Computational Geometry (2004), pp. 330–

339.

146

BIBLIOGRAPHY

[19] Dongarra, J. The LINPACK Benchmark: An explanation. Proceedings of

the 1st International Conference on Supercomputing (1988), 456–474.

[20] Edelsbrunner, H., and Mücke, E. P. Three-dimensional alpha shapes.

ACM Transactions on Graphics 13, 1 (1994), 43–72.

[21] Franke, R. Scattered data interpolation: Tests of some methods.

Mathematics of Computation 38, 157 (1982), 181–200.

[22] George, A., and Rashwan, H. Auxiliary storage methods for solving

finite element systems. SIAM Journal on Scientific and Statistical Computing

6 (1985).

[23] Grinspun, E., Krysl, P., and Schröder, P. CHARMS: a simple

framework for adaptive simulation. In ACM Transactions on Graphics,

Proceedings of ACM SIGGRAPH (2002), pp. 281–290.

[24] Hardwick, J. C. Implementation and evaluation of an efficient parallel

Delaunay triangulation algorithm. In Proceedings of the 9th Annual ACM

Symposium on Parallel Algorithms and Architectures (1997), pp. 23–25.

[25] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and

Stuetzle, W. Surface reconstruction from unorganized points. Computer

Graphics 26 (1992), 71–78.

147

BIBLIOGRAPHY

[26] Horn, B. K. P. Shape from shading: A method for obtaining the shape of

a smooth opaque object from one view. PhD thesis, Department of Electrical

Engineering, Massachusetts Institute of Technology, 1970.

[27] Isenburg, M., and Lindstrom, P. Streaming meshes. In Proceedings of

the Conference on Visualization (2005).

[28] Isenburg, M., Lindstrom, P., Gumhold, S., and Shewchuk, J.

Streaming compression of tetrahedral volume meshes. In Proceedings of

Graphics Interface 2006 (2006).

[29] Isenburg, M., Lindstrom, P., Gumhold, S., and Snoeyink, J.

Large mesh simplification using processing sequences. In Proceedings of the

Conference on Visualization (2003).

[30] Isenburg, M., Liu, Y., Shewchuk, J., and Snoeyink, J. Streaming

computation of Delaunay triangulations. ACM Transactions on Graphics 25

(2006).

[31] Kazhdan, M. Reconstruction of solid models from oriented point sets. In

Eurographics Symposium on Geometry Processing (2005), p. 73.

[32] Kazhdan, M., Klein, A., Dalal, K., and Hoppe, H. Unconstrained

isosurface extraction on arbitrary octrees. In Eurographics Symposium on

Geometry Processing 2007 (2007), pp. 125–133.

148

BIBLIOGRAPHY

[33] Levin, D. The approximation power of moving least-squares. Mathematics

of Computation 67 (1998), 1517–1531.

[34] Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D.,

Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J.,

Shade, J., and Fulk, D. The digital Michelangelo project: 3D scanning

of large statues. In ACM Transactions on Graphics, Proceedings of ACM

SIGGRAPH (July 2000).

[35] Levoy, M., and Whitted, T. The use of points as a display primitive.

Tech. Rep. 22, The University of North Carolina at Chapel Hill, 1985.

[36] Lindstrom, P., and Silva, C. A memory insensitive technique for large

model simplification. In Proceedings of the Conference on Visualization

(2001).

[37] Lorensen, W., and Cline, H. Marching cubes: A high resolution

3D surface reconstruction algorithm. ACM Transactions on Graphics,

Proceedings of ACM SIGGRAPH (1987), 163–169.

[38] Losasso, F., Gibou, F., and Fedkiw, R. Simulating water and smoke

with an octree data structure. ACM Transactions on Graphics, Proceedings

of ACM SIGGRAPH 23 (2004), 457–462.

149

BIBLIOGRAPHY

[39] Manson, J., Petrova, G., and Schaefer, S. Streaming surface

reconstruction using wavelets. Computer Graphics Forum 27, 5 (2008), 1411–

1420.

[40] Moreland, K., and Angel, E. The FFT on a GPU. In HWWS

’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on

Graphics Hardware (2003), pp. 112–119.

[41] Morton, G. A computer oriented geodetic data base; and a new technique

in file sequencing. Tech. rep., IBM, 1966.

[42] Muraki, S. Volumetric shape description of range data using “blobby

model”. In ACM Transactions on Graphics, Proceedings of ACM SIGGRAPH

(1991), pp. 227–235.

[43] Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H.-P.

Multi-level partition of unity implicits. ACM Transactions on Graphics 22,

3 (2003), 463–470.

[44] Pajarola, R. Stream-processing points. In Proceedings of the Conference

on Visualization (2005).

[45] Parzen, E. On estimation of a probability density function and mode. The

Annals of Mathematical Statistics 33 (1962), 1065–1076.

150

BIBLIOGRAPHY

[46] Schall, O., Belyaev, A., and Seidel, H.-P. Error-guided adaptive

Fourier-based surface reconstruction. Computer Aided Design 39, 5 (2007),

421–426.

[47] Shekhar, R., Fayyad, E., Yagel, R., and Cornhill, J. Octree-

based decimation of marching cubes surfaces. In IEEE Visualization (1996),

pp. 335–342.

[48] Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. The

Princeton Shape Benchmark. In SMI04: Proceedings of the Shape Modeling

International 2004 (2004), pp. 167–178.

[49] Smith, B., Bjorstad, P., and Gropp, W. Domain Decomposition:

Parallel Multilevel Methods for Elliptic Partial Differential Equations.

Cambridge University Press, 2004.

[50] Snavely, N., Seitz, S. M., and Szeliski, R. Modeling the world from

internet photo collections. International Journal of Computer Vision 80, 2

(2008), 189–210.

[51] Taubin, G. Estimation of planar curves, surfaces, and nonplanar space

curves defined by implicit equations with applications to edge and range

image segmentation. IEEE Transactions Pattern Analysis and Machine

Intelligence 13, 11 (1991), 1115–1138.

151

BIBLIOGRAPHY

[52] Toledo, S. A survey of out-of-core algorithms in numerical linear algebra.

In External Memory Algorithms and Visualization, J. Abello and J. Vitter,

Eds. American Mathematical Society Press, 1999.

[53] Vo, H., Callahan, S., Lindstrom, P., Pascucci, V., and Silva,

C. Streaming simplification of tetrahedral meshes. IEEE Transactions on

Visualization and Computer Graphics 13 (2007).

[54] Westermann, R., Kobbelt, L., and Ertl, T. Real-time exploration of

regular volume data by adaptive reconstruction of iso-surfaces. The Visual

Computer 15 (1999), 100–111.

[55] Wilhelms, J., and Gelder, A. V. Octrees for faster isosurface generation.

ACM Transactions on Graphics 11 (1992), 201–227.

[56] Wu, J., and Kobbelt, L. A stream algorithm for the decimation of massive

meshes. In Proceedings of the Conference on Graphics Interface (2003).

[57] Zhang, Z. Iterative point matching for registration of free-form curves and

surfaces. International Journal of Computer Vision 13, 2 (1994), 119–152.

[58] Zhao, H.-K., Osher, S., and Fedkiw, R. Fast surface reconstruction

using the level set method. In VLSM ’01: Proceedings of the IEEE Workshop

on Variational and Level Set Methods (VLSM’01) (Washington, DC, USA,

2001), IEEE Computer Society, p. 194.

152

BIBLIOGRAPHY

[59] Zhou, K., Gong, M., Huang, X., and Guo, B. Highly parallel surface

reconstruction. Tech. Rep. 53, Microsoft Research, 2008.

153

Vita

Matthew Grant Bolitho was born on July 11, 1982 in Nelson, New Zealand.

He earned a Bachelor of Science (B.Sc.) degree from the University of Auckland

(Auckland, New Zealand) in 2003 and a Bachelor of Science, Honours degree

(B.Sc., Hons) with First-Class Honours in Computer Science from the University

of Auckland in 2004. Matthew then earned his Masters of Science in Engineering

(M.S.E.) from the Johns Hopkins University (Baltimore, Maryland) in 2007 before

entering Ph.D. candidacy. His research interests include parallel computing and

the construction, processing, and visualization of large geometric datasets.

154

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	3D Scanning
	Outline of Dissertation

	Surface Reconstruction
	Discrete Methods
	Computational Geometry
	Alpha Shapes
	Power Crust
	Ball Pivoting

	Continuous Methods
	Surface Fitting
	Balloon Fitting
	Fast Level Set Method
	Point Set Surfaces

	Implicit Function Fitting
	Local Function Fitting
	Hoppe et al.
	Volumetric Range Image Processing (VRIP)
	Multi-level Partitions of Unity (MPU)

	Global Function Fitting
	Blobby Models
	Fast RBF
	Fast Fourier Transform
	Wavelets
	Our Approach

	Poisson Surface Reconstruction
	The Poisson Idea
	Approach
	Defining the gradient field
	Approximating the gradient field
	Solving the Poisson problem

	Implementation
	Problem Discretization
	Defining the function space
	Selecting a base function

	Vector Field Definition
	Linear System Definition
	Iso-Surface Extraction
	Non-uniform Samples
	Estimating local sampling density
	Estimating a samples depth
	Computing the vector field

	Selecting an iso-value

	Results
	Resilience to Noise
	Comparison to Previous Work
	Comparison to Wavelet-based approach
	Comparison to VRIP

	Streaming Surface Reconstruction
	Related Work
	Out-of-core Surface Reconstruction
	Stream Processing
	Other Out-of-core Processing
	Out-of-core Linear Solvers

	Representation
	Implementation

	A Simple Streaming Reconstruction
	Pre-processing
	Octree Construction (k=1)
	Vector Field Construction (k=1)
	Divergence Computation (k=2)
	Poisson System Solution (k=2)
	Computing the Iso-Value (k=1)
	Extracting the Iso-Surface (k=2)

	An Optimized Implementation
	First Pass (k=6)
	Buffering Samples

	Second Pass (k=8)
	Index Dependencies
	Depth Dependencies

	Results
	Large Datasets
	Scalable Memory Use
	Computation Times
	Streaming Solver Accuracy

	Discussion

	Parallel Surface Reconstruction
	Related Work
	Parallel Reconstruction
	Shared Memory
	Work Distribution
	Data Sharing
	Tree Construction
	Solving the Laplacian

	Scalability Issues

	Distributed Memory
	Data Partitioning
	Load Balancing
	Replication and Merging of Shared Data
	Tree Construction
	Solving the Laplacian

	Results
	Skew
	Scalability
	David

	Conclusion
	Future Work
	A GPU Implementation
	A Surface Reconstruction Benchmark

	Bibliography
	Vita

