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Abstract

This paper presents an innovative approach to the tactical planning of aircraft remote

and contact-stands allocation at airports. We use the concept of recoverable robust-

ness to obtain a recoverable robust solution to the stand allocation problem, a solution

that can be recovered by limited means for the included scenarios. Four objective

functions are discussed and tested to assess the efficiency of a stand allocation plan.

Namely, the minimization of passengers’ walking distance, the minimization of tows,

the maximization of the number of passengers allocated to contact-stands, and the

maximization of the potential airport commercial revenue. The inclusion of an airport

commercial revenue metric in the stand allocation optimization model and the com-

parison of its performance to the pre-mentioned other objectives is another novelty of

this work. The research was developed in collaboration with the Guarulhos Interna-

tional Airport of São Paulo for which the recoverable robust approach was tested for

6 days of operations at the airport. We demonstrate that the solutions obtained with

the proposed approach outperform the solutions of a traditional robust approach. In

addition, a discussion of the trade-off between the different objectives is provided.
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1 Introduction

In airport operations, the handling of aircraft movements requires the decision to assign

aircraft to specific stands. The stands can be contact-stands, remote boarding stands

and parking-only stands. The allocation of aircraft to the stands is usually done 1 day

before operations, providing airport gate controllers and airlines with a plan for the

coming day. We call the problem of assigning aircraft to stands 1 day in advance the

tactical stand allocation problem (TSAP). The literature may refer to the TSAP as the

gate assignment problem, in case a 1-to-1 mapping of stands and gates exist.

The assignment of aircraft to stands is a complex problem, complicated by factors

as stands classification, multi-aircraft ramp stands (MARS) constraints, immigration

rules or scarce resources, like gates or towing vehicles. Another complication to the

gate assignment problem is the uncertainty of the arrival and departure times of each

aircraft. Airport controllers have to constantly deal with flight schedule changes. Air-

craft can arrive early or tardy, and the airport has to provide resources regardless

of these deviations. An ideal assignment plan is one that is capable of absorbing

these deviations in operations, without significantly compromising efficiency. Thus,

to ensure the efficient gate usage, a tactical assignment plan should be flexible to flight

times variations, limiting the amount of disruptions caused and improving overall

airline and passenger satisfaction.

Due to the flight schedule changes, airports may prefer a robust tactical stand

assignment plan—i.e., a plan that remains feasible during operations—relative to a

very efficient plan that can be easily jeopardized with small variations in flight times.

The robust planning topic has already been widely explored in the academic literature

(e.g., the reader is referred to Bertsimas and Sim (2014) and Ben-Tal et al. (2009) for

general discussions on robust optimization; and to Dorndorf et al. (2012) and Kumar

and Bierlaire (2014) for robust approaches applied to the gate assignment problem).

However, traditional approaches usually focus on satisfying the worst-case scenario.

This is an over-conservative approach for a planning problem, compromising the best

usage of the resources available and usually leading to poor performances during

operations.

This paper addresses the TSAP adopting the recoverable robustness concept to

design flexible allocation plans. This is a rather new concept, introduced by Liebchen

et al. (2009), that to our knowledge was never applied to the stand allocation prob-

lem. The recoverable robustness concept explores the idea that a planning solution is

recovery robust if it can be recovered by limited means in several realization scenarios.

The goal is to jointly optimize the stand allocation plan and the strategy for recovery,

obtaining a less conservative yet robust solution to the planning problem.

This research was developed in collaboration with Guarulhos International Airport

of São Paulo (GRU). The airport is investigating the development of more robust

daily stand plans, without compromising the efficiency of these plans. As part of this

challenge, the airport wants to explore different objective functions for their stand

allocation. In fact, the optimization of a stand allocation plan may depend on the

airport strategy and, therefore, can be different from airport to airport. Even within an

airport the objectives can differ significantly—for instance, airlines may exclusively

used of a set of the stands, managing their gate plan and adopting different objectives.
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The recoverable robust stand allocation problem: a GRU… 617

The airport may decide to focus on passenger-oriented or airport-oriented objectives

for their tactical assignment planning (Dorndorf et al. 2007). Therefore, in this paper

we considered two passenger-oriented objectives: minimization of passengers walking

distance and maximization of the percentage of passengers allocated to a contact-stand,

and two airport-oriented objectives: minimization of aircraft tows and maximization

of potential airport commercial revenues.

Six days of operations at GRU are used as a case study to illustrate the added value

of the recoverable robustness concept. We use the specific case of Terminal 3. This

is an international terminal accommodating only long-haul and medium-haul (Latin-

American) flights. To illustrate the benefits of the proposed approach, the solutions

obtained with the recoverable robust stand allocation model will be compared to the

results obtained when using a traditional strict robust stand allocation model, in which

recovery actions are not permitted. Furthermore, the case study will be also used to

discuss the four objective metrics proposed.

The main innovations of this paper are twofold. On one hand, this is the first

application of the recoverable robustness concept to the TSAP. We believe this is a

relevant approach for the TSAP because it provides a less conservative concept to

the robust stand allocation problem, accommodating multiple scenarios of flight times

without compromising overall efficiency of the solutions. On the other hand, this is the

first time that maximization of airport commercial revenues is explicitly included as an

objective to the TSAP. In an era of airport privatizations, this newly proposed objective

has gained relevance. This is particularly the case in Brazil, and at GRU airport.

In this paper, Sect. 2 describes the TSAP, presenting an overview of the literature and

describing the mathematical model. Section 3 provides an overview of the recoverable

robust stand allocation framework. The GRU case study and the results are discussed

in Sect. 4. Finally, conclusions and future research directions are presented in Sect. 5.

2 The tactical stand allocation problem

The stand allocation problem (SAP, also referred to as gate assignment problem in the

literature) is commonly formulated as a (mixed) integer or binary linear program, due

to the nature of the constraints (Mangoubi and Mathaisel 1985; Dorndorf et al. 2007).

Nonetheless, this is not the only possible formulation and other authors have suggested,

for instance, multi-commodity network models (Maharjan and Matis 2012) or dynamic

programming models (Jaehn 2010) to address the SAP. Initial research on the topic

started in the late 1970s and early 1980s with simplistic mathematical models and

with basic operational constraints (e.g., Braaksma 1977; Babić et al. 1984; Mangoubi

and Mathaisel 1985). Thereafter, research has continued to develop more advanced

and more realistic models. For instance, authors started considering potential towing

of a long-stay aircraft (e.g., Kumar and Bierlaire 2014; Guépet et al. 2015), stand

compatibility (i.e., aircraft can only be serviced at suitable stands) (e.g., Vanderstraeten

and Bergeron 1988; Diepen et al. 2012) and MARS constraints, covering physical

restrictions of overlapping stands (e.g., Diepen et al. (2012), Guépet et al. (2015),

also described as adjacency). A variation of a MARS constraint is the last-in first-out

constraint proposed by Kumar and Bierlaire (2014) for airports where two stands are
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Fig. 1 Example of a short-stay aircraft visit and a long-stay aircraft visit

behind each other. For a comprehensive analysis of the stand allocation literature,

please refer to Dorndorf et al. (2007) and Bouras et al. (2014), two recent reviews on

the topic.

Our research is focused on the stand allocation on the day before operations, referred

by us as the TSAP.

2.1 Input data

The input data for the TSAP can be divided into flight schedule (aircraft visits) and

airport layout (stands)-related data.

The flight schedule dataset is composed of the list of aircraft visits in the flight

schedule. For the sake of modeling towing operations, we converted aircraft visits into

operations. First, we divided the visits in short-stay and long-stay visits. The long-

term visits were converted into a set of three operations per flight: arrival, parking and

departure, while short-stay visits were converted into a single operation combining

arrival and departure (Fig. 1). This approach enables the towing of long-term visits to

remote boarding stands or parking stands, reducing the contact-stand occupancy time

and increasing the availability of these stands. To keep track of the operational sequence

that belongs to the same aircraft visit, we utilize the formulation of the successor as

found in Guépet et al. (2015). The successor is found based on the turnaround schedule

provided by the airport. Potential conflicts between stand allocations are dealt with by

defining a set of overlapping operations, according to the flight times.

The airport layout data consist of the set of available stands at the airport and the list

of compatible stands for the aircraft type used in each airport operation. An additional

set is defined to handle the MARS that can be used either by a single large aircraft or

by two small aircraft. In Fig. 2, we give an example of this situation. For this case,

Stand 1 will have two overlapping stands, Stand 1L and Stand 1R. Stand 1 cannot be

used if any of these two latter stands are used.
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Fig. 2 Example of overlapping MARS: Stands 1 can be used either by one wide-body aircraft (right) or by

two narrow-body aircraft, occupying Stands 1L and 1R (left)

The sets used in the TSAP formulation are summarized in the following list:

– V: set of aircraft visits as found in the flight schedule

– O: set of operations (i.e., arrival, parking and departure) for all visits from set V

– Ui: set of successors for operations i: Ui is the follow-up operation from the split

of long-term aircraft visits

– OVi: set of overlapping operations, which is a subset of O with all operations that

overlap with operation i—following the strengthened formulation as defined by

Guépet et al. (2015)

– S: set of stands available at the airport, with location and classifications

– Si: set of compatible stands, which is a subset of S with the stands that can be used

by the aircraft type of operation i

– Qj: set of MARS overlapping with stand j.

In order to define these sets, several parameters need to be defined by the user:

– Minimum time to tow: minimum stay time of a visit specified by the airport to

allow a towing operation, used to divide aircraft visits in short-stay and long-stay

visits.

– Minimum embark and disembark times: time required to (dis)embark the pas-

sengers, used to determine minimum length of the arrival and departure operations

for long-stay visits.

– Minimum buffer time: time between two consecutive operations to allow for

short stand servicing and to handle small schedule deviations, used to determine

overlapping operations.
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2.2 Decision variables

For the TSAP, the following decision variables are defined:

– xi, j binary variable equal to 1 if operation i is allocated to stand j, and equal to 0

otherwise

– yi binary variable equal to 1 if operation i is towed, and equal to 0 otherwise.

2.3 TSAPmathematical formulation

The TSAP is formulated as a 0, 1 integer linear program, influenced by the strengthened

formulation as presented by Guépet et al. (2015). The goal is to minimize a given

objective function, guaranteeing that all airport operations are allocated either to a

contact-stand, to a remote boarding stand or to a parking stand, and that no operations

are overlapping. The mathematical formulation of our TSAP is defined as:

Minimize:
x,y

f (xi, j ; yi ) (1)

Subject to:

∑

j∈Si

xi, j = 1, ∀ i ∈ O, (2)

∑

k∈OVi

xk, j ≤ 1, ∀ i ∈ O, v∀ j ∈ Si , (3)

xi, j − xUi , j ≤ yi , ∀ i ∈ O, v∀ Ui �= 0, ∀ j ∈ Si , (4)

xi, j +
∑

k∈OVi

xk, j ′ ≤ 1, ∀ i ∈ O, ∀ j ∈ S, ∀ j ′ ∈ Q j , (5)

xi, j ∈ {0, 1}, yi ∈ {0, 1}, (6)

The objective function in Eq. 1 describes the minimization of an objective metric

that should be written as a function of the allocation decisions (to be discussed next).

Equation 2 covers the allocation constraints: each operation needs to be allocated to

one and only one stand. The stand capacity constraints are covered by Eq. 3: a stand

can only be used by a single overlapping operation. Constraints 4 guarantee that the

towing decision variable is activated for long-stay visits when sequential operations

of the visit are allocated to a different stand. Equation 5 covers constraints for the

MARS: if operation i is allocated to stand j, operation k cannot be allocated to stand

j ′ at the same time. Finally, constraints 6 ensure the decision variables to be binary.

2.4 Objective function

Several objectives have been used to address the TSAP in the literature. Most common

is the minimization of walking distance (used, e.g., in Braaksma 1977; Babić et al.

1984; Mangoubi and Mathaisel 1985; Bihr 1990; Cheng et al. 2012; Drexl and Nikulin
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2008), but other metrics have been proposed. For instance, the maximization of the

utilization of contact-stands (Guépet et al. 2015), the minimization of non-allocated

visits (Vanderstraeten and Bergeron 1988; Drexl and Nikulin 2008; Kumar and Bier-

laire 2014), the maximization of allocation preferences (Dorndorf et al. 2007; Jaehn

2010; Kumar and Bierlaire 2014) or the minimization of towing operations (Dorndorf

et al. 2007; Kumar and Bierlaire 2014; Guépet et al. 2015). A recent trend in the stand

allocation literature is the utilization of multi-objective approaches (e.g., Guépet et al.

2015; Kumar and Bierlaire 2014; Dorndorf et al. 2012). However, the selection of

appropriate weights to level the objectives can be complex. This discussion is con-

sidered to be outside the scope of this research. Instead, we rather want to contribute

to the discussion of the impact of choosing different objectives and to analyze the

influence of each objective in the metrics of the other objectives.

According to Dorndorf et al. (2007), the optimization objectives used for the TSAP

can be divided into passenger-oriented objectives and airport-oriented objectives. In

this paper, we also use this division and consider four different objective functions:

minimization of passenger walking distance and maximization of percentage of pas-

sengers allocated to a contact-stand as passenger-oriented objectives, and minimization

of number of tows and maximization of potential commercial revenue as airport-

oriented objectives. These objectives were defined for this work following discussions

with GRU airport.

In this section, we explain how we formulated each of the four objectives proposed.

2.4.1 Passenger-oriented objectives

Minimization of passengers’ walking distance: the most common objective for the

TSAP. It focuses on increasing passenger satisfaction at the airport. We formulated

this objective metric according to the following expression:

min f (xi, j ; yi ) =
∑

i∈O

∑

j∈S

WD j ∗ Paxi ∗ xi, j (7)

in which WD j represents the walking distance from the entrance of the pier to stand

j and Paxi is the number of passengers associated with operation i (note: for parking

operations, the number of passengers is assumed to be zero). In our work, due to the

layout of the GRU airport and the fact that we will focus on an international terminal,

transfer passengers are not considered separately in this objective metric. It is assumed

that each passenger starts or ends the journey at the terminal in the security control point

at the entrance of the pier. For TSAP formulation examples considering connecting

passengers, please refer to Drexl and Nikulin (2008) and Cheng et al. (2012).

Maximization of passengers allocated to contact-stands: the goal is to allocate as

many passengers as possible to a contact-stand, reducing required remote boarding

of passengers. The objective is only relevant for airports with remote boarding possi-

bilities. Less remote boarding will likely increase passenger satisfaction due to easier

access to the aircraft. The objective was formulated as:
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min f (xi, j ; yi ) = 1 −
∑

i∈O

∑

j∈Sc

Paxi ∗ xi, j/
∑

i∈O

Paxi (8)

in which Sc represents the set of contact-stands, a subset of S.

2.4.2 Airport-oriented objectives

Minimization of tows: the goal is to reduce the usage of towing tractors at the airport.

The same is to say that we try to maximize the number of long-stay visits with oper-

ations allocated to the same stand. Since the decision variable yi indicates a required

tow, the objective metric was simply described as:

min f (xi, j ; yi ) =
∑

i∈O

yi (9)

Maximization of potential commercial revenue: this objective addresses the fact

that non-aeronautical revenues are becoming increasingly important for airports

due to privatization and competition between hubs (Graham 2009). Commercial

experts at GRU airport expressed the interest in exploiting the fact that passen-

gers from some flights are more consumption oriented than others and that the

allocation of flights to stands may influence the shopping behavior of passengers

(Geuens et al. 2004; Lin and Chen 2013). The objective metric was formulated

as:

min f (xi, j ; yi ) =
∑

i∈O

∑

j∈S

−Ai, j ∗ Paxi ∗ xi, j (10)

where Ai, j represents the potential revenue generated by the combination of flight

operation i and stand j. For parking operations, the revenue was considered to be

equal to zero. This potential revenue needs to be estimated based on historical non-

aeronautical revenue data of specific flights per store. The matrix is expressed in dollars

per passenger of a given flight when allocated to a specific gate at the terminal. The

assumption is that high values of Ai, j reflect a high potential of generating revenues

per passenger from a flight i and that the revenue generated by allocating a flight i to

a stand j is depending on the set of existing stores between the stand and the entrance

of the terminal (thus, on the location of the stand).

This metric was developed according to the layout of GRU Terminal 3. However, it

is important to state that this metric can easily be extended to other terminal layouts,

as long as the sales per store and per flight can be estimated. A major problem could

be the lack of detailed or sufficient data, which will limit the validity of such an

approach. Nevertheless, it is common for airport authorities to use new technologies

nowadays, such as Wifi and Bluetooth sensors, to collect massive amounts of data on

passengers flows, consumer behavior and airport operations. Thus, we believe that this

objective metric will become popular in future works when addressing the planning

of operations at airports.
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3 Recoverable robust stand allocationmodel

Solving the TSAP model, as explained before, for the flight schedule of a day results

in a stand allocation plan for that day. The plan is, however, not necessarily flex-

ible enough to accommodate changes during the day of operations. Flight times

are subject to uncertainty and disruptions are common, jeopardizing the benefits of

having an optimized stand allocation plan. Therefore, we aim to effectively handle

flight time uncertainty by directly addressing plan robustness in our stand allocation

model.

In the literature, robustness has been usually included in the SAP by introducing

buffer time constraints [e.g., in Yan and Huo (2001) and Yan et al. (2002)] or by

considering robustness objectives [e.g., in Bolat 2000, Dorndorf et al. (2008), Dorndorf

et al. (2012), Diepen et al. (2012) and Kumar and Bierlaire (2014)]. Flight-specific

buffers were considered by Kumar and Bierlaire (2014), in which the 95th percentile of

historical actual flight times were considered to define the buffers. Other methodologies

to include robustness in the SAP involve, for instance, the stochastic optimization of

stand allocation for a specified number of scenarios (Yan and Tang 2007; Seker and

Noyan 2012) or the reduction in the probability for gate conflicts (Lim and Wang 2005).

More recent works on SAP can be find in Dorndorf et al. (2017) and Xu et al. (2017).

The first authors proposed a graph theoretical approach to solve the gate allocation

problem with deterministic and stochastic objectives, while the later work presented

an alpha-reliable approach to the same problem.

In this paper, we propose a new concept to address robustness in the TSAP: the

recoverable robustness concept. Recoverable robustness is based on the foundations

of robust optimization and stochastic programming, as explained by Liebchen et al.

(2009). The aim of the recoverable robustness in the stand allocation context is to

obtain a recoverable robust solution that is feasible for the standard TSAP and can

be recovered (if necessary) by limited means for multiple flight times scenarios. It

provides the airport controllers with an efficient solution that, with limited required

actions, will likely remain feasible during normal daily operations. Furthermore, infor-

mation on the recovery for the tested scenarios and critical flights can be provided to

the airport controllers to support decisions during operations.

The recoverable robustness concept consists of three main steps: an original opti-

mization problem (Step O), imperfection of the information (via scenarios, Step S)

and limited allowed recovery actions (Step R). The recovery actions are considered to

fix the original optimized plans under the realization of different scenarios. Recover-

able robustness has already been successfully applied to air transportation problems,

including the timetabling problem (D’Angelo et al. 2011) and the tail assignment prob-

lem (Froyland et al. 2013). Nonetheless, to our knowledge, this is the first application

of the recoverable robustness concept in the aircraft stand allocation context.

To implement the recoverable robustness concept, we developed a recoverable

robust tactical stand allocation model (RRTSAP). The model includes the pre-

described TSAP (Step O), a set of generated scenarios based on historical airport

data (Step S) and a model extension to include the recovery actions (Step R). In this

section, we will describe Step S and the model extension for Step R.
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3.1 Step S: scenario generation

Multiple techniques can be used to generate test scenarios for our recoverable robust-

ness approach—please refer to Löhndorf (2016) for a recent discussion on scenario

generation methods and on the error that arises from using a small set of scenarios. The

typical approach to generate scenarios in the SAP literature assumes fixed distributed

delay profiles with no relations between aircraft visits [e.g., a triangular distribution

(Seker and Noyan 2012) or a normal distribution (Genç et al. 2012)].

The proposed method to model the relation between aircraft visits is based on

the Monte Carlo sampling scheme, using historical data to capture delay relations

between flights. It is divided into four steps, which will be sequentially described in

this subsection.

The first step is to determine the flight times approximate distribution function for

every flight number. Several continuous distributions (including Gaussian, exponen-

tial, gamma and Weibull) are utilized and tested, in order to find the best fit to the

available data.

The second step in the scenario generation method is to incorporate relations

between the flight time deviations of different aircraft visits. This step focuses only on

arrival times and considers how a sequence of delayed flights or early arriving flights

can strongly influence the feasibility of the stand plan. Departure times are assumed

to be uncorrelated. Ideally, one would compute flight delays correlations at the flight

number level. However, in most cases it is hard to prove flight time causality or cor-

relations at such detail level (as it proved to be the case in our case study). Therefore,

we suggest to analyze flight time deviations relations in terms of arrival time devia-

tion sign (i.e., positive if arrived early or negative if arrived late) for flights arriving

from the same origin region. This way, we try to capture delay effects at the origin

airports. In addition, we also consider the deviation sign relations between pairs of

flights arriving within a time window of 1 h, according to the schedule. With this, we

aim to capture consecutive delays caused by adverse weather conditions or air traffic

management congestion near the airport of study.

Both deviation sign relations are expressed in probabilities. The probabilities are

then used to estimate the probability of a flight time deviation having a specific sign.

This is done by following three assumptions:

1. the influence of flight time deviations is only observed if there were at least three

related flights arriving earlier in the previous hour;

2. flight time deviation signs are primarily influenced by delays observed in previous

flights from the same region only, which were scheduled to arrive at the airport of

study in the previous hour;

3. if no influence was observed within fights of the same region, then the flight can

be influenced by any other flight scheduled to arrive at the airport of study in the

hour before.

We require a minimum of three relevant flights to ensure that the arrival time

deviation sign is not too dependent on a single previous visit. If for an aircraft visit

insufficient comparable aircraft visits are found, an independent deviation is computed

based on the historical arrival time distribution.
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To exemplify the computation of the signs probabilities, let us consider the case of

an inbound flight i scheduled to arrive at the airport of study at a given moment in

the day. Before this flight, less than three flights from the same region were scheduled

to arrive in the hour before. Therefore, flight i is considered to be independent from

previous flights from the same region. There were, however, three flights from other

regions that were scheduled to arrive at the airport in the previous hour. These three

preceding flights, noted by i1, i2 and i3 in order of arrival, influence the time deviation

sign of flight i. For the scenario generation, two types of indicators are considered:

– the historical percentage of days where both flight i and the preceding flights ik

had the same time deviation sign (positive/negative), denoted by P(S)ik ;

– and, in the current scenario, if flight ik was generated as arriving early or late.

Assuming that the flight time deviations of the three preceding flights were already

computed and in the current scenario these flights are arriving early, early and late,

respectively, the probability of flight i arriving late can be computed by:

P(Negative)i = (1 − P(S)i1) ∗ (1 − P(S)i2) ∗ P(S)i3 (11)

In the same way, the probability of flight i arriving early can be computed by:

P(Positive)i = P(S)i1 ∗ P(S)i2 ∗ (1 − P(S)i3) = 1 − P(Negative)i (12)

This formulation can be extended to a generic case of flight i being influenced by

|Nl | preceding flights arriving late and |Ne| preceding flights arriving early:

P(Negative)i =
∏

k∈Nl

P(S)ik ∗
∏

p∈Ne

(1 − P(S)i p ) (13)

The value of P(Positive)i can be then estimated by subtracting P(Negative)i from the

unit.

The third step concerns the computation of a random number, between 0 and 1,

which determines whether the aircraft visit arrives early or late, by comparing the

random number to the calculated probabilities. In the case the flight was considered

to be independent from previous flights, the third step is skipped and the complete

historical arrival time distribution is used.

The fourth step is to determine the quantity of the arrival time deviation for each

flight, based on the computed historical arrival time deviation distributions and devia-

tion sign. As previously stated, the historical arrival time distributions are based upon

actual flight data. For each dependent flight i, the arrival time deviation (expressed by

delayi ) is estimated by verifying the following equality:

P(X ≤ delayi ) = pi (r) (14)

where pi (r) is generated as follows:

pi (r) =

{

lim ∗ r , if flight i is late

(1 − lim) ∗ r + lim, otherwise
(15)
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Fig. 3 Determination of arrival

time deviation for an early

dependent visit

in which r is a [0, 1] random number and lim is the probability of having an arrival time

deviation less or equal to zero. The visualization of the determination of the arrival

time deviation quantity for a dependent flight i, given an early arrival, is provided

in Fig. 3. In this example, only the part of 0–0.8 probability is utilized to determine

the quantity of the arrival time deviation—due to the determined sign “early” for this

specific flight.

For independent flights, pi (r) is considered over the full arrival time distribution.

That is, no deviation sign determination is utilized to determine the quantity of arrival

time deviation and the complete distribution function (i.e., from 0 to 1) is used.

To conclude the generation of the scenarios, the corresponding time deviation is

added to the scheduled flight arrival or departure time. The deviations per scenario are

then coupled to a visit of an aircraft, which is consequently translated into operations,

as explained in Sect. 2.1.

3.2 Step R: RRTSAP

The recovery actions in a recoverable robust approach are used to try to solve a conflict

by limited means and to recover the feasibility of a plan for a given scenario. We

considered three possible recovery actions:

– Action 1—Waiting: to let an aircraft wait until its allocated stand is free—this

action should be limited by a maximum waiting time defined by the airport.

– Action 2—Re-allocate to a free stand: to allocate an aircraft to an alternative

compatible stand, in the case the conflict time is larger than the maximum waiting

time and if the alternative stand is free.

– Action 3—Tow a long-stay parking operation: to tow an aircraft to a remote

(parking-only) stand, in the case conflict time is larger than the maximum waiting

time, there is no alternative stand free and if the aircraft to be towed is involved in

a long-stay visit.

Ideally, the airport would solve conflicts only using Action 1. If not possible, Action

2 is considered. Action 3 is only considered by the airport to solve a conflict in the

case the two previous actions are not sufficient.

These recovery actions are considered in our approach by extending the TSAP to

a RRTSAP. To do so, we define the following additional (sub-)sets:
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– W: set of scenarios denoted by w

– OVi,w: set of overlapping operations, which is a subset of O, with all operations

that overlap with operation i in scenario w.

The last set disregards all flights that have a time overlap of less than a maximum

waiting limit specified by the airport. This way, we indirectly model Action 1—

Waiting: all conflicts involving the overlap of two operations by no more than this

maximum waiting limit are considered to be solved by making the aircraft associated

with the latter operation wait. Two new sets of decision variables are also defined for

the RRTSAP:

– addi, j,w binary variable equal to 1 if operation i is added to stand j in scenario w;

and equal to 0 otherwise, relative to a scheduled solution xi, j ;

– remi, j,w binary variable equal to 1 if operation i is removed from stand j in scenario

w; and equal to 0 otherwise, relative to a scheduled solution xi, j ;

The mathematical formulation of the RRTSAP is defined as:

Minimize:
x

f (xi, j ) (16)

Subject to:

(2)−(6)
∑

j∈Si

(xi, j − remi, j,w + addi, j,w) ≥ 1, ∀ i ∈ O, ∀ w ∈ W , (17)

∑

k∈OVi,w

xk, j −
∑

k∈OVi,w

remi, j,w +
∑

k∈OVi,w

addi, j,w ≤ 1,

∀ i ∈ O,∀ j ∈ Si ,∀ w ∈ W ,

(18)

xi, j − remi, j,w + addi, j,w +
∑

k∈OVi,w

xk, j ′ −
∑

k∈OVi,w

remk, j ′,w

+
∑

k∈OVi,w

addk, j ′,w ≤ 1, ∀ i ∈ O,∀ j ∈ S,∀ j ′ ∈ Q j ,∀ w ∈ W ,
(19)

∑

j∈S

addi, j,w −
∑

j∈S

remi, j,w = 0, ∀ i ∈ O,∀ j ∈ S,∀ w ∈ W , (20)

xi, j ≥ remi, j,w,∀ i ∈ O,∀ j ∈ S, ∀ w ∈ W , (21)
∑

i∈O

∑

j∈S

addi, j,w ≤ λ, ∀ w ∈ W , (22)

addi, j,w ∈ {0, 1}, remi, j,w ∈ {0, 1} (23)

The model assumes the same objective function and is subject to all constraints

(2–6) defined in TSAP. In addition to those, Eqs. 17 and 18 cover the re-allocation of

an operation in one of the scenarios. Constraints 19 cover the MARS constraints, now

including the add/rem variables. Constraints 20 ensure that if an operation is added

to a stand, it is also removed from another. Constraints 21 ensure that the removed
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Algorithm 1: Add/Rem Algorithm
Result: Add limited add/rem variables to RRTSAP
Solve TSAP for Scenario 0 - solution x0
w=0
while w ≤ len(W ) do

Find conflicts > limit in w based on x0 ;
for each conflict do

Step 1: ;
if Add/Rem variables for conflict-causing operations in Scenario w not added then

Add add/rem variables for both conflict-causing operations in Scenario w
end

;
Step 2: ;
for OVi of conflict-causing operation i in Scenario w do

if Add/Rem variables for OVi in Scenario w not added then

if Si for Operation OVi ≤ 2 then

add add/rem variables for Operation OVi and its overlapping operations in
Scenario w

end

end

end

end

;
w = w + 1

end

Fig. 4 Add/rem algorithm pseudo-code

decision variable for an operation aligns with the scheduled allocation (described in

xi, j ). Constraints 22 ensure that the amount of changes in a scenario is limited to

a maximum number of re-allocations λ. Finally, constraints 23 ensure the decision

variables to be binary. Note that no additional towing variables (y) are included in the

new constraints, since it is considered that the number of recovery tows does not have

an impact on the objective function or any other constraint of the model.

3.3 Solving the RRTSAP

By transforming the TSAP into a multi-scenario model with the flexibility to recover,

the RRTSAP becomes a complex problem to solve. Initial tests with the RRTSAP

indicated a long computation time when add/rem variables are added for all operations

in all scenarios. In a test case of 34 stands (including 18 MARS) and 60 aircraft visits,

we have a problem of the order of 650 thousand columns and 950 thousand rows. It

took us 7 h to solve the problem up to a gap of 11.8%. After 10 h, the gap was still of

about 9.0%. To satisfy the requirement of a reasonable runtime for the airport (around

2 h), methodologies to limit the runtime were investigated.

To reduce the computation time of the RRTSAP, we propose a column-generation

inspired algorithm. The idea is that most of our addi, j,w and remi, j,w variables will be

zero in the final solution. Thus, we want to only add decision variables that are relevant

to solve our model (i.e., that may assume a value of one in the end). The pseudo-code

of the algorithm is described in Fig. 4.

In the algorithm, decision variables are added according to two steps. Step 1 focuses

on the operations that, based on the scheduled solution (xi, j ), would cause conflicts in

one of the scenarios. For these operations, add/rem variables are added to the RRTSAP.

This step allows the re-allocation of operations to free stands (Action 2—Re-allocate

to a free stand) and the swap of stands between the two conflicting operations.

Step 2 considers that, in some cases, there are not enough free stands to solve

a conflict and that a set of overlapping operations may have to swap allocations in
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Fig. 5 Solution workflow with adjusted RRTSAP

order to solve a single conflict (Action 3—Tow a long-stay parking operation). The

step adds new swapping possibilities by adding add/rem variables for all operations

overlapping with the conflict operations that do not have a minimum buffer of free

stands available (considered to be two stands). The number of free stands available is

analyzed by comparing the compatible stands and the minimum occupancy of these

stands looking at all operations that have (limited) time overlap in the scenario under

analysis.

This algorithm allows us to solve the RRTSAP in the described test case with

45% less rows and 77% less columns, considerably speeding up the computation of a

solution.

3.4 Resulting RRTSAPmodel

According to the proposal described before, the RRTSAP needs to be solved in a

sequential approach (Fig. 5). First the original TSAP is solved. The solution is then used

in Algorithm 1 to evaluate which add/rem variables to add, including the respective

constraints that bound these variables. Afterward, the RRTSAP is solved with a limited

number of added variables and constraints.

For the sake of completion, we provide the formulation of the RRTSAP with limited

add/rem variables. We define the following additional (sub-)sets:

– Ow: subset of operations set O, for which add/rem variables are included in the

model for scenario w

– OV′
i,w: subset of overlapping operations for scenario w for which add/rem variables

were added to the model.

The resulting RRTSAP can then be formulated as follows:

Minimize:
x

f (xi, j ) (24)

Subject to:

∑

j∈Si

xi, j = 1, ∀ i ∈ O, (25)

∑

k∈OVi

xk, j ≤ 1, ∀ i ∈ O, ∀ j ∈ Si , (26)

xi, j − xUi , j ≤ yi , ∀ i ∈ O, ∀ Ui �= 0, ∀ j ∈ Si , (27)

xi, j +
∑

k∈OVi

xk, j ′ ≤ 1, ∀ i ∈ O, ∀ j ∈ S, ∀ j ′ ∈ Q j , (28)
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∑

j∈Si

(xi, j − remi, j,w + addi, j,w) ≥ 1, ∀ i ∈ Ow, ∀ w ∈ W , (29)

∑

k∈OVi

xk, j −
∑

k∈OV ′
i,w

remi, j,w +
∑

k∈OV ′
i,w

addi, j,w

≤ 1, ∀ i ∈ O, ∀ j ∈ Si , ∀ w ∈ W ,

(30)

xi, j − remi, j,w + addi, j,w +
∑

k∈OVi,w

xk, j ′ −
∑

k∈OV ′
i,w

remk, j ′,w

+
∑

k∈OV ′
i,w

addk, j ′,w ≤ 1, ∀ i ∈ Ow, ∀ j ∈ S, ∀ j ′ ∈ Q j ,∀ w ∈ W ,
(31)

xi, j +
∑

k∈OVi,w

xk, j ′ −
∑

k∈OV ′
i,w

remk, j ′,w

+
∑

k∈OV ′
i,w

addk, j ′,w ≤ 1, ∀ i ∈ O \ Ow, ∀ j ∈ S, ∀ j ′ ∈ Q j ,∀ w ∈ W ,

(32)
∑

j∈S

addi, j,w −
∑

j∈S

remi, j,w = 0, ∀ i ∈ Ow, ∀ j ∈ S, ∀ w ∈ W , (33)

xi, j ≥ remi, j,w, ∀ i ∈ Ow, ∀ j ∈ S, ∀ w ∈ W , (34)
∑

i∈Ow

∑

j∈S

addi, j,w ≤ λ, ∀ w ∈ W , (35)

xi, j ∈ {0, 1}, yi ∈ {0, 1}, addi, j,w ∈ {0, 1}, remi, j,w ∈ {0, 1} (36)

It can be seen that, in comparison with the original RRTSAP definition, the MARS

constraints are split into two sets, per scenario w: in Eq. 31, involving the operations

for which add/rem variables were added (set Ow), and in Eq. 32, involving the other

operations (set O \ Ow). Constraints 29 are only in place for the operations that have

add/rem variables added in the scenario. Moreover, constraints 33 and 34 are only

included for operations part of Ow.

4 GRU case study

The recoverable robust stand allocation framework was tested in a case study at Guarul-

hos International Airport of São Paulo (GRU). The focus of the case study is on the

international terminal of the airport. This is a linear terminal, with almost 500 m of

length, 10 wide-body contact-stands and the security control at one side of the termi-

nal. Besides, these contact-stands, 8 wide-body remote stands, 5 narrow-body remote

stands and 16 parking-only stands that are usually saved for international flights were

also considered. Any of the wide-body contact-stands can be split into two narrow-

body stands. Considering the potential split of the wide-body stands and the previously

mentioned stands, a total of 75 stands were included in the model. We do not allow for
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Fig. 6 Cumulative arrival time deviation distribution of one of the airlines

allocation of aircraft to other terminals, although in practice this could occur in case

of stand shortage.

Six days of operations were used as cases to test the proposed framework (from

the 19th until the 27th of November, 2015). Nevertheless, a full year of operations

(from August 2014 to July 2015) was used for the flight data analysis. These data

included information about all international flights operated in GRU airport during

that year. A historical arrival time deviation distribution was generated for every flight

number with an occurrence higher than thirty. For the flight numbers with less than

thirty occurrences in the data, an airline arrival time deviation distribution was used.

To avoid generalization of the home carrier of the airport (TAM airlines), the home-

carriers arrival time deviation distribution was further split per region. This followed

our data analysis, which showed differences in arrival time deviation distributions per

region for the home carrier. For each of these cases, the historical arrival time deviations

were divided into a high number of bins and a theoretical best fit was determined by the

Kolmogorov–Smirnov test, with the evaluation of 23 theoretical distributions available

in Python SciPy library. Figure 6 gives an example of a calibrated distribution curve

obtained for a particular airline.

In terms of departing times, an initial analysis showed that the delays were in most

of the cases minor. With exception of few cases, most of the flights analyzed were

either delayed due to a late arrival (in the case of short-stay visits) or their delay could

be accommodated within the embark times and buffer times considered. It should be

mentioned that a large number of visits in this terminal are long-stay visits, involving a

morning arrival flight and an evening departure flight. Therefore, departure delays are

easier to mitigate. That being the case, we assumed that the departure times of flights

remained equal to the scheduled departure time, unless the turnaround time becomes

shorter than the minimum disembarking plus minimum embarking time. In that case,

the departure time becomes the arrival time plus the minimum disembarking time plus

the minimum embarking time.
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Fig. 7 Airport layout of Terminal 3—the security control and the five contact-stands areas

The parameters for the TSAP were defined together with GRU airport planners.

For instance, the buffer time between two consecutive (dis)embarking operations at

the same (MARS) was set to 15 min. A towing operation in the TSAP was only

allowed if the aircraft visits the airport for a time longer than 3 h, which includes

a set scheduled hour of disembarkation and an hour embarkation. For the recovery

algorithm, a maximum allowed waiting time of 5 min was considered in the case of a

stand conflict (i.e., for the waiting recovery action). It was also decided to not include

a maximum number of re-allocations (λ).

To determine the walking distance, the airport terminal was divided into areas, com-

posed of two opposing contact-stands (Fig. 7). For the remote stands, an adjustment

was made in the walking distance—a fictitious opposing gate pair was assumed for

the remote stands with a walking distance further than the furthest contact-stand pair

in the terminal. Please note that due to the scope of the international terminal, transfer

passengers are not specifically considered since nearly all passengers need to clear

customs upon arrival/before departure. The matrix of potential revenue generated was

estimated based on historical non-aeronautical revenue data of specific flights from

both terminal stores (i.e., close to security control) and pier stores (i.e., close to the

contact-stands) at GRU airport. The matrix was computed per combination flight and

terminal area.

The airport set a maximum desired runtime for RRTSAP of 2 h. Consequently, after

some tests with the computational times per plan and scenario, it was decided to run

the RRTSAP with 30 scenarios with an allowed gap of 1%. All cases were solved

with an 8 GB Mac OS computer with an average runtime of 87 min for the walking

distance objective. The RRTSAP was implemented in Python and solved with Gurobi

LP Solver.

The analysis of the results will be divided in two parts. First, we discuss the results

obtained with the RRTSAP proposed and compare them with the results obtained with

a traditional robustness approach. Then, we discuss the impact of adopting different

objective functions to the recoverable robust TSAP.
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Fig. 8 Number of re-allocations required per scenario, for each case

4.1 Recoverable robustness versus strict robustness

This section aims to provide an overview of the results obtained from the recoverable

robust stand allocation framework for six full-day case studies. All the results presented

in this section used the minimization of the total walking distance as the objective

function.

The results of the recoverable robust stand allocation model are compared with

the results obtained by a strict robust stand allocation model. Liebchen et al. (2009)

introduced this term to indicate a classical robust approach, in which all established

scenarios have to be fully satisfied to return a solution. This strict approach has already

been utilized in stand allocation, for example in Seker and Noyan (2012). In the

strict robust stand allocation model, recovery actions as described in our recoverable

robustness framework are not allowed, and thus, all generated scenarios have to be

fully satisfied. This differs from our RRTSAP, where limited schedule recoveries are

allowed in the solution. In Fig. 8, we present the variation observed for all analyzed

cases. In all combinations of scenario cases, at least two re-allocations were observed.

The maximum number of re-allocations was fifteen, observed for one scenario in the

26/11 case. The number of required changes for most combinations was smaller than

10% of the amount of operations in the analyzed cases.

The results for the 6 days are presented in Table 1. For the computation of the strict

robust results, we utilized an extended TSAP formulation, including the scenarios from

Step S. The recoverable robust solution (RR WD) is, on average, 17.80% better than the

strict robust solution (strict WD). Forcing a strict robust approach, we obtain a resource

allocation that is, at least, 16.79% worse than the resource allocation obtained with the

RRTSAP. This is the price of the conservatism of such classical robust approaches.

We further analyze the difference between the results of both approaches by looking

at their performance per scenario. The strict WD has a constant performance for all

scenarios—the solution is feasible in all scenarios and it results in the same average
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Table 1 Average passenger walking distances of the recoverable robust solution (RR WD), the strict robust

solution (strict WD) and the average value of the recoverable robust solution over the 40 scenarios tested

(AVG RR WD)

Case Visits RR WD Strict WD ∆1,2 AVG RR WD ∆3,2

(m) (1) (m) (2) (%) (m) (3) (%)

19/11 70 164.6 200.9 − 18.07 190.9 − 4.97

20/11 66 163.9 197.7 − 17.10 187.7 − 5.06

23/11 68 163.0 195.9 − 16.79 194.9 − 0.52

25/11 60 160.7 195.7 − 17.91 186.5 − 4.70

26/11 70 165.3 204.4 − 19.11 197.2 − 3.50

27/11 64 165.6 201.6 − 17.83 196.0 − 2.75

Fig. 9 Comparison of the average passenger walking distance for the recoverable robust solution (bars) and

the strict robust solution (black line) per scenario, for 23/11 (left) and 20/11 (right)

walking distance value. In the case of the recoverable robustness framework, the

recovery algorithm is activated to solve some conflicts and the final objective function

value varies per scenario. The results are summarized in Fig. 9, for the most and least

differential day between the two approaches (20/11 and 23/11, respectively), and the

average values for all scenarios are presented in Table 1.

The comparison further highlights the capability of the recoverable robust stand

allocation framework to provide a robust yet less conservative solution. It can be

concluded that the results from the recoverable robust model are often better than the

ones obtained with the strict robust model. The RRTSAP provided solutions that were,

on average over the scenarios, 3.6% better than the strict TSAP model.

To further highlight the performance of the recoverable robust framework, we pro-

vide in Fig. 10 the analysis of the same cases but now with the objective to maximize

the percentage of passengers allocated to a contact-stand, one of the alternative objec-

tive functions. For the 23/11 case, only five scenarios resulted in a slightly lower

percentage of passengers allocated to a contact-stand. Most scenarios resulted in a

higher percentage for the recoverable robust solution. In the 20/11 case, all scenarios,

except 1, maintained a higher percentage of passengers allocated to a contact-stand.

It can therefore be concluded that the relative cost of robustness for the recoverable
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Fig. 10 Comparison of percentage of passengers allocated to a contact-stand for the recoverable robust

solution (bars) and the strict robust solution (black line) per scenario, for 23/11 (left) and 20/11 (right)

robust solutions is lower compared to the strict robust solutions, not only for the walk-

ing distance objective function but also for the objective of percentage of passengers

allocated to a contact-stand.

4.2 Objective function comparison

In this subsection, we discuss the impacts of adopting different objectives. As explained

in Sect. 2.4, we considered four objectives: the minimization of passengers’ walking

distance (WD), the maximization of potential commercial revenue (PCR), the mini-

mization of number of tow operations (TO) and the maximization of the percentage

of passengers allocated to a contact-stand (PC). The metrics included in the com-

parison of the objective functions are: average walking distance over the scenarios

(AVG WD), average potential commercial revenue over the scenarios (AVG PCR),

the average number of tows in the scenarios (AVG TO) and the average percentage of

passengers allocated to a contact-stand (AVG PC). The values represent the average

of each metric over the set of 30 scenarios.

We used the previous results, with the minimization of WD for the 6 days of oper-

ations, as reference results. We solved the RRTSAP again for the different objectives.

By changing the objective function, the new results are compared with those refer-

ence results. In Table 2, we present the range of the metrics variation between the

reference results and the results obtained when using the different objective functions.

The objectives used in the model are indicated in rows and the impact on each of the

metrics used is indicated in columns.

As can be seen, the AVG WD for passengers can increase with more than 100%

if we consider the objective of minimizing towing operations. For the objective of

maximizing of passengers allocated to a contact-stand, this increase can be larger than

42%. Although the impact of considering the minimization tows seems logical, since to

minimize the towing operations several long-stay visits are assigned to remote stands,

the results for the maximization of PC are somehow surprising. At first sight, both

objectives seem equivalent or similar. Nevertheless, the solutions for minimization of

WD resulted in a high occupancy of contact-stands associated with short WD (either
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Table 2 Ranges of relative variations in walking distance (WD), towing operations (TO), percentage of

passengers allocated to a contact-stand (PC) and potential commercial revenue (PCR) when using different

objectives, comparing with the results for minimization of walking distance

Objective ∆ AVG WD (%) ∆ AVG TO (%) ∆ AVG PC (%) AVG PCR (%)

Min TO [89.7, 111.9] [−82.4, −72.4] [−54.7, −42.7] [−55.0, −44.8]

Max PC [22.0, 42.1] [−0.3, 0.2] [3.9, 5.6] [0.2, 2.3]

Max PCR [4.1, 9.7] [−0.1, 0.4] [−0.7, 1.5] [0.7, 3.3]

with short-stay visits or with short disembark and embark operations from long-stay

visits of large aircraft) and the solutions for maximization of PC resulted in an almost

equal use of all contact-stands. This is due to the fact that for the latter there is no

preference within the contact-stands. Especially during the off-peak periods, in which

capacity is available, the PC solution allocates much more operations to contact-stands

associated with long walking distances. This results in a high AVG PC, but also in a

higher WD for a significant number of passengers.

When the goal is to maximize PC, the AVG PC increases with 3.9–5.6 percent points

and the AVG PCR increases (up to 2.3%), relative to the AVG WD objective. On the

other hand, if the selected objective is to minimize the number of towing operations,

these operations are reduced by around 75% points. However, this happens at the

expense of reducing AVG PCR (with more than 44.8%), reducing AVG PC (with

more than 42.7%) and increasing AVG WD. It has to be noted that the objective to

minimize tows degrades the performance of the RRTSAP for some cases. This is due

to the strict binary requirements and the impossibility for Gurobi to distinguish the

relative importance of tows. For some cases, this resulted in computational times of

more than 6 h to obtain to an optimality gap of 10%.

One of the innovations of this work is the inclusion of a commercial revenue objec-

tive in the TSAP. The results suggest that the trade-off between WD and PCR is

rather small—GRU airport can increase the AVG PCR by up to 3.3% if it accepts an

increase in the AVG WD of passengers with up to 10%. However, these results should

be carefully analyzed. First, because the results reflect the linearity of Terminal 3 at

GRU airport with a major store at the entrance of the pier. Most of the commercial

revenue generated at this terminal comes from sales in the main terminal store. Thus,

although there are differences between different contact-stands areas, all stand areas

are mainly influenced by the this store and the relative differences between the areas

are smaller than the common influence of the main terminal store. Second, because in

this case study to minimize WD, is, to a certain extend, similar to the maximization of

PCR, as the most promising stand areas in terms of commercial revenue are the ones

located at the first half of the terminal (with limited walking distance). This is again a

consequence of GRU’s Terminal 3 layout and the way the stores are located along the

pier. The differences in PCR are much larger when we compare solutions from other

objectives—for instance, the best solutions for minimization of TO are on average

nearly 50% worse in terms of PCR than the best solutions for maximization of PCR.

A third important and relevant point is the fact that AVG WD and AVG PCR metrics

are expressed in different units. Variations on the same scale in these metrics do have
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different significance. For instance, an increase in AVG WD of 10.0% corresponds to

an increase in AVG WD of around 20 m per passenger. In a large airport like GRU,

this might not have a large impact in passengers’ satisfaction. On the other hand, an

increase in AVG PCR of 3.3% can easily result in an increase in PCR by several thou-

sands of dollars a day. Therefore, even for small percentage gains in terms of AVG

PCR, the airport might be interested in considering the trade-off between these two

objectives.

5 Conclusion

In this paper, we presented a recoverable robust stand allocation model to address

the tactical airport stand allocation problem (TSAP). The model was developed in

cooperation with Guarulhos International Airport of São Paulo (GRU). The goal of a

more robust approach for the stand allocation problem and our interest in exploring

multiple objectives drove this research.

The benefits of adopting a recoverable robust solution were clearly illustrated with

the application of our framework to 6 days of operations in GRU. The recoverable

robust stand allocation framework was always able to obtain robust solutions that

perform better and are less conservative than the ones obtained with a traditional

robust model. When comparing the results for different objectives, it was concluded

that the passengers’ walking distance is highly penalized when the other objectives

such as minimizing towing operations or maximize the number of passengers allocated

to a contact-stand are adopted. In addition, for the first time the maximization of

airport commercial revenue was explicitly used as an objective for the stand allocation

problem. The results suggest that the increase in potential commercial revenue for

GRU airport is not large in terms of percentage points but that this increase can in

practice be several extra thousands of dollars per day of operations. This is achieved by

adapting the stand allocation plan, without significantly compromising the results in

terms of average walking distance. Given the current trend to privatize airports and the

fact that it is getting easier to collect accurate passenger and revenue data at airports,

we believe that this objective will become a popular metric in future works addressing

the allocation of resources at airports.

This was the first study to consider the concept of recoverable robustness to solve

the TSAP. Future steps are needed to consolidate and extend this research. One rec-

ommendation is to further improve the computational speed of the proposed model,

either via strengthened formulations or the adoption of heuristics. This would allow to

explore more scenarios when defining a robust solution, without compromising com-

putational time limitations. Furthermore, comparing the results with other robustness

approaches to the TSAP would be recommended. This would provide insights in the

performance of the different robustness approaches, in terms of objective function

values as well as computational time.

Another extension would be the consideration of a multi-objective approach. This

has already been implemented by several other authors under other frameworks (e.g.,

Guépet et al. 2015; Dorndorf et al. 2012). A multi-objective recoverable robust frame-

work to solve the TSAP would thus be an innovative and challenging line of research. In
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particular, the traditional recovery algorithm would have to be adapted to an efficient

multi-objective recovery algorithm dealing with dominated solutions. Furthermore,

the definition of proper trade-offs between objectives would be a major challenge. It is

widely recognized that a coherent definition of these trade-offs is hardly if ever found

in the decision-makers’ minds. Finally, the integration of the (recoverable robust)

TSAP with other tactical resource planning problems at an airport would be an area

of future research. This has already been proposed by Kim et al. (2013) and Guépet

et al. (2015) and could provide useful insights in the context of a robust optimization

of airport resources.
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