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The recovery of the chiral symmetry is carefully analyzed in the lattice Gross·Neveu model with 
Wilson's fermion, by using the effective potential obtained in the large N limit. It turns out that we have 
to introduce two bare coupling constants for four· fermi interactions as well as the bare mass term in order 
to obtain the chiral symmetric theory in the continuum limit. A method is proposed to extract the genuine 
order parameter that scales in the continuum limit. . 

§ 1. Introduction 

The chiral symmetry is one of the important properties to explain the mass spectrum 
of the hadrons. The 7[-meson is thought to be the Nambu-Goldstone boson associated 
with the dynamical breakdown of the chiral symmetry. The strong interaction is govern­
ed by the Quantum Chromo dynamics (QCD) whose Lagrangian is chiral symmetric. It is 
important to show the dynamical breakdown of the chiral symmetry and to calculate 7[­
meson mass in the framework of the QCD. For calculating such non-perturbative effects 
the lattice regularization is suitable. 

There is a problem to define a chiral symmetric QCD on a lattice.!) This problem is 
the spectral doubling of fermions and to avoid this spectral doubling we must add the 
Wilson term to the Lagrangian.!) The Wilson term, however, breaks the chiral symmetry 
explicitly. It is known to be impossible to obtain the chiral symmetric lattice QCD 
without the spectral doubling.2

) Probably this property may represent the existence of 
the chiral anomaly. If we want to obtain the correct continuum limit we must use the 
QCD Lagrangian with the Wilson term. Therefore the chiral symmetry of the QCD is 
explicitly broken by the Wilson term which disappears in the naive (classical) continuum 
limit. Therefore we expect that the chiral symmetry breaking effect of the Wilson term 
also disappears in the true continuum limit besides the chiral anomaly. 

To see whether our expectations are true or not we investigate the chiral symmetric 
fermion model, Gross-Neveu model on a two dimensional lattice. The recovery of the 
chiral symmetry is usually measured by the scaling behavior of the chiral order param­
eter. 3) But in. this paper we investigate the effective potential instead. If the effective 
potential is a chiral symmetric in the continuum limit, our expectation is valid. 

This paper is organized as follows. In § 2 we analyze the continuum Gross-Neveu 
model in the presence of the explicit breaking of chiral symmetry. In § 3 we analyze the 
lattice Gross-Neveu model, especially its continuum limit. It is shown that the effective 
potential becomes chiral symmetric in the continuum limit, if and only if we introduce two 
bare-coupling constants of the four-fermi interaction and adjust them. This result is 
contrary to our naive expectation. In § 4 we propose the method to analyze this two 
couplings model on a finite lattice and in § 5 results of our analysis are given. In § 6 we 
discuss the implication of the results. In the Appendix we discuss the recovery of chiral 
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522 S. Aoki and K. Higashijirna 

symmetry of the continuum Gross-Neveu model with the chiral non-invariant regulariza­
tion. 

§ 2_ Continuum Gross-Neveu model 

Let us first recapitulate the two dimensional Gross-Neveu model4l described by the 
Lagrangian: 

(2-1) 

where ¢ denotes N Dirac fermion ¢k(k=l, 2, "', N), coupled through a scalar interaction. 
We have used the notation 

This theory is invariant under a discrete chiral symmetry: ¢~ Ys¢, <i ~ - <iys when mo=O. 
Later in this section we will describe a generalized model invariant under continuous 
chiral transformation. It is convenient to replace (2 -I) by an equivalent Lagrangian 

(2- 2) 

where, by the equation of motion 

(2-3) 

To solve the model we integrate out the fermion fields and obtain an effective action 
describing the self-interaction of 15: 

(2-4) 

where 

(2- 5) 

Since the e~ponent of Eq. (2 -4) is of order N, integrations over lJ(x) are performed by the 
saddle-poimt method when N is sufficiently large and g2 fixed, giving the systematic 
expansion Of the effective potential in powers of 1/ N. By decomposing lJ(x) into a sum 
of the constant classical field 'lJc and the fluctuating quantum field 1J'(x) with a constraint 

fdx 1J'(x) =0, (2-6) 

we find 

(2-7) 

where Q is! the space-time volume and 
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The Recovery of the Chiral Symmetry 523 

(2'8) 

(2· 9) 

is the propagator of 0' in momentum space, and 

, _ 1 00 (-1) n [ 1 ,]n 
Sint(Oc, 0) - -----;- L! Tr . a 0 . 

l n=3 n Oc-l 
(2·10) 

Now, the effective potential, the energy density of the ground state in the presence of the 
background field Oc, is defined by 

(2'11) 

By comparing Eqs. (2'4) and (2'11), we find an expression similar to Jackiw's formula 5
) 

Veff(Oc) = V(oc) + 21- f(2~~i In( - iGo -l(k)) + )Q In<exp(iNSint)>h~I . (2·12) 

The last term is the sum of connected one particle irreducible (IPI) vacuum graphs 
obtained by using the conventional Feynman rules, with (I/N) Gcf as the propagator. We 
have to keep only IPI graphs because of the constraint (2'6). The first term is indepen­
dent of N; the second term, the one-loop determinant, is proportional to I/N. The 
remaining terms are at most of order I/N2

• This is seen by counting the number of I/N: 

Each propagator carries factor 1/ N. Each vertex is of order N. Then, the contribution 
of a vacuum graph with np propagators and nv vertices is proportional to N-np+nv-l 

= N-nL with nL being the number of independent loops. Thus the 1/ N expansion for Veff 
is nothing but the loop expansion in a theory described by Seff(O). 

Hereafter we shall confine ourselves to the large N limit, where Veff( oJ is simply 
given by V(oc). If we introduce the straight cutoff M in the euclidean momentum space, 
we find the expression for Veff, when the cutoff M tends to infinity with A and m kept fixed 

V. ( ) - + 1 21 0/ 
eff Oc - - moc 47r0c n eA 2 , (2'13) 

where the renormalization point independent scale parameter A and mass parameter m 
which characterize the explicit breaking of chiral symmetry are defined by 

and 

·1 1 M2 
7=2J[ln A2 

mo m=-2. g 

(2·14) 

(2 -15) 

If we had introduced a renormalization point J1. and a renormalized coupling constant gR
4

) 

by 
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524 s . .Aoki and K. Higashijima 

m>o 

metastable 

Fig. 1. Shape of the effective potential (2·13) when 
the current quark mass m is positive and small. 
Among three extrema, the stable vacuum corre· 
sponds to the absolute minimum of Vefl• 

then A would have been expressed as 

A = ,uexp( - n/ gR2) . 

/ 

( 

--------~~~o+-~~--------~m 

) 

Fig. 2. Dependence of the constituent quark mass 
(order parameter) (o-c) on the current quark mass 
m. Solid line represents the stable vacuum. 
Dashed (dotted) line indicates the metastable 
(unstable) vacuum. The presence of the gap 
when m = 0 shows the spontaneous breakdown of 
the chiral symmetry. 

In the large N limit, the wave function renormalization of (J is not necessary. 
The vacuum expectation value of (Jc is determined by looking for the true minimum 

of Veff( (Jc), i.e., by solving the renormalized gap equation 

(2°16) 

When m is small, this gap equation has three solutions. In this case, the true ground state 
can be chosen by looking at the shape of the Veff( (Jc) as is shown in Fig. 1. Other two 
solutions correspond to either metastable or unstable state. Therefore, the stability of 
the ground state requires that the order parameter <(Jc> always has the same sign as the 
explicit breaking parameter m of chiral symmetry. Namely, when Iml is small, <(Jc> is 
given by 

< >_{ A+n-m, 
(Jc -

-A-nom. 
(m>O) 

(m<O) 

Note that the order parameter <(Jc> has a gap, a clear evidence of dynamical breaking of 
chiral symmetry, when m changes sign as is shown in Fig. 2, indicating the first order 
phase transition as a ftmction of m. Half of this gap determines the magnitude of the 
order parameter in the chiral symmetry limit m=O. 

Now let us discuss a generalization of the Gross-Neveu model with continuous chiral 
symmetry, defined by the Lagrangian: 

2 

L= (fJ(i$ - mo)¢+ 2~ {( (fJ¢)2+( (fJiY5¢)2}. (2°17) 
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The Recovery of the Chiral Symmetry 525 

This theory is invariant under the continuous chiral transformation: ¢~ ei075¢, ¢ ~ ¢e i87s, 
when mo = O. The corresponding equivalent Lagrangian is 

(2-18) 

where, by the equation of motion 

(2-19) 

(2-20) 

The effective potential in the large N limit is obtained in a similar way 

v. ( II ) - + 1 ( 2+Il2)1 6e
2 + lIe 

2 
eff 6 e , e - - m6e -4 6e e n A2 

7f e-
(2 -21) 

and has a rotational symmetry in the 6c-IIe plane in the chiral symmetry limit (m=O). 
The renormalized gap equations read 

(2-22) 

(2-23) 

From these equations, we can determine the vacuum expectation values when m =I=- 0 

lIe =0 , (2-24) 

(2-25) 

Again the theory shows the first order phase transition when m passes through O. When 
m = 0, the vacuum is degenerate and determined up to chiral rotations by 

(2-26) 

It was pointed out by Witten6
) some time ago that the large N limit does not commute 

with the large volume limit in the chiral symmetric GN model (m=O). Therefore, the GN 
model in the large N limit should be regarded as a theoretical laboratory to derive useful 
information in the chiral symmetric case. 

§3_ Lattice Gross-Neveu model and continuum limit 

In this section, we work on euclidean square lattice with lattice spacing a. The 
lattice points are labeled by 

np=O, ±1, ±2, .. _, fL-=l, 2. (3-1) 

The range of momenta is restricted to 

(3- 2) 
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526 S. Aoki and K. Higashijima 

The natural way to find a lattice version of the Gross-Neveu model with continuous chiral 
symmetry is to replace the differentials by differences: 

2 

-a2 2~ ~{(¢¢)2+(¢iY5¢)2}, (3·3) 

where ap is a vector along the f-I direction with length a and yP's are hermitian and satisfy 
{Yp, yv}=2opv. This naive Dirac action leads to the notorious species doubling. One of 
the possible ways proposed by Wilson to avoid this problem is to introduce an irrelevant 
operator 

(3·4) 

with 0< r;;:;;1. The free fermion propagator 

{ ~iYp sinkpa + mo+~~(l-coskpa)}-l 
I' a a I' 

(3·5) 

now describes four kinds of particles with masses mo, mo + 2 rl a and mo + 4 rl a in the 
vicinities of k=(O, 0), (0, lfla) and (lfla, 0), and (lfla, lfla) , respectively. Thus, we have 
just one fermion in the continuum limit a~O. An obvious disadvantage of Wilson's 
formulation is that chiral symmetry is explicitly broken by the additional term (3·4), even 
ifmo=O. Since chiral symmetry is restored in the continuum limit for free field theory, 
we may expect that it is also restored for interacting field theories in the continuum limit. 
In order to test this idea, we examined a continuum theory with chiral non-invariant 
regularization in the Appendix and found that indeed chiral symmetry can be restored in 
the continuum limit if we start with a bare action not invariant under chiral symmetry. 
In Wilson's formulation of the lattice Gross-Neveu model, therefore, it is natural to start 
with an action 

5= ~E {¢(x)(yp- r)¢(x +ap) - ¢(x +ap)(yp+ r)¢(x)} 

+ a~(moa+2r) ¢(x) ¢(x) - a2~{ ~t (¢¢)2+ ~~ (¢iY5¢)2} . (3·6) 

The interaction term no longer has chiral symmetry, instead, g,i and g,,2 are to be chosen 
so that the renormalized theory has chiral symmetry. The corresponding equivalent 
action with auxiliary fields is 

5= ~ E {¢(x)( yp- r)¢(x +ap) - ¢(x+ap)(yp+ r)¢(x)} 

+2ar~¢(x)¢(x)+a2~¢{6+iY5ll}¢+a2~{2N2(6~mo)2+ 2N2ll2} , (3·7) 
x x x grr. . g" 

where, by the equation of motion 

2 

6(x)=mo- g
N ¢(x)¢(x) , (3·8) 
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The Recovery of the Chiral Symmetry 527 

2 

[J(x)=-glv ¢(X)·iY5·rjJ(X). (3· 9) 

The effective potential in the large N limit is obtained as in the previous section 

(3·10) 

where 

(3·11) 

This effective potential does not have the rotational symmetry in (6c , [JJ plane even if mo 
=0 and gl1=g1C, because of the Wilson term (3·4). We shall postpone the detailed 
analysis of the gap equation for finite lattice spacing to the next section, and discuss the 
continuum limit of our theory in the rest of this section. 

In order to evaluate the integral (3·11) in the continuum limit (a--->O), let us first 
rewrite it as follows: 

1

1C1a 
d2k { (E)} 1= -1Cla(27r)2 lnL/+ln 1+ L/ (3·12) 

with 

(3·13) 

(3·14) 

We then expand the integrand into a power series of E: 

1=10+ II + 12+ ...... , (3 ·15) 

where 

1

1C1a d2k 
10= -(2 )2lnL/, -1Cla 7r 

(3·16) 

__ (-I)n11C,a~£ 
In- (2 )2 An· n -1Cla 7r £..J 

(n~l) (3 ·17) 

Note that 10 has rotational symmetry in the 6c·[Jc plane, whereas In's (n~l) do not. In 
fact, it can be shown that 11 (12) reduces to a linear (quadratic) term in 6c while In(n~3) 
vanishes in the continuum limit (a--->O). This is seen by rewriting Eq. (3·17), using a 
rescaled variable ~Jl=kJla, as 

In= 

(3 ·18) 

These integrals are well defined in the limit a--->O. Thus, retaining only divergent or finite 
quantities, we find 
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528 s. Aoki and K. Higashijima 

In=O, 

where 

(3 -19) 

(3-20) 

(3-21) 

(3 -22) 

(3-23) 

Now, let us turn to the evaluation of 10. If we introduce an integral representation of 10: 

1 
(fc2 +IIc2 

10= 0 dpF(p) , (3-24) 

it is not difficult to show that 

(3-25) 

111:f a d2k 1 
-----> --2 2 + Co, 

a-O -11:fa (2J[) L:kp +p 
(3-26) 

p 

where Co is a finite constant defined by 

C =111: ~ ~(~p2-sin2~p) - r2{~(1-cos~p) F 
o -11: (2J[) 2 [L:sm2 ~p + r 2[L:(1 -coS~p))2] - [L: ~p 2] . (=0.427, r 2 =1) (3-27) 

p p p 

By comparing the first term in Eq. (3- 26) with the corresponding integral in the continuum 
theory, we find 

11-
F(p)=-4 In-2-+Co, 

J[ ap 

where a new constant Co is defined by 

Co= Co+ Co' =0.627 

with 

-4
1 

In--+-+ Co' . J[ ap 

By substituting this expression to Eq. (3 -24), we obtain 

(3-28) 

(3-29) 

10= --41 (6/+ Ilc2)ln a
2
(6c

2
+ Ilc

2
) + Co(6c2+ Ilc2) . (3-30) 

J[ e 

Now, we are ready to discuss the continuum limit of our theory. By retaining only 
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The Recovery of the Chiral Symmetry 529 

those terms that give non-vanishing contributions when a~O, we conclude 

Veff=-(:~ + 2; CI)6e+(2;,/ -Co+ 4~lna2)l1e2 

( 1 C- 2 2C 1 I 2) 2+ 1 ( 2+Il2)1 6e
2 
+ lIe 

2 
+ 2g,i - 0+ r 2+4J[ na 6e 4J[ 6e e n e ' (3·31) 

where Co, CI and C2 are even functions of y. Since we are interested in a renormalized 
theory with chiral symmetry, we choose the a-dependence of g,i, g,/ and mo as follows: 

1 _ - 2C 1 I 1 -2 2 - Co-2r 2+-4 nA2 2, g6 n a 
(3·32) 

1 - 1 1 
-2 2 = Co +-4 InA2 2, g" n a 

(3·33) 

(3·34) 

where the scale parameter A and the mass parameter m should be kept finite in the 
continuum limit a~O. With this choice, the renormalized effective potential is given by 

v. ( 11 ) - + 1 ( 2+Il2)1 6e
2
+11/ 

eff 6e, e - - m6e 4J[ 6e e n eA 2 (3·35) 

Since this expression is symmetric under continuous chiral transformations when m=O, 
we may interpret m as the mass parameter characterizing the explicit breaking of chiral 
symmetry. In fact, Eq. (3·34) coincides with the corresponding definition of m in the 
continuum theory if r = 0, i.e., in the absence of the Wilson term which breaks chiral 
symmetry explicitly. When m=O, the first term on the right-hand side of Eq. (3·34) 
represents the term necessary to compensate the chiral symmetry breaking effect due to 
the Wilson term. It is now obvious why we introduced two coupling constants in our 
lattice action (3·6). Had we not introduced two coupling constants, the resultant renor­
mali zed effective potential would not have chiral symmetry, because of the second term on 
the right-hand side of Eq. (3·32) which vanishes in the absence of the Wilson term. 

By minimizing the effective potential, it is possible to obtain <6e>. Since the scale of 
the physical spectrum is given by <6e>, we may call this quantity the constituent quark 
mass; on the other hand, m may be called the current quark mass. The relation between 
the current and constituent quark masses is given by the renormalized gap equation 
(2·25). In the previous section, we mentioned that these two masses must have the same 
sign on the ground of the absolute stability of the vacuum (Fig. 2). This relation is aiso 
derived from a criterion of local stability: The second derivative of the effective 
potential at the minimum is related to the pion mass 

2 1 a2 Veff I _ 1 I 6e 2 
m" ex 2 all 2 --4 n A2 . e IIc~O n 

By using the renormalized gap equation (2·25), we find 
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(3·36) 

Because m1T:2 has to be positive, we conclude that m and <<1c> must have the same sign. 

§ 4. Bare gap equations on a finite lattice and a numerical method 

In this section we will investigate bare gap equation on a finite lattice (Le., lattice 
spacing a is non-zero). First we will propose a numerical method to obtain a-dependent 
quantities using bare gap equations. Secondly we will summarize properties of the 
numerical method which will be used in § 5. 

Varying the effective potential (3·10) by <1 and II, we obtain bare gap equations for 
a finite lattice spacing (simply <1 and II instead of <1c and IIc): 

l
11!.,a d2p {<1+ r/ a~(1-cosPfla) P a2 

-7rla (2X)2 L:sin2pfla+ {aa+ rL:(I-cosPfla) P+ II2a2 , 
(4·1) 

fl fl 

(4·2) 

Here go2, g1T: 2 and mo are bare parameters. On the analogy of the continuum case (§ 2) we 
set II equal to zero hereafter. In this case Eq. (4·2) is always satisfied, therefore we will 
solve only Eq. (4 ·1). 

A numerical method to satisfy renormalization conditions and to obtain a-dependence 
of physical quantities is as follows. 
(i) When g ,l and mo are fixed, Eq. (4'1) defines <1 as a function of g,i and mo. If there 
are several solutions to Eq. (4·1) we compare the value of Veff for each solution in order 
to choose the unique solution <1(g,l, mo) corresponding to the absolute minimum of Veff. 
(ii) Varying mo with g,l fixed we plot the value of the order parameter <¢¢> which is 
given by 

- g,i< ¢¢>/ N = <1(g,l, mo) - mo. 

At some value of mo, < ¢¢ > may have a gap which is' a signal of the first order phase 
transition. The value of mo where < ¢¢> has a gap is the mass counter term necessary to 
cancel the effect of the Wilson term and denoted om(g,l). Then a renormalized mass m 
is defined as the deviation from this transition point: 

mo/g,i=om(g,/)/g,l+ m. 

Furthermore, the half of this gap defines the value of the order parameter <1CL in the chiral 
symmetry limit (m=O): 

<1CL=<1(go2, om(g(i)) . 

(iii) We determine g1T:2 so that x-meson mass vanishes at mo=om. This condition is 

1
7r,a d2p 1 

1/2g1T:
2
= -1T:la (2X)2 S(p, <1CL) , (4·3) 

where S(p, <1CL) = a-2[L:flsin2Pfla+ {<1cLa+ rL:fl(l-cosPfla) P] . 
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(iv) Varying g,,z we get 6CL, ~m and g1C2 as functions of g,,z and compare these values to 
the scaling behaviors of 6CL, ~m and g1C2 predicted in § 3. 

The result of the numerical study will be given in § 5. 
Before ending this section we summarize general properties of numerical method, 

which will be used in § 5. Hereafter we set r = 1. 

1 l 1C,a d2p 
where 6' a= -4- 6a and stands for -(2)2 . 

P -1Cla 7[ 

.: If we make a change of integration variable such that p" = p,/ + 7[/ a, we get 

1 1/S(p, 6)=11/S(p'+7[/a, 6')=11/S(p', 6') 
p p p 

with g ri fixed. 

6' - mo(6') =2g,,z1 k' -1/ a2::(I-cosP'/ a) }/S(p', 6') 
p' " 

= -2grilk+ l/a2::(I-cosp"a) }/S(p, 6) 
p " 

=-(6-mo(6)) . 

(3) mo(6')=-4/a-mo(0). 

·:From (2) 

-4/a-o- mo(o') = -6+ mo(o) , 

mo(0')=-4/a-mo(0) . 

(4) Veff(6, mo(o)) = Veff(6', mo(o')) 

= Veff(o, mo(6)) . 

with gri fixed. 

(5) From (1) ~ (4) the graph of 0- mo vs mo is point symmetric at the (0- mo, mo) 
=(0, -2/a). 

From fact (5) there is at least one phase transition point at mo = - 2/ a if 6 ~ 0' there. 
(For example see Fig. 3 in § 5.) 
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§ 5. Results of the numerical calculation and the scaling behavior 

In this section we summarize results of the numerical calculation and discuss the 
scaling behavior of 6CL, om and g7/. 

First we plotted 6- mo= - gcl< ¢¢>/N against mo by solving Eq. (4·1) numerically to 
find transition points. There are two cases: 

(i) Strong coupling region 

For l/g(,-2~0.3 there is only one transition point. A typical graph in this range is 
given in Fig. 3(a). In this coupling range no separation of the fermion doubling mode 
occurs. 

(ii) Intermediate and weak coupling regions 

For 1/ 9 (12 ~ 0.4 there are threetransition points. A typical graph in this range is given 
in Fig. 3(b). Each transition point corresponds to each continuum limit depending on a 
different region in the momentum space. For example, in Fig. 3(b) point A corresponds 
to p=(O, 0), point B corresponds to P=(7[/a, 0) or (0, 7[/a) and point C corresponds to P 
= (7[/ a, 7[/ a). In this coupling range the effect of the Wilson term separates three doubl­
ing modes. This separation occurs at l/g/~O.4 this is faster than usual case (at l/gi 
~1.0. See Refs. 3) and 7).). Note that our g(12 corresponds to g/N in these references. 
The true continuum limit is given by the transition point A. 

Secondly we discuss the scaling behaviors. As explained in the last section, the 
position of the first order phase transition determines om(g/), the mass counter term to 
cancel the chiral symmetry breaking effect caused by the Wilson term. The half of the 
gap of the order parameter at this phase transition point determines the value of the 
genuine order parameter 6CL=A in the chiral symmetry limit (mo=om, i.e., m=O). 
Finally, g7/ is determined by the massless condition for the pion in this limit. Numerical 
results for these quantities are shown in Figs. 4(a) ~ (c). These numerical results should 
be compared with the scaling behaviors in the continuum limit derived in § 3. From 

-----------------_~2+---~~O--------~mo 

(a) 

Fig. 3. Dependence of Oc - mo on mo. 

A 

( 
B I 

I 
I 

----------~r---~~--------.mo 
21 0 

1 
1 

~ 
(b) 

(a) A typical graph for l/g,/~0.3. There is only one transition point. 
(b) A typical graph for 1/ g ,/;;;:; 0.4. There are three transition points A, Band C. True continuum 

limit corresponds to point A. 
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0.01 

0.3 0.4 

(a) 

dmo 
g~ 

0 0.3 0.4 

\ 
-1 

(c) 

1/g~ 

11/9~ 

1.5 

0.5 

1/g~ 

(b) 

Fig. 4. (a) Dependence of OrLa on l/g,/. Straight 
line represents the scaling behavior of OCLa: 

oCLa=O.57exp[ ~ J[/g,/). 
(b) Dependence of 1/g,2 on l/g,/. Straight 

line represents the scaling behavior of l/g,2: 

l/g,r'= 1/g,/+O.617. 
(c) Dependence of oma/g,/ on l/g,/. 

Straight line represents the scaling behavior of 
oma/g,/: 

oma/g,/= ~O.769. 

Eqs. (3-32) ~(3-34) the scaling behavior of 6CL, am and g,,z is given by 

(Co=0.427, Co=0.627, Cl=0.385, C2=0.155) 

Aa= 6a=0.57 exp[ - Jr/gc/] , (for m=O) 

oma= -0.769 g(J2 , 

1/g,,,z=1/gc/+0.617. 

From these results we see that the scaling behavior of 6CL, am and g,,z are good for l/gi 
~0.4 and are better than usual one bare coupling case. (See Refs. 3) and 7).) It should be 
noted that -.:. gi( (j}rjJ) itself does not follow a simple scaling law although the magnitude 
of the gap 6CL = A, the genuine order parameter, follows the simple scaling law. The 
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behavior of this quantity is rather complicated by the presence of the mass counter term: 

- g,i<lj)cjJ)/N=6- mo 

={-om+(Jr-gO'
2
)m+A, 

-om+(Jr+g/)m- A. 

(m > 0, small) 
(m<O, small) 

In Ref. 7) one of us proposed a new method to improve the order parameter 
- g 0'2< Ij)cjJ) / N. Our idea is as follows. The mass counter term, which violates the 
scaling behavior of - g /< Ij)cjJ) / N is an odd function of the Wilson parameter r, therefore 
if we define 

<lj)cjJ)q="£,r=±1<lj)cjJ)r/2, 

the effect of om may be dropped and the scaling behavior of < cjJcjJ> q may become simpler. 
« . )r represents the expectation value with the Wilson parameter rand < . >q is called 
the "quenched average".) This idea was applied to the usual bare-coupling GN model 
and <lj)cjJ)q has, indeed, better scaling behavior.?) 

Now we apply this quenched average to two-couplings GN model. From (4·1) 

6(r)a-mo(6(r))a 
2g/ 1 6(r)a 1 "£,(l-cosPpa) 

---=-.-=-"-'-!---=;--------+ r ---'p:=:--,------;----------
pS(p, o(r), r) p S(p, 6(r), r) 

"£,(l-cospP' a) -1 o(r)a+4r 
- p'S(p',6(r)+4r/a, -r) 

r1 p p'S(p',6(r)+4r/a,-r) , 
(5·1) 

where 

then we obtain 

a( - r) - mo( a( - r)) = 6(r) - mo(6(r)) , (5· 2) 

where 

a(-r)=6(r)+4r/a. (5·3) 

Furthermore we obtain 

mo( a( - r)) = mo(o(r)) +4r/a. (5·4) 

(5·2) and (5·4) show that the graph of 6-mo vs mo for r=-l is the same as the graph 
for r=l if we shift mo->mo+4/a. The true continuum limit for r=l is point A in 
Fig. 3(b) but the true continuum limit for r = -1 is corresponding to point C when we shift 
mo->mo+4/a. We define 

6cL(1, +)= lim 6(1), 
mo-8m+ 

6cd1, -) = lim 6(1). 
mo ....... /im-

(5· 5) 

From (5·3), (5·5) and Fig. 3(b) we obtain 
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(5'6) 

(Notice that 6'=-4/a-6. See § 4.) Furthermore from (5·4) and fact (3) in § 4 we 
obtain 

om(6cL(-I, +))=om(6~L(I, -))+4/a=-om(6cL(l, -)). (5'7) 

Finally the quenched average of - g,i ¢¢/ N in the chiral limit is calculated as 

- g,i( ¢¢>/ N = - g,i ~ lim (¢¢>r/ 2N 
r~±lmo-8m(r)+ . 

= ~ lim k(r)-mo(r)}/2 
r~±lmo-8m(r)+ 

= {6cL(I, +)-om(l, +)+6cL(-I, +)-om(-I, +)}/2 

=kcL(I, +)-6cL(I, -)}/2, (5·8) 

where we use the fact that om(l, +) =om(l, -). (5·8) shows that the effect of om, which 
violates the simple scaling behavior of - g ,i( ¢¢ > r/ N, disappear in the quenched average. 
In Fig. 5 we plotted -g,i(¢¢>q/N. Figure 5 shows that the scaling begins at l/go-2~0.4 
where the separation of the fermion doubling occurs. This separation makes 
-go-2(¢¢>q/N jump suddenly at this point. In this case both the separation of the 
doubling and the scaling of the order parameter occurs at the same value of 1/ g,i. In 
other words in the coupling region where the doubling mode is negligible the quenched 
average of the chiral order parameter scales. 

- g~ < f y). 
N q 

\ 
0.1 

0.01 

0.3 0.4 1/g~ 

Fig. 5. Dependence of -gr/<¢</J>q/N on l/g,/. 
Straight line represents the scaling behavior of 
-g,/<¢</J>q/N: 

- gt < ¢</J>q = O. 57exp [ - If/g,/]. 

§ 6. Conclusions and discussion 

Contrary to our naive expectation the 
full chiral symmetry cannot be restored 
even in the continuum limit if we use the 
one bare-coupling GN model with the 
Wilson fermion. We have to introduce 
two bare-couplings l/g,i and l/g,,z and 
adjust them in order to obtain the chiral 
symmetric effective potential in the 
continuum limit. In other words in order 
to obtain the chiral syrrimetry as the result 
we must start from the chiral non­
symmetric action which includes the bare 
mass, the Wilson term and the interaction 
with two bare-couplings. 

The bare mass term to compensate the 
effects of the Wilson term is chosen so as 
to recover the discrete chiral symmetry (6 
-> - 6), whereas the bare coupling constant 
g" is chosen so as to recover the continuous 
chiral symmetry (the rotational symmetry 
in 6-ll space). The recovery of the dis-
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crete chiral symmetry is indicated by the existence of the first order phase transition when 
the bare mass mo varies. The genuine order parameter O"CL, the discontinuity of the naive 
order parameter - g i< ¢¢ > / N follows a simple scaling low in the continuum limit. From 
the results of § 5 we can conclude that the separation of the fermion doubling in our two 
couplings model occurs at the value l/g,/=O.3~0.4 which is smaller than the usual value 
l/gi~1.0 and that scalings of O"CL, om and g7/ begin at the same value of l/g,/. 

Our main interest, of course, is the chiral property of the QCD. There is no room to 
introduce two bare-couplings of the gauge interaction in QCD. We expect that the chiral 
symmetry of the lattice. QCD is restored in the continuum limit by simply introducing the 
bare mass term. In perturbative theory, this mass counter term is chosen so as to cancel 
the explicit breaking of chiral symmetry due to the Wilson term. In non-perturbative 
domain, however, there is no definite criterion for the choice of this mass counter term. 
Usually, this mass counter term is fixed by the massless condition for the pion. For finite 
lattice spacing, however, the existence of the massless pion does not mean the recovery of 
the chiral symmetry. Furthermore, it is difficult to extract the genuine order parameter 
out of the naive order parameter < ¢¢ > of the chiral symmetry. On the other hand, if it 
is possible to find the existence of the first order phase transition when mo is varied, we 
can fix the mass counter term by its location and extract the genuine order parameter 
from the magnitude of the gap. Of course, this method does not guarantee the recovery 
of the continuous chiral symmetry although the first order phase transition is certainly 
related to the recovery of the discrete chiral symmetry. We leave the comparison of these 
two methods to fix the mass counter term to future work. 

Appendix 

In this appendix, we discuss the recovery of chiral symmetry in the continuum 
Gross-Neveu model when we adopted a chiral non-invariant regularization, a simple 
analog in continuum theory of Wilson's formulation of the lattice Gross-Neveu model. 

Our Lagrangian is 

(A ·1) 

where the second term, a continuum analog of the Wilson term, breaks chiral symmetry 
even if mo = O. It is proportional to 1/ M, M being the ultraviolet cutoff in momentum 
space. The reason we have introduced two coupling constants will become clear later. 
It is convenient to introduce auxilliary fields 0" and II, then (A ·1) can be rewritten as 

(A·2) 

As we have done in § 3, it is straightforward to obtain the effective potential in the large 
N limit: 

Veff= 2~'/ (O"c- mo)2+ 2~7/II/- f(f:~2In[ (O"c+ t r + IIc2
+k

2
] , (A·3) 

where the domain of integration is restricted to k2-;;;;'M2. Contrary to the lattice regular­
ization, it is possible to perform the momentum integration analytically. Neglecting 
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terms of order 11M when the cutoff M tends to infinity, we find 

(A-4) 

In order to have a renormalized theory with chiral symmetry, we choose the cutoff 
dependence of bare quantities mo, g(52 and g,,z as 

(A-5) 

(A-6) 

(A-7) 

where the renormalized scale parameter and the mass parameter m should be kept fixed 
in the limit M --> 00_ With this choice of bare quantities, we obtain 

v. ( fl ) - + 1 ( 2+fl 2)1 Oc
2
+flc

2 
eff Oc, c - - moc 4Jr Oc c n eA 2 (A-S) 

It is now clear why we introduced two coupling constants in the bare Lagrangian: If we 
had introduced just one coupling constant g2=gi=g,,2 then the quadratic terms in Eq. 
(A -4) would not have rotational symmetry in (oc, flc) plane. 

Finally, we note that bare coupling constants gi and g,,2 are even functions of r 

whereas the second term in Eq. (A -5), the bare mass term necessary to cancel the effects 
of chiral non-invariant reguralization, is an odd function of r. 
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