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Abstract 

 

In this paper we propose an innovative recursive learning algorithm to sequentially 

estimate multivariate complex subset autoregressive models with exogenous variables 

(VARX models), including full-order models. This paper suggests the use of the recursive 

fitting of multivariate complex subset ARX models in conjunction with order selection 

criteria to select an 'optimal' multivariate complex subset ARX model. The recursive 

procedure can be embedded in a tree algorithm. We fit the necessary models associated 

with the bottom stage, and then recursively fit models which include more variables, until 

finally we fit recursively the full order ARX model with maximum lags P and Q.  

 

Keywords: Recursion; Learning Algorithm; Multivariate Complex Subset 

Autoregressive modelling with Exogenous Variables. 
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1. INTRODUCTION 
 

Mathematical model researchers for applied time-series systems are often concerned that 

the coefficients of their established models may not be constant over time, but vary when 

the models are disturbed by changes arising from outside factors. This concern has 

motivated researchers to develop sequential estimation algorithms that allow users to 

update subset time series models at consecutive time instants. This approach will allow 

for the coefficients to slowly evolve, and can show evolutionary changes detected in 

model structures. Hannan and Deistler [1] proposed a recursive estimation of an 

autoregressive (AR) model. Chen et al [2] suggested recursive updating procedure for the 

learning process of a multi-layer neural network.  

 

The aim of this paper is to provide an algorithm for the recursive fitting of multivariate 

complex subset ARX models, including full-order models. The algorithm is developed for 

the selection of an optimal complex subset ARX model by employing model selection 

criteria. The ultimate goal of this research is to investigate an efficient procedure for 

selecting the optimal multivariate complex subset ARX model subject to possible zero or 

absence entries in each existing coefficient matrix. It is unwise to neglect possible zero 

constraints on the complex coefficient matrices of the optimal complex subset ARX 

model selected, whether these constraints represent the absence of a full complex matrix 

or perhaps simply a part of a complex one.  

 

An algorithm for the recursive fitting of vector real subset ARX models has been 

presented in [3]. In most of the engineering literature [4,5], systems possessing multiple 

inputs and multiple outputs are referred to as vector systems where each input represents 

an input channel and each output represents an output channel. Mittnik [6] suggested 

procedures for estimating an internally balanced state space representation of VARX 

models. This work enriches model building techniques by using model reduction concepts. 

In time series modelling, subset models [7,8] are often employed, especially when the data 

exhibits some form of periodic behaviour, perhaps with a range of different natural 

periods in terms of hours, days, months, and years, in applications involving weather,  
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humidity, and temperature recordings, and short-term and long-term electricity load data. 

 Thus many researchers have drawn attention to vector subset time series system analysis. 

 When the impulse-response matrix needs only an imaginary part, i.e. by imposing the 

constraint that the real part is null, the model becomes a vector imaginary subset model. 

When the impulse-response matrix is only real, the model will be a vector real subset 

model. In this paper, we propose procedures for selecting the optimal multivariate 

complex subset ARX model by using the proposed recursions in conjunction with model 

selection criteria tailored to conform to multivariate complex ARX schemes. 

As stated in [3], the proposed recursions provide a computational procedure which can be 

conventionally embedded in an inverse tree algorithm. The structure of the tree algorithm 

provides great benefit in implementing software on a multi-c.p.u. computing machine, 

such as a supercomputer. Thus the proposed recursive algorithm is superior to 

non-recursive algorithms.  

 

2. THE RECURSIVE ESTIMATION OF THE MULTIVARIATE 

COMPLEX SUBSET ARX MODELS 

 

Let y(t) and x(t) be jointly stationary, zero mean multivariate complex stochastic 

processes. The dimension of y(t) is m and the dimension of x(t) is n. We consider the 

ARX(p,q) model with the deleted lags i1, i2,..., is for y(t) and deleted lags j1,j2,...,jr for x(t), 

so that a model is of the form   

 
p q A* * * *

i s j 0 s i s sr
i=0 j=0

*
j r r

( )y(t - i) + ( )x(t - j) = (t , { ( ) = I, ( ) = 0, as i ,)JA I B A I A I I

 ( )=0, as j  }                         J JB

ε ε∑ ∑

ε
                         (1)  

where Is represents an integer set with elements i1,i2,...,is, 1 ≤ i1 ≤ i2... ≤ is ≤ p-1, and Jr 

represents an integer set with elements j1,j2,...,jr, 0 ≤ j1 ≤ j2... ≤ jr ≤ q-1. ε(t)A is a m×1 zero 

mean stationary complex disturbance process which is uncorrelated with any variables 
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included in (1) except y(t). 

 
By using the orthogonality principle [9], the estimates of parameters *q

sip ( )A I and *q
rjp( )JB  

of the fitted ARX (p,q) model are solutions of the following normal equations: 
 

p q
* q * q

s sri p j pk-i k- j
i=0 j=0

( )  + ( )  = 0          k = 1,2,..., p;  k  ,JA I B I∉µ γ∑ ∑   

 
p q

* q * q
s r l- j ri p j pi-l

i=0 j=0
( )  + ( )  = 0          l = 0,1,...,q;  l ,J JA I Bτ ∉γ∑ ∑ ν  

 

and we have 
p q

* q * qA
s sp q r ri p j -i -j

i=0 j=0
( , ) = ( )  + ( )  ,V J JI A I Bµ γ∑ ∑   and 

 
p q

* q * qA
p q s sr ri p j pp-i p- j

i=0 j=0
( , ) = ( )  + ( )    .J JI A I Bµ γ∑ ∑∆                                                                       (2)  

 

where τ denotes the conjugate transpose, kk, , µ ν  and kγ  are the sample estimates of 

E{y(t)yτ(t-k)}, E(x(t)xτ(t-k)}, and E{x(t)yτ(t-k)} respectively. k -k= τµ µ  and k -k = .τν ν   In 

addition, A
sp q r( , )V JI  is the estimate of the power matrix and A

p q s r( , )JI∆  is the estimate of 

the cross-covariance matrix between ε(t)A and y(t-p-1). Note that the orthogonality 

principle has been adopted to estimate the coefficient matrices in (1) and y(t-p-1) is indeed 

not a variable included in (1), thus A
p q s r( , )JI∆   is not null [10].  

 

Following [3], we consider an ARX (p-1,q) model of the form 

 

       
p-1 q A* *

i s j r
i=0 j=0

( )y(t - i) + ( )x(t - j) = (t   .)JA I B ε∑ ∑  

The analogous normal equations, the associated estimated power and cross-covariance 

matrices are the same as (2) with the exception that p is replaced by p-1. 
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Now we need to introduce another ARX(p-1,q) model of the form 

 
p q E* * * *

p-i s q- j 0 p-i s sr
i=1 j=0

*
q- j r r

( )y(t + p - i) + ( )x(t + p - j) = (t   {  = I, ( ) = 0 as i   )JE I F E E I I

( ) = 0 as j  J JF

ε ε∑ ∑

ε
                      

where ε(t)E is a m×1 zero mean disturbance process. The highest subscript for E is p-1, and 

for F is q. We refer to this ARX model as an EF type model. Similarly, by using the 

orthogonality principle, we can obtain the analogous normal equations. After solving the 

estimates of parameters *
p-i s( )E I  and *

q- j r( )JF , we get 

 
p q

*   q *   qE
s rsp-1 q r p-i p-1 q- j p-1p-i p- j

i=1 j=0

( , ) = V J JI E I F( )  + ( )µ γ∑ ∑ , 

and 
 

p q
*   q *   qE

p-1 q s sr rp-i p-1 q- j p-1-i -j
i=1 j=0

( , ) = ( )  + ( )   .J JI E I Fµ γ∑ ∑∆       (3) 

Thus the following (p-1,q) to (p,q) recursions are available, 
 

* q * q *   q* q
s s p p s si p i p-1 p-i p-1( ) = ( ) + ( ) ( )   i = 1,..., p -1A I A I A I E I                                                           (4) 

* q * q *   q* q
p p sr r rj p j p-1 q- j p-1( ) = ( ) + ( ) ( )   j = 0,...,qJ J JB B A I F                                                    (5) 

    E* q A
p p s p-1 q s sr p-1 q r( ) = - ( , ) / ( , )J V JA I I I∆                                                            (6) 
  A    A * q E

s s p p s p-1 q sp q r p-1 q r r( , ) = ( , ) + ( ) ( , )V J V J JI I A I I∆                                                            (7) 
A E  
p-1 q s p-1 q sr r( , ) = ( , )  J JI Iτ∆ ∆ .                                                          (8) 

  

In the special case, where the consecutive coefficient matrices A* p-k for the lags of 

y(t-p+k), k = 1,...,a (a≤p-1) of the AB type ARX(p-1,q) model are missing, the estimated 
coefficient matrices are null, i.e. *   q

sp-k p-1( )A I  =0, k=1,2,...,a, and then the corresponding 

coefficient matrices and VA from the AB type (p-a-1,q) model are sufficient to continue 

the recursive estimations. 

To develop the recursions for the EF type ARX(p,q) model of the form 
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p q E* *

p-i s q- j r
i=0 j=0

( )y(t + p - i) + ( )x(t + p - j+1) = (t   ,)JE I F ε∑ ∑                            (9) 

 

we introduce two models: a GH type ARX (p-1,q) model of the form 

 
p-1 q H* *

s ji r
i=0 j=0

( )y(t - i -1) + ( )x(t - j) = (t   )G JI H ε∑ ∑  (10) 

where ε(t)H is a n×1 zero mean disturbance process, with  

 

 
 H H H

s rE{ (t (t } = ( , )  ) ) V JI
τ

ε ε                           

and  

 H G
s r E{ (t (t - p -1)} = ( , )  ;) y JIτε δ                                  

 

an EF% %  type ARX (p,q-1) model of the form 

 
p q E* * * *

s s srp-i q- j 0 p-i
i=0 j=1

*
s r rq- j

( )y(t + p - i) + ( )x(t + p - j+1) = (t   { ( ) = I, ( ) = 0 as)JI I IE F E E

 i    ( ) = 0 as j  },                 J JI F

ε∑ ∑

ε ε

%
% % % %

%
 (11) 

 

where E(t)ε
%

  is an m×1 zero mean disturbance process, with  

 
 E EE

s rE{ (t (t } = ( , )  ,) ) JIV
τ

ε ε
% % %  

 E F
s r E{ (t (t + p +1)} = ( , )  ,) Jx Iτε η

%
%  

and E F
s rE{ (t (t + p - q)} = ( , ).) Jx Iτε ∆

%
%  

  

Then we have the following recursive equations 
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*   q-1*   q * q* q

s s q p srp-i p i p-1p-i p   

*   q-1*   q * q* q
q pr r r rq- j p j p-1q- j p

F* q
q p sr r p-1 p q-1

( ) = ( ) + ( ) ( )   i = 0,1,..., p -1J GE I I F IE
( ) = ( ) + ( ) ( )   j = 1,2,...,qJ J J JF F HF

( ) = - ( , ) / J JF Iη

%

%

% H
sq r

GEE * q
s s q p sp q r r r rp q-1 p-1 q

G F  
s sr rp-1 q p q-1

( , )   .V JI

( , ) = ( , ) + ( ) ( , )V J J J JI I F IV

  ( , ) = ( , ).J JI Iτ

η

η η

%

%

                                                        

        

Again, if the consecutive coefficient matrices G* p-k for the lags of y(t-p+k-1), k = 1,2,...,b 

(b≤p-1) of the GH type ARX(p-1,q) model are missing, this GH type model is equivalent 

to a GH type (p-b-1,q) model. 

 

Also note that the EF type ARX (p,q) model of (9) is equivalent to the EF% %  type ARX 

(p,q-1) model of (11), i.e. as Fq of (9) is missing, we may substitute an EF% %  type model 

from (11) for the EF type model of (9). 

 

Next, for the recursions to estimate the GH type ARX (p,q) model, we also need the 

information from the GH type ARX (p-1,q) model of the form (10) and from the EF% %  type 

ARX (p,q-1) model of the form (11). Thus, the following recursions are obtained: 

 
*   q-1* q * q * q

s s s sp pi p i p-1 p-i p

*   q-1* q * q * q
sr r p p rj p j p-1 q- j p

G E* q
s s sp p r rp q-1p-1 q

( ) = ( ) + ( ) ( )   i = 0,1,..., p -1G G GI I I IE
( ) = ( ) + ( ) ( )   j = 1, 2,...,qJ J G JH H I F

( ) = - ( , ) / ( , )G J JI I IV

 

η

%

%

%

FH H * q
s s s sp q r p-1 q r p p rp q-1 ( , ) = ( , ) + ( ) ( , )  .V J V J G JI I I Iη%

                                                   

 

To consider the recursive estimation of the EF% %  type ARX (p,q-1) model, (11), we need to 

introduce a CD type ARX (p-1,q) model of the form  
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p-1 q+1 D* * *

s q+1- j 0p-1-i r r
i=0 j=1

**
q- j+1 s sr r p-i-1

( )y(t + q - i) + ( )x(t + q - j+1) = (t  { ( ) = I,)C J JI D D

 ( ) = 0, as j  ,  ( ) = 0 as i  },           J J CD I I

ε∑ ∑

ε ε
                             (12) 

 

where ε(t)D is a n×1 zero mean disturbance process, with   

 

 D D  D
s rE{ (t (t } = ( , ),) ) V JIτε ε     

and 

 D C
s rE{ (t (t + q - p)} = ( , ).) y JIτε ∆  

  

Now rewrite an AB type ARX (p-1,q) model of (2) in the form 

 
p-1 q+1 A* *

i s j-1 r
i=0 j=1

( )y(t - i) + ( )x(t - j+1) = (t ,)JA I B ε∑ ∑  

and recall an EF type ARX(p-1,q) model of the form 

 
p q+1 E* *

p-i s q+1- j r
i=1 j=1

( )y(t + p - i) + ( )x(t + p - j+1) = (t   .)JE I F ε∑ ∑                        

We can derive the following formulae: 

 
*   q-1 * q-1 * q-1*   q *     q * q

s s s s srp-i p-1 p-i-1 p-1 i p-1p-i p 0 p p p( ) = ( ) - ( ) ( ) + ( ) ( ) J CI E I I I A IE F E
       i = 1, 2,..., p -1

% % %
 

*   q-1 * q*     q *     q
r r r rq- j+1 p-1 q- j+1 p-1q- j p 0 p

* q *   q
s rj-1 p-1p p

-1E E AE
s s p-1 q s s p-r p-1 q r r p-1 q rp q-1

( ) = ( ) - ( ) ( ) J J J JF DF F
   + ( ) ( )   j = 1,2,...,q -1JI BE

( , ) = ( , ) - ( , )[ ( , )]J V J J V JI I I IV ∆

% %

%

% A
1 q s r

-1F D C
s S p-1 q sr p-1 q R rp q-1

* q-1 F D
s sr r p-1 q r0 p p q-1

* q-1 AE
s p-1 q s sr p-1 q rp p

F C
p-1 q s sr rp q-1

( , ) JI

   + ( , )[ ( , ) ( , )]J V J JI I I

( ) = - ( , )/ ( , )J J V JI IF
( ) = - ( , ) / ( , )J V JI I IE

( , ) = ( , )    J JI Iτ

∆

∆∆

∆

∆

∆ ∆

%

% %

%

% A E 
p-1 q s p-1,q sr r ( , ) = ( , )  .J JI Iτ∆ ∆
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Also note that if both *

sp( )IE%  and *
r0( )JF%  of the EF% %  type ARX (p,q-1) model of (11) are 

missing, this EF% %  type model is equivalent to an EF type ARX (p-1,q-1) model.   

 

The recursions for the CD type ARX (p,q) model of the form 

 
p q D* *

s q- jp-i r
i=0 j=0

( )y(t + q - i) + ( )x(t + q - j) = (t ,)C JI D ε∑ ∑                                           

arise from rewriting a CD type ARX (p-1,q) model from (12) so that we have 

 
p-1 q D* *

s q- jp-1-i r
i=0 j=0

( )y(t + q - i) + ( )x(t + q - j) = (t  .)C JI D ε∑ ∑  

In addition, we need an EF% %  type ARX(p,q-1) model of the form 

 
p q-1 E* *

s rp-i q-1- j
i=0 j=0

( )y(t + p - i) + ( )x(t + p - j) = (t ,)JIE F ε∑ ∑
%

% %  

to develop the following recursive formulae: 

 
*   q-1*   q *     q * q

s s s s0 pp-i p p-i-1 p-1 p-i p

*     q-1*   q *   q * q
sr r r0 pq- j p q- j p-1 q- j-1 p

* q
s p-1 q0 p

( ) = ( ) + ( ) ( )    i = 0,1,..., p -1C C CI I I IE
( ) = ( ) + ( ) ( )    j = 0,1,...,q -1J J C JD D I F

( ) = -C I

%

%

EC
s sr rp q-1

F* qD D
s s s sp q r p-1,q r r0 p p q-1

( , )/ ( , )J JI IV
( , ) = ( , ) + ( ) ( , ).V J V J C JI I I I

∆

∆

%

%

 

 

Therefore a chain of subset ARX model recursions is available and forms a complete 

cycle. In summary, we describe a (p-1,q) to (p,q) subset ARX recursion algorithm as 

follows: 
1. Compute A C

p-1 q s p-1 q sr r( , ), ( , )J JI I∆ ∆  and G
s rp-1 q( , ),JIη    

 
2. Compute * q * q* q * q* q * q

p p s s q p s s s sr r r p p r r r0 p 0 p p p( , ), ( , ), ( , ), ( , ), ( , ), ( , ),J C J J G J J JA I I F I I I IF E% %  
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3. Compute EA D E H

s s s s sp q r p q r p q r p q r rp q-1( , ), ( , ), ( , ), ( , ), ( , ),V J V J V J V J JI I I I IV%                             

 

4. Compute  

 
*   q-1 *   q-1

s rp-i p q- j p

* q * q
s ri p j p

*   q *   q
s rp-i p q- j p

*   q
sp-i p

( ), i = 0,..., p -1,  ( ), j = 1,...,q,JIE F
( ), i = 1,..., p -1,  ( ), j = 0,...,q,JA I B

( ), i = 0,..., p -1,  ( ), j = 0,...,q -1,C JI D
( )E I

% %

*   q
rq- j p, i = 0,..., p -1,  ( ), j = 1,...,q,JF

 

and  
* q * q

s ri p j p( ),  i = 0,..., p -1,  ( ),  j = 1,...,qG JI H . 

 

In deriving the (p,q-1) to (p,q) recursive formulae, we introduce a CD% %   type ARX (p-1,q) 

model of the form 

 
p q D* * * *

s r r rq- j 0 q- jp-i
i=1 j=0

*
s sr p-i

( )y(t + q - i) + ( )x(t + q - j) = (t   { ( ) = 0, ( ) = 0)J J JIC D D D

 as j    ( ) = 0 as i  },                 J I IC

ε∑ ∑

ε ε

%
% % % %

%
             (13) 

where D(t)ε  is a n×1 zero mean disturbance process. 

Use the analogous relations for deriving the (p-1,q) to (p,q) recursive relations, we can 

have the (p,q-1) to (p,q) recursions, which can also be obtained by applying the (p-1,q) to 

(p,q) recursions the following exchange: 
 

s ri  j,   ,   , p  q, A  H, C  F, E  D, G B.JI↔ ↔ ∆↔η ↔ ↔ ↔ ↔ ↔  

 

Note that i  j↔  means every i will be replaced by a j, and every j will also be replaced by 

an i. 

So far, we have constructed ascending recursions, where complex (p,q) order ARX  
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models associated with the k-th stage are estimated with information from (p-1,q) order or 

(p,q-1) order complex ARX models available at the (k-1)-th stage. This structure provides 

great benefit in working within a parallel computing environment. In fitting all complex 

subset ARX models up to lag P and lag Q for y(t) and x(t) respectively, the recursive 

computational procedure can be embedded in an inverse tree algorithm. The root of the 

tree represents the complex full order (P,Q) ARX model at the top stage of the tree and the 

complex ARX models with only one y vector variable and one x vector variable make up 

the bottom stage. Further p and q denote the order of the fitted scheme, p = 1,2,..,P, and q 

= 0,1,...,Q. We fit the necessary models associated with the bottom stage, and then 

recursively fit complex subset ARX models which include more variables, moving to 

higher stages, until finally we fit recursively the complex full order ARX model with 

maximum lags P and Q. At each stage, the (p,q-1) to (p,q) recursions are performed if 

possible, and of course the (p-1,q) to (p,q) recursions are introduced when the k-th stage 

complex ARX model includes only one x variable, i.e. the (p,q-1) to (p,q) recursion 

cannot be utilised.  Of course an alternative is to perform the (p,q-1) to (p,q) recursions 

and to follow with all necessary (p-1,q) to (p,q) recursions. The interested reader is 

referred to [3]. The ascending recursions can be alternatively written in the descending 

format, which, for simplicity, are not presented. 

Further, by imposing the constraint that all real matrices are null matrices, the resulting 

ascending recursions become the recursions for fitting vector imaginary subset ARX 

models.  Similarly, by constraining all imaginary matrices to null matrices, the ascending 

recursions for fitting vector real subset ARX models can be derived, which have been 

presented in [3]. 

The proposed procedures for selecting the optimal multivariate complex subset ARX 

model are then summarised in the following two steps: 
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Step 1:  Minimise Akaike's AIC to select the best complex full order AB type ARX model 

from all complex full order ARX models with the order of y from 1,...,K and the order of 

x from 0,1,...,L, where K > P and L > Q. Schwarz's BIC is not used, because we are aware 

of the BIC's parsimonious propensity [3]. We employ AIC to avoid missing any relevant 

parameters. The AIC has the following form: 
 
 AˆAIC = log | | +[2/N] S,V  

with N, the sample size, S, the number of independent parameters, and AV̂ , the estimated 

power matrix. Please note that, in this case, each existing coefficient matrix A*
i  has 2m2 

independent parameters, and each existing B*
j has 2mn parameters. 

 

Step 2:  After the maximum lags P and Q are selected, we then obtain the optimal complex 

subset ARX model by using the proposed recursions for fitting complex ARX models in 

conjunction with the BIC criterion. The criterion has the form: 

 
 AˆBIC = log | | +[logN/N] S,V                                   

and the selected model has the minimum value of BIC. 

 

However, if the natural process can be fully described by an imaginary impulse-response 

matrix, the optimal model would be a vector imaginary subset model. Thus we also need 

to search for the optimal imaginary subset ARX model by repeating the two steps above 

with the constraint that all real coefficient matrices are null. In this case, the ascending 

recursions for imaginary subset ARX models will be used, and each existing coefficient 

matrix A*
i has only m2 independent parameters, and each existing B*

j has only mn 

parameters. 

Analogously, if the natural process can be fully described by a real impulse-response  
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matrix, the optimal model would be a vector real subset model and could be obtained from 

the recursions defined in [3]. 

 

Subsequently, we use the BIC criterion to evaluate the optimal complex subset ARX 

model, the optimal imaginary subset ARX model, and the optimal real subset ARX model 

to select the optimal subset ARX model. 

After the optimal subset ARX model is selected, it is suggested that every independent 

parameter in each existing coefficient matrix be treated as a variable, then extend the tree 

pruning method developed in [11] in conjunction with the BIC criterion to select the 

overall optimal subset ARX model with zero constraints. If the true optimal subset model 

is a vector subset ARX model with some real coefficient matrices and some imaginary 

coefficient matrices, then the selected optimal subset model would still be a complex 

subset ARX model. To establish such a model as "optimal", the tree pruning method 

would have to be used after the proposed recursions. At present a detailed study for 

evaluating this tree pruning algorithm for selecting the overall optimal subset ARX model 

with zero constraints is being carried out by the authors, but excluded in the scope of this 

paper. 

Please note that the proposed procedure for selecting the optimal multivariate complex 

subset ARX model is different from [3]. The reasons are as follows: 

 

By imposing the constraint that all real coefficient matrices are null, the recursive fitting 

formulae for complex subset models can be reduced to the recursive formulae for 

imaginary subset models.  However, this cannot be achieved by imposing any constraint 

on the recursive fitting formulae for real subset models. Moreover, the question as to 

whether the natural process is complex or imaginary in nature cannot be assessed using  
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only the recursive fitting formulae for real subset models to analyse any time series 

system.  

 

Further, the number of independent parameters is an important part of the selection 

criteria for evaluating the optimal model.  In this analysis, any existing complex 

coefficient matrix of y(t-i), i=1,..,p has 2m2 independent parameters, and any existing 

complex coefficient matrix of x(t-j), j=0,..,q has 2mn independent parameters., whereas a 

real or an imaginary coefficient matrix attached to y(t-i) has only m2 independent 

parameters, and a real or an imaginary coefficient matrix of x(t-j) has only mn 

independent parameters. However, in [3], neither complex nor imaginary coefficient 

matrices can be handled.  

 

     3. CONCLUSION 

 
In the previous sections, we have given an effective recursive algorithm for fitting 

multivariate complex subset ARX models. The algorithm widens the possible use of the 

recursive method, and leads to a straightforward and neat analysis for a variety of signal 

processing and control theory applications. This algorithm is applicable to full-order 

model cases, allows users to update optimal multivariate complex subset ARXs at 

consecutive time instants, and can show evolutionary changes detected in multivariate 

complex subset ARX structures. This new approach is particularly useful in complex 

relationships where the relevant time series have been generated from structures subject 

to evolutionary changes in their environment. Further investigations will be undertaken to 

apply the proposed algorithms to the relevant fields (see Chen et al [2], O’Neill et al 

[12]). 
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