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Abstract

Experimental infection systems are important for studying antagonistic interactions and coevolution between hosts and
their pathogens. The red flour beetle Tribolium castaneum and the spore-forming bacterial insect pathogen Bacillus
thuringiensis (Bt) are widely used and tractable model organisms. However, they have not been employed yet as an efficient
experimental system to study host-pathogen interactions. We used a high throughput oral infection protocol to infect T.
castaneum insects with coleopteran specific B. thuringiensis bv. tenebrionis (Btt) bacteria. We found that larval mortality
depends on the dietary spore concentration and on the duration of exposure to the spores. Furthermore, differential
susceptibility of larvae from different T. castaneum populations indicates that the host genetic background influences
infection success. The recovery of high numbers of infectious spores from the cadavers indicates successful replication of
bacteria in the host and suggests that Btt could establish infectious cycles in T. castaneum in nature. We were able to
transfer plasmids from Btt to a non-pathogenic but genetically well-characterised Bt strain, which was thereafter able to
successfully infect T. castaneum, suggesting that factors residing on the plasmids are important for the virulence of Btt. The
availability of a genetically accessible strain will provide an ideal model for more in-depth analyses of pathogenicity factors
during oral infections. Combined with the availability of the full genome sequence of T. castaneum, this system will enable
analyses of host responses during infection, as well as addressing basic questions concerning host-parasite coevolution.
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Introduction

Insects are important model organisms for studying the

evolution and mechanisms of immunity and host-pathogen

interactions [1–4]. For example, experimental approaches have

been established for oral inoculation of natural bacterial pathogens

for the main insect model, the fruit fly Drosophila melanogaster [5–7],

thereby adding a vital tool to the methodological repertoire of

insect immunology. This has enabled the successful in-depth study

of the pathology of bacterial infections [8], [9].

The red flour beetle Tribolium castaneum (Herbst 1797) has

developed into a fully-fledged insect model organism [10]. The

value of T. castaneum as an alternative insect model lies in the fact

that, as a coleopteran, it shows a number of distinct differences to

the fly and since it is evolutionarily more basal, it can be regarded

as being more representative of other insects [11–13]. The

availability of an expanding genetic and genomic toolbox that

includes well-functioning systemic RNAi [14], [13] has made T.

castaneum an upcoming model for a number of research fields [14],

[11], [10], [13], including immunity and host-parasite interactions

[15–17]. Furthermore, T. castaneum is a serious pest species in

many areas of the world, leading to substantial losses in the

nutritional value of stored agricultural products [18]. Therefore,

there is a strong interest in research on pest management for this

species.

Bacillus thuringiensis Berliner 1915 (Bt) is a Gram-positive

bacterium that forms highly resistant endospores when nutrients

in the environment become limiting. One of its main character-

istics is that it produces plasmid-encoded crystalline inclusions (Cry

proteins) during the sporulation phase, which are toxic to specific

insect orders upon ingestion [19], [20]. The nomenclature of Cry

toxins is based on amino acid identity [21]. Cry3 toxins are active

towards some coleopterans and cross-order activity has been

reported for some of the lepidopteran-specific Cry toxins (reviewed

in [22]). The vast majority of studies have focussed on the toxicity

of Cry toxins [23], [24], and several mechanisms for its mode of

action have been proposed (reviewed in [25]). However, many

insects, including T. castaneum have been shown to be refractory to

purified toxins [26], [27] and mortality is observed only when

bacterial spores are added to the diet [28]. The ingestion of spores

and the following infection process that takes place in the gut and

subsequently the haemolymph is considered a natural infection

route for Bt [29]. Investigations on how the bacteria behave inside

the host after infection and processes that act in addition to the

toxins are therefore highly interesting from the viewpoint of host-

parasite coevolution.

We exposed T. castaneum to Btt bacteria via oral route, and

moreover made use of a genetically well characterised Bt strain.

Since both the host and the pathogen are accessible to genetic

manipulation, the system will enable detailed genetic analyses of

the infection process and host-pathogen interactions. Importantly,
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Bt itself is an organism of utmost importance for basic and applied

sciences [30–33]. Currently studied natural insect hosts of B.

thuringiensis are mostly lepidopterans, such as the diamondback

moth (Plutella xylostella) [34], the tobacco hornworm (Manduca sexta)

[35], and the cotton bollworm (Helicoverpa armigera) [36] for which

the full repertoire of genetic and genomic tools is not yet available.

Likewise, even though D. melanogaster has been shown to die from

exposure to Bacillus species, including B. thuringiensis [37], to our

knowledge it has not been established as an experimental host for

Bt. Transgenic D. melanogaster carrying lepidopteran (M. sexta) Cry

receptor have been shown to become susceptible to Bt [38],

suggesting a role for this specific receptor. However, such a system

would not allow addressing the natural infection process or the

genetic variation in the full range of factors that are relevant for

susceptibility to B. thuringiensis.

Our first objective was to verify the most suitable bacterial strain

for the investigation of this host-pathogen interaction. We

identified Bt morrisoni bv. tenebrionis (Btt) as infective to T. castaneum,

and further characterised the susceptibility of geographically

diverse populations of T. castaneum to this strain. We then

investigated the behaviour of the bacteria in the host and the

time course of the infection. We also demonstrate the transfer of

plasmids from Btt to a non-pathogenic but genetically charac-

terised Bt strain, which thereby became able to successfully infect

T. castaneum. The availability of such a genetically accessible strain

will be most useful for a more in-depth analysis of this interaction

in the future. The T. castaneum – Bt system proposed here shows the

potential for in-depth experimental analyses of a coleopteran

insect model host’s interaction with this important pathogen.

Results

Insecticidal Activity of Different Bt Strains to T. castaneum

Larvae
We analysed the infectivity of four different Bt strains (Table 1)

towards three different T. castaneum populations, the laboratory

populations San Bernardino (SB) and Georgia 2 (GA-2) and the

recently wild-collected Croatia 1 (Cro1) population (Figure 1A).

When comparing the survival of the naı̈ve group to the other

treatments, only the Btt strain was able to induce significant

mortality of T. castaneum larvae from all beetle populations. All

other bacterial strains induced no significant mortality above the

background level of the control insects (Figure 1A, Table S1).

Larvae were kept constantly on the spore-containing diet (flour

discs with spores in a 96 well plate), but the majority died within

the first 24 hours after the exposure had started, with low mortality

during the following days (Figure S1). Mortality was dependent on

the spore concentration used to prepare the diet (16109 mL21:

z = 4.463, p =,0.0001, 161010 mL21: z = 6.870, p =,0.0001),

and SB and GA-2 population differed in their responses to the

dietary spores (z = 2.484, p = 0.013, Table S1). Note that the total

spore number that each larva was confronted with was approx-

imately 46107 for the 16109 mL21 and 46108 for the

161010 mL21 concentration of the original suspension used to

prepare the diet (see materials and methods for details).

Dose Response Curves for Btt Infection
The infection system allows for exposure to precise doses of

dietary bacterial spores by adding different concentrations of

spores per mL to the flour the experimental animals are kept on.

This enabled us to study in more detail how the infection success

of Bt depends on the spore exposure dose. For this, we used the Btt

strain since it was the only strain causing significant mortality of T.
castaneum larvae, and we used SB, GA-2 and Cro1 insect

populations to test whether dose-response curves are population

specific. For spore concentrations above a threshold concentration

of 108 spores per mL, all three populations showed a clear dose-

dependent mortality, but the populations differed in the dietary

concentration of spores required to kill a certain proportion of

larvae (Figure 1B). Over a broad range of spore concentrations,

the wild population Cro1 was found to be around 30–40% less

susceptible than the two laboratory populations (Table S2). The

lowest of the tested spore concentrations that resulted in reduced

survival of larvae in all three populations was 56108 mL21

(z = 3.643, p = 0.0003). When fed on the highest spore concentra-

tion tested (561010 mL21), some larvae of the laboratory

populations SB and GA-2 were still alive at day seven, but all

had died by day 13 (data not shown).

Differences in Susceptibility to Btt among ten Beetle
Populations
Data obtained from the previous two experiments indicated that

beetle populations may differ in their susceptibility to Btt. We

therefore further compared the susceptibility of ten beetle

populations (Table 2) to test this finding in more depth. Our ten

populations showed substantial differences in their susceptibility to

Btt, varying from 40%–85% survival after seven days of constant

exposure to spores (Figure 1C). When compared to the standard

laboratory population (SB), populations Cro1, Cro2, 50, 57, and

61 (Cro1: z =22.527, p= 0.011, Cro2: z =25.696, p =,0.0001,

50: z =21.948, p =,0.0001, 57: z =25.005, p =,0.003, 61:

z =23.004, p= 0.004) had higher survival rate when fed on Btt

spore-containing diet (56109 mL21), Table S3. The majority of

larvae died during the first day of exposure; mortality was strongly

reduced on the second day, and on the third day only a small

percentage of the larvae died. In most of the populations, no

mortality was recorded thereafter.

Adult Susceptibility to Btt and Btk Strains
Despite our observation that the adults (SB, GA-2 and Cro1

population) fed on the Btt spore-containing diet (56109 ml21), no

mortality was recorded during seven days of exposure. This

experiment was repeated twice with the same results. It has

previously been shown that adult T. castaneum are susceptible to

purified toxin formulations of Bt kurstaki (Btk) [39]. We therefore

tested the susceptibility of adults of the SB beetle population to Btk

spores (56109 mL21), however, similarly to Btt, no mortality was

observed.

Plasmid Exchange between Btt and the Non-pathogenic
Bt 407gfpcry 2

We were able to transfer pathogenicity factors from Btt

(naturally neomycin resistant) to the non-pathogenic, green

fluorescent protein (GFP)-expressing Bt 407gfpcry 2 that is

erythromycin resistant (Table 3). After conjugation and selection

on neomycin and erythromycin, we identified a number of double

resistant clones. The selected clones were all of the 407 genetic

background, which was confirmed by Rep-PCR (Figure S2) and

which would imply that the gfp carrying plasmid was not

transmittable from Bt 407gfpcry 2 to Btt. We tested for the

presence of the cry3A gene with a cry3A-specific PCR (Figure S2).

Btt carries two plasmids, a smaller one with unknown virulence

factors and a large cry-carrying plasmid [40]. A large proportion

(around 90%) of the tested clones was cry negative. Since the

negative clones were able to grow on neomycin, this indicated that

the resistance for this antibiotic may be present on the smaller

plasmid. These clones were denoted as Bt 407gfp-neocry 2. We were

A Beetle Model for Bt Infection
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Figure 1. Infection of T. castaneum with B. thuringiensis. (A) Insecticidal activity of different Bt strains to T. castaneum larvae. Larval
survival at day seven after constant exposure to flour containing Bt spores with two different concentrations, 109 mL21 and 1010 mL21 of four
different Bt strains. Insect populations infected: San Bernardino (SB), Georgia 2 (GA-2), Croatia 1 (Cro1). (B) Dose response curves for Btt
infection. Survival of three populations of T. castaneum larvae (SB, GA-2 and Cro1) at day seven after constant exposure to different concentrations
of Btt spores in flour. We fitted linear regression curves to the log transformed values of spore concentrations, excluding the first two values where no
mortality was induced (SB: survival = 3.68–0.15*log spore concentration, r2= 0.97, p =,0.0001; Cro1: survival = 2.56–0.08*log spore concentration,
r2=0.70, p,0.01; GA-2: survival = 4.35–0.18*log spore concentration, r2=0.89, p,0.001). (C) Differences in susceptibility to Btt among ten
beetle populations. Survival of ten populations of T. castaneum larvae at day seven after constant exposure to Btt spores in flour (56109 mL21). (D)
Limited exposure time to Btt spore-containing diet. Survival of T. castaneum larvae (SB population) 24 hours after limited exposure time to

A Beetle Model for Bt Infection
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not able to test the toxicity of these clones, since the bacteria did

not sporulate in the presence of both antibiotics, even after two

weeks of growth in spore-culturing conditions. Of the double

resistant clones, five tested positive for cry3A and were denoted as

Bt 407gfp-neocry +. One clone was chosen for further analyses. This

conjugated strain Bt 407gfp-neocry+that had the large cry-carrying

plasmid was able to induce considerable mortality in SB and Cro1

beetles (Figure 2). Mortality was lower compared to the original Btt

strain, Table S4, Table S5). The mortality pattern during the

seven days of spore exposure was similar to the Btt strain, with the

majority of larvae dying on the first day.

We noticed that the large cry-carrying plasmid was rather stably

retained in the conjugated Bt 407gfp-neocry+strain. In the majority

of cases where the conjugated strain was raised in the absence of

antibiotics, the plasmid remained present. However, upon

repeated freezing and thawing of glycerol stocks, the plasmid

was lost at a higher rate. We observed plasmid loss also when the

strain was raised with erythromycin alone, or with both antibiotics

(erythromycin and neomycin) together. However, when raised

with neomycin alone, the cry gene was retained (as detected by

PCR), but the GFP signal was lost, suggesting that harbouring all

three plasmids comes with a cost for the cells.

Limited Exposure Time to Btt Spore-containing Diet
In the previous experiments, larvae were continuously kept on

spore-containing flour. However, since most larvae died on the

first day of exposure, continuous exposure may not be necessary to

achieve mortality. Therefore, to analyse in more detail the

behaviour of the ingested pathogen and the infection dynamics

in the host, we limited the exposure time to the spore-containing

diet. We therefore tested the exposure time necessary to induce

mortality, and kept T. castaneum larvae (SB population) on spore-

containing flour (Btt, 5x109 spores ml21) for between 30 and 180

minutes before transferring them to spore-free diet and followed

their survival. Larval mortality 24 hours post initial exposure (PIE,

here defined as the start of the 180 min. exposure period) occurred

with only 60 minutes of exposure, although it was significantly

different from the control treatment after 120 minutes (z = 2.311,

p = 0.021, Table S6). After 180 minutes of exposure, mortality

reached values equivalent to continuous exposure (Figure 1D) and

no mortality was recorded 48 hours PIE. This suggests that the

number of spores required to induce mortality is possibly rather

low and that the first physiological changes in both the host and

the parasite that contribute to mortality probably occur quite early

in the process of infection.

spore-containing diet. Survival is shown for 24 hours post initial exposure (PIE) since 48 hours PIE no additional mortality was observed. (E) Spore
load of cadavers after infection with Btt. Total spore number recovered from larvae that were collected on first, second and the third day of
death.
doi:10.1371/journal.pone.0064638.g001

Table 1. Bt strains used to test their insecticidal activity to T.
castaneum larvae.

Bt strain BGSC Code Cry toxin

Bt morrisoni bv. tenebrionis (Btt) 4AA1 3Aa

Bt tolworthi (Bttw) 4L3 3Ba

Bt kumamotoensis (Btkm) 4W1 3Bb

Bt kurstaki (Btk) HD1 1Aa, 1Ab,1Ac, 2A, 2B

doi:10.1371/journal.pone.0064638.t001

Table 2. Tribolium castaneum populations that were used in
the study.

Beetle population Year collected or establishedOrigin

Cro1 2010 Croatia

Cro2 2010 Croatia

SB Unknown California, USA

GA-2 1982 Georgia, USA

43 1988 Kyushu Island, Japan

50 2005 Indiana, USA

51 2006 Missouri, USA

57 2002 Peru

61 1996 Banos, Ecuador

OC Münster 2008 Outcrossed

doi:10.1371/journal.pone.0064638.t002

Figure 2. Pathogenicity of the conjugated Bt 407gfp-neocry+-
strain. Survival of T. castaneum larvae at day seven after constant
exposure to spores in flour of conjugated Bt 407gfp-neocry+strain, Btt
and the control strains (Table 3). Insect populations infected: A - San
Bernardino (SB), B – Croatia 1 (Cro1). Spore concentration in flour:
56109 mL21.
doi:10.1371/journal.pone.0064638.g002
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Larval Mortality Rate
We used the information from this experiment to obtain a more

complete picture of the course of larval mortality following the

infection. We exposed larvae of the SB population for 180 minutes

to 5x109 spores ml 21 (Btt, Bt 407gfp-neocry+and the control strains,

Table 3) and then transferred them to fresh flour without spores.

We subsequently screened survival every hour until twelve hours

PIE, and then again at 24h and 48 hours PIE (Figure 3). A small

number of larvae (4%) had already died during the 180 min. of

exposure. The survival curves for both pathogenic strains (Btt and

Bt 407gfp-neocry +) followed the same mortality trend. Larvae

started dying seven to eight hours PIE and mortality was more

strongly induced at 10 and 12 hours PIE. However, most larvae

died between 12 and 24 hours PIE. Although the survival curves of

the pathogenic strains showed similar mortality rates, Bt 407gfp-

neocry+again induced lower mortality in comparison to Btt

(z = 5.164, p = 0.007, Figure 3, Table S7).

Infection Dynamics of Btt Infection
To describe the infection process in more detail, we monitored

bacterial growth in the host (SB beetle population) hourly until 13

hours PIE, since Btt induced fast mortality in previous experi-

ments. Larvae were exposed for a maximum of three hours to Btt

spores (5x109 spores ml21), and observations started at two hours

PIE. At two hours PIE, only germinating spores, which appeared

dark under phase contrast, were observed in the midgut. After

about two to three hours PIE, the spores started to elongate into

growing cells. Already at four to six hours PIE, 23% of infected

larval midguts had a high load of vegetative cells, rising to 51% of

the larvae seven to nine hours PIE. The midgut was entirely filled

with bacteria, which seemed to be retained inside the midgut since

they were not entering the surrounding buffer through the midgut

wall after dissection. We were not able to observe bacteria in the

haemolymph at any time point, although the haemolymph

appeared darker in colour in some individuals suggesting the

activation of an immune response (phenoloxidase reaction). After

the originally ingested spores had germinated, only vegetative cells

were observed during the following time-points. The formation of

new spores was only observed in larvae that had been dead for one

to two days, and after seven days the vast majority of bacteria

inside the larvae had sporulated. Overall, in about 30% of the

cases, neither germinated spores nor vegetative cells could be

observed in the midgut.

Spore Load of Cadavers after Infection with Btt
We measured the spore load of larval cadavers that had died

from Btt infection. The mean total spore number per larvae was

1.836107, but it varied considerably among cadavers. We

compared the spore load of larvae that had died on different days

after being constantly exposed to the dietary spores (Figure 1E).

The spore load was significantly higher in larvae that had died on

the first day as compared to those that had died on the third day

after spore exposure (Wilcoxon test, x2=9.06, df = 2, p = 0.011,

Figure 1E, error bars 1+/2 SE). The spore load recovered from

cadavers was much higher than the amount of spores larvae had

originally ingested (see materials and methods), which is indicative

of successful replication of Btt inside T. castaneum.

Discussion

The red flour beetle T. castaneum and the bacterium B.

thuringiensis (Bt) provide a useful oral infection model system for

experimental studies of host-pathogen interactions. The system

enables the simultaneous study of bacterial infection strategies and

responses of the host in a well-studied insect model organism.

The four Bt strains that we tested carry different Cry toxins

(Table 1) and have previously been shown to be able to induce

mortality in coleopterans. We found that only the Cry3Aa

producing strain, Btt, resulted in significant mortality of T.

castaneum larvae when exposed to spore - toxin mixtures. The

main factor causing pathogenesis of the Btt strain is not fully clear.

Btt produces the Cry3Aa toxin, which when applied in its purified

form (without the addition of spores), caused mortality to the

yellow mealworm beetle Tenebrio molitor but not to T. castaneum

Table 3. Plasmid exchange between Btt and the non-
pathogenic Bt 407gfpcry.

Bt strain Antibiotic resistance

Bt morrisoni bv. tenebrionis (Btt) neoR

Bt thuringiensis Cry 2 (Bt 407gfpcry 2) eryR

Bt thuringiensis Cry+(Bt 407gfp-neocry +) eryR, neoR

Bt thuringiensis (Bt 407cry 2) –

doi:10.1371/journal.pone.0064638.t003

Figure 3. Larval mortality rate. Larvae of SB beetle population exposed for 3 hours to spore-containing diet. Mortality rate was monitored hourly
starting from the third hour post initial exposure (PIE) till the twelfth hour PIE and then 24 and 48 hours PIE.
doi:10.1371/journal.pone.0064638.g003

A Beetle Model for Bt Infection

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e64638



[27]. A recent study [41] reported a very low mortality in T.

castaneum when exposed to spore-crystal mixtures of Cry3Aa

producing strain. The different mortality observed in this study

might come from a different bacterial chromosomal background

or from differences in spore concentrations that were provided in

the diet. Heimpel and Angus (1960) [26] categorised Bt susceptible

lepidopteran insects into three types. The first and second types

are susceptible when they are subjected to the toxin preparations

alone, with differences in the speed with which mortality is

induced. The third type of insects are not susceptible to the toxin

alone, but a spore-toxin formulation is required for pathogenesis.

Since the purified toxins from the Btt isolate are not sufficient to

induce mortality in T. castaneum larvae, infection success here as

well might rely on spore - crystal synergism, as suggested

previously by Li et al [28]. Further research is necessary to

determine the exact role of the Cry protein and the possible

relevance of spore - crystal interactions in the infection process in

this system.

Btt was originally isolated from a larva of T. molitor [42], a

species which is closely related to T. castaneum. The nucleotide

sequence of Btt’s cry gene [43], [44] is identical or very similar to

the toxin genes of other isolates that have been found to induce

mortality of coleopterans [45–47]. T. castaneum larvae were shown

to be susceptible to Bt isolates from Egypt [48] and to strains

isolated in Pakistan [49], but no further information on these

isolates is available. To the best of our knowledge, the present

study is the first showing T. castaneum susceptibility to the Btt strain.

In contrast to oral infections, studies where Bt has been introduced

into the haemocoel via septic wounding, non-coleopteran Bt

strains were able to induce significant mortality [50], [51]. Such

septic infection, which may also occur in nature, circumvents the

infection processes in the gut, where specificity is mediated

through Cry proteins, which bind specifically to host receptors in

the gut epithelium [20], [52].

We were able to transfer pathogenicity from Btt to a non-

coleopteran strain of Bt (Bt 407gfpcry 2) through the transfer of

plasmids. Mortality induced by the conjugated strain was

somewhat lower than with Btt, suggesting that additional virulence

factors might reside on the chromosome of the original pathogen.

Alternatively, if the Cry protein plays a crucial role in acting

synergistically with the spores to cause mortality, the lower

virulence might be caused by a lower copy number of the

transferred plasmid or reduced expression of the cry toxin gene in

the conjugated strain. The exchange of plasmids from Btt to a non-

pathogenic strain may also be interesting to assess the role of the

exchange of genetic material for the evolution of pathogens and as

a factor contributing to the maintenance of genetic diversity and

virulence in natural Bacillus populations. Plasmids can easily be

exchanged in some Bt strains, which may broaden the host range

of these bacteria.

Most parts of the gut of T. castaneum are far less basic than

typical lepidopteran guts [53], such that spores probably start to

germinate immediately after ingestion, as they do in vitro [54]. For

this reason, infection can potentially depend on the early toxin-

induced damage and reduced gut peristalsis, which enables the

bacteria population to grow and remain in the midgut, but this

needs to be experimentally verified. Note that food passage from

the mouth to the ileum is only 60 minutes in T. castaneum [53]. We

observed rapid bacteria proliferation in the gut only a few hours

after the feeding had started, which was not observed within the

spore and flour/yeast mixture, so this cannot be attributed to the

bacteria feeding on the beetle diet.

It would be interesting to investigate in more detail the reasons

for differential susceptibility to Btt of larvae from different

populations (Figure 1C). Such differences may be due to a

number of reasons, including differences in the immune responses

of the different populations against the bacteria. Resistance may be

related to genetic diversity of the host, since both recently captured

populations and the outcrossed line (OC) showed rather high

resistance, compared to most of the laboratory lines. Alternatively,

populations may differ in their associated microbiota, which might

play a role, even though the midgut microbiota is not the sole

reason for the infection success of Bt [55], [29].

Adults seemed to be resistant when subjected to the same dose

of spore-crystal preparations as larvae (56109 spores ml21). By

examining the spore discs, we observed that the adults did not

avoid the infectious diet. The potential reasons for adult resistance

may include superior processing of the toxin in the midgut [56],

but also immune responses that are more efficient against Bt.

Moreover, there are morphological differences between the

midgut of larvae and adults, with adults having numerous

regenerative crypts along the surface of the midgut [57], [58].

This could potentially confer resistance through faster regenera-

tion of epithelial cells as suggested by Ferre and van Rie [59], but

this hypothesis needs further investigation. Interestingly, previous

studies showed that commercial formulations of purified toxins

from a lepidopteran specific strain Bt kurstaki, induced mortality in

T. castaneum adults [39]. However in our study, spore - toxin

preparations of Btk induced mortality neither in adults nor in

larvae.

Most of the Bt infection scenarios have been described for

lepidopteran insects [60–63] whose midgut physiology markedly

differs from coleopteran insects. Bt has been reported to cause

death through general septicaemia [64–66], [29] by invading host

tissues from the midgut. This may involve repeated resporulation

of the vegetative cells in the midgut, which facilitates the

production of highly concentrated Cry crystals [67], [68], [66].

The course of Bt infection in T. castaneum seems to differ from the

infection process described for lepidopteran hosts, and does not

follow the expectations for a typical intoxication process as

observed in other insects. We could not detect bacteria in the

hemolymph of live larvae, nor did we observe the formation of

new spores as long as the insect was alive, although it is possible

that numbers of bacteria in the haemolymph or spores in the gut

could have been below our detection limit. A possible reason as to

why resporulation may not be required is that vegetative cells also

express the cry gene in the Btt strain [69].

The infection process in the T. castaneum larval gut was fast and

mortality was rapidly induced. Fast killing may be advantageous

for Btt since as long as the host is alive it has to overcome its

immune system. By killing quickly, Btt can exploit the hosts’

nutrients and sporulate, which enables further infections and

pathogen propagation. This strategy may explain our somewhat

puzzling observation that the pathogen achieved lower spore load

in larvae that died later than those that died on the first day after

exposure, which differs from the observations made in lepidop-

teran insects [70] where insects that died on the third day had

more spores than those that died earlier or later after infection.

Different host species were shown to offer a more favourable

environment for Bt replication than the others [71], a phenom-

enon which is present within one species and is time-of death

dependant; nevertheless, it is different for different Bt species that

might have evolved specialisations for different insect orders.

The ecology of Bt is not completely understood since most of the

Bt spores are abundantly found where the target hosts are not

always present [72]. Although transmission of Bt in nature is not

well characterised, a higher prevalence of entomopathogenic

(toxin-carrying) Bacillus isolates in soil was correlated with the
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presence of insect cadavers in a field trial, and specialisation of a

certain isolate for lepidopteran insects has been suggested [72]. Of

particular relevance to the ecology of T. castaneum is the

observation that Bt has been isolated from animal food mills

[73] and that Bt strains isolated from granaries have been shown to

be able to induce mortality in T. castaneum [48]. Moreover, a Bt

isolate that has a highly similar cry gene sequence to the sequence

of the cry3Aa gene from the tenebrionis strain was isolated from dead

Tribolium sp. [47]. The cannibalistic nature of T. castaneum and

other Tribolium species [53] provides the opportunity for them to

come into contact with a high dose of spores if they cannibalise

larval cadavers. In support of this hypothesis, we observed that

some larvae that were allowed to feed on three week old infected

larval cadavers for two days, subsequently died and their bodies

were loaded with Btt (data not shown). Although more detailed

experiments are needed to verify this observation, it tentatively

suggests that the reproductive cycle of Bt can be completed in T.

castaneum in nature.

Materials and Methods

Insects, Bacteria and Infection Protocol
Insects. Our study is based on eight laboratory and two wild

populations of T. castaneum (Table 2). Genetic differentiation

between the populations and some degree of inbreeding might be

expected in the laboratory populations due to potential genetic

bottlenecks at the time of collection and the time for which they

have been kept in the laboratory [74], [75]. The San Bernardino

population (SB) originates from Alexander Sokoloff, California.

The outcrossed population OC Münster was produced in our

laboratory by crossing 10 different laboratory populations: 43, 50,

51, 52, 53, 55, 57, 58, 59, 61, which had been provided by

Michael Wade (Indiana University, Bloomington, USA), together

with the GA-2 population. The Croatia 1 (Cro1) and Croatia 2

(Cro2) populations are presumably the most genetically diverse

since they were collected recently (Croatia, May 2010: Cro1:45u

489 55.9899, 16u 179 12.796899, Cro2:46u 09 11.962899, 15u 509

39.19599), and were established from multiple individuals from

random mating pairs (165 pairs for Cro1 and 27 pairs for Cro2).

The offspring of the pairs were used to establish the stock

populations. Both of the wild populations are kept as large stock

populations (ca. 10,000 individuals each) and were allowed to

adapt to laboratory conditions for about 14 generations (1 year

and 6 months) before the experiments started. All beetles were

kept on heat-sterilised (75uC) organic white flour (type 550) with

5% brewer’s yeast at 30uC, 70% humidity and a 12h/12h light-

dark cycle.

Bacterial strains. In this study, the susceptibility of T.

castaneum to Bt bacterial strains was investigated in order to find the

most suitable strain for investigation of host-pathogen interactions.

Strains for the infections were chosen according to their Cry toxins

(Table 1). Bt tolworthi and Bt kumamotoensis both carry toxins that are

toxic against coleopteran insects [76], [77]. Bt morrisoni bv.

tenebrionis is toxic to coleopterans [42], [78], [79]. Bt kurstaki is a

lepidopteran-specific strain although purified toxins were found to

be active against T. castaneum adults [39], [22]. All B. thuringiensis

strains were provided by the Bacillus Genetic Stock Center (BGSC,

Ohio State University, USA) except for the strains Bt 407cry 2 and

Bt 407gfpcry 2 [80], the latter of which carries a green fluorescent

protein (GFP) marker [81]. These strains were kindly provided by

Dr. Christina Nielsen-Leroux, Institut National de Recherche

Agronomique, La Minière, 78285 Guyancourt Cedex, France.

Production of spore-crystal preparations. Spores were

freshly produced before each infection using a modified version of

a previously described protocol [82]. Vegetative cells and spores

were cultured at 30uC. Bacteria from a glycerol stock (stored at -

80uC) were plated on LB agar and grown overnight. This was

done freshly before each infection to prevent loss of pathogenicity

by long-term storage of bacteria on LB agar plates. The following

day, 5 ml of BT medium (w/V–0.75% bacto peptone (Sigma),

0.1% glucose, 0.34% KH2PO4, 0.435% K2HPO4) was inoculated

with one bacterial colony with the addition of 25 mL of salt

solution (w/V–2.46% MgSO4, 0.04% MnSO4, 0.28% ZnSO4,

and 0.40% FeSO4) and 6.25 mL of 1M CaCl262H2O and allowed

to grow overnight on a bacterial shaker at 200 rpm. The following

day, the resulting bacteria suspension, 5 mL of salt solution and

250 mL of 1M CaCl262H2O were added to 1 L of BT medium,

and it was further incubated for a total of seven days in darkness.

On day four, another 5 mL of salt solution and 250 mL of 1M

CaCl262H2O were added. After seven days the suspension was

centrifuged at 4000 rpm for 15 minutes, washed once in

phosphate buffered saline (PBS) and then resuspended in PBS.

The spores were counted with a Thoma counting chamber. Such

spore preparations together with their crystals (spore-crystal

preparations) were stored for a maximum of three days at room

temperature and protected from light until they were used in

experiments.

General infection protocol. For the infection of T. castaneum

larvae, a modified protocol from Oppert (2010) [83] was used. The

desired spore concentrations were adjusted by adding PBS, and

0.15 g of heat-sterilized flour with yeast was added per ml of spore

suspension. Forty microliters of the resulting liquid diet was

pipetted into each well of a 96-well plate (Sarstedt, Germany)

under sterile conditions. The diet for the control insects was made

in the same way but without the addition of spores. The open 96-

well plates were then placed in plastic boxes (Tupperware), three

in one box. Six holes were punctured in the lids of boxes (3 cm

diameter) and plugged with foam stoppers (K-TK e.K., Germany)

(4.2 cm diameter) to allow the air to circulate. The boxes were

placed in a 50uC oven overnight to allow the spore-crystal discs to

dry. Once the spore-crystal suspension had been mixed with flour

it was only used on that same day in order to prevent spore

germination and bacteria growth in the medium. The drying

process did not allow for any spore germination and bacterial

proliferation in the disc, which was confirmed by examining the

disc under the microscope (4006magnification) before the

infection. After the drying process, one larvae was added per well

and the 96-well plates were sealed with transparent self-adhesive

tape and holes were punctured to allow air circulation in each well.

The 96-well plates were placed back into the plastic boxes and

were kept as described before at 30uC and 70% humidity for

infection. This protocol minimises the risk of contamination with

spores and is suitable for rapid infection of a large number of

individuals. The larvae remain constantly visible, which enables

easy screening of survival (up to 3000 individuals per person, per

hour). For laboratory surface sterilisation, 4% Incidin Active

(Ecolab) was used. For each infection, 13–14 day old larvae

(approximately 4 mm long) descending from approximately 200–

300 one month old parents were allowed to feed for varying

amounts of time, depending on the experimental setup. Since the

Btt spores were homogenously mixed into the flour, the larvae are

unlikely to selectively avoid taking up the spores from their food.

However, an avoidance strategy could be to stop feeding when

food is recognised as infectious. T. castaneum larvae can tolerate

starvation for a maximum of 2 weeks [53], such that it would be

possible that the exposed larvae that did not die early on during

the exposure stopped feeding and died from starvation later on. To

exclude this possibility, we verified that larvae had fed during the
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days of exposure by examining the flour feeding discs. The

majority of larvae had eaten; however the feeding rate seemed

reduced in comparison to control animals. Adult beetles (approx-

imately two weeks post eclosion) were infected in the same way.

Dead larvae were recognisable by the black body colour, or their

immobility when touched with the tip of an injection needle and

the relaxation of their legs.

The concentration of spores used in the experiments is

expressed as concentration of spores per mL of the original

suspension that was used to prepare the diet. Since the liquid

evaporates during the overnight drying process of the flour discs,

spores per mL can be expressed as spores per 150 mg of flour with

yeast, which was the amount of flour that was added per mL of

suspension. Each larva was confronted with 40 mL of the spore-

containing liquid diet, therefore the total spore number per disc is

approximately the spore concentration per mL divided by 25.

Furthermore, larvae eat a small portion of this diet, which would

indicate that the number of spores necessary to cause mortality is

potentially low.

Experimental Design
Insecticidal activity of different Bt strains to T.

castaneum larvae. We analysed the susceptibility of three

beetle populations (SB, GA-2 and Cro1, Table 2) to four different

Bt strains whose toxins or spore-toxin preparations have previously

shown toxicity towards coleopteran insects: Btt, Btk, Btkm, Bttw

(Table 1). Spore concentrations of 16109 and 161010 ml21 were

tested for each bacterial strain. Larvae were kept constantly on

spore-containing diet and the survival was assessed daily for seven

days. Forty eight larvae were used for each of the treatment and

the control groups.

Dose response curves for Btt infection. To test the

insecticidal activity of different spore concentrations of Btt, a dose

response curve was performed using the following concentrations

of spores per ml21:16106, 16107, 16108, 56108, 16109, 36109,

56109, 76109, 161010 and 561010. Larvae from the SB, GA-2

and Cro1 populations were kept constantly on spore-containing

diet and survival was assessed daily for seven days and then on the

13th day. Forty eight larvae were used for each of the treatment

and the control groups.

Differences in susceptibility to Btt among ten beetle

populations. To test the susceptibility of ten beetle populations

that were collected from different regions of the world (Table 2),

the Btt spore concentration was adjusted to 56109 ml21. Larvae

were kept constantly on spore-containing diet and the survival was

measured daily for seven days. Ninety six larvae were used for

each of the treatment and the control groups.

Adult susceptibility to the Btt and Btk strains. The

susceptibility of adults (SB, GA-2 and Cro1) was tested with a Btt

spore concentration of 56109 ml21. In a previous study it was

shown that T. castaneum adults are susceptible to purified toxins of

the Btk strain [39], therefore in a separate experiment, we tested

the susceptibility of beetles from the SB population to Btk spores

(56109 ml21). The beetles were kept constantly on spore-

containing diet and survival was assesses daily for seven days.

Forty eight adults were used for each of the treatments and for the

control group.

Plasmid exchange between Btt and the non-pathogenic Bt

407gfpcry –. The Bt 407gfpcry 2 strain [80] is cured of a large

Cry-carrying plasmid and carries a GFP marker linked to

erythromycin resistance (pHT315-paphA3’:gfp, [81]). The strain is

well genetically characterised and can be easily genetically

manipulated [84–88]. Since the strain does not induce mortality

in T. castaneum, we transferred plasmids via conjugation from the

Btt strain in order to test whether we could also make it

pathogenic. Btt carries two plasmids, a smaller one and a large

plasmid that carries the cry gene together with other potential

pathogenicity factors [40]. Btt is naturally neomycin resistant [89].

Bacterial conjugation was performed as described previously [90].

The donor and recipient strains were grown separately at 30uC,

200 rpm, in Luria Broth (LB) medium with appropriate antibiotics

overnight and were subsequently diluted 1:100 into 7 ml of pre-

warmed LB medium. Cultures were grown to an optical density

(OD 600) of 0.5, and 250 ml of each strain were mixed together

and incubated at 30uC and 180 rpm for 3 hours. To select for

transconjugants, the suspension was plated on LB agar plates with

neomycin (15 mg/mL) and erythromycin (10 mg/mL) and grown

overnight. Individual colonies were screened by colony PCR (1.

29–94uC, 2. 2099–94uC, 3. 2099–57uC, 4. 4099–72uC (2.–4.635), 5.

3–72uC), using the primers Col1A and Col1B [91]. Before each

experiment with the conjugated strain, the Cry3A gene was

confirmed as present by heating 5 ml of spore suspension for 20

minutes at 90uC and the same PCR protocol as above was used

with 2 mL of spore suspension. The genomic background of

bacterial strains obtained after the conjugation was confirmed by

repetitive extragenic palindromic sequence-based PCR analysis

(Rep-PCR) as previously described [92], this is a DNA

fingerprinting technique based on the generation of distinctive

electrophoretic patterns via primers designed for Rep sequences.

Bioassay with the conjugated strain. The toxicity of the

conjugated strain Bt 407gfp-neocry+was tested on larvae from SB

and Cro1 beetle populations using the general infection protocol

as mentioned previously. Strains that were used in this bioassay are

summarised in Table 3. Besides Btt and the newly created Bt

407gfp-neocry +, Bt 407cry 2 and Bt 407gfpcry 2 were used to control

for the presence of different plasmids. Larvae were kept constantly

on the spore-containing diet for seven days and survival was

assessed daily. A sample size of ninety six larvae was used for each

of the treatments.

Limited exposure time to Btt spore-containing diet. As

observed in vitro in LB medium, spores germinate and elongate

into vegetative cells in about 2.5 hours. We therefore expected the

earliest formation of vegetative cells in the midgut to start at about

2.5 hours after the start of the exposure time. To analyse the

infection dynamics after exposure to the spore-containing diet

(56109 spores ml 21) we limited the exposure time, i.e. larvae of

the SB beetle population were allowed to feed for 30, 60, 90, 120

and 180 minutes, after which time they were transferred to spore-

free flour. Their survival was assessed daily for three days. Forty

eight larvae were used for each of the treatment and the control

group.

Larval mortality rate. Larval death rate was measured

hourly to obtain a more detailed picture of the mortality dynamics.

To test whether the Btt and the Bt 407gfp-neocry+differ, both strains

were used in this experiment together with the control Bt strains

(Table 3). Larvae of the SB beetle population were exposed to

spore-containing diet (56109 spores ml 21) for three hours after

which they were transferred to spore-free flour. Survival was

assessed hourly until the twelfth hour post initial exposure (PIE). A

sample size of 48 larvae was used for each of the treatment and the

control groups.

Infection dynamics of Btt infection. To analyse infection

dynamics, larvae of the SB beetle population were exposed to Btt

spores (56109 spores ml 21) for three hours after which they were

transferred to spore-free flour. Larvae were collected hourly until

the thirteenth hour PIE. To observe whether Btt bacteria are able

to invade the haemolymph from the midgut, each larva was first

punctured dorsally with the tip of an injection needle (0.3 mm

A Beetle Model for Bt Infection

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e64638



diameter) between the first and the second segment and the

haemolymph was collected with a 1 mL capillary (Hirschmann

GmbH). The amount of haemolymph that could be collected was

on average about 0.1 mL. In several cases the haemolymph

extraction was unsuccessful because the infection had already

progressed so far that the body had become soft. The haemolymph

was added to a droplet of PBS buffer on a microscope slide and

was observed under the microscope using phase contrast

(4006magnification). The same larva was then ice anesthetized,

placed on a Petri dish and the first and the last segment were

removed with a razor blade. A drop of PBS was added and the gut

was carefully pulled out with a pair of forceps. Bacteria were

observed after the midgut was homogenised with a pair of needles

(2006and 4006magnifications). In total, 120 larvae were used for

the analysis. Because the alimentary canal isolation and the

analysis itself were time consuming, the same time points were

done across different days. The observed characteristics of

infection dynamics were similar for the same time point when

analysed on different days. On average twenty four larvae were

analysed per time point.

Spore load of cadavers after infection with Btt. Larvae of

the Cro1 population were kept constantly on spore-containing diet

(Btt, 56109 spores ml 21) and to quantify the spore load, larvae

that died on the first, second and third day (n= 6 for each day)

were separated daily. To ensure complete sporulation, cadavers

were used that were ten days old. Cadavers were individually

homogenised with a pestle in 200 mL of PBS. The suspension was

subsequently pushed through a cell strainer with a 40 mm nylon

mesh (BD Biosciences) by using a pipette. The spores were

counted with a flow cytometer (BDFacsCanto II) using 4.5 mm

green fluorescent beads (Polysciences) as a reference, and analysed

using BD FACSDiva Software. To estimate the mean total spore

number in cadavers, 56 larval cadavers were randomly picked

after seven days of constant exposure of larvae to the spores (Btt,

56109 spores ml 21).

Statistical analyses
Survival experiments were analysed using the R statistical

package (R Development Core Team, 2011) version 2.11.1.

Within R we used the Cox proportional hazard model (‘survival’

library: Therneau [and original Splus-. R port by Lumley] 2011)

to test the effect of the treatment on survival. In some cases the

control or treatment groups had 100% survival. Because no event

occurred, there was no contribution to the likelihood, and a cox

model could not be fitted. Therefore we denoted one individual in

the group as dead at the first timepoint, allowing us to fit the

model. In the experiments testing different bacterial strains and

concentrations, and for the dose response curve, we started with

the full model (e.g., fullmodel ,-coxph (Surv (timeofdeath, censor) ,

Beetle population * Bacteria concentration) and then performed model

simplification by backwards elimination of non-significant terms.

The data for the spore load comparison and the regression analysis

were analysed with JMP version 9 for Mac. The data for the

comparison of cadaver spore load were not normally distributed

(Shapiro-Wilk test) and did not have equal variances (Levene test).

We therefore performed a nonparametric Kruskal-Wallis test to

analyse the effect of treatment (day of death). Pairwise compar-

isons were then done for each of the three days in turn (Wilcoxon

test) and to reduce the probability of type 1 errors we performed a

Bonferroni correction (a=0.0169).

Supporting Information

Figure S1 Insecticidal activity of different Bt strains to

T. castaneum larvae - survival during the seven days of

exposure. Larval survival during the seven days of constant

exposure to flour containing Bt spores with two different

concentrations, 109 mL21 and 1010 mL21 of four different Bt

strains. Insect populations infected: A - San Bernardino (SB), B -

Georgia 2 (GA-2), C - Croatia 1 (Cro1).

(TIF)

Figure S2 Characterisation of bacterial clones after the

conjugation. A - Bt vegetative cells, phase contrast merged with

fluorescence (GFP) microscopy, B - Genomic background of Bt

clones tested by Rep-PCR, L - Ladder (1.5kb), C - PCR

amplification of cry3A gene. Legend: 1 - Bt 407cry 2, 2 - Bt

407gfpcry 2, 3 - Bt 407gfp-neocry 2, 4- Bt 407gfp-neocry +, 5-Btt, 6-Btk,

L-ladder (1.0kb). Scale: 10 mm.

(TIF)

Table S1 Insecticidal activity of different Bt strains to

T. castaneum larvae. Cox proportional hazard analysis testing

the effect of treatment on survival (Figure S1). All bacteria strains

were tested against the Naı̈ve group. P-values less than 0.05 are

shown in bold.

(DOC)

Table S2 Dose response curves for Btt infection. Cox

proportional hazard analysis testing the effect of treatment on

survival. All treatments were tested against Naı̈ve group. P-values

less than 0.05 are shown in bold.

(DOC)

Table S3 Differences in susceptibility to Btt among ten

beetle populations. Cox proportional hazard analysis testing

the effect of treatment on survival. All populations were tested

against standard laboratory strain San Bernardino (SB). P-values

less than 0.05 are shown in bold.

(DOC)

Table S4 Plasmid exchange between Btt and the non-

pathogenic Bt 407gfpcry 2 – SB beetle population. Cox

proportional hazard analysis testing the effect of treatment on

survival. All treatments were compared to Bt 407gfp-neocry +. P-

values less than 0.05 are shown in bold.

(DOC)

Table S5 Plasmid exchange between Btt and the non-

pathogenic Bt 407gfpcry 2 – Cro1 beetle population. Cox

proportional hazard analysis testing the effect of treatment on

survival. All treatments were compared to Bt 407gfp-neocry +. P-

values less than 0.05 are shown in bold.

(DOC)

Table S6 Limited exposure time to Btt spore-containing

diet. Cox proportional hazard analysis testing the effect of

treatment on survival. All treatment groups were compared to

Naı̈ve group. P-values less than 0.05 are shown in bold.

(DOC)

Table S7 Larval mortality rate. Cox proportional hazard

analysis testing the effect of treatment on survival. All treatment

groups were compared to Bt 407gfp-neocry +. P-values less than 0.05

are shown in bold.

(DOC)
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