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Abstract
Bifactor latent structures were introduced over 70 years ago, but only recently has bifactor
modeling been rediscovered as an effective approach to modeling construct-relevant
multidimensionality in a set of ordered categorical item responses. I begin by describing the
Schmid-Leiman bifactor procedure (Schmid & Leiman, 1957), and highlight its relations with
correlated-factors and second-order exploratory factor models. After describing limitations of the
Schmid-Leiman, two newer methods of exploratory bifactor modeling are considered, namely,
analytic bifactor (Jennrich & Bentler, 2011) and target bifactor rotations (Reise, Moore, &
Maydeu-Olivares, 2011). In section two, I discuss limited and full-information estimation
approaches to confirmatory bifactor models that have emerged from the item response theory and
factor analysis traditions, respectively. Comparison of the confirmatory bifactor model to
alternative nested confirmatory models and establishing parameter invariance for the general
factor also are discussed. In the final section, important applications of bifactor models are
reviewed. These applications demonstrate that bifactor modeling potentially provides a solid
foundation for conceptualizing psychological constructs, constructing measures, and evaluating a
measure’s psychometric properties. However, some applications of the bifactor model may be
limited due to its restrictive assumptions.

A bifactor structural model specifies that the covariance among a set of item responses can
be accounted for by a single general factor that reflects the common variance running among
all scale items, and group1 factors that reflect additional common variance among clusters of
items, typically, with highly similar content. It is assumed that the general and group factors
all are orthogonal. Substantively, the general factor represents the conceptually broad
“target” construct an instrument was designed to measure, and the group factors represent
more conceptually narrow subdomain constructs.2 The bifactor model, thus, appears ideally
suited for representing the construct-relevant multidimensionality that arises in the responses
to measures of broad constructs where multiple and distinct domains of item content are
included to increase content validity (see, for example, Reise, Moore, & Haviland, 2010).

Although originally described over 70 years ago (Holzinger & Harman, 1938; Holzinger &
Swineford, 1937), bifactor modeling has spent the last 50 years overshadowed by the
numerous applications of Thurstone’s correlated-factors model. It only is recently that
bifactor models have been rediscovered as an important alternative structural representation
of multidimensionality and a topic of research and application in item response theory (IRT)
and structural equation modeling (SEM). Evidence of this renewed enthusiasm is abundant
and comes in several forms, for example:

1Many authors refer to group factors as “specific” factors. I prefer to reserve the term specific for that part of an item’s reliable
variance not shared with other items. Generally, an item’s specific variance cannot be separated from its error variance, and, thus, both
are combined to form an item’s uniqueness.
2Gustafsson and Aberg-Bengtsson (2010, p. 107) have emphasized that, “breath of influence on observed variables, rather than
distance from observed variables, is what distinguishes broad and narrow factors.”
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a. Major personality and assessment journals now routinely include articles
demonstrating applications of bifactor modeling (e.g., Ackerman, Donnellan, &
Robins, 2012; Bados, Gomez-Benito, & Balaguer, 2010; Ebesutani et al., in press;
Gibbons, Ruch, & Immekus, 2009; Gignac, Palmer, & Stough, 2007; Patrick,
Hicks, Nichol, & Krueger, 2007);

b. Didactic articles recently have appeared arguing for the utility of bifactor models in
resolving important problems in conceptualizing and measuring psychological
constructs (Brunner, Nagy, & Wilhelm, in press; Cai, Yang, & Hansen, 2011;
Chen, Hayes, Carver, Laurenceau, & Zhang, 2012; Gustafsson & Aberg-Bengtsson,
2010; Reise, Moore, & Haviland, 2010; Reise, Morizot, & Hays, 2007; Thomas,
2012);

c. Published psychometric articles now compare the bifactor to competing structural
representations (Chen, West, & Sousa, 2006; Rijmen, 2010), provide solutions to
challenging estimation problems (Cai, 2010c; Rijmen, 2009), demonstrate
important extensions of bifactor modeling to computerized adaptive testing
(Gibbons, et al., 2008), vertical scaling (Li & Lissitz, 2012), and assessing
differential item functioning (Fukuhara & Kamata, 2011; Jeon, Rijmen, & Rabe-
Hesketh, in press); and importantly,

d. User friendly software now is available that facilitates the estimation of parameters
for a variety of latent variable models, including bifactor (e.g., IRTPRO 2.1, Cai,
Thissen, & du Toit, 2011; EQSIRT, Wu & Bentler, 2011).

Despite the above contributions, many conceptual as well as technical issues in the
application of bifactor models remain poorly understood in the psychometric and assessment
communities. The primary goals of this review, thus, are to: a) provide insight into several
of these issues, b) point out strengths and limitations of bifactor modeling, and c) call
attention to topics in need of further research. To accomplish these goals, the remainder of
this article is divided into three sections.

In the first section I describe exploratory approaches to bifactor modeling. At present,
exploratory bifactor modeling is greatly underused by applied researchers. This is
unfortunate because it is critically important to explore one’s data thoroughly prior to
proceeding to apply more restrictive, confirmatory models. Exploratory analyses allows
researchers to identify potential modeling problems directly, rather than indirectly through
post-hoc inspection of fit and modification indices after estimating a confirmatory model
(see Browne, 2001, p. 124–125 for additional commentary). In the second section, I review
confirmatory bifactor approaches arising from the factor analytic and IRT literatures, as well
as competing models, such as the confirmatory second-order and correlated-factors models.
I also address the topic of establishing general factor invariance. In the final section I review
applications of bifactor modeling that address important problems in the psychometric
evaluation of a measure. This is arguably the most important section, for without
applications of substantive consequence, bifactor modeling would be of little contemporary
interest.

For illustrative purposes, throughout I use a sample of 1,060 adolescents who responded to
the 15 anxiety items from the Revised Child Anxiety and Depression Scale (RCADS-15)
described in Ebesutani et al. (in press). For this report, I dichotomized all item responses (1
versus 2, 3, 4) to simplify analyses and to avoid reporting results that are redundant with
Ebesutani et al. (in press). The RCADS-15 was designed to be a short scale emphasizing the
precise measurement of global anxiety but for content validity purposes, includes three items
for each of the five diagnostic categories (separation anxiety disorder (SAD), generalized
anxiety disorder (GAD), panic disorder (PD), social anxiety disorder (SOC), and obsessive-

Reise Page 2

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



compulsive disorder (OCD)). Abbreviated item content is shown in Table 1 and estimated
tetrachoric correlations are provided in Table 2.

EXPLORATORY BIFACTOR MODELS
An exploratory bifactor approach to factor analysis was developed in a series of reports
entitled “Preliminary reports on Spearman-Holzinger Unitary Trait Study” that were
summarized in Holzinger and Swineford (1937). An elegant and simple bifactor estimation
method – called the Schmid-Leiman orthogonalization (SL; Schmid & Leiman, 1957) – was
introduced 20 years later (see also Schmid, 1957; Wherry, 1959). Since its introduction, the
SL method has been the dominant approach to exploratory bifactor modeling, and this
remains true today.

Although applications of exploratory correlated-factors analysis are common in psychology,
reports of exploratory bifactor analysis are rare. In part, this may be attributable to: a)
popular statistical software packages have not included the SL as part of their factor rotation
options, and b) assessment researchers may not be aware that alternative exploratory
rotations, such as a SL bifactor, are simply transformations of the familiar correlated-factors
and second-order solutions. Accordingly, the aims of this first section are to: a) demonstrate
the relations between exploratory correlated-factors, second-order, and the SL, b) describe
limitations of the SL method, and c) call attention to recent innovations in exploratory
bifactor modeling that potentially address these limitations.

The Equivalence of Exploratory Models
To understand the relation between correlated-factors, second-order, and SL, the tetrachoric
correlation matrix for RCADS-15 was submitted to a series of exploratory analyses using
the schmid routine in the psych library (Revelle, 2012) available in the R 2.12.9 statistical
package (R Software Development Core, 2012). For all analyses, minres extraction was used
with oblimin rotation. In the left hand panel of Table 3 are the estimated loadings (top) and
factor intercorrelations (bottom) for a familiar, five factor correlated-factors solution:

(1)

Where, R ̂ is a 15 by 15 model reproduced correlation matrix; Λ is a 15 by 5 loading matrix;
ϕ is a 5 by 5 matrix of correlations among the primary factors; Θ a 15 by 15 diagonal matrix
with first-order uniqueness on the diagonal. Results show that there is a fairly good
independent cluster structure (McDonald, 1999) with most items loading strongly on only
one of the five factors, and near zero otherwise. The primary factors are moderately
correlated.

Equation 1 is the familiar, “default” statistical representation of multidimensional structure
in psychology. Substantively, this model considers the trait of pathological childhood
anxiety as multifaceted and consisting of five (correlated) primary traits. This structural
model “hides” the common variance among the factors (and thus the items) in the ϕ matrix.
As a consequence, this model is attractive for assessment researchers who desire to
characterize individual differences through a profile of scores on relatively conceptually
narrow constructs.

In the middle (Γ) row of the left panel of Table 3 is shown a set of five second-order factor
loadings (correlations) found by factor analyzing the phi matrix into a single common factor.
In the present data, the five loadings of the primary factors on the higher-order factor are .
79, .65, .69, .45 and .63, respectively. Thus, the percentages of primary factor variance
explained by the second-order factor are, .62, .42, .48, .20, and .40, respectively. The
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unexplained variance (disturbances) for the primary factors must then be .38, .58, .52, .80,
and .60, respectively.

When these loadings are combined with the loadings of items on the primary factors, this is
called a second-order model. Statistically, this model attempts to account for the correlations
among primary factors by stipulating a single second-order factor. Thus, the second-order
model allows individual differences on both a general trait and conceptually narrower
subtraits to be recognized in the same model. Importantly, however, there are no direct
relations between the second-order factor (general anxiety) and the primary trait indicators
(items). Rather, the effect of anxiety on each item works indirectly through the five primary
factors (traits).

Although the second-order model appears to be more substantively informative than the
correlated-factors model, the differences are illusory. This second-order structure (Equation
2) is merely a re-expression of the correlations among the primary traits (see Equation 3)
and, thus, the models in Equation 1 and 2 are equivalent.

(2)

(3)

Where, Γ is a 5 by 1 matrix of loadings of the primary factors on the second-order; Φ is the
correlation matrix of second-order factors (1 in this simple case), Ψ a 5 by 5 matrix with
disturbances on the diagonal and residual correlations among the primary factors on the off-
diagonal.

Finally, I formed a 5 by 6 transformation matrix, T, with the first column equal to the
loadings of the primary factors on the second-order factor, and the diagonal of the remaining
matrix equal to the square root of the unique variance (disturbances) for the primary factors.
In the present case, these values are: .62, .76, .72, .89, and .77. A bifactor structure then can
be generated by post-multiplying the pattern matrix from the correlated-factors solution by T
(see Equations 4 and 5). The results are shown in the right hand panel of Table 3. This
transformation is the SL, which is nothing more than a reparameterization
(orthogonalization) of the second-order exploratory solution.

(4)

is a solution such that,

(5)

In the SL, the common variance among all the items is represented as a general anxiety
dimension, and narrower anxiety subdomains are represented as a set of five group factors
that are orthogonal to each other and to the anxiety dimension. Consequently, group factors
in the SL do not have the same interpretation as primary factors in the previous models – the
latter reflects two sources of variance (general and group) and the former reflects only
group. This separating out of sources of variance is a chief virtue of bifactor structural
representations and underlies many applications, as described later in this report. Finally, in
contrast to the second-order, in the SL items are influenced directly by both general and
group factors.
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Problems With The SL
There are two important points in the above equations and in the results in Table 3. First,
although these exploratory models offer substantively different representations of the latent
structure, they are functionally equivalent. In other words, they are a reparameterization of
each other, and any multidimensional dataset with correlated primary factors, arguably, can
be viewed though the lens of any of the three structural representations. Second, the
relations among the models are clear in that, assuming perfect independent cluster structure
where each item loads on only a single primary factor and has zero loadings otherwise:

a. An item’s loading on the general factor in the SL is a product of its loading on a
primary factor, times the loading of the primary factor on the second-order factor;

b. An item’s loading on a group factor in the SL is a product of its loading on a
primary factor, times the square root of the residual variance of the primary factor;
and,

c. If perfect independent cluster structure is violated, like in the RCADS-15 data, and
items cross-load on two or more factors in a correlated-factors solution, it likely
will cross-load on the group factors in the SL solution as well. In turn, this can be
highly problematic for the SL. Generally speaking, in the presence of non-zero
cross-loadings, general factor loadings are overestimated and group factor loadings
are underestimated (see Reise, Moore, & Haviland, 2010; Reise, Moore, &
Maydeu-Olivares, 2011, for examples). The larger the cross-loadings of items on
multiple group factors, the larger the degree of this distortion.

Beyond the problems caused by cross-loading items, a second important concern with the
SL is that it contains proportionality constraints (see Yung, Thissen, & McLeod, 1999).
Clearly, for items within a group factor, their loadings on the general and group factor are
found by multiplying their loading on the primary by the same two constants: a) the loading
of the primary factor on the second-order factor, and b) the square root of the residual
variance of the primary factor, respectively. In turn, if the data have perfect independent
cluster structure, then the ratio of the general to group factor loadings for all items within a
group factor will be exactly the same (i.e., proportional).3 Since this forced proportional
pattern of loadings is unlikely to be true in a population, these constraints are a serious
concern. For example, Brunner, Nagy, and Wilhelm (in press, p. 13) note, “the
proportionality constraint limits the value of the higher-order factor model in providing
insights into the relationships between general and specific abilities, on the one hand, and
other psychological constructs, sociodemographic characteristics, or life outcomes, on the
other … .”

Alternatives to the SL
Given the problems with cross-loadings and proportionality constraints noted above, it is
important to consider contemporary approaches for estimating the parameters of exploratory
bifactor models that do not impose proportionality constraints. The first method I consider is
target bifactor rotations (Reise, Moore, & Maydeu-Olivares, 2011). The basic idea of a
target rotation is for the researcher to a priori specify, based on preliminary data analyses or
theory, a factor pattern matrix of specified (typically 0) and unspecified elements (? or + if
must be positive). Factor extraction then is conducted as usual, but the extracted matrix is
rotated to minimize the difference between the estimated factor pattern and the specified
elements of the target factor pattern (see Browne, 2001, Equation 13, p. 124). Cai (2010a, p.

3When items load (or are set to load) only on one factor in the correlated-factors model, and zero otherwise, the proportionality of the
loadings within group factors is obvious in the SL solution. For RCADS-15 data (Table 2), which do display some small cross-
loadings, the effects of the proportionality constraints are not obvious from the table.
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49) suggests that the root-mean square standard deviation computed on the difference
between the estimated pattern and the target pattern be used to judge the adequacy of the
resulting solution.

In a Monte Carlo simulation, Reise, Moore, and Maydeu-Olivares (2011) generated
dichotomous item response data from populations with known bifactor loading patterns.
They then used a preliminary SL analysis to suggest how a target bifactor pattern should be
specified. For example, if the SL loading was greater than .20, they marked that target
pattern loading as an unspecified element, and if the SL loading was less than .20, they
marked that target pattern loading as a specified zero. Then, using MPLUS (Muthén &
Muthén, 2010), they evaluated how well target bifactor rotations were able to recover the
known true population parameters. Of special note was that target bifactor rotations often
were able to correctly estimate solutions where the items displayed cross-loadings on group
factors.

A second alternative exploratory approach is analytic bifactor rotations (Jennrich & Bentler,
2011). These authors did not conduct a Monte Carlo investigation, but rather provided
example applications of the bifactor rotation to data that had been previously analyzed using
confirmatory factor methods. They found that results of the exploratory bifactor rotation
technique appear to agree well with the published confirmatory factor results. Clearly, more
research is needed on the strength and weaknesses of the bifactor rotation method, especially
in terms of its ability to handle non-zero cross-loadings.

To illustrate these methods in the RCADS-15 data, the left hand panel of Table 4 displays a
target bifactor rotation and the right hand panel displays the analytic bifactor rotation. The
target pattern for the target bifactor model was based on the theory that all items load on the
general factor, and each item loads on a single group factor. Specifically, the target pattern
had all ? (unspecified) elements in the first column. In columns 2 through 6, three items
from a specific content domain had ? (unspecified) elements and 0s (specified) otherwise.
The target bifactor model was estimated with CEFA 3.02 (Browne et al., 2008) using
tetrachoric correlations, least squares extraction, and orthogonal rotation to a target. The
analytic bifactor rotation was estimated using personal software, but note that it is an
available feature of EQS 6.2 (Bentler, 2006) and the psych library (Revelle, 2012).

Interestingly, the target bifactor rotation in the left panel of Table 4 appears very similar to
the SL displayed in the right panel of Table 3. In contrast, the analytic bifactor model in the
right panel of Table 4 is highly similar to the SL and target bifactor models, with the
exception that Item #5 appears to be a pure marker of the general factor in the analytic
bifactor solution. Item #5 has the highest average correlation with the other RCADS-15
items, and this may in turn contribute to its high loading on the general in the analytic
rotation. Nevertheless, without more research on the analytic bifactor procedure, and how it
functions under diverse conditions, it is not immediately clear why this result occurs.

CONFIRMATORY BIFACTOR MODELS
In a confirmatory bifactor model, each item is allowed to load on a general factor, and only
one group factor. All other loadings are fixed to zero, and all factors are specified to be
orthogonal. In confirmatory bifactor models, the problem of proportionality constraints
imposed by the SL are no longer of concern. However, the potential parameter distorting
effects of forcing small cross-loadings to zero, and accommodating items with substantial
cross-loadings on group factors, remains troublesome (see also Finch, 2011). This is one
reason why I previously emphasized the necessity of inspecting the data structure carefully
through an exploratory bifactor analysis prior to considering confirmatory modeling.
Unfortunately, the practice of rushing to estimate a confirmatory bifactor model, and
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cavalierly reporting a "good fit", or that the bifactor "fits better" than some nested model, is
nearly universal in recently published reports.

This section is divided into three parts. First, I describe estimation approaches for
confirmatory bifactor measurement models developed from two distinct latent variable
modeling traditions – factor analysis and IRT. These approaches differ primarily in
parameter estimation method (full-versus limited-information) and model evaluation
methods used. Second, in contrast to the previous section, I demonstrate that in confirmatory
mode, bifactor, second-order, and correlated-factors models form a nested hierarchy of
alternative multidimensional structural representations. Third, I describe item parameter
invariance conditions for bifactor models. The establishment of item parameter invariance is
an important, but frequently overlooked aspect of exploring the appropriateness of a
measurement model’s applications.

Two Approaches to Parameter Estimation
Over the last 20 years, there has been increased interest in the development of factor analytic
approaches appropriate for the analysis of ordered categorical (dichotomous or polytomous)
item response data (Wirth and Edwards, 2007). To understand the factor analysis of ordinal
variables, consider n dichotomously scored items, factored into one general (GEN) and three
group (GR) factors. The ordinal factor analysis model assumes that the observed 0 or 1 item
response is a discrete realization of a continuous and normally-distributed latent response
process (x*) underlying the items. A linear factor model can then be written as:

(6)

Where θ are latent factor scores, p = 1 to P factors, and the are standardized factor loadings.
To complete the model, an item threshold parameter (τ) needs to be estimated such that x =
1, if x* ≥ τi and xi = 0, if x* ≥ τi. That is, individuals will endorse an item only if their
response propensity is above the item’s threshold. Thus, in ordinal factor analysis, both item
loading and threshold parameters need to be estimated for each item.

One approach to implementing this model simply is to replace Pearson correlations with
tetrachoric or polychoric correlations and then conduct a limited-information factor analysis
(e.g., weighted least squares; see Wirth and Edwards, 2007). These estimators are called
limited-information because only the mean and covariances among the items are used to
estimate item parameters (Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009). Knol and
Berger (1991), for example, demonstrated that an ordinary least squares factor analysis of
tetrachorics often can recover known item parameters just as well, if not better than, more
complicated estimation methods (see also Finch, 2010; 2011).

The top portion of Table 5 displays the results of estimating a confirmatory bifactor model
using robust maximum likelihood estimation with EQS (Bentler, 2006). All items were
treated as categorical, and the tetrachoric correlation matrix was estimated by EQS. There
are (15 × 14) / 2 = 105 unique correlations and 30 estimated parameters (15 loadings on the
group factor, 15 loadings on the general factor). Thus, 105 minus 30 leaves 75 degrees of
freedom. The Satorra-Bentler (SB; Satorra & Bentler, 1994) chi-square is 137.70 on 75 DF,
robust CFI = .946, robust RMSEA is .053 (.047 to .059), and SRMR is .048, indicating that
the sample correlation matrix is well recovered. Note, however, that these fit indices do not
include an evaluation of the estimated threshold parameters.

A second type of bifactor model estimation strategy has arisen from the IRT literature.
Specifically, many applications of IRT are based on the marginal maximum likelihood
(MML; Bock & Aitken, 1981) estimation method. This method often is referred to as “full-
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information” item factor analysis because it uses the entire item response matrix as part of
the calibration (Gibbons, & Hedeker, 1992). Only recently have highly efficient
dimensionality reduction techniques become available (Cai, 2010abc) that greatly expand
the utility of MML estimation to a wide variety of confirmatory bifactor models (Cai, Yang,
and Hansen, 2011).

To illustrate a bifactor IRT model, Equation 7 displays the two-parameter bifactor model
expressed in a logistic-metric.

(7)

Where, 

In Equation 7, the probability of endorsing an item is determined by an individual’s latent
trait scores, θ, on the general and three group factors, and by item properties: a) the
discrimination (αGEN) of the item on the general factor, b) the discrimination (αGRP) of the
item on the group factor, and c) γ, a multidimensional intercept parameter reflecting an
item’s easiness (higher values reflect items with higher endorsement proportions).

Table 6 displays parameter estimates for the RCADS-15 data for the two-parameter logistic
bifactor model as output by IRTPRO (Cai, du Toit, & Thissen, 2011), using MML full-
information estimation. In IRTPRO the fit of each item is judged using adjusted chi-square
statistics developed by Orlando and Thissen (2000; 2003). In the present case, 2 of 15 items
were judged not to fit, p < .05. IRTPRO also shows indices that reflect the degree of local
dependence (Chen & Thissen, 1997), with larger values indicating higher residual
correlations between item pairs after controlling for the latent trait(s). No large violations
were found in the present data meaning that the bifactor model performs well in accounting
for common variance.

Finally, three goodness-of-fit statistics based on the overall contingency table: chi-square,
Pearson, (both not computable here due to a sparse contingency table), and M2 (Maydeu-
Olivares & Joe, 2005) are provided. Only the latter has been empirically supported by
Monte Carlo studies. In the present data, M2 was 123.77 on 75 degrees-of-freedom with p
< .001. This M2 value provides evidence that a model may fit acceptably under an SEM
framework but be unacceptable under an IRT framework. The reported RMSEA, however,
was .02, in agreement with the SEM results.

Equivalence of IRT and SEM Bifactor Models
The above results demonstrate that researchers interested in confirmatory bifactor models
have two options for parameter estimation, full- and limited-information. However, it has
long been recognized that the 2-parameter normal-ogive IRT model and the factor analytic
model for ordinal item responses are equivalent for either dichotomous or polytomous data
(Takane & de Leeuw, 1987; Kamata & Bauer, 2008). For this reason, contemporary
software provides parameter estimates in both IRT and factor analytic metrics (e.g.,
TESTFACT, Bock et al., 2003; IRTPRO, Cai, Thissen, & du Toit, 2011; MPLUS, Muthén
& Muthén, 2011). Specifically, it can be shown that the IRT parameters in Equation 7, after

Reise Page 8

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



conversion to a normal-ogive metric4, can be transformed into the factor analytic parameters
of Equation 6 and vice versa: for p = 1,…,P dimensions, slopes and loadings are,

(8)

and for thresholds and intercepts,

(9)

It is not surprising then that in the RCADS-15 analyses, if the IRT parameters in Table 6 are
converted to a normal ogive metric (by dividing by 1.7) and then converted to factor analytic
parameters, the estimates are very close to the Table 5 values (not shown). In this dataset, at
least, it appears to make no difference which parameter estimation approach is adopted.

It is tempting to take the above equivalence too far, and, thus, I provide three cautions. First,
the approaches are distinct in that each estimation method has characteristic weaknesses. A
major limitation of the factor analytic approaches to modeling ordinal data is the well-
documented challenges of estimating tetrachoric and polychoric correlations, especially in
the presence of missing data. The MML approach, on the other hand, has trouble with the
numerical integration involved with high-dimensional data. This problem is solved in
bifactor models by collapsing the dimensionality down to two factors (Cai, Yang, and
Hansen, 2011), but as a consequence, no full-information confirmatory bifactor estimation
software that I am aware of, allows items to load on more than one group factor.

Second, Reise, Moore, and Maydeu-Olivares (2011) point out that in bifactor solutions, the
interpretation of item parameters can differ greatly in the IRT and SEM solutions despite the
fact they are equivalent. Consider two items where Item A has loading of .50 on the general
and .70 on a group factor (communality = .74), and Item B has loading of .50 on the general
and .30 on the group factor (communality of .34). These items appear to be equally strong
markers of the general factor. In a normal-ogive IRT metric, however, application of
Equation 8 reveals that the IRT slope on the general factor for items A and B are 0.98 and
0.61, respectively. In turn, multiplying these slopes by 1.7, the slopes on the general factor
for items A and B are 1.66 and 1.04, respectively, if expressed in the logistic IRT metric. An
assessment researcher would come to very different conclusions about the psychometric
functioning of these items depending on whether they examined the factor analysis or IRT
parameter estimates.

Finally, it is not safe to assume that approaches to model fit developed under the linear
factor analysis tradition are easily generalizable to the evaluation of non-linear IRT models,
and vise versa (see Maydeu-Olivares, Cai, & Hernandez, 2011, for details). Moreover, there
is scant work in either SEM or IRT on evaluating the fit of bifactor models based on ordinal
item responses. Well known SEM benchmarks for “acceptable fit” developed under the
multivariate normality assumption in SEM are may not be helpful in judging the adequacy
of a bifactor measurement model based on full-information estimation strategies. In fact,
research that has evaluated the use of SEM fit indices in evaluating the unidimensionality

4IRT models were originally developed under a normal-ogive model to describe the relation between the latent variable and the
probability of the item response. However, IRT item parameters are now routinely estimated based on a logistic model (Equation 6)
rather than the normal-ogive model. To convert logistic model parameters to their normal-ogive model counter-parts, they need to be
divided by 1.7.

Reise Page 9

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



assumption in IRT models has found them to be severely lacking (see Cook, Kallen, &
Amtmann, 2009).

Nested Models
I now consider competing models that are nested within the bifactor model. Several scholars
have advised that, only if the least restricted model (in this case the bifactor) is judged to fit
the data (Yuan & Bentler, 2004), it is appropriate to consider whether applying a more
restricted, nested model, significantly degrades that fit. For ease of presentation, I will
confine the following discussion to specification and comparison of SEM models, but fit
statistics could be calculated for analogous nested IRT models as well.

Correlated-Factors Model
The correlated-factors model can be derived from the bifactor by fixing the loadings in the
bifactor general factor to zero and freeing the orthogonality constraint on the group factors.
This model was estimated by specifying five latent variables (primary factors) with variance
equal to 1.0, and three items loading freely on each latent variable. Factor inter-correlations
were freely estimated. This model has 25 parameter estimates (15 loadings and 10
correlations) and, thus, df = 80. In the present data, the fit is excellent: SB chi-square =
119.88 (80 df, p < .01), robust CFI = .99, robust RMSEA = .022 (.013 – .029), and SRMR
= .05. The Satorra-Bentler scaled chi-square difference test comparing the correlated factors
to the bifactor model is 16.46 on 5 df (p < .05), indicating that the bifactor is a (statistically)
better model.

Second-order Model
A nested alternative to the correlated-factors model is to place a measurement structure on
the correlations between primary factors in an attempt to model and, thus, explain the
correlations among the primary factors. In the present data, there are five primary factors so
the second-order model is nested within the correlated-factors. To identify the second-order
model, for each of the five primary factors, a loading was set to 1.0 for one item within a
primary factor, and disturbances were freely estimated. This model has 20 parameter
estimates (15 loadings and 5 disturbances) and, thus, df = 85. Again, using EQS robust
maximum likelihood, the SB chi-square was 136.15 (85 df, p < .01), robust CFI = .987,
robust RMSEA = .024 (.016 – .031), and SRMR = .056. Clearly, the bifactor, correlated-
factors, and second-order models all provide an excellent fit to the correlation matrix. In
practice any of these models can be applied with confidence, and the goals of the study
dictate model preference.

Finally, in a unidimensional model, each item is allowed to load on a single latent variable.
This is the “default” measurement model used in both IRT and SEM (typically after
parceling items, however). After fixing the factor variance to 1.0, there are 15 estimated
loadings and the df = 90. It is nested within the bifactor because it can be derived by setting
all group factor loadings in the bifactor to zero (or simply eliminating them). In the
RCADS-15 data, the maximum likelihood parameter estimates in the unidimensional model
resulted in a SB chi-square of 500.59 (90 df, p < .01), robust CFI = .899, robust RMSEA = .
066 (.060 – .071), and SRMR = .092. In contrast to the multidimensional models considered
above, the unidimensional model appears not to be a plausible candidate model. In a
subsequent section, however, I will use bifactor modeling to reconsider just how
“unacceptable” a unidimensional representation of the multidimensional RCADS-15 data is.
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Invariance of the General Factor
Psychological traits of broad theoretical importance influence behavior in diverse domains –
that is what makes them interesting to study and demands that trait measures include
heterogeneous item content representing multiple domains of trait manifestation. For
example, Chen, West, and Sousa (2006) describe a content heterogeneous self-report
measure of health-related quality of life, a construct theorized to influence “cognition,
vitality, mental health, and disease worry” (p. 189). Reise, Moore, and Haviland (2010)
evaluate an observer-report measure of alexithymia, which in turn, is proposed to influence
individual differences in five domains, including being emotionally distant, being
psychologically uninsightful, having excessive health worries, lacking humor, and cognitive
and behavioral rigidity.

A chief goal of applying a confirmatory bifactor model to item response data resulting from
the administration of complex trait measures is to estimate a model such that the parameter
estimates on the general factor accurately reflect the relations between items and the general
construct of interest (health related quality of life, alexithymia) while controlling for the
biasing effects of multidimensionality caused by content diversity. To successfully achieve
this goal, the general factor in the bifactor model must validly reflect the common variance
running among all the items in a measure. Unfortunately, didactic articles that inform
applied researchers regarding the conditions facilitating the correct identification of the
general factor are scant. In this section, I therefore raise the critical issue of item parameter
invariance in confirmatory bifactor models. To accomplish this objective, however, I first
describe the concept of parameter invariance in a unidimensional measurement model.

Latent variable measurement models in both IRT and SEM sometimes have implications for
measurement that are at odds with conventional “best practices.” For example, the inclusion
of content diverse trait indicators that exhaust the range of trait manifestations is often
touted as virtuous because it increases a measure’s content and thus construct validity. On
the other hand, this so-called best practice does not hold if a construct is represented as a
single latent variable rather than as a summed score composite. For example, it is well
known that if item response data are unidimensional (one common trait explains the
correlations among items), the common latent variable can be properly identified with three
indicators. Moreover, it does not make any difference what content domain those three items
are selected from.

In other words, if the data are truly unidimensional and a unidimensional latent variable
measurement model is proposed to fit the data, content representativeness does not make
any difference in defining the latent variable, or in the value of the estimated item
parameters (Bollen & Lennox, 1991). This item parameter invariance property is of
profound importance in both SEM and IRT. In the latter, for example, all important
applications of a unidimensional IRT model, such as computerized adaptive testing and
differential item functioning analysis, depend critically on item parameter invariance.

The concept of item parameter invariance extends to bifactor models. Just as a
unidimensional measurement model has parameter invariance when data meet its
assumptions, so too does the bifactor if the data are bifactor in the population. Stated
differently, given a set of item parameter estimates for a bifactor model that is 30 items with
six 5-item group factors, the assumptions of invariance implies that the same general and
group factor loadings would result if, for example, only a subset of 15 items with three 5-
items group factors were estimated. The applied consequence of this is important.
Specifically, establishing item parameter invariance is a critical step in arguing for the
validity of the bifactor model. A researcher would be hard pressed to argue for applications
of bifactor modeling (see below) if one could not demonstrate, at the very least, that roughly
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the same general factor is being measured regardless of which subset of item content
domains (group factors) are included. Accordingly, in Table 7 are shown estimates of the
general factor for several possible three group factor RCADS-15 confirmatory bifactor
models. These results indicate that the general factor does change slightly according to
which group factors are included in the model. Researchers interested in measuring anxiety
using the RCADS-15 are thus advised to use all 15 items.

APPLICATIONS OF BIFACTOR MODELING
Technical innovations seldom lead to substantive application unless researchers are
convinced the approach offers something of value. Thus, in this final section, I describe four
important psychometric applications of bifactor modeling5: a) partitioning item response
variance into general versus group factor sources, b) determining the degree to which item
response data are unidimensional versus multidimensional, c) estimating the degree to which
raw scale scores reflect a single common source, and d) evaluating the viability of subscale
scores after variance due to the general factor has been controlled for. Although these
procedures can be justifiably applied to either exploratory or confirmatory bifactor solutions,
below I work exclusively from the preferred confirmatory perspective.

Partitioning Item Variance
Psychological constructs, and item response data resulting from measures designed to assess
such constructs, often are proposed to have a "hierarchical" or “multifaceted” structure
(Brunner, Nagy, & Wilhelm, in press; Chen, et al., 2012). One meaning of these terms is that
psychological traits affect behavior across heterogeneous behavioral domains. To the degree
that a measure includes multiple items from these heterogeneous domains, item response
data will have, at least, two common sources of variance; one, the factor affecting all items
(reflecting the conceptually broad general trait) and a second affecting subsets of content
homogeneous items (reflecting conceptually narrow subdomains).

In these cases, factor analyses often will reveal that the data are not strictly unidimensional
and that multidimensional models, such as the correlated factors, second-order, or bifactor,
provide a better account of the correlations among the items. Due to the orthogonality of
general and group factors, however, it is only the latter model that allows researchers to
easily partition item response variance into two common sources. In turn, this partitioning
can be invaluable in evaluating and refining an existing instrument and in furthering
understanding of a trait’s structure.

For example, Simms, Gros, Watson, and O’Hara (2008) used confirmatory bifactor
modeling to explore the relative contribution of general and group factors in affecting
responses to the Inventory of Depression and Anxiety Symptoms (Watson et al., 2007). This
instrument includes 76 psychiatric symptoms that are further classified into 13 subdomains.
Interestingly, they found that the common variance shared by most symptoms could be
partitioned roughly equally between general and group factors. There were some content
domains (e.g., dysphoria), however, that primarily were markers of the general factor and
others (e.g., appetite problems) primarily reflecting a group factor.

Findings for the RCADS-15 data are similar. Inspection of Table 5 reveals that the common
variance for items such as #1, #4, #7, and #9 is approximately equally accounted for by the
general and group factors. Items #3 (fear of crowds) and #9 (panics), on the other hand, are

5One major application of bifactor modeling is to separate out general and group factors when a researcher is interested in their
independent contribution to the prediction of a criterion. This topic was covered extensively in Chen, West, and Sousa (2006) and will
not be reviewed here.
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predominantly markers of the general factor. Item #11 (worries about other’s opinion)
displays the opposite pattern, loading primarily on the social phobia group factor. Item #10
(worries about poor performance) does not appear to be a good marker of either the general
or the social phobia group factor. Finally, note that sets of items with high loadings on group
factors may signal too much content similarity. Items #11 and #12, for example, with very
high loadings of .78 and .67 on the social phobia group factor, may be redundant. This is an
important consideration – we want the group factors to reflect a conceptually narrow
psychological trait and not be a mere artifact of asking the same question repeatedly in
slightly different ways.

A Unidimensionality Statistic
It is well established that unidimensional IRT model parameters appear to be reasonably
robust even if the data are multidimensional, as long as there is a “strong general factor.”
What exactly this means empirically and how to identify it are not so well established,
however. Thus, it is not surprising that in the IRT literature, there are dozens of proposed
procedures for evaluating when multidimensional item response data are “unidimensional
enough” (e.g., ratio of 1st to 2nd eigenvalue, residuals after extracting a single factor), and
several proposed methods of evaluating the degree of unidimensionality (see, for example,
research on the DETECT index (Zhang & Stout, 1999).

I will not review those procedures here, but rather note that if multidimensional item
response data are consistent with a bifactor structure, there is a simple approach to indexing
the degree of unidimensionality. Specifically, the explained common variance (ECV) can be
defined as the ratio of variance explained by the general factor divided by the variance
explained by the general plus the group factors. In the bottom portion of Table 5 are shown
the variance explained (sum of squared loadings) by the common factors in the RCADS-15
data. These values lead to an ECV index of .54 reflecting that common variance is about
equally spread across general and group factors in these data. Generally speaking, the higher
ECV, the “stronger” the general factor relative to the group factors and thus, the more
confidence a researcher has in applying a unidimensional measurement model to
multidimensional data. Unfortunately, however, no benchmark values for ECV can be
proposed for determining when the relative general factor strength is high enough so that it
is safe to apply unidimensional models to multidimensional (bifactor) data, because the
relation between ECV and parameter bias is moderated by the structure of the data.

Specifically, Reise, Scheines, Widaman, & Haviland, et al. (in press), working from a factor
analytic model, demonstrated that if item response data are bifactor, and those data are
forced into a unidimensional model, structural parameter bias (which depends on loading
bias) is a function of the relative strength of the general to group factors (ECV), which in
turn, is moderated by the percentage of uncontaminated correlations (PUC). Generally
speaking, when PUC is very high (> .90), even low ECV values can lead to unbiased
parameter estimates.6 To understand the PUC index, consider RCADS-15 where there are
(15 × 14) / 2 = 105 unique correlations. The correlations for items within a group factor are
contaminated by both general and group factor variance, and there are [(3 × 2) / 2] × 5 = 15
of those. The correlations among items from different group factors reflect general factor
variance only, and there are 105 – 15 = 90 uncontaminated correlations and, thus, PUC is
90/105 = .86 – a high value.

6Unbiased is defined in this context as when the parameter estimates in the unidimensional model are the same as the general factor in
the bifactor model.
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In Tables 5 and 6, for example, are displayed estimated parameters in the RCADS-15 when
a unidimensional SEM and IRT (logistic metric) are fit, respectively. Observe that in either
model, despite the massive multidimensionality of the RCADS-15 (good fit to a 6-factor
model!), the parameter estimates in the unidimensional model are reasonably consistent with
those on the general factor in the bifactor. This is evidence the latent variable in the
unidimensional model is the same as the general factor in the bifactor model, and thus, the
RCADS-15 item response may indeed be “unidimensional enough” for unidimensional IRT
or SEM model application. This result is surprising given the relatively modest ECV value
and the fact that the confirmatory unidimensional model did not provide an adequate fit to
the data, as demonstrated earlier (see Reise et al., in press, for further discussion).

Moreover, understanding ECV and PUC computed within the context of a bifactor model
has implications beyond the prediction and understanding of the biasing effect of forcing
bifactor data into a unidimensional measurement model. Moreover, these concepts are
important to understand for scale constructors developing measures of broadband,
multifaceted constructs. If a researcher has in mind an “essentially unidimensional” but
broadband trait measure, then high PUC value is desired in order to diminish the biasing
effects of the group factors. For example, a 30-item test with 10 3-item group factors, yields
a PUC of .93. In contrast, for the same 30-item measure with 3 10-item group factors, PUC
would only be .69. In this latter case, only if the ECV is very high, can multidimensional
data be modeled using unidimensional models without high degrees of parameter bias.

Interpreting a Scale Score
Before proceeding, an important distinction between the (uni)dimensionality of the data and
the interpretability of raw scores needs to be made. If item response data are strictly
unidimensional, then raw scores can be unambiguously interpreted as reflecting variation on
a single latent variable -- the degree to which observed score variance is due to one common
source of variance. What is not so commonly known is that the presence of
multidimensionality, per se, does not necessarily muddle the interpretability of a unit-
weighted composite score, nor does it automatically demand the creation of subscales. Thus,
researchers must make a distinction between the degree of unidimensionality in the data, and
the degree to which total scores reflect a single common variable.

As noted above, a model-based index of unidimensionality is the percent of common
variance due to the general factor. The ECV index is not of much value, however, for
making judgments about the degree to which raw scores reflect a common dimension. The
reason is that a measure with a single weak common factor would be perfectly
unidimensional but would produce raw scores that reflect mostly error. Thus, to judge the
degree to which composite scale scores are interpretable as a measure of a single common
factor, we need a related index called coefficient omega hierarchical (McDonald, 1999;
Zinbarg et al., 2005).

(10)

Where p represents each common factor (general and group), and  is an item’s error
variance. Generally speaking, ωH increases as a function of scale length, the average size of
loadings on the general factor, and PUC value.
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Omega hierarchical is an appropriate model-based reliability index when item response data
are consistent with a bifactor structure. The index is simply the sum of the factor loadings on
the general factor, squared, divided by the (modeled) variance of scale scores. These values
also are shown in the bottom portion of Table 5. Notice that the sum of the denominator
terms (60.06, 1.39, 2.34, 1.90, 2.82, 1.56 and 7.09) add up to 77.16, which in this case, is
equal to the sum of the elements in the observed tetrachoric correlation matrix.7

Using the reported values in Table 5, in the RCADS-15 data ωHis estimated to be .79. This
value can be contrasted with omega ω (Lucke, 2005) shown in Equation 11, which is also a
model-based reliability estimate. The ω index is analogous to coefficient alpha and is
affected by all sources of common variance. In the present data, ω is estimated to be .91.

(11)

When ωH is high, composite scores predominantly reflect a single common source even
when the data are multidimensional. Gustafsson and Aberg-Bengtsson (2010) show how in
large scale aptitude testing, despite concerns that the tests are “multidimensional,” scores
still are dominated by the general factor.

The Viability of Subscales
When item response data have a multidimensional structure (e.g., correlated factors), the
standard practice in psychological research remains the reporting of coefficient alpha for a
total scale score and for subscale scores. However, if a bifactor model has been fit to the
data, the logic of coefficient omega hierarchical can be extended to the estimation of
subscale reliability, controlling for the effects of the general factor. As such, the
mathematics of coefficient omega hierarchical can be an invaluable tool in judging whether
it is reasonable to report subscale scores (see also, Gignac et al., 2007).

In the following illustration, I use the term omega subscale (ωS) to clarify that it is a
reliability estimate for a residualized subscale – one that controls for that part of the
reliability due to the general factor. For comparison, first I compute a model-based
reliability estimate (ω) for each of the RCADS-15 subscales using Equation 11 but apply it
to one subset of items at a time. For example, for the SAD subscale, the sum of the general
factor loadings squared is 2.79, the sum of the group factor loadings squared is 1.39, and the
sum of the error variances is 2.53. Coefficient ω for the subscale is thus .62:

Now I ask, what would the reliability of subscale scores be if the effects of the general factor
were removed? This easily can be found by removing the effect of the general factor from
the numerator only. For the SAD subscale, ωS is .21.

7Note, researchers who use a variance-covariance matrix in place of a tetrachoric or polychoric correlation matrix in their analyses
must also make sure that the factor loadings in Equation 10 are unstandardized versions.
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Coefficient ω for the remaining four subscales are: .66, .67, .62, and, .66 respectively.
Coefficient ωS for the remaining four subscales are: .32, .26, .44, and .22, respectively.
These values make clear that if both total scores and subscales were to be formed, the
interpretation of the subscales as precise indicators of unique constructs is extremely limited
– very little reliable variance exists beyond that due to the general factor.

SUMMARY and LIMITATIONS
In closing this article, it is important to briefly note some important concerns and
limitations. First, not all researchers agree that a bifactor model is an appropriate
representation of the structure of item response data or, more importantly, psychological
traits. A quote in Bagby, Taylor, Quilty, and Parker (2007, p. 258) in reference to Gignac et
al.'s (2007) application of a bifactor model to their alexithymia measure, is consistent with
this view, “we challenge Gignac et al.’s unheralded and largely unsupported use of a nested
model.” Moreover, Vanheule, Desmet, Groenvynck, Rosseel, and Fontaine (2008, p. 180)
state, in reference to application of a bifactor model to a popular depression measure, “We
believe that the inclusion of a G factor which loads on all items is problematic: It is difficult
to interpret what this G factor measures, or to implement it in research and practice.”

The former concern is hard to address. It appears that the authors assume that
multidimensionality must be operationalized through a correlated-factors model, failing to
recognize that in a confirmatory framework, the correlated-factors model is nested under the
bifactor. Therefore, the bifactor likely will always be better supported in terms of model-to-
data fit than a correlated factors model, given the same pattern of constraints. The latter
concern is much easier to address; the general factor in the bifactor model represents the
single source of common variance running through all the items on a measure, and it is easy
to interpret as representing the psychological construct the instrument was likely created to
measure. In fact, bifactor modeling is one solution to the interpretative mess that often is
created when researchers force multidimensional item response data into a unidimensional
measurement model. In such cases, the latent variable, indeed, may reflect a hodgepodge of
differentially weighted and psychologically distinct sources of variance.

A second commonly heard objection to a bifactor model is its rigidity in regard to the
orthogonality constraint among the general and group factors. In addressing this issue, note
that at the least, group and general factors must be orthogonal. Without this constraint, group
factors would no longer be interpretable as residualized factors – sources of common
variance beyond that explained by the general factor. On the other hand, if the group factors
are allowed to correlate with each other (see Jennrich & Bentler, in press), this suggests the
presence of additional and unmodeled general factors. Moreover, when group factors are
allowed to correlate, implementing any of the applications reviewed above would be
challenging. Thus, any gains in fit that may be observed by allowing group factors to
correlate among each other ultimately may be offset by losses in model interpretability and
applicability.

A third and more persuasive criticism of a bifactor model, in my judgment, is that the model
may be too overly restrictive to accurately reflect the structure of item response data in the
population. This criticism can be applied to almost any confirmatory model, but for the
bifactor, it is especially relevant, because the accuracy of the parameter estimates depends
on the constraints being accurate. For example, consider a model for “realistic” data
generation proposed by MacCallum and Tucker (1991) where items may be influenced by
one or more “dominant” factors but also by dozens of smaller common factors. Under this
more realistic model of population data structure, a completely orthogonal confirmatory
structure demanding that all items load on one general and one group factor, and have a zero
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loading otherwise is unlikely to reflect the structure of real-world psychological data. Recent
attempts to better integrate confirmatory and exploratory modeling into one common
analytic framework may address this concern in the future, however (Asparouhov &
Muthén, 2009).

Finally, it is important to note that bifactor modeling is not the appropriate analytic tool for
all types of psychological measures. The model appears best suited for the psychometric
analysis of those assessment instruments where the researcher expects a response to
primarily reflect a strong common trait, but there is multidimensionality caused by well
defined clusters of items from diverse subdomains. Measures that have been shown to fit
confirmatory correlated-factors and second-order models are good candidates for
consideration of bifactor modeling. On the other hand, for measures with highly
homogeneous item content, or measures that were not originally developed with a clear
blueprint to include at least three items from at least three contain domains, bifactor
modeling is likely to be a challenge.

In closing, the above limitations and concerns need to be weighed against the potential
advantages of bifactor models. In my view, the bifactor structural model, which views the
variance in trait indicators as being influenced by both general and group sources of
variance, provides a strong foundation for understanding psychological constructs and their
measurement. Most importantly, I argue that the demonstrations described earlier suggest
that bifactor modeling can importantly inform scale construction practices, and the
evaluation of a measure’s psychometric properties, including the critical evaluation of the
necessity of creating and scoring subscales.

Acknowledgments
The author would like to thank Mark Haviland, Peter Bentler, David Rindskopf, Frank Rijmen, and Li Cai for their
helpful communications and suggestions. This work was supported by: the NIH Roadmap for Medical Research
Grant AR052177 (PI: David Cella); and the Consortium for Neuropsychiatric Phenomics, NIH Roadmap for
Medical Research grants UL1-DE019580 (PI: Robert Bilder), and RL1DA024853 (PI: Edythe London). The
content is solely the responsibility of the author and does not necessarily represent the official views of the funding
agencies.

References
Ackerman RA, Donnellan MB, Robins RW. An item response theory analysis of the narcissistic

personality inventory. Journal of Personality Assessment. 2012; 94 141-15.

Asparouhov T, Muthén B. Exploratory structural equation modeling. Structural Equation Modeling: A
Multidisciplinary Journal. 2009; 16:397–438.

Bados A, Gomez-Benito J, Balaguer G. The state-trait anxiety inventory, trait version: does it really
measure anxiety? Journal of Personality Assessment. 2010; 92:560–567. [PubMed: 20954057]

Bagby RM, Taylor GJ, Quilty LC, Parker JDA. Reexamining the factor structure of the 20-item
Toronto Alexithymia Scale: Commentary on Gignac, Palmer, and Stough. Journal of Personality
Assessment. 2007; 89:258–264. [PubMed: 18001226]

Bentler, PM. EQS structural equations program manual. Encino, CA: Multivariate Software, Inc; 2006.

Bock RD, Aitkin M. Marginal maximum likelihood estimation of item parameters. Application of an
EM algorithm. Psychometrika. 1981; 46:443–459.

Bock, RD.; Gibbons, R.; Schilling, SG.; Muraki, E.; Wilson, DT.; Wood, R. TESTFACT 4.0
[Computer software and manual]. Lincolnwood, IL: Scientific Software; 2003.

Bollen K, Lennox R. Conventional wisdom on measurement: A structural equations perspective.
Psychological Bulletin. 1991; 110:305–314.

Browne MW. An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral
Research. 2001; 35:111–150.

Reise Page 17

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Browne, MW.; Cudeck, R.; Tateneni, K.; Mels, G. CEFA: Comprehensive exploratory factor analysis,
version 3.02 [Computer software and manual]. 2008. Retrieved from http://quantrm2.psy.ohio-
state.edu/browne/

Brunner M, Nagy G, Wilhelm O. A tutorial on hierarchically structured constructs. Journal of
Personality. (in press).

Cai L. High-dimensional exploratory item factor analysis by a Metropolis-Hastings Robbins-Monro
algorithm. Psychometrika. 2010a; 75:33–57.

Cai L. Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. Journal of
Educational and Behavioral Statistics. 2010b; 35:307–335.

Cai L. A two-tier full-information item factor analysis model with applications. Psychometrika. 2010c;
75:581–612.

Cai, L.; Thissen, D.; du Toit, SHC. IRTPRO: Flexible, multidimensional, multiple categorical IRT
modeling [Computer software]. Lincolnwood, IL: Scientific Software International; 2011.

Cai L, Yang JS, Hansen M. Generalized full-information item bifactor analysis. Psychological
Methods. 2011; 16:221–248. [PubMed: 21534682]

Chen FF, West SG, Sousa KH. A comparison of bifactor and second-order models of quality of life.
Multivariate Behavioral Research. 2006; 41:189–225.

Chen FF, Hayes A, Carver CS, Laurenceau JP, Zhang Z. Modeling general and specific variance in
multifaceted constructs: A comparison of the bifactor model to other approaches. Journal of
Personality. 2012; 80:219–251. [PubMed: 22092195]

Chen WH, Thissen D. Local dependence indices for item pairs using item response theory. Journal of
Educational and Behavioral Statistics. 1997; 22:265–289.

Cook KF, Kallen MA, Amtmann D. Having a fit: Impact of number of items and distribution of data
on traditional criteria for assessing IRT’s unidimensionality assumption. Quality of Life Research.
2009; 4:447–460. [PubMed: 19294529]

Ebesutani C, Reise SP, Chorpita BF, Ale C, Regan J, Young J, Higa-McMillan C, Weisz J. The
revised child anxiety and depression scale – short version: Scale reduction via exploratory bifactor
modeling of the broad anxiety factor. Psychological Assessment. (in press).

Finch H. Item parameter estimation for the MIRT model: Bias and precision of confirmatory factor
analysis-based models. Applied Psychological Measurement. 2010; 34:10–26.

Finch H. Multidimensional item response theory parameter estimation with nonsimple structure items.
Applied Psychological Measurement. 2011; 35:67–82.

Forero CG, Maydeu-Olivares A, Gallardo-Pujol D. Factor Analysis with Ordinal Indicators: A Monte
Carlo Study Comparing DWLS and ULS Estimation. Structural Equation Modeling. 2009;
16:625–641.

Fukuhara H, Kamata A. A bifactor multidimensional item response theory model for differential item
functioning analysis on testlet-based items. Applied Psychological Measurement. 2001; 35:604–
602.

Gibbons RD, Hedeker DR. Full-information item bi-factor analysis. Psychometrika. 1992; 57:423–
436.

Gibbons RD, Rush AJ, Immekus JC. On the psychometric validity of the domains of the PDSQ: An
illustration of the bi-factor item response theory model. Journal of Psychiatric Research. 2009;
43:401–410. [PubMed: 18554611]

Gibbons RD, Weiss DJ, Kupfer DJ, Frank E, Fagiolini A, Grochocinski VJ, Bhaumik DK, Stover A,
Bock RD, Immekus JC. Using computerized adaptive testing to reduce the burden of mental health
assessment. Psychiatric Services. 2008; 59:361–368. [PubMed: 18378832]

Gignac GE, Palmer BR, Stough C. A confirmatory factor analytic investigation of the TAS-20:
Corroboration of a five-factor model and suggestions for improvement. Journal of Personality
Assessment. 2007; 89:247–257. [PubMed: 18001225]

Gustafsson, JE.; Aberg-Bengtsson, L. Unidimensionality and the interpretability of psychological
instruments. In: Embretson, SE., editor. Measuring Psychological Constructs. Washington, DC:
American Psychological Association; 2010. p. 97-121.

Holzinger KJ. Relationships between three multiple orthogonal factors and four bifactors. Journal of
Educational Psychology. 1938; 29:513–519.

Reise Page 18

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://quantrm2.psy.ohio-state.edu/browne/
http://quantrm2.psy.ohio-state.edu/browne/


Holzinger KJ, Harman HH. Comparison of two factorial analyses. Psychometrika. 1938; 3:45–60.

Holzinger KJ, Swineford F. The bi-factor method. Psychometrika. 1937; 2:41–54.

Jennrich RI, Bentler PM. Exploratory bi-factor analysis. Psychometrika. 2011; 76:537–549. [PubMed:
22232562]

Jennrich RI, Bentler PM. Exploratory bi-factor analysis: the oblique case. Psychometrika. (in press).

Jeon M, Rijmen F, Rabe-Hesketh S. Modeling differential item functioning using a generalization of
the multiple-group bifactor model. Journal of Educational and Behavioral Statistics. (in press).

Kamata A, Bauer DJ. A note on the relation between factor analytic and item response theory models.
Structural Equation Modeling. 2008; 15:136–153.

Knol DL, Berger MPF. Empirical comparison between factor analysis and multidimensional item
response models. Multivariate Behavioral Research. 1991; 26:457–477.

Li Y, Lissitz RW. Exploring the full-information bifactor model in vertical scaling with construct shift.
Applied Psychological Measurement. 2012; 36:3–20.

Lucke JF. The α and the ω of congeneric test theory: An extension of reliability and internal
consistency to heterogeneous tests. Applied Psychological Measurement. 2005; 29:65–81.

MacCallum RC, Tucker LR. Representing sources of error in the common factor model: Implications
for theory and practice. Psychological Bulletin. 1991; 109:502–511.

Maydeu-Olivares A, Joe H. Limited and full information estimation and testing 2n contingency tables:
A unified framework. Journal of the American Statistical Association. 2005; 100:1009–1020.

Maydeu-Olivares A, Cai L, Hernandez A. Comparing the fit of item response theory and factor
analysis models. Structural Equation Modeling. 2011; 18:333–356.

McDonald, RP. Test theory: A unified treatment. Mahwah, NJ: Lawrence Erlbaum associates; 1999.

Muthén, LK.; Muthén, BO. Mplus User’s Guide. 6th ed.. Los Angeles, CA: Muthén & Muthén; 1998–
2010.

Orlando M, Thissen D. Likelihood-based item-fit for dichotomous item response theory models.
Applied Psychological Measurement. 2000; 24:50–64.

Orlando M, Thissen D. Further investigation of the performance of S-χ2: An item fit index for use with
dichotomous item response theory models. Applied Psychological Measurement. 2003; 27:289–
298.

Patrick CJ, Hick BM, Nichol PE, Krueger RF. A bifactor approach to modeling the structure of the
psychopathy checklist-revised. Journal of Personality Disorders. 2007; 21:118–141. [PubMed:
17492917]

R Development Core Team. R: A language and environment for statistical computing. Vienna,
Austria: 2012.

Reise SP, Moore TM, Haviland MG. Bifactor models and rotations: Exploring the extent to which
multidimensional data yield univocal scale scores. Journal of Personality Assessment. 2010;
92:544–559. [PubMed: 20954056]

Reise SP, Morizot J, Hays RD. The role of the bifactor model in resolving dimensionality issues in
health outcomes measures. Quality of Life Research. 2007; 16:19–31. [PubMed: 17479357]

Reise SP, Moore TM, Maydeu-Olivares A. Targeted bifactor rotations and assessing the impact of
model violations on the parameters of unidimensional and bifactor models. Educational and
Psychological Measurement. 2011; 71:684–711.

Reise SP, Scheines R, Widaman KF, Haviland MG. The Effects of Multidimensionality on Structural
Coefficients in Structural Equation Modeling. Educational and Psychological Measurement. (in
press).

Revelle, W. Psych: Procedures for psychological, psychometric, and personality research. R package
version 1.1-10. 2012. Retrieved from http://personalityproject.org/r/psych.manual.pdf.

Rijmen, F. Efficient full information maximum likelihood estimation for multidimensional IRT models
(Tech Report NO. RR-09-03). Princeton, NJ: Educational Testing Service; 2009.

Rijmen F. Formal relations and an empirical comparison among the bi-factor, the testlet, and a second-
order multidimensional IRT model. Journal of Educational Measurement. 2010; 47:361–372.

Rindskopf D, Rose T. Some theory and applications of confirmatory second-order factor analysis.
Multivariate Behavioral Research. 1988; 23:51–67.

Reise Page 19

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://personalityproject.org/r/psych.manual.pdf


Satorra, A.; Bentler, PM. Corrections to test statistics and standard errors in covariance structure
analysis. In: von Eye, A.; Clogg, CC., editors. Latent variable analysis: Applications for
development research. Thousand Oaks, CA: Sage; 1994. p. 399-419.

Schmid J. The comparability of the bi-factor and second-order factor patterns. Journal of Experimental
Education. 1957; 25:249–253.

Schmid J, Leiman JM. The development of hierarchical factor solutions. Psychometrika. 1957; 22:53–
61.

Simms LJ, Gros DF, Watson D, O'Hara W. Parsing the general and specific components of depression
and anxiety with bifactor modeling. Depression and Anxiety. 2008; 25:E34–E46. [PubMed:
18027844]

Takane Y, de Leeuw J. On the relationship between item response theory and factor analysis of
discretized variables. Psychometrika. 1987; 52:393–408.

Thomas ML. Rewards of bridging the divide between measurement and clinical theory: Demonstration
of a bifactor model for the brief symptom inventory. Psychological Assessment. 2011; 24:101–
113. [PubMed: 21767026]

Watson D, O'Hara MW, Simms LJ, Kotov R, Chmielewski M, McDade-Montez EA, Gamez W, Stuart
S. Development and validation of the inventory of depression and anxiety symptoms (IDAS).
Psychological Assessment. 2007; 19:253–268. [PubMed: 17845118]

Wirth RJ, Edwards MC. Item factor analysis: Current approaches and future directions. Psychological
Methods. 2007; 12:58–79. [PubMed: 17402812]

Wherry RJ. Hierarchical factor solutions without rotation. Psychometrika. 1959; 24:45–51.

Wu, EJC.; Bentler, PM. EQSIRT – A User-Friendly IRT Program. Encino, CA: Multivariate Software,
Inc; 2011.

Vanheule S, Desmet M, Groenvynck H, Rosseel Y, Fontaine J. The factor structure of the Beck
depression inventory II: An evaluation. Assessment. 2008; 15:177–187. [PubMed: 18182478]

Yuan KH, Bentler PM. On chi-square difference and z tests in mean and covariance structure analysis
when the base model is misspecified. Educational and Psychological Measurement. 2004; 64:737–
757.

Yung YF, Thissen D, McLeod LD. On the relationship between the higher-order factor model and the
hierarchical factor model. Psychometrika. 1999; 64:113–128.

Zang J, Stout W. The theoretical DETECT index of dimensionality and its application to approximate
simple structure. Psychometrika. 1999; 64:231–249.

Zinbarg RE, Revelle W, Yovel I, Li W. Cronbach’s alpha, Revelle’s β, and McDonald’s ωH: Their
relations with each other and two alternative conceptualizations of reliability. Psychometrika.
2005; 70:123–133.

Reise Page 20

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Reise Page 21

Table 1

RCADS-15 Abbreviated Item Content and Proposed Disorder

1 SAD Scared if I have to sleep on own

2 SAD Afraid of on my own at home

3 SAD Afraid of crowded places

4 GAD Something will happen to family

5 GAD Something bad will happen

6 GAD I think about death

7 PD Tremble or shake

8 PD Suddenly become dizzy or faint

9 PD Suddenly get a scared feeling

10 SOC Worry when done poorly

11 SOC Worry other people think of me

12 SOC Fool of myself in in front of people

13 OCD Have to think special thoughts

14 OCD Do things over and over again

15 OCD Do things in just the right way

Note SAD = sepration anxiety disorder, GAD = generalized anxiety disorder; PD = panic disorder; SOC = social phobia; OCD = obsessive-
compulsive disorder

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Reise Page 22

Ta
bl

e 
2

R
C

A
D

S-
15

 P
ea

rs
on

 a
nd

 T
et

ra
ch

or
ic

 C
or

re
la

tio
n 

M
at

ri
ce

s

1
.3

5
.2

5
.1

8
.2

1
.0

4
.1

6
.1

1
.2

4
.0

7
.1

3
.1

6
.2

3
.1

3
.1

8

2
.5

4
.2

8
.1

4
.2

1
.0

9
.1

9
.1

4
.2

6
.1

0
.1

1
.1

5
.2

4
.1

9
.2

1

3
.3

9
.4

4
1

.1
4

.1
8

.0
9

.2
4

.1
7

.2
4

.0
8

.0
9

.1
2

.2
6

.1
9

.2
1

4
.3

3
.2

7
.2

7
.3

8
.2

8
.1

7
.1

0
.1

7
.1

4
.1

1
.1

9
.1

7
.1

3
.2

0

5
.3

6
.4

0
.3

3
.6

.3
3

.2
0

.1
6

.2
8

.1
5

.2
3

.1
9

.2
0

.1
7

.3
3

6
.0

7
.1

6
.1

6
.4

5
.5

1
.0

7
.1

1
.1

8
.1

0
.1

5
.1

7
.1

2
.0

9
.1

6

7
.2

6
.3

2
.3

8
.3

3
.3

6
.1

2
.3

4
.3

7
.0

6
.0

7
.0

7
.2

6
.2

0
.2

4

8
.2

0
.2

6
.3

0
.2

1
.3

2
.2

2
.5

5
.2

6
.0

2
.0

8
.0

7
.2

2
.0

8
.1

7

9
.3

8
.4

2
.3

9
.3

1
.4

8
.3

0
.5

7
.4

4
.1

0
.1

3
.1

7
.2

7
.2

1
.2

8

10
.1

1
.1

7
.1

4
.2

4
.2

5
.1

6
.1

1
.0

3
.1

7
.1

6
.1

5
.0

3
.0

1
.1

0

11
.2

3
.2

2
.1

7
.2

0
.3

9
.2

6
.1

3
.1

7
.2

3
.2

7
.4

6
.1

0
.0

4
.1

6

12
.2

9
.2

9
.2

2
.3

3
.3

3
.2

9
.1

3
.1

5
.3

1
.2

6
.7

0
.1

5
.0

9
.2

0

13
.3

6
.3

8
.4

1
.3

0
.3

4
.1

9
.4

1
.3

7
.4

1
.0

5
.1

7
.2

6
.2

9
.4

1

14
.2

1
.3

2
.3

2
.2

3
.2

7
.1

4
.3

3
.1

4
.3

3
.0

2
.0

8
.1

6
.4

4
.3

0

15
.2

8
.3

6
.3

5
.3

3
.5

1
.2

5
.4

0
.3

1
.4

4
.1

6
.2

7
.3

4
.6

1
.4

5

M
.4

0
.3

8
.3

1
.7

7
.7

1
.6

7
.3

1
.2

1
.4

1
.5

9
.7

8
.7

8
.4

5
.5

5
.6

0

S
.4

9
.4

5
.4

6
.4

2
.4

6
.4

7
.4

6
.4

0
.4

9
.4

9
.4

1
.4

1
.5

0
.5

0
.4

9

N
ot

e 
 P

ea
rs

on
 c

or
re

la
tio

ns
 a

re
 a

bo
ve

 th
e 

di
ag

on
al

 a
nd

 te
tr

ac
ho

ri
c 

ar
e 

be
lo

w
. T

et
ra

ch
or

ic
 c

or
re

la
tio

ns
 w

er
e 

es
tim

at
ed

 u
si

ng
 th

e 
ps

yc
h 

lib
ra

ry
 (

R
ev

el
le

, 2
01

2)
.

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Reise Page 23

Ta
bl

e 
3

R
C

A
D

S-
15

 E
xp

lo
ra

to
ry

 F
iv

e 
C

or
re

la
te

d-
Fa

ct
or

s 
an

d 
Sc

hm
id

-L
ei

m
an

 B
if

ac
to

r 
M

od
el

s.

F
iv

e 
C

or
re

la
te

d-
F

ac
to

rs
Sc

hm
id

-L
ei

m
an

It
em

SA
D

G
A

D
P

D
SO

C
O

C
D

A
N

X
SA

D
G

A
D

P
D

SO
C

O
C

D

1
.7

4
.0

4
−

.0
1

.0
5

−
.0

3
.4

8
.5

8
.0

3
−

.0
1

.0
4

−
.0

2

2
.6

3
.0

5
.0

4
.0

3
.0

9
.5

4
.4

9
.0

4
.0

3
.0

3
.0

5

3
.3

7
.0

1
.2

0
.0

0
.1

6
.5

0
.2

9
.0

1
.1

4
.0

0
.1

0

4
.1

2
.6

5
.0

2
−

.0
4

.0
0

.4
9

.0
9

.5
0

.0
1

−
.0

4
.0

0

5
.0

8
.7

8
.0

5
.0

1
.0

5
.6

3
.0

6
.5

9
.0

4
.0

1
.0

3

6
−

.1
5

.6
7

−
.0

2
.0

6
.0

1
.3

5
−

.1
2

.5
1

−
.0

2
.0

5
.0

1

7
.0

0
−

.0
1

.8
3

−
.0

3
.0

2
.5

7
.0

0
−

.0
1

.6
0

−
.0

3
.0

1

8
−

.0
6

.0
2

.6
9

.0
5

−
.0

1
.4

6
−

.0
5

.0
1

.5
0

.0
5

−
.0

1

9
.1

6
.1

4
.5

0
.0

7
.0

6
.6

1
.1

3
.1

0
.3

6
.0

6
.0

3

10
.0

5
.2

1
.0

0
.2

3
−

.0
9

.2
1

.0
4

.1
6

.0
0

.2
0

−
.0

6

11
−

.0
3

.0
2

.0
5

.8
5

−
.0

6
.3

7
−

.0
2

.0
2

.0
3

.7
6

−
.0

4

12
.0

7
−

.0
2

−
.0

5
.8

0
.1

0
.4

3
.0

5
−

.0
2

−
.0

3
.7

1
.0

6

13
.0

9
−

.0
9

.0
8

.0
0

.7
2

.6
2

.0
7

−
.0

7
.0

6
.0

0
.4

4

14
.0

9
.0

0
.0

1
−

.0
9

.5
5

.4
6

.0
7

.0
0

.0
0

−
.0

8
.3

4

15
−

.0
8

.1
3

−
.0

1
.0

6
.7

7
.6

6
−

.0
6

.1
0

−
.0

1
.0

6
.4

7

Γ
.7

9
.6

5
.6

9
.4

5
.6

3

1 .3
9

1

ϕ
.4

4
.4

4
1

.3
1

.4
6

.2
1

1

.5
1

.4
9

.5
9

.3
2

1

N
ot

e:
 A

N
X

 =
 b

ro
ad

 a
nx

ie
ty

; S
A

D
 =

 s
ep

ra
tio

n 
an

xi
et

y 
di

so
rd

er
, G

A
D

 =
 g

en
er

al
iz

ed
 a

nx
ie

ty
 d

is
or

de
r;

 P
D

 =
 p

an
ic

 d
is

or
de

r;
 S

O
C

 =
 s

oc
ia

l p
ho

bi
a;

 O
C

D
 =

 o
bs

es
si

ve
-c

om
pu

ls
iv

e 
di

so
rd

er

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Reise Page 24

Ta
bl

e 
4

R
C

A
D

S-
15

 T
ar

ge
t a

nd
 A

na
ly

tic
 E

xp
lo

ra
to

ry
 B

if
ac

to
r 

R
ot

at
io

n 
M

od
el

s.

T
ar

ge
t 

B
if

ac
to

r 
R

ot
at

io
n

A
na

ly
ti

c 
B

if
ac

to
r 

R
ot

at
io

n

It
em

A
N

X
SA

D
G

A
D

P
D

SO
C

O
C

D
A

N
X

SA
D

G
A

D
P

D
SO

C
O

C
D

1
.5

1
.6

2
−

.0
2

−
.0

3
.0

4
−

.0
3

.5
2

.5
7

.0
3

.0
4

.0
2

.0
1

2
.5

9
.4

0
−

.0
4

.0
0

.0
2

.0
4

.5
7

.4
5

.0
8

.0
1

.0
1

.0
6

3
.5

4
.2

2
−

.0
4

.1
0

−
.0

4
.1

0
.5

0
.2

8
.0

2
.1

4
.0

3
.1

4

4
.5

6
.0

2
.4

5
−

.0
5

−
.0

1
−

.0
6

.6
3

.0
4

.7
7

.0
4

.0
0

.0
7

5
.6

6
.0

3
.4

8
.0

3
.0

9
.0

0
.9

0
.2

1
.0

0
.1

6
.0

8
.2

8

6
.3

5
−

.1
1

.5
9

.0
2

.1
2

.0
2

.4
7

.2
4

.1
8

.1
2

.0
9

.1
0

7
.6

2
−

.0
7

−
.1

1
.5

6
−

.1
4

.0
0

.5
4

.0
2

.0
3

.7
1

.1
1

.0
7

8
.4

0
.0

3
.0

8
.5

8
.0

2
.0

7
.4

4
.0

2
.0

6
.4

4
.0

3
.0

5

9
.6

4
.0

9
.0

6
.3

1
.0

2
.0

5
.6

3
.1

0
.0

8
.3

2
.0

3
.0

5

10
.4

0
−

.1
7

−
.0

1
−

.2
0

.1
6

−
.3

0
.2

6
.0

1
.0

9
.0

2
.1

9
.1

0

11
.3

6
.0

1
.0

6
.0

3
.8

7
−

.0
2

.4
4

.0
4

.1
1

.0
4

.6
4

.1
0

12
.4

5
.0

6
.0

9
−

.0
8

.6
1

.0
5

.4
6

.0
5

.0
6

.0
6

.8
1

.0
8

13
.5

7
.1

1
−

.0
3

.1
3

−
.0

3
.5

0
.5

7
.0

9
.0

2
.0

9
.0

5
.5

3

14
.4

6
.0

3
−

.0
4

−
.0

1
−

.1
1

.3
7

.4
3

.0
5

.0
2

.0
7

.0
8

.3
7

15
.6

6
−

.0
9

.0
4

.0
0

.0
4

.4
5

.6
7

.1
1

.0
9

.0
1

.0
1

.4
3

N
ot

e:
 A

N
X

 =
 b

ro
ad

 a
nx

ie
ty

; S
A

D
 =

 s
ep

ra
tio

n 
an

xi
et

y 
di

so
rd

er
, G

A
D

 =
 g

en
er

al
iz

ed
 a

nx
ie

ty
 d

is
or

de
r;

 P
D

 =
 p

an
ic

 d
is

or
de

r;
 S

O
C

 =
 s

oc
ia

l p
ho

bi
a;

 O
C

D
 =

 o
bs

es
si

ve
-c

om
pu

ls
iv

e 
di

so
rd

er

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Reise Page 25

Ta
bl

e 
5

C
on

fi
rm

at
or

y 
B

if
ac

to
r 

an
d 

U
ni

di
m

en
si

on
al

 S
E

M
 P

ar
am

et
er

 E
st

im
at

es
 f

or
 R

C
A

D
S-

15

It
em

τ 1
λ G

E
N
λ

G
R

P
1
λ

G
R

P
2
λ

G
R

P
3
λ

G
R

P
4
λ

G
R

P
5

θ
τ 1

λ U
N

I

1
0.

25
.5

2
.4

6
.7

2
0.

25
.5

3

2
0.

58
.5

9
.5

0
.6

2
0.

58
.6

0

3
0.

50
.5

6
.2

2
.8

0
0.

50
.5

6

4
−

0.
74

.5
1

.5
0

.7
0

−
0.

74
.5

7

5
−

0.
54

.6
8

.4
9

.5
4

−
0.

54
.7

1

6
−

0.
42

.3
6

.5
4

.7
6

−
0.

42
.4

3

7
0.

50
.5

7
.6

4
.5

1
0.

50
.6

0

8
0.

82
.4

6
.4

6
.7

6
0.

82
.5

0

9
0.

23
.6

8
.2

8
.6

7
0.

23
.6

9

10
−

0.
22

.2
5

.2
3

.9
4

−
0.

22
.2

6

11
−

0.
79

.3
8

.7
8

.4
9

−
0.

79
.4

2

12
−

0.
78

.4
5

.6
7

.5
8

−
0.

78
.4

8

13
0.

13
.6

1
.4

8
.6

4
0.

13
.6

4

14
−

0.
12

.4
6

.3
3

.8
2

−
0.

12
.4

8

15
−

0.
25

.6
7

.4
4

.6
0

−
0.

25
.6

9

(Σ
λ

2 )
4.

23
.5

1
.7

8
.7

0
1.

11
.5

4

(Σ
λ

)2
60

.0
6

1.
39

2.
34

1.
90

2.
82

1.
56

N
ot

e 
τ 

is
 a

 th
re

sh
ol

d,
 λ

 is
 a

 f
ac

to
r 

lo
ad

in
g,

 a
nd

 θ
 is

 a
 s

qu
ar

e 
ro

ot
 o

f 
th

e 
er

ro
r 

va
ri

an
ce

. S
um

 o
f 

er
ro

r 
va

ri
an

ce
s 

is
 7

.0
9;

 E
C

V
 =

 .5
4;

 C
oe

ff
ic

ie
nt

 ω
=

 .9
1;

 C
oe

ff
ic

ie
nt

 ω
H

 =
 .7

8;
 P

U
C

=
86

%
.

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Reise Page 26

Ta
bl

e 
6

C
on

fi
rm

at
or

y 
B

if
ac

to
r 

an
d 

U
ni

di
m

en
si

on
al

 I
R

T
 P

ar
am

et
er

 E
st

im
at

es
 f

or
 R

C
A

D
S-

15

It
em

δ
α

G
E

N
α

G
R

P
1
α

G
R

P
2
α

G
R

P
3
α

G
R

P
4
α

G
R

P
5

δ
α

U
N

I

1
−

0.
61

1.
27

1.
25

−
0.

49
1.

05

2
−

1.
54

1.
60

1.
24

−
1.

25
1.

33

3
−

1.
07

1.
25

0.
44

−
1.

03
1.

20

4
1.

82
1.

29
1.

21
1.

54
1.

23

5
1.

72
2.

17
1.

55
1.

33
1.

76

6
0.

95
0.

80
1.

23
0.

78
0.

79

7
−

1.
80

2.
04

2.
31

−
1.

09
1.

34

8
−

1.
83

1.
07

0.
96

−
1.

64
1.

07

9
−

0.
58

1.
74

0.
68

−
0.

55
1.

66

10
0.

38
0.

42
0.

37
0.

37
0.

43

11
2.

93
1.

41
2.

96
1.

47
0.

84

12
2.

37
1.

32
1.

94
1.

52
1.

00

13
−

0.
34

1.
66

1.
26

−
0.

28
1.

43

14
0.

24
0.

91
0.

68
0.

22
0.

91

15
0.

71
1.

89
1.

26
0.

58
1.

61

N
ot

e:
 δ

 is
 a

n 
in

te
rc

ep
t, 
α

G
E

N
 is

 th
e 

sl
op

e 
fo

r 
th

e 
ge

ne
ra

l f
ac

to
r,

 α
G

R
P=

1…
5 

ar
e 

sl
op

es
 f

or
 th

e 
fi

ve
 g

ro
up

 f
ac

to
rs

, a
nd

 α
U

N
I i

s 
th

e 
sl

op
e 

in
 th

e 
un

id
im

en
si

on
al

 m
od

el
.

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Reise Page 27

Ta
bl

e 
7

In
va

ri
an

ce
 A

na
ly

si
s 

of
 G

en
er

al
 F

ac
to

r 
L

oa
di

ng
s 

fo
r 

R
C

A
D

S-
15

It
em

D
om

ai
n
λ G

E
N
λ G

E
N
λ G

E
N
λ G

E
N
λ G

E
N
λ G

E
N

1
SA

D
.5

2
.5

4
.5

2
.5

1

2
SA

D
.5

9
.5

9
.6

0
.5

4

3
SA

D
.5

6
.5

6
.6

0
.4

6

4
G

A
D

.5
1

.5
8

.6
6

.6
6

5
G

A
D

.6
8

.7
1

.8
0

.7
7

6
G

A
D

.3
6

.4
4

.5
7

.5
3

7
PD

.5
7

.6
3

.5
1

.6
5

.6
6

8
PD

.4
6

.5
3

.4
6

.5
5

.5
4

9
PD

.6
8

.7
2

.6
2

.6
9

.7
0

10
SO

C
.2

5
.3

2
.2

0
.3

5

11
SO

C
.3

8
.4

9
.3

6
.5

4

12
SO

C
.4

5
.5

1
.4

3
.5

8

13
O

C
D

.6
1

.7
0

.7
0

14
O

C
D

.4
6

.5
1

.5
3

15
O

C
D

.6
7

.7
2

.6
7

N
ot

e:
 S

A
D

 =
 s

ep
ra

tio
n 

an
xi

et
y 

di
so

rd
er

, G
A

D
 =

 g
en

er
al

iz
ed

 a
nx

ie
ty

 d
is

or
de

r;
 P

D
 =

 p
an

ic
 d

is
or

de
r;

 S
O

C
 =

 s
oc

ia
l p

ho
bi

a;
 O

C
D

 =
 o

bs
es

si
ve

-c
om

pu
ls

iv
e 

di
so

rd
er

. T
he

 λ
G

E
N

 v
al

ue
s 

ar
e 

th
e 

L
oa

di
ng

s 
on

 th
e

ge
ne

ra
l f

ac
to

r 
w

he
n 

di
ff

er
en

t s
ub

se
ts

 o
f 

ite
m

s 
ar

e 
an

al
yz

ed
 u

nd
er

 a
 b

if
ac

to
r 

m
od

el
.

Multivariate Behav Res. Author manuscript; available in PMC 2013 September 16.


