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THE REDUCTION NUMBER OF CANONICAL IDEALS

SHINYA KUMASHIRO

Abstract. In this paper, we introduce an invariant of Cohen-Macaulay local
rings in terms of the reduction number of canonical ideals. The invariant can
be defined in arbitrary Cohen-Macaulay rings and it measures how close to be-
ing Gorenstein. First, we clarify the relation between almost Gorenstein rings
and nearly Gorenstein rings by using the invariant in dimension one. We next
characterize the idealization of trace ideals over Gorenstein rings in terms of the
invariant. It provides better prospects for a result of the almost Gorenstein prop-
erty of idealiztion.

1. Introduction

The aim of this paper is to develop a theory of non-Gorenstein Cohen-Macaulay
rings. Gorenstein rings are an important class of Cohen-Macaulay rings and known
to have good properties such as duality and reflexivity. On the other hand, among
the huge class of Cohen-Macaulay rings, the class of Gorenstein rings seems narrower.
For instance, although any normal semigroup rings are Cohen-Macaulay, a normal
semigroup ring is Gorenstein only the case that its interior coincides with itself after
some shift (see [3, Theorem 6.3.5]). Moreover, if R is a Cohen-Macaulay local ring
and M is a maximal Cohen-Macaulay R-module, the idealization R ⋉M becomes
Cohen-Macaulay local ring again. However, R⋉M becomes Gorenstein only in the
case that M is the canonical module of R ([23]). Therefore, it seems natural to
expect a new class of rings between Gorenstein and Cohen-Macaulay.

Almost Gorenstein rings are one of the most interesting objects in the study of
non-Gorenstein rings. The basic papers [2, 13, 14] revealed the properties of the
non-Gorenstein almost Gorenstein local rings such as G-regularity and the Goren-
steinness of the blow-up at the maximal ideals in dimension one. Besides the almost
Gorenstein theory, the study of non-Gorenstein Cohen-Macaulay rings has been
carried out under intense competition. One can also find other stratifications of
Cohen-Macaulay rings in [4, 5, 6, 11, 17]. Especially, nearly Gorenstein rings have
gained attention in recent years along with the notion of the trace ideal of the
canonical module ([7, 17, 22]).

In this paper we introduce a new invariant, say canonical reduction number. This
invariant is, roughly to say, the reduction number of a canonical ideal. More pre-
cisely, we define the invariant by the new notion, say almost reduction. The notion
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2 SHINYA KUMASHIRO

of almost reduction is a natural generalization of reduction, but it will be useful to
avoid the assumption that the residue field is infinite.

The canonical reduction number can be defined in arbitrary Cohen-Macaulay
rings and it measures how close to being Gorenstein. In this paper, we establish
two theorems on the canonical reduction number. The first theorem builds bridges
between almost Gorenstein rings and nearly Gorenstein rings as follows.

Theorem 1.1. (Theorem 3.12) Let R be a one-dimensional Cohen-Macaulay local

ring possessing the canonical module. Then R is almost Gorenstein if and only if R
is nearly Gorenstein and the canonical reduction number of R is less than or equals

to two.

The second theorem is about idealization. Let R be a commutative ring and M
an R-module. Let A = R⋉M denote the idealization of M over R, i.e., A = R⊕M
as an R-module and the multiplication in A is given by

(a, x)(b, y) = (ab, bx+ ay)

where a, b ∈ R and x, y ∈ M . Then it is known that the properties of R ⋉M are
characterized by the properties of R and M . Especially, if R is a Cohen-Macaulay
ring and M is a maximal Cohen-Macaulay R-module, then the idealization R⋉M
is a Cohen-Macaulay ring. However, R ⋉M is Gorenstein only in the case that M
is isomorphic to the canonical module ([23]). With this perspective, the question
of when R ⋉ M is close to Gorenstein is studied ([10, 11, 12, 13, 14]). In this
paper, we characterize the idealization of trace ideals of Gorenstein rings by using
the canonical reduction number, which is a generalization of [13, Corollary 6.4]. Let
us recall that, for an R-module M , the trace ideal of M is the image of the R-linear
map

HomR(M,R)⊗R M → R, f ⊗ x 7→ f(x)

where f ∈ HomR(M,R) and x ∈ M . An ideal I is called a trace ideal if I is a trace
ideal of some R-module. One can consult [9, 18, 19] for the basic properties of trace
ideals.

Theorem 1.2. (Theorem 4.2) Let R be a Gorenstein local ring of dimension d > 0
and M be a maximal Cohen-Macaulay faithful R-module. Let A = R ⋉ M be the

idealization of M over R, and ωA denotes the canonical module of A. Then the

following assertions are equivalent:

(a) M is isomorphic to some trace ideal of R;

(b) HomR(M,R) is isomorphic to some finite birational extension B of R such that

BM is a Cohen-Macaulay local ring of dimension d for all M ∈ MaxB;

(c) the canonical reduction number of A is less than or equals to two.

When this is the case, if A is not Gorenstein, then r(A) = r(R/I) + 2 where I
denotes the trace ideal isomorphic to M .

It is known that, for a one-dimensional Gorenstein local ring (R,m) and a maximal
Cohen-Macaulay faithful R-module M , R ⋉M is almost Gorenstein if and only if
either M ∼= R or M ∼= m ([13, Corollary 6.4]). Since R and m are trace ideals if
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R is not a discrete valuation ring, Theorem 1.2 provides better prospects of [13,
Corollary 6.4].

Let us explain how constructed this paper. In Section 2 we first note the notion
of almost reduction. This notion is a simple generalization of reduction, but it is
effective to avoid the condition that the residue field is infinite. We then define
the canonical reduction number. After that, we investigate the basic properties of
the canonical reduction number, and characterize rings whose canonical reduction
number is less than or equals to two. In Section 3 we focus on the case of dimension
one. In dimension one, we can define the Hilbert function of canonical ideals and
we give a characterization of the canonical reduction number in terms of the Hilbert
function. Theorem 1.1 is also shown in this section. The purpose of Section 4 is to
show Theorem 1.2.

Let us fix our notation. Throughout this paper, all rings are commutative Noe-
therian rings with identity. For a ring R, Q(R) (resp. R) denotes the total ring of
fraction of R (resp. the integral closure of R). For an R-module M , M∗ denotes the
R-dual HomR(M,R). ℓR(M) denotes the length of M .

Suppose that (R,m) is a Noetherian local ring and I is an m-primary ideal of
R. Then ℓR(R/In) agrees with a polynomial function of degree d = dimR for all
n ≫ 0. We then write

ℓR(R/In+1) = e0(I)

(
n+ d

d

)
−e1(I)

(
n+ d− 1

d− 1

)
+· · ·+(−1)d−1ed−1(I)

(
n+ 1

1

)
+(−1)ded(I)

with some integers e0(I), . . . , ed(I). The integers e0(I), . . . , ed(I) are called the
Hilbert coefficients of I. If R is a Cohen-Macaulay local ring, r(R) denotes the
Cohen-Macaulay type of R.

We say that an R-module I is a fractional ideal, if I is a finitely generated R-
submodule of Q(R) containing a non-zerodivisor of R. For fractional ideals I and
J , I : J (resp. I :R J) stands for the set

{α ∈ Q(R) | αJ ⊆ I}
(resp. (I : J) ∩R = {α ∈ R | αJ ⊆ I}). We freely use the following facts.

Remark 1.3. ([16]) Let R be a Noetherian ring. Let I and J be fractional ideals.
Then we have the following.

(a) If I ∼= J , then J = αI for some α ∈ Q(R).
(b) I : J ∼= HomR(J, I), where α ∈ I : J corresponds to the multiplication map by

α.

2. almost reduction and canonical reduction number

Let R be a Noetherian ring. First of all, we note the notion of almost reduction,
which is a simple extension of reduction.

Definition 2.1. Let I and J be ideals of R. Then we say that J is an almost

reduction of I if there exists an integer ℓ ≥ 0 such that

(a) J ℓ ⊆ Iℓ and
(b) Iℓ+1 = JIℓ.
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Remark 2.2. Let I and J be ideals of R. Suppose that J is an almost reduction
of I. Then we have the following.

(a)
√
I =

√
J , where

√
I denotes the radical of I. Hence heightR I = heightR J .

(b) If J ℓ ⊆ Iℓ and Iℓ+1 = JIℓ for ℓ ≥ 0, then Jn ⊆ In and In+1 = JIn for all n ≥ ℓ.
(c) Let (R,m) be a Noetherian local ring. If I and J are m-primary ideals of R,

then e0(J) = e0(I).

It is a well-known fact that, for a Noetherian local ring (R,m) with the infinite
field R/m, each m-primary ideal I has a parameter ideal Q ⊆ I as its reduction.
However, it is not true if R/m is finite. The following is an example of an m-primary
ideal which has no parameter reduction, but has a parameter almost reduction.

Example 2.3. (cf. [13, Remark 2.10]) Let k[[X, Y, Z]] be the formal power series
ring over the field k = Z/2Z. Set R = k[[X, Y, Z]]/a, where

a = (X, Y ) ∩ (Y, Z) ∩ (Z,X) = (XY, Y Z, ZX).

Set I = (x + y, y + z), where x, y, and z denote the images of X , Y , and Z in R
respectively. Then (x+ y + z) is an almost reduction of I, but I has no parameter
reduction.

Proof. Set m = (x, y, z) and f = x+ y+ z. Then I 6= m = I +(f), whence f 6∈ I. A
standard calculation shows In = (xn, yn, zn) for all n ≥ 2. Hence we have fI2 = I3

and f 2 ∈ I2, which implies that (f) is an almost reduction of I. Assume that (a)
is a reduction of I. Write a = c1x+ c2y + c3z + g, where c1, c2, c3 ∈ k = Z/2Z and
g ∈ m2. Then we obtain

aIn = (c1x
n+1, c2y

n+1, c3z
n+1) = In+1

for n ≫ 0. Therefore, c1 = c2 = c3 = 1. It follows that f ∈ I since a = f + g ∈ I,
thus it is a contradiction. �

In Section 3 we explore the existence of almost reduction for m-primary ideals in
one-dimensional Cohen-Macaulay local rings. In what follows, let us focus on the
case where the height of ideals is one.

Proposition 2.4. Let R be a Noetherian ring. Let I and J be ideals of R containing

a non-zerodivisor of R. Suppose that (a) and (b) are almost reductions of I and J
respectively. If I ∼= J , then we have the following.

(a) For any ℓ ≥ 0, (a)ℓ ⊆ Iℓ and Iℓ+1 = aIℓ if and only if R[ I
a
] = ( I

a
)ℓ, where

I
a
= {x

a
∈ Q(R) | x ∈ I} denotes a fractional ideal of R.

(b) R[ I
a
] = R[J

b
] in Q(R).

(c) For any ℓ ≥ 0, (a)ℓ ⊆ Iℓ and Iℓ+1 = aIℓ if and only if (b)ℓ ⊆ J ℓ and J ℓ+1 = bJ ℓ.

Proof. Note that a is a non-zerodivisor of R since In+1 = aIn ⊆ (a) for n ≫ 0. Set
L1 =

I
a
and L2 =

J
b
in Q(R). Then R ⊆ Ln

1 = Ln+1
1 and R ⊆ Ln

2 = Ln+1
2 for n ≫ 0.

Furthermore, for 1 ≤ t ≤ n− 1, we have R·Lt
1 ⊆ Ln+t

1 = Ln
1 . Hence R[L1] = Ln

1 and
R[L2] = Ln

2 .
On the other hand, by Remark 1.3 (1), we have L2 = αL1 for some α ∈ Q(R). It

follows that R[L1] = αR[L1] by substituting L2 = αL1 to Ln
2 = Ln+1

2 .
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(a): The above argument actually shows that the “only if” part. Conversely,
suppose that R[L1] = Lℓ

1. If ℓ = 0, then I ⊆ (a). Hence I = aI1 for some ideal I1.
Then (a)n ⊆ In = anIn1 ⊆ (a)n for n ≫ 0, whence I1 = R. Thus I = (a). Assume
ℓ > 0. Then Lℓ+1

1 and Lℓ−1
1 are in R[L1] = Lℓ

1. The latter implies that Lℓ
1 ⊆ Lℓ+1

1 ,
thus Lℓ

1 = Lℓ+1
1 . It follows that Iℓ+1 = aIℓ. Furthermore we have (a)ℓ ⊆ Iℓ since

R ⊆ R[L1] = Lℓ
1.

(b): It follows from the observation that R[L2] = Ln
2 = αnLn

1 = αnR[L1] = R[L1].
(c): We have only to show the “only if” part. By the assumption and (a) we have

Lℓ
1 = R[L1]. Hence

Lℓ
2 = αℓLℓ

1 = αℓR[L1] = R[L1] = R[L2]

by (b). It follows that (b)ℓ ⊆ J ℓ and J ℓ+1 = bJ ℓ by (a). �

Proposition 2.4 (c) claims that the almost reduction number of I and that of J
are equal. This fact provides an invariant of Cohen-Macaulay local rings. Let us
recall the following fact.

Fact 2.5. ([3, Proposition 3.3.18]) Let (R,m) be a Cohen-Macaulay local ring pos-
sessing the canonical module ωR. Then the following conditions are equivalent:

(a) R is generically Gorenstein, that is, Rp is Gorenstein for all p ∈ MinR;
(b) ωR has a rank;
(c) there exists an ideal ω ⊆ R such that ω ∼= ωR.

When this is the case, if ω ( R, then heightR ω = 1 and R/ω is Gorenstein.

We call an ideal ω ⊆ R canonical if ω is isomorphic to the canonical module of R.

Definition 2.6. Let (R,m) be a Cohen-Macaulay local ring possessing the canonical
module. Suppose that R is generically Gorenstein. We then call

inf

{
n ≥ 0

∣∣∣∣
there exist a canonical ideal ω and an almost reduction (a) of ω

such that ωn+1 = aωn

}

the canonical reduction number of R, and denote by can.redR.

Remark 2.7. Let (R,m) be a Cohen-Macaulay local ring possessing the canonical
module. Suppose that there exist a canonical ideal ω and an almost reduction (a)
of ω. Then we have the following.

(a) For n ≥ 0, ωn+1 = aωn implies that (a)n ⊆ ωn.
(b) can.redRp ≤ can.redR for all p ∈ SpecR.
(c) Suppose that x ∈ m is a non-zerodivisor of R and R/ω. Then can.redR/xR ≤

can.redR.

Proof. (a) follows from
(
ω
a

)n
=

(
ω
a

)m
= R[ω

a
] ⊇ R for m ≫ n by Proposition 2.4 (a).

(b) follows from the fact that ωRp is a canonical ideal of Rp. (c) follows from the fact
that (ω+ (x))/(x) is a canonical ideal of R/(x) since (ω+ (x))/(x) ∼= ω/((x)∩ω) =
ω/xω. �

Flat local homomorphisms of rings also preserves the canonical reduction number.
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Proposition 2.8. Let (R,m) → (S, n) be a flat local homomorphism of Cohen-

Macaulay rings such that S/mS is Gorenstein. Suppose that there exists the canon-

ical module ωR of R and R is generically Gorenstein. If can.redR < ∞, then

can.redR = can.redS.

Proof. Note that we have ωS
∼= S ⊗R ωR since S/mS is Gorenstein. Hence, if ω is a

canonical ideal of R, then ωS is a canonical ideal of S.
Suppose that can.redR < ∞. Then there exist a canonical ideal ω and its almost

reduction (a). Let n ≥ 0. Then we obtain that

n ≥ can.redR ⇔ R
[
ω
a

]
/
(
ω
a

)n
= 0 ⇔ S ⊗R

(
R
[
ω
a

]
/
(
ω
a

)n)
= 0

⇔ S
[
ωS
a

]
/
(
ωS
a

)n
= 0 ⇔ n ≥ can.redS

by Proposition 2.4 (a). Therefore, we have can.redR = can.redS. �

The canonical reduction number measures how close to being Gorenstein. In
what follows, unless otherwise stated, let (R,m) be a Cohen-Macaulay local ring
possessing the canonical module ωR. Set d = dimR.

Proposition 2.9. The following conditions are equivalent:

(a) R is Gorenstein;

(b) can.redR = 0;
(c) can.redR ≤ 1;
(d) there exist a canonical ideal ω ⊆ R and a ∈ R such that ω2 = aω.

Proof. Since (a) ⇒ (b) ⇒ (c) ⇒ (d) is trivial, we have only to show that (d) ⇒
(a). Note that ω2 = aω implies that ω

a
⊆ ω

a
: ω

a
= R. Therefore, ω1 = ω

a
is a

canonical ideal and ω2
1 = ω1. Since ω1 is nonzero, it forces that ω1 = R, whence R

is Gorenstein. �

Corollary 2.10. Suppose that R is a Cohen-Macaulay local normal domain. Then

can.redR < ∞ if and only if R is Gorenstein.

Proof. We have only to show that the only if part. If can.redR < ∞, then we
can choose a canonical ideal ω and its reduction (a). By Proposition 2.4, we have
R ⊆ R[ω

a
] ⊆ R. Thus can.redR = 0. �

On the other hand, if R is not a normal domain, then there are many non-
Gorenstein Cohen-Macaulay rings such that the canonical redution number is finite,
see Sections 3 and 4. We next characterize those rings R with can.redR ≤ 2. To
state our theorem, let us recall the definition of trace ideals.

Definition 2.11. Let R be a commutative ring. For an R-module M , the image of
the evaluation map

ϕ : HomR(M,R)⊗R M → R, where ϕ(f ⊗ x) = f(x) for f ∈ HomR(M,R) and x ∈ M,

is called the trace ideal of M and denoted by trR(M). We say that an ideal I is a
trace ideal of R if I = trR(M) for some R-module M .

Remark 2.12. (a) If I is a fractional ideal, then trR(I) = (R : I)I.
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(b) ([9, Corollary 2.2]) Let R be a Noetherian ring and I an ideal containing a
non-zerodivisor of R. Then the following conditions are equivalent:
(i) I is a trace ideal of R;
(ii) I = (R : I)I, that is, I = trR(I);
(iii) I : I = R : I.

(c) ([17, Lemma 2.1]) The trace ideal trR(ωR) of the canonical module describes the
non-Gorenstein locus of R, that is,

{p ∈ SpecR | Rp is not Gorenstein} = {p ∈ SpecR | trR(ωR) ⊆ p} .
The following is a characterization of rings with canonical reduction number two.

Theorem 2.13. The following conditions are equivalent:

(a) can.redR ≤ 2;
(b) trR(ωR) ∼= ω∗

R.

When this is the case, letting ω be a canonical ideal of R and a ∈ ω be an almost

reduction of ω, then trR(ωR) = R : R[ω
a
] and R[ω

a
] = R : trR(ωR).

We prepare a lemma to prove Theorem 2.13.

Lemma 2.14. If d = 0, then trR(ωR) ∼= ω∗
R if and only if R is Gorenstein.

Proof. If R is Gorenstein, then trR(ωR) = R ∼= ω∗
R by Remark 2.12. Conversely, sup-

pose trR(ωR) ∼= ω∗
R. Note that ω

∗
R
∼= HomR(ωR,HomR(ωR, ωR)) ∼= HomR(ωR⊗R ωR, ωR).

Hence, by applying the ωR-dual to trR(ωR) ∼= ω∗
R, we have

HomR(trR(ωR), ωR) ∼= ωR ⊗R ωR.(1)

On the other hand, by applying the ωR-dual to the exact sequence 0 → trR(ωR) →
R → R/trR(ωR) → 0, we have a surjection

ωR → HomR(trR(ωR), ωR).(2)

Therefore, from (1) and (2), we obtain the surjection ωR → ωR ⊗R ωR. It follows
that r(R) ≥ r(R)2, whence R is Gorenstein. �

The following is a direct consequence of Lemma 2.14.

Corollary 2.15. If trR(ωR) ∼= ω∗
R, then R is generically Gorenstein.

Proof of Theorem 2.13. By Corollary 2.15, we may assume that R is generically
Gorenstein. Since the conditions (a) and (b) are satisfied if R is Gorenstein by
Proposition 2.9 and Remark 2.12(c), we may assume that d > 0.

(a) ⇒ (b): Choose a canonical ideal ω ( R and a ∈ R so that ω3 = aω2 and
a2 ∈ ω2. Set K = ω

a
. Then we have R[K] = K2 by Proposition 2.4 (a). We obtain

that

R : R[K] = R : K2 = (K : K) : K2 = K : K3 = K : K2 = (K : K) : K = R : K.

It follows that

(R : K)K = (R : R[K])K ⊆ (R : R[K])R[K] = R : R[K] = R : K.
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It follows that (R : K)K2 ⊆ (R : K)K, whence R : K ⊆ (R : K)K since (R :
K)K2 = (R : R[K])R[K] = R : R[K] = R : K. Therefore, we get trR(ωR) = (R :
K)K = R : K ∼= ω∗

R by Remark 2.12(a).
(b) ⇒ (a): Due to Corollary 2.15, we may assume that there exists a canonical

ideal ω ( R. Then we have trR(ωR) = (R : ω)ω and ω∗
R
∼= R : ω. Hence there exists

a ∈ Q(R) such that (R : ω)ω = a(R : ω). We can replace ω and a so that a ∈ R.
Note that (R : ω)ωn = an(R : ω) for all n > 0. We then obtain that

(
ω
a

)n ⊆ (R : ω) : (R : ω) = R : (R : ω)ω = (ω : ω) : a(R : ω)

= ω : a(R : ω)ω = ω : a2(R : ω) = ω : a2(ω : ω2)

= 1
a2
(ω : (ω : ω2)) =

(
ω
a

)2

for all n > 0. By substituting n = 1 and n = 3, we get ω3 = aω2. By substituting

n = 2, we have 1 ∈ (R : ω) : (R : ω) =
(
ω
a

)2
. Hence a2 ∈ ω2.

When this is the case, we further have R[ω
a
] = R : (R : ω)ω = R : trR(ωR). It

follows that

R : R[ω
a
] =(ω

a
: ω

a
) : R[ω

a
] = ω

a
: R[ω

a
] = ω

a
: (R : trR(ωR))

=ω
a
: (ω

a
: ω

a
trR(ωR)) =

ω
a
trR(ωR) =

ω
a
a(R : ω) = trR(ωR).

�

Theorem 2.13 is useful to prove Theorem 3.12.

3. Almost Gorenstein versus nearly Gorenstein in dimension one

Let (R,m) be a Cohen-Macaulay local ring of dimension one. Suppose that R
possesses the canonical module ωR and a canonical ideal ω ( R. Then, since
dimR = 1, ω is an m-primary ideal of R. Hence we can define the Hilbert function
ℓR(R/ωn) of canonical ideal ω. In [4, 13], the authors have explored the notions of
almost Gorenstein and 2-almost Gorenstein by using the Hilbert function ℓR(R/ωn).
With this background, this section focuses on the case of dimension one.

First of all, we note the existence of an almost reduction of a canonical ideal
(Corollary 3.5).

Definition 3.1. ([20, Proposition 1.1] and [21, before Lemma 8.2]) Let R be a
Noetherian ring and I an ideal of R. We then set

(a) Ĩ =
⋃

ℓ>0(I
ℓ+1 :R Iℓ) and

(b) RI =
⋃

ℓ>0(I
ℓ : Iℓ).

The ideal Ĩ is called the Ratliff-Rush closure of I, and the ring RI is coincides with
the blow-up of R at I when dimR = 1.

Lemma 3.2. ([21, Lemma 8.2]) Let R be a Noetherian ring and I an ideal of R

containing a non-zerodivisor of R. Then In = (Ĩ)n = Ĩn for all n ≫ 0.

Lemma 3.3. (cf. [20, Proposition 1.1]) Let (R,m) be a Cohen-Macaulay local ring

of dimension one and I an m-primary ideal of R. Then we have the following.

(a) If there exists a reduction (a) ⊆ I of I, then RI = R[ I
a
] =

(
I
a

)n
for all n ≫ 0.
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(b) RI = In : In for all n ≫ 0.
(c) RI = RIn for all n > 0.
(d) IRI ∼= RI .

Proposition 3.4. Let (R,m) be a Cohen-Macaulay local ring of dimension one and

I an m-primary ideal of R. Then there exist an m-primary ideal J and a ∈ R such

that J ∼= I and (a) is an almost reduction of J .

Proof. Since Lemma 3.3 (b) and (c), we have RI = RIn = In : In for all n ≫ 0.
Hence InRIn = (In : In)In = In is isomorphic to RIn = RI by Lemma 3.3 (d). It
follows that

In+1 ∼= IRI ∼= RI ∼= In.

Hence In+1 = αIn for some α ∈ Q(R). Write α = a
b
for non-zerodivisors a and b in

R. Then we obtain (bI)n+1 = a(bI)n and a ∈ (bI)n+1 :R (bI)n ⊆ b̃I. Therefore, we

have an ∈ (b̃I)n = (bI)n for n ≫ 0 by Lemma 3.2. Thus (a) is an almost reduction
of bI. �

Due to Proposition 3.4 we have the following.

Corollary 3.5. Let R be a one-dimensional Cohen-Macaulay local ring. If R has a

canonical ideal, then can.redR < ∞.

While Proposition 3.4 holds, there exists an m-primary ideal which has no param-
eter almost reduction.

Example 3.6. ([20, after Definition 2.1]) Let R = k[[X, Y ]]/(XY (X + Y )), where
k = Z/2Z. Let x, y denote the images of X, Y in R. Then any element of R is not
an almost reduction of m = (x, y).

Proof. Suppose that m has an almost reduction (a). Then, since an ∈ mn ⊆ m for
n ≫ 0, a ∈ m. It follows that (a) is a reduction of m. Write a = c1x+ c2y+g, where
c1, c2 ∈ k and g ∈ m2. Then we can replace g by 0. Actually, we have

amn ⊆ (a, g)mn = (a− g)mn + gmn ⊆ (a− g)mn +mn+2 ⊆ mn+1

and thus (a−g)mn = mn+1 for n ≫ 0 by Nakayama’s lemma. Hence we may assume
that a is either x, y, or x + y. It concludes that a is a zerodivisor of R, which is a
contradiction since mn+1 ⊆ (a). �

Let us continue to explore the canonical reduction number in dimension one.

Proposition 3.7. Let (R,m) be a Cohen-Macaulay local ring of dimension one.

Suppose that R possesses a canonical ideal ω ( R. We then have the following.

(a) The following integers are equal:

(i) can.redR;

(ii) min {m ≥ 0 | ℓR(R/ωn) = e0(ω)n− e1(ω) holds for all n ≥ m}.
(b) 0 ≤ can.redR ≤ e0(m)− 1, where e0(m) denotes the multiplicity of R.
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Proof. (a): We may assume that R is not Gorenstein by Proposition 2.9. Choose a
canonical ideal ω ( R so that ω has an almost reduction (a). Set c = can.redR > 0.
Then, for all n ≥ c, we have

ℓR(R/ωn) = ℓR(R/(a)n)− ℓR(ω
n/(a)n)

= ℓR(R/(a))·n− ℓR
((

ω
a

)n
/R

)

= e0(ω)n− ℓR
(
R
[
ω
a

]
/R

)

by Remark 2.2 (c) and Proposition 2.4 (a). Note that R
[
ω
a

]
is independent of the

choice of almost reductions by Proposition 2.4 (b). Thus c is larger than or equals
to the integer of (ii). Assume that c > the integer of (ii). Then

ℓR(R/ωc−1) = ℓR(R/ωc)− ℓR(ω
c−1/ωc)

= e0(ω)c− ℓR
(
R
[
ω
a

]
/R

)
− ℓR

((
ω
a

)c−1
/aR

[
ω
a

])

> e0(ω)c− ℓR
(
R
[
ω
a

]
/R

)
− ℓR

(
R
[
ω
a

]
/aR

[
ω
a

])
.

On the other hand, we have ℓR(R/ωc−1) = e0(ω)(c− 1)− ℓR
(
R
[
ω
a

]
/R

)
. It follows

that
e0(ω) < ℓR

(
R
[
ω
a

]
/aR

[
ω
a

])
= e0(ω)· rankR R

[
ω
a

]
= e0(ω)

by the multiplicative formula. This is a contradiction.
(b): To prove the inequality we may assume that R/m is infinite by Proposition

2.8. Then it follows from (a) and [8]. �

Next we study a relation between almost Gorenstein rings and nearly Gorenstein
rings in terms of the canonical reduction number. In what follows, throughout this
section, let (R,m) be a one-dimensional Cohen-Macaulay local ring with a canonical
ideal. Choose a canonical ideal ω ( R so that ω has an almost reduction (a). We
start to recall the definitions of almost Gorenstein and nearly Gorenstein.

Definition 3.8. (a) ([13, Definition 3.1]) We say that R is almost Gorenstein if
e1(ω) ≤ r(R).

(b) ([17, Definition 2.2]) We say that R is nearly Gorenstein if trR(ωR) ⊇ m.

The notion of almost Gorenstein rings originates from Barucci and Fröberg [2].
They defined almost Gorenstein rings over one-dimensional analytically unramified
Cohen-Macaulay rings. After that, Goto, Matsuoka, and Phuong [13] defined the
notion for arbitrary one-dimensional Cohen-Macaulay local rings, and showed that
these definitions are equivalent if there exists a parameter reduction of a canonical
ideal, see [13, Setting 3.4 and Theorem 3.11]. Here, we show that we have the
equivalence without any assumptions (Proposition 3.10). Before that, we note the
following lemma, which should be known.

Lemma 3.9. Let I and J be fractional ideals of R. If IJ = R, then I ∼= R and

J ∼= R.

Proof. Suppose that IJ = R, and choose a1, . . . , an ∈ I and b1, . . . , bn ∈ J such that∑n
i=1 aibi = 1. Then aibi ∈ R for all 1 ≤ i ≤ n since J ⊆ R : I by the assumption
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IJ = R. Hence, by noting that R is local, aibi is a unit for some 1 ≤ i ≤ n. Thus,
aibic = 1 for some c ∈ R. It follows that I = (ai) ∼= R. Indeed, for all a ∈ I,
a = aaibic = ai(abic) and abic ∈ IJ ⊆ I(R : I) ⊆ R. Hence, I ⊆ (ai). The reverse
inclusion is clear. �

Proposition 3.10. (generalization of [13, Theorem 3.11]) The following conditions

are equivalent:

(a) R is almost Gorenstein;

(b) mR[ω
a
] = m;

(c) mω ⊆ (a).

Proof. We may assume that R is not Gorenstein. Set K = ω
a
.

(b) ⇔ (c): It follows from the equivalences

mω ⊆ (a) ⇔ mK ⊆ R ⇔ mK ( R ⇔ mK ⊆ m

⇔ mKn ⊆ m for all n > 0 ⇔ mR[K] ⊆ m ⇔ mR[K] = m,

where the second equivalence follows from the fact that mK = R implies m is
principal by Lemma 3.9, that is, R is a discrete valuation ring.

(a) ⇔ (b): Note that (a) and (b) are equivalent if R/m is infinite, and then
can.redR ≤ 2 ([13, Theorem 3.16 (b)]). Hence, by passing to the faithfully flat map
R → R[X ]mR[X], we may assume that can.redR ≤ 2 by Proposition 2.8. Note that
the proof of Proposition 3.7 shows that e1(ω) = ℓR(R[ω

a
]/R) = ℓR(R : trR(ωR)/R) by

Theorem 2.13. On the other hand, we have R : m/R ∼= Ext1R(R/m, R) by applying
the R-dual to 0 → m → R → R/m → 0. Hence we have

e1(ω) = ℓR(R : trR(ωR)/R) ≥ ℓR(R : m/R) = r(R)

since trR(ωR) ⊆ m. It follows that

R is almost Gorenstein ⇔ R[ω
a
] = R : trR(ωR) = R : m

⇔mR[ω
a
] ⊆ R ⇔ mR[ω

a
] = m,

where the third equivalent follows from Lemma 3.9. �

Lemma 3.11. If R/(R : R[ω
a
]) is Gorenstein, then can.redR ≤ 2.

Proof. Set K = ω
a
and S = R[K]. By applying the K-dual K : − to the short exact

sequence 0 → R : S → R → R/(R : S) → 0, we have

0 → K → K : (R : S) → Ext1R(R/(R : S), K) → 0.

On the other hand, we obtain

K : (R : S) = K : ((K : K) : S) = K : (K : KS) = K : (K : S) = S.

Hence ωR/(R:S)
∼= Ext1R(R/(R : S), K) ∼= S/K. By our assumption we have

S = K + Rs for some s ∈ S. Let α ∈ K. Then, since sK ⊆ S = K + Rs,
there exists β ∈ K and r ∈ R such that sα = β + rs. Whence s(α − r) = β ∈ K.
It follows that

(α− r)K2 ⊆ (α− r)S = (α− r)(K +Rs) = (α− r)K +Rβ ⊆ K2.
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Therefore, for α ∈ K and α′ ∈ K2, there are elements r ∈ R and α′′ ∈ K2 such that
(α − r)α′ = α′′. Thus αα′ = rα′ + α′′ ∈ K2. It follows that K2 = K3. Hence, we
have K2 = Kn = R[K] for n ≫ 0, that is, can.redR ≤ 2. �

Now we can illustrate a relation between almost Gorenstein and nearly Gorenstein
(see also [17, Theorem 7.4]).

Theorem 3.12. The following conditions are equivalent:

(a) R is almost Gorenstein;

(b) R is nearly Gorenstein and can.redR ≤ 2;
(c) R is nearly Gorenstein and R/(R : R[ω

a
]) is Gorenstein.

Proof. For each proof of implication, we may assume that R is not Gorenstein. Set
K = ω

a
and S = R[K].

(a) ⇒ (c): By Proposition 3.10, we have mS = m ⊆ R. It follows that m ⊆
R : S ⊆ R : K ⊆ (R : K)K = trR(ωR) ( R. Hence R is nearly Gorenstein and
R/(R : S) = R/m is Gorenstein.

(c) ⇒ (b): It follows from Lemma 3.11.
(b) ⇒ (a): By Proposition 2.4 (a), K2 = S. It follows that R : K = (K : K) :

K = K : K2 = K : S = K : KS = (K : K) : S = R : S. Hence

m = trR(ωR) = (R : K)K = (R : S)K = R : S,

where the fourth equality follows from (R : S)K ⊆ (R : S)S = R : S and R : S =
(R : S)K2 ⊆ (R : S)K. Therefore, we get mK ⊆ mS ⊆ R. �

Note that the ring in Example 2.3 is almost Gorenstein which has no parameter
reduction ([13, Example 3.2 (1)]). In the rest of this section we note an example
arising from numerical semigroup rings.

Example 3.13. Let n ≥ 3 and let R = k[[tn, tn+1, tn
2−n−1]] be a numerical semi-

group ring over a field k. Then K = R+Rt is a fractional canonical ideal of R such
that R ⊆ K ⊆ R ([15, Example (2.1.9)]). Therefore, we get

can.redR = min
{
n ≥ 0 | Kn = Kn+1

}
= n− 1.

On the other hand, one can check that R is a nearly Gorenstein ring for all n ≥ 3.
Hence R is an almost Gorenstein ring if and only if n = 3.

4. The canonical reduction number and idealizations

For a moment, let R be an arbitrary commutative ring and M an R-module. Let
A = R⋉M denote the idealization of M over R, that is, A = R⊕M as an R-module
and the multiplication in A is given by

(a, x)(b, y) = (ab, bx+ ay)

where a, b ∈ R and x, y ∈ M . The following are well-known.

Fact 4.1. For a local ring R and a nonzero R-module M , we have the following:

(a) ([1, Theorem 4.8]) R⋉M is a Noetherian ring if and only if R is a Noetherian
ring and M is a finitely generated R-module.
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(b) ([1, Corollary 4.14]) R ⋉ M is a Cohen-Macaulay ring if and only if R is a
Cohen-Macaulay ring and M is a maximal Cohen-Macaulay R-module.

(c) ([23, (7) Theorem]) R ⋉ M is a Gorenstein ring if and only if R is a Cohen-
Macaulay ring possessing the canonical module ωR and M ∼= ωR.

Fact 4.1 shows that the properties of R ⋉M corresponds to the properties of R
and M . Especially, if R is a Cohen-Macaulay local ring and M is a maximal Cohen-
Macaulay R-module, the idealization R⋉M builds bridges between the stratification
of Cohen-Macaulay rings and the classification of maximal Cohen-Macaulay mod-
ules.

Set A = R⋉M . The following theorem gives a characterization of the condition
can.redA ≤ 2 via the properties of M . Note that we need to assume that R is
Gorenstein because of technical reasons, see Propositions 4.4 and 4.5. But, Theorem
4.2 still provides infinitely many examples of canonical reduction number two in
higher dimension. This result also gives better prospects of the result [13, Corollary
6.4], although there are more general results on the almost Gorenstein property
of idealization ([13, Theorem 6.3], [10, Theorem 1.1]). Recall that B is a finite

birational extension ofR if B is a subring of Q(R) containing R and finitely generated
as an R-module.

Theorem 4.2. Let (R,m) be a Gorenstein local ring of dimension d > 0. Let M be

a maximal Cohen-Macaulay faithful R-module. Set A = R⋉M . Then the following

assertions are equivalent:

(a) can.redA ≤ 2;
(b) trA(ωA) ∼= ω∗

A;

(c) M is isomorphic to some trace ideal of R;

(d) M∗ is isomorphic to some finite birational extension B of R such that BM is a

Cohen-Macaulay local ring of dimension d for all M ∈ MaxB.

When this is the case, if A is not Gorenstein, then r(A) = r(R/I) + 2 where I
denotes the trace ideal isomorphic to M .

To prove Theorem 4.2, we need some results; the following one should be well-
known, but we did not find a good reference.

Lemma 4.3. Let (R,m) be a Noetherian local ring of dimension d. Let B be a finite

birational extension of R. Then the following conditions are equivalent:

(a) B is a maximal Cohen-Macaulay R-module;

(b) BM is a Cohen-Macaulay local ring of dimension d for all M ∈ MaxB.

Proof. (a) ⇒ (b): Let M ∈ MaxB. Note that depthBM ≥ depthR B since a B-
regular sequence in m is a BM-regular sequence in M. It follows that

d = dimB ≥ dimBM ≥ depthBM ≥ depthR B = d,

thus BM is a Cohen-Macaulay local ring of dimension d.
(b) ⇒ (a): Note that B is a semilocal ring since B is a finite birational extension

of R. Hence mB ⊆ J(B) ⊆
√
mB, where J(B) denotes the Jacobson radical of B
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and
√
mB denotes the radical of mB. Hence grade(mB,B) = grade(J(B), B) = d.

It follows that there exists a B-regular sequence in m of length d. �

The following is a generalization of [9, Corollary 2.8]. Note that [9, Corollary 2.8]
focuses on d = 1, but the argument is essentially the same.

Proposition 4.4. Let (R,m) be a Gorenstein local ring of dimension d > 0. Set

ϕ :

{
I

∣∣∣∣
I is a trace ideal containing a non-zerodivisor of R

and maximal Cohen-Macaulay as an R-module

}

→
{
B

∣∣∣∣
B is a finite birational extension of R such that BM is

a Cohen-Macaulay local ring of dimension d for all M ∈ MaxB

}
,

where I 7→ I : I. Then ϕ is a one-to-one correspondence.

Proof. (well-definedness): By Remark 2.12 (b), we have I : I = R : I ∼= I∗. Hence
I : I is a maximal Cohen-Macaulay R-module since R is Gorenstein. Hence (I : I)M
is a Cohen-Macaulay ring of dimension d for all M ∈ Max(I : I) by Lemma 4.3.

(injective): Let I and J be trace ideals containing non-zerodivisors of R and
maximal Cohen-Macaulay R-modules. If I : I = J : J , then we have I = R : (R :
I) = R : (I : I) = R : (J : J) = R : (R : J) = J .

(surjective): Let B be a finite birational extension of R such that BM is a Cohen-
Macaulay local ring of dimension d for all M ∈ MaxB. Then, by Lemma 4.3, B is
a maximal Cohen-Macaulay R-module. Hence so is R : B. R : B is a trace ideal
since trR(B) = (R : B)B = R : B. Furthermore (R : B) : (R : B) = R : (R : B)B =
R : (R : B) = B as desired. �

In addition, before proving Theorem 4.2, we prove the following proposition.

Proposition 4.5. Let (R,m) be a Gorenstein local ring of dimension d > 1 and

I a trace ideal of R. Suppose that I is maximal Cohen-Macaulay as an R-module.

Then there exists an element x ∈ m such that x is a non-zerodivisor of R and R/I,
and (I + (x))/(x) is a trace ideal of R/(x) and maximal Cohen-Macaulay as an

R/(x)-module.

Proof. By applying the depth formula to the exact sequence

0 → I
ι−→ R → R/I → 0,(3)

we have depthR R/I ≥ d − 1 > 0. Hence we can choose x ∈ m so that x is a
non-zerodivisor of R and R/I.

Note that the embedding ι in (3) induces the isomorphism

HomR(I, I) ∼= HomR(I, R)(4)

by [19, Lemma 2.3] (see also [9, Proposition 2.1]). Set ∗ = R/(x)⊗R ∗. The goal is
to prove that the map HomR(IR, IR) → HomR(IR,R) induced by ι : IR → R is

bijective. Now we have HomR(I, I) ∼= HomR(I, R) by (4). By applying the functor

HomR(I,−) to 0 → R
x−→ R → R → 0, we obtain HomR(I, R) ∼= HomR(I, R) ∼=

HomR(I, R). Here, we have I = I/xI = I/((x) ∩ I) ∼= (I + (x))/(x) = IR.
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Hence, it is enough to show that we have the natural isomorphism HomR(I, I) ∼=
HomR(IR, IR).

By applying the functor HomR(I,−) to 0 → I
x−→ I → IR → 0, we get

0 → HomR(I, I)
x−→ HomR(I, I) → HomR(I, IR)

→ Ext1R(I, I)
x−→ Ext1R(I, I).

(5)

On the other hand, by applying the functor HomR(I,−) to (3), we have HomR(I, R/I) ∼=
Ext1R(I, I) by (4). It follows that x is a non-zerodivisor of Ext1R(I, I) since

AssR(Ext
1
R(I, I)) = SuppR I ∩ AssR(R/I) ⊆ AssR(R/I).

Hence (5) provides the isomorphism HomR(I, I) ∼= HomR(I, IR) ∼= HomR(IR, IR)
as desired. �

Now let us prove Theorem 4.2.

Proof of Theorem 4.2. (a) ⇔ (b) follows from Theorem 2.13, and (c) ⇔ (d) follows
from Proposition 4.4. Thus we have only to show that (b) ⇔ (c).

(b) ⇒ (c): By Corollary 2.15, we may assume that A is generically Gorenstein.
For each p ∈ MinR, we have P = p × M ∈ MinA, whence AP

∼= Rp ⋉ Mp is
Gorenstein. Hence, by Fact 4.1 (c), Mp

∼= Rp since M is faithful. It follows that M
is of rank one. Since M ∼= M∗∗ is torsionfree, M ∼= I for some ideal I of R. We may
assume that M = I. Then A = R⋉ I. Set

K = (R : I)× R

as an R-module. For (a, x) ∈ A and (b, y) ∈ K, let us define an A-action into K as
follows:

(a, x)◦(b, y) = (ab, ay + bx).

With this action, K is an A-module. It is standard to show that

K ∼= HomR(A,R) ∼= ωA

as A-modules. Furthermore we have A ⊆ K ⊆ Q(A) = Q(R)× Q(R), thus K is a
fractional canonical ideal of A.

On the one hand, we get

ω∗
A
∼= A : K = (R⋉ I) : ((R : I)× R) = I × (I : (R : I)),

where the last equality follows from the following argument. Let (a, x) ∈ Q(A) =
Q(R)×Q(R). Then

(a, x) ∈ (R⋉ I) : ((R : I)×R)

⇔(a, x)(b, y) = (ab, ay + bx) ∈ R⋉ I for all b ∈ R : I and all y ∈ R

⇔
{
a ∈ R : (R : I) = I,

x ∈ I : (R : I).
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On the other hand, we get

trA(ωA) =(A : K)K

=(I × (I : (R : I)))((R : I)× R)

=(R : I)I × (I + (R : I)(I : (R : I)))

=(R : I)I × I.

Hence trA(ωA) ∼= ω∗
A shows that I ∼= (R : I)I. It follows that M = I ∼= trR(I).

(c) ⇒ (b): Let M ∼= I for some trace ideal I of R. Then Mp
∼= Ip = Rp for

all p ∈ MinR since M is faithful. By noting that MinA = {p × M | p ∈ MinR}
since (0 × M)2 = 0, A is generically Gorenstein. We may assume that M = I.
Then, by the same argument of the proof of (a) ⇒ (c), K = (R : I) × R is a
fractional canonical ideal of A. Hence, to prove trA(ωA) ∼= ω∗

A, it is enough to show
I = (R : I)I and I : (R : I) = I by the proof of (a) ⇒ (c).

We obtain that (R : I)I = I by Remark 2.12 (b). Furthermore, by Remark 2.12
(b), we have I ⊆ I : (I : I) = I : (R : I) ⊆ R : (R : I) = I. Therefore, we have

trA(ωA) = (R : I)I × I = I × (I : (R : I)) ∼= ω∗
A

as desired.
When this is the case, assume that A is not Gorenstein. Let I be the trace ideal

isomorphic to M . In the calculation of r(A), we may assume that M = I. Choose
a canonical ideal ω ( A and a ∈ A so that ω3 = aω2 and a2 ∈ ω2. Then A/ω is
Gorenstein of dimension d− 1 (Fact 2.5). Hence we can choose x1, . . . , xd−1 ∈ m so
that x1, . . . , xd−1 is an R, R/I, A, and A/ω-sequence. Then, by Proposition 4.5, we
can pass to R → R/(x1, . . . , xd−1). Thus we may assume that d = 1. In the case of
dimension one, our assertion follows from [12, Proposition 6.5]. �

Corollary 4.6. Let (R,m) be a Gorenstein local domain of dimension d > 0 and M
a nonzero maximal Cohen-Macaulay R-module. Set A = R⋉M . Then the following

assertions are equivalent:

(a) can.redA ≤ 2;
(b) trA(ωA) ∼= ω∗

A;

(c) M is isomorphic to some trace ideal of R;

(d) M∗ is isomorphic to some finite birational extension B of R such that BM is a

Cohen-Macaulay local ring of dimension d for all M ∈ MaxB.

When this is the case, if A is not Gorenstein, then r(A) = r(R/I) + 2 where I
denotes the trace ideal isomorphic to M .

Proof. Let M be a nonzero maximal Cohen-Macaulay R-module. Then, since M ∼=
M∗∗, M can be embedded into a finitely generated free R-module F . Hence, if
aM = 0 for a ∈ R, then a = 0 since R is a domain. �

We close this paper with examples of Corollary 4.6 arising from semigroup rings.
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Definition 4.7. Let a1, a2, . . . , aℓ ∈ Zn (ℓ > 0) be lattice points. Set

C = 〈a1, a2, . . . , aℓ〉 =
{

ℓ∑

i=1

ciai

∣∣∣∣∣ 0 ≤ ci ∈ Z for all 1 ≤ i ≤ ℓ

}

and call it the semigroup generated by a1, a2, . . . , aℓ. Let S = k[[X1, . . . , Xn]] be the
formal power series ring over a field k. We then set

k[[C]] = k[[Xa1,Xa2, . . . ,Xaℓ]]

in S, where Xa = Xa1
1 Xa2

2 · · ·Xan
n for a = (a1, a2, . . . , an). The ring k[[C]] is called

the semigroup ring of C over k.

Proposition 4.8. Let a1, a2, . . . , aℓ ∈ Zn (ℓ > 0) be lattice points. For a positive

integer m, set

Rm = k[[Xma1 ,Xma2, . . . ,Xmaℓ]].

Suppose that R1 is a Gorenstein normal domain of dimension n. Then Rm is a

Gorenstein domain and the integral closure of Rm is R1. Furthermore, if m = ab
with some positive integers a and b, then

Rm ⊆ Ra ⊆ R1

and Ra is a finitely generated Rm-module. Therefore, the canonical reduction number

of Rm ⋉HomRm
(Rm, Ra) is two.

Proof. Note that the k-algebra homomorphism k[[X1, . . . , Xn]] → k[[X1, . . . , Xn]],
where Xi 7→ Xm

i for 1 ≤ i ≤ n, provides the isomorphism R1
∼= Rm of rings. Thus

Rm is Gorenstein. Since (Xaj)m ∈ Rm for all 1 ≤ j ≤ ℓ, we get

Rm ⊆ R1 ⊆ Rm ⊆ R1,

where R denotes the integral closure of R. Thus Rm = R1 since R1 is normal.
Suppose that m = ab. Then we have Rm ⊆ Ra ⊆ R1 and Ra is finitely generated

as an Rm-module by the following claim. �

Claim 1.

Ra =
∑

c=c1(aa1)+···+cℓ(aaℓ)
for 0 ≤ c1, c2, . . . , cℓ < b

RmX
c

Proof of Claim 1. The inclusion ⊇ is clear, thus we have only to show the inclusion
⊆. Let Xc ∈ Ra. Write c = c1(aa1) + · · ·+ cℓ(aaℓ), where 0 ≤ c1, c2, . . . , cℓ. Then
we can find integers rj and 0 ≤ qj < b such that cj = brj + qj for all 1 ≤ j ≤ ℓ.
Hence we get

c =

ℓ∑

j=1

cjaaj =

ℓ∑

j=1

(brj + qj)aaj =

ℓ∑

j=1

(rjmaj + qjaaj).

It follows that Xc =
(
X

∑ℓ
j=1

rjmaj

)(
X

∑ℓ
j=1

qjaaj

)
is in the right hand side of Claim

1. �
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Example 4.9. For m > 0, let Rm = k[[Xm, XmY m, XmY 2m]] be a semigroup ring
over a field k. Then can.red (Rm ⋉HomRm

(Rm, Ra)) = 2 if a divides m, since R1 is
a Gorenstein normal domain by [3, Theorem 6.3.5].

Acknowledgments. The author thanks Ryotaro Isobe for telling him Example 3.6.
The author also thank the anonymous referee for reading the paper carefully and
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