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Abstract

A method of constructing low-dimensional nonlinear models capturing the main
features of complex dynamical systems with many degrees of freedom is described.
The system is projected onto a linear subspace spanned by only a few characteristic
spatial structures called Principal Interaction Patterns (PIPs). The expansion
coefficients are assumed to be governed by a nonlinear dynamical system. The
optimal low-dimensional model is determined by identifying spatial modes and
interaction coefficients describing their time evolution simultaneously according to
a nonlinear variational principle.

The algorithm is applied to a two-dimensional geophysical fluid system on the
sphere. The models based on Principal Interaction Patterns are compared to mod-
els using Empirical Orthogonal Functions (EOFs) as basis functions. A PIP-model
using 12 patterns is capable of capturing the long-term behaviour of the complete
system monitored by second-order statistics, while in the case of EOFs 17 modes
are necessary.



1 Introduction

In various fields of research such as fluid dynamics, atmospheric science and other phys-
ical subjects there occur complex dynamical systems with many degrees of freedom.
Frequently a model is formulated in terms of partial differential equations (PDEs) from
which a system of ordinary differential equations (ODEs) is derived via a Galerkin proce-
dure using eigenfunctions of some linear differential operator, commonly Fourier modes,
as basis functions. Despite the complexity the dynamics of such systems are often con-
fined to attractor sets of a dimension much smaller than the dimension of phase space.
Coherent structures emerge; the dynamical behaviour of the system (or at least of an
important part of the system representing e. g. a particular physical phenomenon one
focuses on) seems to be dominated by the interaction among relatively few characteristic
spatial patterns; i. e. the system is in fact in some sense low-dimensional. Hence the con-
struction of minimal models capturing the principal properties of the complete system
is an interesting task in such cases. Reduced models especially may be a helpful tool to
understand the system, e. g. to gain insight in the physical driving mechanisms of par-
ticular phenomena occurring in the system. The Fourier modes in principle allow for a
complete description of the time evolution, but this description cannot be expected to be
very efficient as to the number of functions involved since Fourier modes are completely
general and do not take advantage of information about the particular system under
consideration at all. This leads to the idea that a description in terms of characteristic
patterns may be more adequate when searching for a minimal model.

How to identify such patterns is far from clear. Modes obtained from an Empirical
Orthogonal Function analysis, also referred to as Principal Component analysis, Proper
Orthogonal Decomposition or Karhunen-Loeve expansion in the continuous case are an
obvious candidate on intuitive grounds. They can be calculated quite easily as solutions
of an eigenvalue problem or of a linear Fredholm integral equation in the continous case
involving second-order correlation tensors of the dynamical variables. Empirical Orthog-
onal Functions (EOFs) provide an optimal representation of a multivariate dynamical
field in a mean least-squares sense using a given number of modes. But they a priori
do not contain any information about the time evolution or the dynamical structure of
the system. Of course the modes obtained from an EOF-analysis can be used and have
been used [1]-[7] to build a low-dimensional model, but they are not optimized for this
purpose. In [8] the EOF approach is extended to the so called Sobolev eigenfunctions.
They yield an optimal representation not only of the state itself but also of its spatial
derivatives by minimizing a weighted norm containing the EOFs as a special case. But
still only second-order statistics is used.

In the present paper modes which are optimal with respect to the time evolution are
calculated to construct reduced models. They are obtained from a nonlinear minimiza-
tion procedure based on a dynamical optimality criterion involving higher-order corre-
lation tensors of both the state variables and their time derivatives. The method takes
into account spatial as well as temporal features of the dynamical system by identifying
spatial modes and interaction coefficients describing their time evolution simultaneously,
in contrast to EOF-analysis which concentrates solely on spatial properties of the system
and does not deal with mode interaction.

The approach pursued in this paper is similar to that described in [9] and [10] which
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aims at the analysis of mode interaction in the vicinity of critical points and refers to
the theory of synergetics involving unstable and enslaved stable modes and correspond-
ing order parameters. In [11] the concept of Principal Interaction Patterns is applied
successfully to the description and analysis of the time evolution of baroclinic wave life
cycles, a nonlinear periodic scenario in the field of atmospheric science.

The present study starts out from a chaotic two-dimensional fluid system on the
rotating sphere, a crude model of the large-scale atmospheric circulation, described by a
system of very many ODEs derived from a PDE via a Fourier-Galerkin procedure. The
question is addressed to what extent a system with relatively few degrees of freedom
using optimized basis functions succeeds in capturing the essential dynamical behaviour
of the full system. The paper is organized as follows : In section 2 the methodology
is outlined in general. Then the geophysical fluid system used as an example to test
and study the method is introduced. The Galerkin procedure to derive reduced systems
from this equation is described. In section 5 the method of constructing an optimal
low-dimensional system is given in detail. Then the results are presented in section 6.
Some emphasis is put on the comparison with reduced models based on EOFs. The
paper is concluded in section 7. In the appendix some numerical details of the algorithm
are discussed.

2 Methodology

The algorithm follows a general concept proposed by Hasselmann [12] which is slightly
modified in this study. Consider a nonlinear autonomous dynamical system of first order
in IN-dimensional phase space :

¢ = F(D) @ = (P, -, 0n) (1)

N may be quite large (10> — 10°); e. g. think of a system of differential equations orig-
inating from a partial differential equation via a Galerkin procedure (cf. section 4.1).
The high-dimensional dynamical field ®(t) is projected onto a limited number of time-
independent spatial modes which will be called Principal Interaction Patterns (PIPs):

o(t) = ZL:Zi(t)Pi +p L<<N (2)

=1
p denotes the vector of the residual error. In matrix notation eq. (2) reads
®=Pz+p (3)

where P is the (N x L)-matrix with the PIPs as its columns. The time dependence
is suppressed in the notation from now on. For a given set of patterns the vector of
expansion coefficients z at each time is defined by requiring that the squared error in the
representation of the state vector

p'Mp = (9 — P2)!M(® — P2) (4)

measured in some metric M be minimized. This constitutes a linear least-squares prob-
lem which can be solved uniquely using the Moore-Penrose generalized inverse of P with

respect to M
z=Pt® = (P'MP) ' P'M® (5)
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or in other terms

z=P*M® (6)

with P* being the (N x L)-matrix of adjoint patterns
P*=P(P'MP)™" (7)

defined as the set of vectors p! which lie in the linear subspace spanned by the PIPs and
which are orthonormal to them with respect to the metric M :

P Mp; = 6 (8)

The dynamics of the time-dependent coeflicients z are assumed to be governed by an
autonomous system of L first-order differential equations

P = G(z;0) 9)

depending on a set of adjustable parameters ¢ = (071, --,0,). The dynamical system is
specified as a member of a model class suitably chosen based on some physical knowledge
or reasoning about the character of the system to model. zF'F denotes the vector of
the tendencies of the PIP-amplitudes as given by the low-dimensional PIP-model in
contradistinction from the tendencies given by the full system z = P*® = PtF(®).
The optimal set of patterns and the optimal parameters are determined simultaneously
by minimizing the error in the derivative of the PIP-coefficients between the reduced
system and the entire system in a mean least-squares sense :

Q(P,o) = (17— 2)'M (" — 4)
= [G(=(P),0) - P+&] '} G (2(P),0) — P+&] = Min. (10)

The overbar denotes ensemble averaging which is equivalent to time averaging if ergod-
icity is assumed. In practice it will be replaced by a sum over a discrete and finite
time series obtained from a long-term integration of the full system of eq.(1). The met-
ric M may be chosen as the inverse of the covariance matrix of the derivatives of the
PIP-amplitudes to guarantee equal weighting of all modes :

M = (PHIIP*) " = PtMP(P*MIIMP)" P'MP (11)

I is the covariance matrix of the derivatives of the full system :

Mo = ., Pp a,f=1,---,N (12)

In principle the parameters o are independent variables in the minimization problem.
However, in this study as a first step they will be (mainly) connected to the patterns
by a projection procedure (cf. section 4.2). Eq. (10) in general (if G is nonlinear) poses
a high-dimensional nonlinear minimization problem which has to be solved numerically
by iterative techniques.



3 The two-dimensional fluid system

In this study a vertically homogeneous layer of incompressible fluid over topography on
the rotating sphere is considered. If the approximations of shallowness and quasigeostro-
phy are applied the flow can be described by a streamfunction U(A, ) which obeys the
non-divergent barotropic quasigeostrophic potential vorticity equation :

0 1 .
A and g = sin@ denote the longitudinal and latitudinal coordinates on the sphere, re-
spectively. A and J stand for the Laplacian and the Jacobian operator, respectively:

1 9 0 o\ O
A——l_ﬁzWJra—“[(l—#)@] (14)
da b Oa 0b

f = 2p is the Coriolis parameter. h represents an effective topography which is related to
the real dimensional topography of the earth hgim by b =2 sin(ﬂg)Agﬁd}}m; 6o being some
average latitude taken to be 45°N; H being a scale height of the atmosphere (H=10
km) and Ag being a scaling factor set to 0.2. The linear damping represents surface
friction; the coefficient %, is assigned a value corresponding to a damping time scale of
15 days. The scale selective horizontal diffusion term parametrizes the effect of eddies
on very small non-resolved spatial scales onto the resolved scales (cf. section 4.1). ¥ is
a constant forcing streamfunction which can be interpreted as thermal forcing owing to
solar radiation. The Rossby radius of deformation R is set to infinity in this study (rigid
lid approximation).

The zonal and meridional velocity of the flow, respectively, is given by u = —+/1 — pz%

and v = %% ¢ = AV is the relative vorticity. Eq. (13) has been nondimensional-
—H

ized using the radius of the earth as unit of length and the inverse of the angular velocity
of the earth as unit of time. The barotropic vorticity equation may be regarded as the
crudest model of large-scale atmospheric dynamics. For a rigorous derivation of eq. (13)
from the three-dimensional Navier-Stokes equations see e. g. [13]-[15].

It can be shown that eq.(13) in the absence of friction and forcing conserves kinetic
energy

1 il
Ekin=§(<u,u>+<v,v>)=—§ <U,A¥> (16)
and in the absence of friction, forcing and topography conserves enstrophy
1 1
ENS:§<C,C>=§<A\I},A\I/> (17)
where <.+, ---> signifies the scalar product
1 1 1 2w
<ab>= o [a O wbO w2 = = [ [a O mbwdrdu.  (18)
Z10

The asterisk stands for the complex conjugate.

6



4 Derivation of truncated models

4.1 Spectral basis

The streamfunction, the topography and the forcing are expanded into a triangularly
truncated series of spherical harmonics. The vorticity equation is considered on the
Northern hemisphere. Hence only modes with odd parity are used in the expansion.
This corresponds to the boundary condition v = 0 at the equator (no flow across the
equator). For the streamfunction the expansion reads :

Nomaz +N

Mt =, > WY u) (n+m odd) (19)

n=1 m=-n
VM ) = P (n) €™ (20)
P™ denote associated Legendre functions of the first kind defined by

—m)! — u?)z e n
P (p) = \l(2n+1)g ;: : 2#!) (i) (W =1) m>0 (21

normalized in a way that

<Y Y™ >= bpns Sy (22)
holds. The spherical harmonics are eigenfunctions of the Laplacian operator :
AY" = —n(n+ 1)Y" (23)

In spectral space eq. (13) reads

1 Amaz + Nmaxz 4T

gm = 2im¥™ + 3 3 N ST (14 1) —r(r+ V)] [0S

(’I’L + 1) I=1 g=-! r=1 s=-r

Nmaz +! Nmaz +7

+zzzzmwwmﬂ

I=1 q=-1 r=1 s=~r
n+m odd
— U — ky[n(n + D)2 T 4 I l+¢q odd (24)
r+s odd

I being the coupling integral

1o KDY i m=g+s
mqs m q s e m o o = A
In“_<yn,j(Yl,1§)>—47r/Yn j(Y;,Y,,)dQ—{ 0 if m;éq-l-s}

+
il dP:? dP}
Krit=s [ P r Pl ) d 26
nlir 21 (qld# Srd#> Y ( )
The summation in eq. (24) has to be taken nonredundant, i. e. only distinct combinations

of pairs of wavenumbers (I, q) and (r, s) occur. K obeys the redundancy relations

KMt = Km0 = — K =K 777 (27)

nlr nilr nrl — nlr
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and

K™is = Kim—s = g2m, (28)

nir T T ln
The latter ones may be established by integration by parts [16]. I’ vanishes unless
the wavevectors (n,m), (I,q) and (r,s) satisfy certain selection rules. Aside from the
resonance condition m = ¢+ s owing to the separate orthogonality of the exponentials in
eq. (25) these arise from properties of the Legendre functions [17]. Among the O(npas®)
coupling coefficients only O(n.,4.°) nonzero ones remain. For evaluation of the coupling
integral see [18].
For convenience of notation we now switch to the set of real modes

{fa;a: 17..-’N}
= {PS,\/?P,Tcos(m)\),\/ﬁP;” sin(mA);n =1, Amez;m =1,-+-,n;n+m odd}

satisfying
< fo, f3>=0ap (29)

and

Afy=-n(n+1)fa. (30)

In this study the expansion is truncated at wavenumber nyax = 21. This yields a linear
subspace H spanned by N = 231 real modes (N = i“l“—’ii%'-‘i"j—ll) The coefficient &,
of the scale selective diffusion term is set to a value representing a damping time scale
of 3 days in the smallest scale (wavenumber 21). The diffusion term accounts for the
neglected interactions with the unresolved modes. Their mean influence on the resolved
modes can be parametrized by a linear damping. The external forcing is specified from
a 500hPa streamfunction analysis data set in a way that the system has a realistic mean
state and a variance pattern similar to that of 10 days running mean streamfunction
fields. See [7] for the detailed procedure.

Moreover it is convenient to separate the flow U into the time-independent mean flow
¥ and the anomalies ’. The expansion (19) then reads

U(A, p,t) = \_Ii()‘a ©)+ Z_: \I]:x(t)fa()‘a p)- (31)

The dynamic equations for the W/ can be summarized to :

N N
U, =2 Y AR UV 4+ Y B+ CF (32)
By=1

afy
B=1

NN

Eq. (32) forms a forced, dissipative system with quadratic nonlinearity. The quadratic
term represents nonlinear wave-wave interactions; the linear term includes mean-wave
interactions, the Coriolis effect, the topography and the friction terms; the forcing term
is formed by the external forcing and the time-independent terms arising from the sep-
aration into mean flow and deviations from it. The superscript sh signifies that the
quantities refer to spherical harmonics. The tensors of coefficients A%t B! and C*! can
be derived easily from those occurring in eq. (24). The system of equations is inte-
grated in time using the transform method [19] involving only O(N %) operations for
each evaluation of the right side and a standard ODE integrator of high order.
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The finite subspace H spanned by the 231 Fourier modes is of course not an inertial
manifold of eq. (13) in a rigorous mathematical sense but it turns out to be sufficient to
capture the long-term behaviour as far as first and second moments (e. g. energy spec-
tra) are concerned. The system exhibits chaotic behaviour (continous spectra, positive
Lyapunov exponents). It reproduces some essential features of atmospheric behaviour
quite well (red spectrum, preferred flow patterns). Therefore the system of 231 ordinary
differential equations can be regarded as a rough model of the large-scale atmospheric
circulation. It will be the complex system we start out from to derive reduced models.

From now on all quantities and operators are replaced by their projection onto H.
Hence U, W, ¥/, 7,7, f and h have to be read as vectors of spherical harmonics coefficients
in N-dimensional space; A as a diagonal (N x N)-matrix with the eigenvalues of eq. (30)
on its diagonal and J as a nonlinear map from H x H into H. The scalar product
<-++,---> corresponds to the canonical scalar product in RY because of eq. (29).

4.2 Principal Interaction Patterns

Now we consider an L-dimensional subspace P in H spanned by the Principal Interaction
Patterns. The streamfunction anomalies are expanded into a series of PIPs :

\P:W-I-izipi (33)
=1

The vector of expansion coefficients is
z =Pty (34)
A reduced model is then defined by a projection of the terms in eq.(13) onto PIP-space:

TY + TATT [T+ TV,A(T+ TV)+ f+h

= ~wT (T+TV) - wTA* (T+TV)+ T (35)
T signifies the projection operator onto PIP-space, a linear map from H into H given

by the (N x N)-matrix
T = PP+, (36)

This yields a system of ordinary differential equations for the PIP-amplitudes z of the
form

1 L L
Z.iPIP = Gi = - Z AiijjZk + ZB{ij + Ci (37)
2 = j=1
where the coeflicients are given by
Aje = —<p,, MAT [T (pj, Apx) + T (pr, Aps)] > (38)
By = —<pi, M (A7 [T(T, Apy) + T (0, AT + £+ h)] + kap; + 62%p;) > (39)
C; = <ph,M (U= AT T(T,AT+ f+h) — 6,0 — 5,077 > . (40)

3PP denotes the tendencies of the PIP-amplitudes as given by the truncated model
in contradistinction from the exact tendencies z = PTW¥. This kind of truncation is



equivalent to a projection of the tensors of interaction coefficients of the full system :

Aiji, = E it Pa; Py Ay, (41)
o, By=1
N

By = Y, PiPs;B3 (42)
oz,ﬁ:l

C;, = ZPJ;CZ}‘ (43)

The elements of the tensors A, B and C form the set of parameters 0. Hence the param-
eters in this case are connected to the patterns rather than determined independently
from them.

In the present calculations three different metrics M for defining the projection are
considered which have particular physical meaning : M; = 1, the squared anomaly
streamfunction metric; My = —A, the turbulent kinetic energy metric; and Mz = A?,
the turbulent enstrophy and squared anomaly vorticity metric.

Note that eqs. (33)-(43) are completely general; they hold for any L-dimensional
subspace P C H spanned by L arbitrary linearly independent modes. Especially, if the
patterns are chosen as spherical harmonics and M is chosen as metric one returns to
the corresponding coupling coefficients of the full system in eq. (32).

A special choice of PIPs are the EOFs. In the following subsection the definition and
the main properties of EOF's are reviewed briefly.

4.3 Empirical Orthogonal Functions

Starting out from an N-dimensional state vector ®(t) one may ask for an expansion
using only S spatial modes (S < N) which converges optimally fast in the sense that
the mean squared error in the representation of ®

5 L s
65—( ZCD ) M (@—Z@aea> (44)
a=1 a=1
with )
®, = MO (45)
be minimized subject to
et Meg = 6, a,Bf=1,---,5. (46)

M may be an arbitrary symmetric, positive definite metric. It is well known that the
solution to this minimization problem is given by the eigenvectors corresponding to the
S largest eigenvalues of the eigenvalue problem

I'Me, = \*%e, (47)
I' being the matrix of second moments of @ :

Fagzq)aq)g a,ﬁzl,---,N (48)
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The matrix ' M as a product of symmetric, positive definite matrices can be diagonalized
in a real basis and has only real and positive eigenvalues. The amplitudes of the EOF's &,
are pairwise uncorrelated and the second moment of each is given by the corresponding
eigenvalue :

G, Dy = 6o\ (49)

The mean squared error is then given by

N
> (50)
a=S+1
EOFs may be calculated either from the full state vector @ or only from the anomalies
® = ® — ®. See [20] for an extensive overview on the mathematical properties of
EOF-analysis.
Note that the EOFs are only optimal for capturing as much variance as possible with
a given number of modes. To construct a reduced system it is necessary to describe
the time evolution of the modes chosen as basis functions. For this purpose one has to
model not only the state itself, but also the terms occurring in the dynamical equation
governing the time evolution, e. g. the spatial derivatives (cf. [8]). This is not implied
with EOFs. The optimality criterion does not refer to dynamics at all. Nevertheless
the EOFs may be regarded as an attractive candidate for a set of basis functions in
a reduced model since they already take into account the characteristics of the system
under consideration to a large extent (the structure of the second moments) compared
to eigenfunctions of a linear differential operator, here spherical harmonics, which are
completely general.

4.4 Conserved quantities of truncated models

In view of the conserved integral quantities of eq. (13) one may ask if this conservation
properties are adopted by truncated systems. The corresponding projected quantities in
L-dimensional PIP-space are

1 — _
EPP = —5 <T+TV,A (T+7v)> (51)

and
ENSP? = = <A (T +TW),A (T+T)> . (52)

If the full streamfunction is expanded into a series of PIPs the following statements
hold: For reduced systems based on spherical harmonics it can be shown that the terms
arising from the truncated Jacobian (nonlinear interactions, Coriolis and topography
term) conserve both kinetic energy and (except for the topography) enstrophy for all
three metrics considered (especially the full system of eq. (32) does). As a consequence
the flow in phase space associated with the nonlinear terms is divergence-free (Liouvillian
property). This does not hold in the case of general patterns. This difference is due to
the fact that in case of spherical harmonics the projection operator 7 and A commute
because of eq. (30), whereas in the general case they do not. Then the conservation
properties depend on the metric M used in the projection procedure. If the kinetic
energy metric M, is used the quadratic terms, the Coriolis and the topography terms of
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the PIP-model conserve the truncated kinetic energy Elfiir‘: , if the enstrophy metric M3 is
used enstrophy is conserved by the nonlinear interactions and the Coriolis term; in the
case of the norm streamfunction metric M; no conserved quantity exists. It is in general
not possible to conserve both kinetic energy and enstrophy by the quadratic terms in a
reduced model defined according to the formulae (37)-(40). Also the divergence of the
nonlinear terms generally does not vanish. Actually there are alternative formulations
of truncated models which allow for conservation of both integral quantities (see [7])
but these are unfavourable for other reasons and are not considered here. If the mean
state is prescribed and only the streamfunction anomalies are expanded into a series of
PIPs (as is done in this study; cf. eq. (33)) the statements mentioned above hold for the
turbulent kinetic energy

i 1
P — ——;7 <TU ATY >= —§thtAPz (53)
and the turbulent enstrophy
. il
ENS'®P = % <ATV ATV >= 5thtNPz, (54)

both projected onto PIP-space, instead of EII(’;I‘: and ENSP®, Note that the existence of at
least one conserved quantity for the quadratic interactions guarantees that the solutions
of the reduced system are bounded for all times. The conservation statements can be
proven quite easily with the help of eqs. (5) and (36) and the following identities valid
for all a,b € H :

<a,J(a,b)>=<b,T(a,b)>=0 (55)
<a,Ab>=<Aa,b> (56)
<a,J(b, f)>= —<J(a f),b> (57)

5 Determination of the optimal truncated system

We now seek a reduced system which is optimal in the sense of the variational principle
expressed in eq. (10). Since for a given set of patterns the parameters are determined
by the projection procedure the components of the patterns are the only independent
variables and the problem is actually to identify an optimal L-dimensional linear subspace

P in ‘H.

5.1 Uniqueness of the PIP-model

It is evident that the Principal Interaction Patterns are only determined to within a linear
transformation. Consider an arbitrary regular linear transformation R in L-dimensional
space and a matrix of patterns P. The transformed set of patterns is then P’ = PR, the
corresponding vector of expansion coefficients is 2’ = R~'z. The interaction coefficients
A, B and C are transformed according to the rules for tensors of third, second and first
order, respectively :

Z'jk = Z Rz'_niRijqkAmpq (58)

m,p,q
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Ci =2 RinCn (60)
m
The error function @ is invariant under this transformation : Q(P’) = Q(P)

To eliminate this gauge freedom one has to refer to some normal form for the matrix
of patterns. One possibility to do so is to impose the constraints that the patterns be
orthogonal with respect to M, that their amplitudes be uncorrelated with the patterns
ordered by descending mean squared amplitude and that the coeflicients C; be always

positive :

PiMp; = & _ (61)
Ziz; = pftMI‘Mp; = APPé,; AP® > AP (62)
Ci > 0 (63)

Besides this gauge freedom the existence of several sets of patterns sharing the same
value of the error function cannot be excluded rigorously since @) is highly nonlinear in
P but generically does not occur.

5.2 Reduction of dimension using EOFs

The projection procedure is carried out in two steps. In order to reduce the number of
variables in the minimization procedure the Principal Interaction Patterns and therewith
also the adjoint patterns are assumed to lie in the S-dimensional subspace & spanned
by the first S EOFs calculated from the streamfunction anomalies with respect to M
(M=M;L<S<N;PCECH):

S
o = Z P.e, or P=FEP (64)
a=1

E is the (N x §)-matrix of the first S EOFs; P is the (S x L)-matrix with the PIPs
p expressed in terms of their EOF-coefficients as its column vectors. The EOFs are
orthonormal with respect to M (e, Meg = bap). It is sufficient then to consider the

projection of the system onto these S EOFs. Let ¥ and ¥ be the vectors of EOF-
coefficients of the streamfunction anomalies and their time derivatives, respectively :

¥ = E'MY (65)
U= E'MU (66)
The vector of PIP-coefficients is then
2= Pt (67)
with ) . Ny
Pt = p¥ = (P'P) P, (68)

P* being the (S x L)-matrix of adjoint patterns in the EOF-representation.
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This restriction in the choice of the patterns is motivated as follows : First, it is
simply a necessity to reduce the number of variables in the minimization procedure by
restricting the choice of patterns somehow to stay within the limits of available computer
power. Moreover the study of Selten [7] referring to the same fluid system and finding a
reduced model based on 20 EOFs capable of both capturing the global behaviour of the
system and predicting the flow for some time supports the expectation that the EOFs
actually are already a good approximation to the optimal dynamical modes and that the
PIPs will have largest contributions from leading EOF's.

5.3 The variational principle

The variational principle now reads :

Q(P) = (s —2)'M (PP - 3)
= [G (2(P),0(P)) — 13+\i1] M [G (2(P),o(P)) —15+&1] = Min.  (69)

subject to

pibi = & (70)
7iZ; = pf P} = 6;;\0° AT > AR (71)
Ci > 0 (72)

with B R
M = P'P(P1IP) P'P (73)
I'= EB'MTME (74)
1 = E'MIIME (75)

For the patterns spanning the S-dimensional subspace £ one has the same gauge freedom
as with the PIPs. For numerical reasons it is convenient actually not to work with the
EOFs themselves but with a set of patterns E’ which is related to the EOFs by an
orthonormal linear transformation U in S-dimensional space (E = E'U) chosen in a way
that II' = U'E" MIIM E'U becomes diagonal while still preserving the orthonormality
of the patterns (efMej = 64p).

See the appendix for details on the calculation techniques of the minimization pro-
cedure.

5.4 Ill-conditioning and stability of the pattern identification

When dealing with chaotic systems one may ask about the stability of the pattern iden-
tification from a finite time series. There are two potential sources of errors in the
algorithm : First, the EOFs of the system are not exactly known but only estimated
from a finite sample of data, secondly, the nonlinear minimization to determine the PIPs
also refers only to a finite sample of data. The latter one causes difficulties especially in
the case that the minimization problem is ill-posed, as one expects for chaotic systems.

In the following the sampling problem in the estimation of EOFs is sketched briefly.
The discussion is restricted to the case M = 1 (symmetric eigenvalue problem). The
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general case of eq. (47) is related to a symmetric eigenvalue problem by a similarity
transformation with the matrix M2 and can be treated in an anagolous manner. Let T’
be the exact covariance matrix of the system, I' a symmetric matrix of perturbations due
to the sampling error and ¢ a small parameter. Then the perturbed eigenvalue problem
is ;

(I + €F) (ea + o) = (AT +A2) (e + &) (76)

Classical perturbation theory for symmetric linear operators in the generic non-degenerated
case yields for the errors in the eigenfunctions to first order :

. elle
Gg ==& Z /\col:}u_ feofeﬁ + 0(62) (77)
Bta T 6

Hence mixing occurs mainly among neighbouring EOFs. The estimation of the subspace
of the first S EOFs is thus much more stable than the estimation of individual higher
modes. Suppose a relevant subspace of S EOFs contributing to the PIPs within a
certain accuracy. Then this subspace can be assumed to be covered independent of the
data sample by working with S’ EOFs, S’ slightly larger than S. For a more detailed
discussion of the sampling problem see North et. al. [21].

The minimization problem turns out to be ill-posed. This difficulty may be coped
with by applying an appropriate regularization procedure in analogy to singular value
decomposition in the case of ill-conditioned linear least-squares problems. An adequate
quadratic regularization term Qg to be added to the error function @ with some weight-
ing is in the present context :

1 1 L L S L .

Qreg:_ 1—_22 (31'-"— Z ZPai (78)
2 L . L :
It measures the deviation of the PIP-space from the subspace of the first L EOFs and
takes values between 0 and 1 for sets of patterns satisfying the constraint of eq. (70). If
the PIP-space is identical with the space of the L leading EOFs then Q.. = 0; if it is
orthogonal to the L leading EOFs then Qe = 1. Consider a convex linear combination
of @ and Qreg :

QI = TIQ 1 (1 - n)Qreg 0<np<1 (79)

In the case 7 = 0 the solution to the minimization problem is then given by the EOF-
model with L modes, which can be stably determined from a finite sample if L is not
too large. With increasing value of 7 more and more information from the variational
principle is included. Using several independent data samples the maximum value of 7
for which the pattern identification is stable can be determined. Hence the EOF-model
serves as a kind of minimum standard; an improvement of the patterns, as far as possible
on the basis of the available data, is made in a controlable way.

An additional problem is the possible occurence of several local minima. Because
of the nonlinearity of ) there are neither rigorous statements on the existence of local
minima nor systematic ways to avoid them in the numerical minimization procedure.
Nevertheless with the system considered in this study always only one minimum was
found in several minimization procedures starting from different initial pattern sets.
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6 Results and Discussion

The EOF's of the system have been estimated from a data sample of 50000 points. Fig. 1
gives an overview on the distribution of variance in the system with respect to the three
different metrics.

Minimizations of the error function have been carried out for increasing numbers of
Principal Interaction Patterns and different numbers of retained EOFs using the three
different metrics. They are based on a data sample of 10000 points; i. e. the time average
in the variational principle is taken as a time average over this data set. In all cases the
minimization starts out from the first L EOQFs taken as a first guess for the patterns
(except for some control runs to check the independence upon the initial pattern set).
Best results were obtained using the kinetic energy metric. Hence the study focuses
mainly on this case. It turned out to be sufficient to search for the PIPs in a subspace &
of 60 EOFs; no substantial improvement could be obtained by inclusion of higher modes.

6.1 Long-term behaviour

12 patterns turned out to be the minimum number of degrees of freedom to reproduce
the first and second moments in PIP-space quite faithfully. The mean state is reproduced
almost perfectly. Because of egs.(33) and (34) the mean PIP-amplitudes in the full system
are zero. A statistically significant deviation of the mean PIP-amplitudes obtained from

a long-term integration with the reduced model from zero can be detected, but 1t is very
<Pz,Pz>

small. The relative root squared error in the mean state /=5 is 0.02, the error in

the kinetic energy of the mean state is less than 0.3%.

Long-term integrations of the reduced models show that they tend to have system-
atically too much variance (and also too much energy and enstrophy). This is due to
the fact that the horizontal diffusion term which removes energy from the tail of the
spectrum is not captured very well by the PIP-model since it affects mainly the modes
of high wavenumbers whereas the PIPs are concentrated on the long and medium waves
(large-scale patterns). This difficulty may be solved by introducing an additional linear
damping in the evolution equations for the PIP-amplitudes to parametrize the mean
effect of the unresolved modes on the resolved PIP-modes in analogy to the additional
diffusion term incorporated in the spectral model. In the present framework this can
be done by calculating the elements of B as independent variables according to the
variational principle simultaneously with the patterns instead of determining them via
eq. (39). Fig. 2 shows the energy spectrum obtained from a long-term integration of a
PIP-model using 12 modes without additional damping, Fig. 3 with additional damping.
Both figures refer to the pattern set obtained from the minimization with additional
damping. The integration time is taken so long that the errors in the estimation of the
second moments are actually negligible. The additional linear damping yields a con-
siderable improvement. The total mean turbulent kinetic energy in PIP-space is now
5% too small; without the damping it is 26% too large. From now on only reduced
models with additional damping are considered. We now look at the full second-order
statistics in PIP-space. Fig. 4 illustrates the mean squared amplitude of the PIP-modes
obtained from the reduced model and from the full model. Except for the sixth pattern
the accordance is very good. Table 1 gives the correlation matrix of the PIP-amplitudes
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in the simulation with the reduced model. The standard errors are of the order 1073,
The PIPs are rotated in a way that their amplitudes are uncorrelated in the data of the
full system (cf. section 5.1, eq. (62)). Hence the correlation matrix would be the unity
matrix in the ideal case. The deviations from zero in the present values are statistically
highly significant except for the values indicated as zero. Nevertheless the majority of
the values is close to zero. The PIP-model is able to reproduce the second-moment
structure in PIP-space quite well.

Fig. 5 shows the energy spectrum obtained from a simulation using 17 EOFs. With
truncated models based on EOF's it was not possible to reproduce the energy spectrum
with less than 17 modes.

To compare the 12-dimensional PIP-space with the space of the leading 12 EOF's the
squared normalized projection Y°; < e,, Mp; >* = ¥ Pfl is given in Fig. 6 for each EOF
. The PIP-space is dominated by the leading 12 EOFs but also contains considerable
contributions from higher EOFs. The sharp decrease between the 12th and 13th EOF
is due to the particular regularization procedure. If the EOFs in eq.(78) would be
e. g. weighted by their variance the decrease would be smoother, but the regularization
is then less efficient.

The PIP-space spanned by the 12 modes captures 59.4% of the total mean turbulent
kinetic energy; the first 12 EOFs contain 69.0%, the first 17 EOFs 76.4%. But the
PIP-model still reproduces the essentials of the large-scale pattern evolution.

If the turbulent enstrophy metric Mz = A? is used in the projection the same min-
imum numbers of modes to reproduce the mean and the covariance structure of the
amplitudes (12 PIPs, 17 EOFs) were found. But the fraction of energy and enstrophy
captured by these 12 PIPs is smaller than in the case of My = —A. With the norm
anomaly streamfunction metric M; = 1 the minimum reduced model has to include 15
patterns. This higher number may be due to the fact that the nonlinear terms in this
case have no conserved quantity.

6.2 Local properties

Fig. 7a shows the correlation between the tendencies of the PIP-amplitudes given by the
truncated model and those given by the full model separately for each pattern :

COV(Z.‘ZPIP, éi)

\/Var(z'flp)\/\/’a,r(éi)

Fig. 7b gives the explained tendency variance for each pattern defined by :

B Var(zFF — %)
Var(z;)

The quantities are estimated from a data sample of 50000 points different from the

sample used for the minimization. The standard errors of the estimates of cor; and s;

are of the order 1073 and are therefore not indicated in detail. For all PIP-modes a very
large part of the tendency variance is explained by the reduced model.

The corresponding values for the first 12 EOFs are in Fig. 8a/b. The PIP-model
provides a considerable improvement on the EOF-model; even the tendencies of the
EOFs are captured better by the PIP-model than by the EOF-model. About 17 EOFs
are necessary to describe the tendencies of the first 12 EOFs as well as with 12 PIPs.

i=1,-,L (30)

cor; =

i=1,--+,L (81)

SZ':I
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6.3 Prediction experiments

Now the ability of the truncated model to predict the time evolution of the PIP-
amplitudes for a finite time is investigated. Starting out from an initial anomaly field
¥'(0) the PIP-model is integrated in time with the initial condition 2(0) = P+¥'(0).
The quality of the forecasts as a function of the prediction time 7 is measured by the
mean anomaly correlation

1 pip /pred
{Acor(r)} = __<¥E), 7> (82
\/< epip(r), W'Pip(7) >\/< Wrpred(r) Jrered(r) >
and the relative root mean squared error
B {< \Iﬂpip(’?’) = \I;lpred(T)’ \I;Ipip(,r) _ \I;/pred(,r) >}
rrmse(T) = \l T<Gmn(r), UPe(r) >} : (83)

Q'PiP(r) = PPTW'(7) is the anomaly field at time 7 given by the full model projected
onto PIP-space; W'Pd(7) = Pz(r) is the field predicted by the PIP-model. The braces
denote an average over the ensemble of forecasts, here 2000 uncorrelated forecasts. The
forecast periods are different from the data sample used to determine the PIPs. The
persistence forecast U'Pe*(7) = W'PP(0) simply reflecting the autocorrelation of the
PIP-amplitudes is considered as a trivial control forecast. Note that the integration of
the full model starts from the full initial condition ¥'(0). Figs. 9a and 9b show the
results. The PIP-forecasts using 12 patterns have considerable skill.

The errors in the prediction experiments consist of two parts : The first part comes
from the truncation error of the reduced system. Moreover the projection onto the
PIPs causes an error in the initial condition which leads to prediction errors due to
the inherent instability present in the full system. To investigate the influence of the
truncation error alone further prediction experiments have been performed starting from
initial conditions PP+ ¥’(0) lying in PIP-space instead of W'(0). Hence now the PIP-
model and the reference integration with the full model start from the same initial
condition. The forecast skill is now much better (Fig. 10 a/b). This indicates that a
large part of the errors in Figs. 9a and 9b is due to the error in the initial condition.

Last the ability of the reduced models to predict the time evolution of the most
energetic components is investigated. Figs. 11a and 11b refer to the same prediction
experiments as Fig. 9a/b, but now the skill concerning the amplitudes of the first 12
EOFs instead of the PIPs is evaluated. The PIP-model starts with an error at the
beginning since the EOFs are not fully contained in PIP-space. But after some time the
predictions with the PIP-model are better than those with the EOF-model because the
dynamics are captured better by the PIP-model.

7 Conclusions

An algorithm for constructing optimal low-dimensional models of complex dynamical
systems has been described. An optimal linear subspace spanned by a few characteristic
spatial patterns and the coefficients of a dynamical system describing the time evolution
of these modes are determined simultaneously according to a variational principle. The
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method involves higher-order correlation tensors of the variables and their time deriva-
tives and leads to a nonlinear minimization problem in contrast to e. g. EOF-analysis
which is based on second-order statistics and leads to an eigenvalue problem. In an
application to a two-dimensional fluid system the EOFs turn out to be already a rather
good approximation to the optimal modes, but the PIPs provide a considerable improve-
ment, a PIP-model with 12 modes being approximately as good as an EOF-model with
17 patterns as to both global behaviour monitored by second-order statistics and short
time prediction skill.
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A Minimization of the error function

The error function can be expressed in terms of moments of the PIP-coefficients and
their time derivatives. In the following greek indices always run from 1 to S, latin ones
from 1 to L.

A A

Q (P, A(P), B(P),C(P))

~ 1
= Y Mun [Z Y AmiiA ZGEE + Y AmijBok 57528

ikl ik
+ D (AnijCn + BmiBuj) 77 +23 . BniCrZ + CnCh
7 ;

+Z2mzn —2C0m %, ZAm,] Znziz; — 2 Z Bi 2nz; (84)

,J

The variation of ) with respect to the patterns ; and the parameters A, B and C yields:

aQ OMpmn | 1
. e —_— | = AniiAnn Zizizrg + Apmii Bar Zizi 2
2B, ~ 2 P, [421;1 iAnk TR+ ) i B S

+_ (AmijCn + BmiBr;) %% +2ZB,,”0 % 4 CnCh

4

+2pzn, —20C, Z AmZJ Znziz; — 2 Z B znzz:l

4J

0z
Z Ang Ankl 2252k
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0z; Ozp
Amz Bn 2z;z 22
+Z 7 k( Jkapaq'*‘ JaP )
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+ Z an

+2Z (Amijcn + BsznJ) Ziaa%‘ + 2 Z BmiCn _Azt

] aq i ag
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«g 4J

—'Diijn Z ﬁaapak (V;'kv}q + I/zq‘/gk)) (86)
k
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— =p;! (\ifa -y Pakék) — Ptz (88)
D=Pptp (89)

(90)

Without loss of generality IT is assumed to be diagonal in formula (86) (cf. section 5.3).

0 ~ (1 T
Q => My|= > AinZEE7; + Y Bii7i77 +C; ZpZq — ZiZpZ, (91)
d Alpq i 2 3k J

3(9 :ZMiP ZA;jkzjzkzq +QZBijZ_jZ_q +2C,'7q' —2% (92)
aqu Ik J

1

a ~ _
%— = Z M[ (Z A,‘jk ijk + 2 Z B,’jZ—j + 2 Ci - 221') (93)
! ik J

:

The total derivative with respect to the patterns reads :

d o9 5 00 0y 43 29 08, 4399 96 @

- —t -y

d’Paq 8Paq ik aAijk 3159,,; 67 aB{j 3}5(,{, % 601 6Paq

The nonlinear minimization is performed using a standard Quasi-Newton method with
BFGS-update applied to an augmented Lagrangian function treating the constraints
with Lagrangian multipliers.

B Calculation of interaction coefficients

The computational effort to determine the interaction coefficients is dominated by the
calculation of the Jacobian terms in eqgs. (38)-(40). There are basically two possibilities
to evaluate them. On the one hand one can calculate the Jacobians in the full phase space
of spherical harmonics using the transform method. On the other hand it is possible to
consider the Jacobians only in the subspace £ of retained EOFs and then to proceed
as follows. The tensors of coefficients A°f, B*°f and C°f of the reduced model using
the leading 5 EOF's as basis functions (p; = e;, L = S) are calculated once explicitly
according to formulae (38)-(40) using the transform method :

Az(g'y = —<e€a MA™ [j(eﬂ7 Ae’Y) + \7(6’}'7 Ae,@)]> (95)
By = — <ea M (A7 [T(T, Aeg) + T (g, AT + f + b)] + Kre5+ k2A%4) >(96)
Ct = <ew M (¥ - AT (T,AT + f +h) — 5, T — K2 A°T) > (97)

Here e}, = e, holds because of e/, Mes = 6,5. In the actual calculations the rotated
patterns e, introduced in section 5.3 are used instead of e,, but the primes are dropped
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now for convenience of notation. The coefficients of the PIP-model are then calculated
by direct summation in the S-dimensional EOF-space using the identities

Aijk = Z bt By Py AL (98)
o,dy=1
S

By = 2 P+Pg,Be°f (99)
a,f=1
S A~

C; = Y Bio (100)

The former method involves O(N %) operations for each Jacobian term, the latter one
O(5®) operations. Moreover the calculation in EOF-space requires storage of the O(S?)
interaction coefficients of the EOF-model. Hence the former method is preferable for
large S, the latter one for small S. The turning point is about S ~ 40.

If the matrix B of linear interaction coefficients is determined from the variational
principle rather than from the dynamic equation one has to solve a positive definite
system of L? linear equations resulting from %: = 0. In this equations the metric can
be removed; the system then takes a block-diagonal structure and each row of B can be
obtained separately from a positive definite linear system of dimension L :

> XiBij =1y, (101)
j
with
Xoj = %z
Yy, = 2z, — % J.Z’;Aijk Z;zr2s — Ci %5 (102)

Note that the system matrix X is independent of 7. Hence its Cholesky decomposition
has to be computed only once for a given set of patterns; then all elements of B are
obtained by backsubstitution.

C Derivative of interaction coefficients

The first order variation of the coefficients of the PIP-model with respect to the patterns
yields :
0Aji 3p -
—_— = —<—,MA~- ,A ,Api)] >
3B, 3B [T (ps> Apk) + T (pe, Apj)]
—8jq <P}y MAT! [T (€a, Apk) + T (pry Aea)] >

‘—6kq <p:’ MA™ [J(ea, Apj) + j(Pj’ Aea)] >
= Dl-;l (Aajk - EpalAljk) — PiZquk
l

_'5jq <p;’ MA™! [\7(6&’ Apk) + j(Pk, Aea)] >
—6’0'1 <p:7 MA_I [j(eo,, Ap]) + J(Pj, Aea)] > (103)
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0B;; p; = —
o= P M (A 1[f(,W,Apj)+~7(Pj,A‘I’+f+h)]+N1P1+K2A3Pj)>
b, 9Py,

=835 <0}, M (A7 [T(T, Aea) + T (e, AT + f + h)] + krea + K2, ) >
= Dy (Taj - Zf’atBu) - PiB,;
!

= 850 <pl, M (A7 [T(T, Aea) + T (eay AT + f + h)] + krea + r2A%0 ) >(104)

oC; op: " - = — —
— = <—— M (U —AYT(T,AT + f + h) — 5,0 — £,A%T) >
aPﬁq aPaq ( ( f ) K1 2 )
= D7 (C;°f - 215010,) - B, (105)
1
with
Aajk = <ea7MA_l [j(p]a Apk) + j(pk, Ap])]> (106)

Toj = — <eq, M (A [J(T, Ap;) + T (95, AT + f + )| + s1p; + fczASPj) > (107)

As with the coefficients themselves there exist two ways of calculating the derivatives
numerically. On the one hand again one can calculate all remaining Jacobians in the
formulae (103) and (104) in the basis of spherical harmonics using the transform method.
The other possibility is direct summation in EOF-space using the identities

— <pf, MA™ [T (e, Ap;) + T (pj, Aeo)]|>= S PLE ASE (108)
By

and
- <p:$ M (A—l {j(a) Aea) + j(ea,Aﬁ-f- f + h)] + Ki€q + "32A36a> > = ZPZEBE?;'
- g

(109)

The former method involves O(N %) operations for each Jacobian, the latter one O(S%)

operations each and again storage of O(S®) interaction coefficients. Hence the former

method becomes more and more advantageous if S increases, but the limit is higher then
in the case of the coefficients themselves. It is found to be roughly S & 100.

If the components of B are determined from 22 = 0 their derivatives are not

8Bpq
required (cf. eq. (94)).

—26-



(ser8ureny) otrjewr Aydorjsus
Jud[NqIny pue (serenbs) 319U OAULY JUSNQIN] ‘(SIOID) UOIIOUNJUILII)S A[RUIOUR ULIOU 3}
0} 309dsa1 Y3M SJOH S 181y oY} Suisn uoisuedxe we ul parnjded adueLIeA Jo UoORL] ¢ [ "SI

sepouwl Jo Jaquinu
017 0g 0¢ O}

......

PR F D SN e LUNN B BE DN S B AN DN B MM (NI DN MU MM (N S S ANNT SENR AN A NN B (A A S S e

N SO TN TN TUNN TN TR PO |

S403 JO 92UBLIBA BARINWINY

00
10
¢0
€0
¥°0
S0
90
L0
80
60
o't

SOUBLIBA JO UOI0B)

27—



(sepo1m0 ‘oury ¥o1y3) Suidurep [euonyippe jnogpm sdid g1 Suisn welshs
paonpail ayj jo pue (se[3uerry ‘oury uryy I0MO]) SJ1d ZT Jo 9oedsqns o1y 0ju0 pajoalord wraysAs
jerdurod oYy o ‘(sarenbs ‘eur ury 19ddn) weysAs agerdwos oy Jo wrnigoeds A8muy : g Sig

U JsquinusAem [e}o}
0]

[
N

I T T T Y

ABJsus onaury Jus|ngin) uespy

o0l
0} 3
@
D
5
)
5
1]
Ot M
35
@
Q
<
Ol

—28—



(se[oaro ‘oury yoryy) Surdurep reuonppe WM sdId ¢1 Sursn wa)sAs
poonpa1 8} jo pue (se[uel1y ‘oui] uryy I9moy) sJId gI Jo ooedsqus a1) 0ju0 pojoslord wesAs
919dwod a3 o ‘(sexenbs ‘ourf uryy 10ddn) weysAs sgerduIod 9y} Jo wniydads A81euy : ¢ *Srq

U J8aquinuaAem jejo}

ABisus onoury Jusnginy uesyy

o0l

n-o . 3
@
Y|
3
=
5
Q

.01 M
5
@
Qa
~Z

Ol

-29_



(sexenbs ‘suil ury)) weysAs 93o[dwW0d 9} WOI PR (SB[OIID ‘OUI| JOIYY)
sopowt g1 UM ud)sds peonpel oy} woy peurelqo sepnirdure-J1J perenbs uwespy : ¥ -Siq

dld 40 Xapul
¢l bE 0]t 6 8 L 9 G 1% € 4

T | T I T T T I | I

Sdlid Jo sepnyjdwe paienbs ueay

©o
T

o
=

spnyjdwe pasenbs uesw

—30-



(sepo1ro ‘eur] Y1Y3) SJOH LT Suisn wesAs
Peonpa1 81} Jo pue (se[duerry ‘ourf urgy 1moy) s,JOH LT Jo eoedsqns 9y} 0juo pajoaford wrogshs
a19[dmrod a1} o ‘(sexenbs ‘eury uryy 1oddn) weysds ajerdwos oy jo wnioeds AS18ug : ¢ S

U laquinuanem [ejo}
0l

/[

RNVal

Ll .yl

-1 1 L ' : i

ABisus onsupy Jusinginy uesyy

-0l

.0 . 3
@
]
3
A.
5
o

o0t m
5
o®
Q
<

0l

-31-



oords-JId 03u0 SOH Jo woryosford pazijeuroy : 9 “Siq

403 jo xspul
09 G 05 Gy OF GE¢ 0¢ G2 02 GL OF G

LA I A B e i

<<\

...._..r._....H.._.._..._...._n..._...___....._ln__.._.

ooeds-d|d 0juo s4O3 jo uonosloid pasenbg

00
1’0
¢0
€0
v0
G0
90
L0
80
60
0t

uonosfoid paziewsou

—-32-



¢l

SdId ¢l Suisn [apowr peonper oy} pue
[opout 833[dwod 973 4q wLAIS sopnjndure-JiJ JO SPIOUSPUS} UGGMIOQ SUOTJR[DIIO]) : B, Siq

dld J0 xspui
L Ol 6 8 L 9 G v € 4

] T T I ] I T T I ¥

sepnydwe-d|d Jo uoiea.09 Aouspus |

90

L0

60

0}

uolne[a.109 Aouspus)

—-33-



sdid

¢1 Suisn [ppowr peonpe1 oYy 10y sepnyrdure-Jig jo eoueles AOUSPUSY poure[dxy : ql "8i1q

did Jo xepu

¢l L 0O} 6 8 L

9 S

T T T T T

T i

v°0

AV

/N
S

R

80

60

01

sopnyjdwe-d|d Jo aoueueA Aouspus) pauie|dx3

aoueleA paure|dxa

-34 -



(sepoard ‘ouyy pryos) sdid g1
pue (se[duerr) ‘our paysep) sJOH L1 ‘(serenbs ‘our Pe1I0p) sIOF g1 Suisn [jepour peoupar e
Aq pue [spour [[nj oY} Aq ueAIg sopnyrdure- Qi JO Se10UaPUL} UsemIaq UOIR[aIIO)) : ey *Siq

403 Jo xepu

cl 1L 01 6 8 A 9 S 1% € 4 L
& _ _ ‘ _ w _ _ _ _ S0

sepnyjiidwe-403 jo uone|a4100 Aouspus |

uone|a.L0d Aouspua)

—35-



(sapo110 ‘ouiy prjos) sqid ¢1 pue (se8uerny ‘oury peysep) sqOF L1 ‘(sexenbs ‘oury pesyop) sq0q
¢1 3wisn [opowr psonper e Ioj sepnindure- ;o7 jo eourureA Adouspudy peurerdxy : qg Si

403 J0 Xspul
Gl S ] 6 8 VA 9 G 14 € ¢ b
T T T T T T T T T T m o
——r- = n— " ¥'0
\ N
X
jo2
D
-
)]
o
<
S
m.
=
O
1))
60
! i ! 1 1 1 ! ' ! 1 o- —4

sepnyijdwe-403 Jo aoueLeA Aouspus) paule|dx3

~36-—



a)

rrmse

O
S’

mean anomaly correlation

1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1
0.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Relative root mean squared error

/
/'/ /
/
/ /
/
At
/S
/ S
7
110 26 3lo 4|o 50 elo 70 80 90 160 1110 120
prediction time [nondim. units]
Mean anomaly correlation
S .
\\ \
:“\. B ]
\H“
\\'-‘“‘“1
= —
10 20 30 40 50 60 70 80 90 100 110 120

prediction time [nondim. units]

Fig. 9 : Skill of the PIP-model using 12 modes in predicting the PIP-amplitudes (thick line,
circles) measured by the mean anomaly correlation (a) and by the relative root mean squared
error (b) as a function of prediction time. The persistence is indicated as a control forecast
(thin line, squares). Predictions start from full initial conditions.
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Fig. 10 : Same as Fig. 9, but with initial conditions projected onto PIP-space
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Fig. 11 : Skill of a reduced model using 12 EOFs (dotted line, triangles) and 12 PIPs (solid
line, circles) in predicting the amplitudes of the first 12 EOFs measured by the mean anomaly
correlation (a) and the relative root mean squared error (b) as a function of prediction time.
The persistence is indicated as a control forecast (thin line, squares). Predictions start from
full initial conditions.
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Table Captions

Table 1 : Correlation matrix of PIP-amplitudes obtained from a long-term simulation with
a PIP-model using 12 patterns

[ [ 2] 3[ 4] 5[ ] 7] 8] o] ] I 17
114 1.00|0.07(0.20|0.17| 0.00|-0.02| 032 | 0.09|-0.05| 0.15| 0.03] 0.03
2 1.00 | 0.15 | 0.09 | -0.07 | -0.02 | -0.14 | 0.22 | -0.02 | -0.04 | -0.11 | -0.16
3 1.00 { 0.04 | -0.12 | 0.06 | -0.09 | 0.02 | 0.00 | -0.02 | -0.07 | -0.07
4 1.00| 0.11] 0.09| 0.19| 0.08| 0.00 | 0.03| 0.18 | 0.05
5 1.00 [ -0.10 | 0.03 |-0.13| 0.15|-0.02 | 0.18 | 0.13
6 1.00 | -0.06 | 0.08 | -0.17 | 0.05 | 0.19| 0.10
7 1.00 | 0.04 | -0.03| 0.02 | 0.10| 0.05
8 1.00 | -0.15 | 0.00 | -0.08 | -0.16
9 1.00 | 0.14 | -0.06 | 0.03
10 1.00 | -0.09 | 0.08
11 | 1.00 | 0.12
12 | 1.00
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