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The Redundancy Queuing-Location-Allocation

Problem: A Novel Approach
Vahid Hajipour, Vahid Khodakarami, and Madjid Tavana

Abstract—Redundancy queuing-location-allocation problems
(RQLAPs) involve the economical allocation of facilities, each with
a number of servers, to suitable locations with appropriate lev-
els of redundancy or reliability. The goal in RQLAPs is to find the
facilities which are both inexpensive and reliable. We take into con-
sideration the congestion of the system by modeling each facility
as an M/M/m queuing system and formulate the problem as a mul-
tiobjective nonlinear mixed integer programming problem. How-
ever, these problems are nondeterministic polynomial-time hard
(NP-hard) problems where an exact solution cannot be produced
in polynomial time. We propose a novel soft-computing approach
based on the vibration theory called vibration damping optimiza-
tion (VDO) to solve the RQLAP. We develop a multiobjective ver-
sion of the VDO called multiobjective VDO (MOVDO) based on
the fast nondominated sorting and crowding distance concepts in
the literature. The performance of the proposed MOVDO is sta-
tistically compared with two other commonly used metaheuristic
algorithms called the nondominated sorting genetic algorithm and
multiobjective simulated annealing. A comparison of the results
based on different problem sizes favors the MOVDO method pro-
posed in this study.

Index Terms—Computational intelligence, congestion, redun-
dancy queuing-location-allocation problem (RQLAP), reliability,
vibration damping optimization (VDO).

I. INTRODUCTION

T
HE rqlaps involve the economical allocation of facili-

ties, each with a number of servers, to suitable locations

with appropriate levels of redundancy or reliability. The goal in

RQLAPs is to find the facilities which are both inexpensive and

reliable. We take into consideration the congestion of the system

by modeling each facility as an M/M/m queuing system and for-

mulate the problem as a multiobjective nonlinear mixed integer

programming problem. The objectives of the RQLAPs are to:

1) maximize the system reliability, 2) minimize the system cost,

and 3) minimize the system waiting time, simultaneously.
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Several evolutionary algorithms have been proposed to solve

these multiobjective nonlinear mixed integer programming

models which combine rules and randomness mimicking natural

phenomena. These phenomena include biological evolutionary

processes [18], the genetic algorithm (GA) [25], [30], animal

behavior [24], [46], [39], the physical annealing process [31],

and the musical process of searching for a perfect state of har-

mony [21]. Many researchers have studied these metaheuristics

to solve various optimization problems.

The RQLAPs are nondeterministic polynomial-time hard

(NP-hard) [43], [51], [53]. In this study, we propose a novel soft-

computing approach based on vibration theory called vibration

damping optimization (VDO) to solve the NP-hard RQLAPs.

We develop a multiobjective version of the VDO model called

multiobjective VDO (MOVDO) based on fast nondominated

sorting (FNDS) and crowding distance (CD) concepts in the

literature. The performance of the MOVDO approach proposed

in this study is statistically compared with two other common

metaheuristic algorithms called the nondominated sorting ge-

netic algorithm (NSGA-II) and multiobjective simulated an-

nealing (MOSA).

A. Location-Allocation Problem (LAP)

In the LAP, the question is how to place a number of new

facilities in between a number of customers located at fixed

points in a feasible area such that the total transportation cost

from facilities to customers is minimized, while the customers’

demands are satisfied. An example of a LAP involves the design

of a distribution network where, in addition to the determination

of the locations of the warehouses, determining the allocation of

customers to warehouses is desired. Meanwhile, in a stochastic

LAP, many parameters, such as the customers’ demands, allo-

cations, and even locations of the customers and facilities are

stochastic rather than deterministic.

Although LAP is rather an old field of research, its appli-

cation is still applicable to real-world location planning prob-

lems [12], [17] introduced eight basic discrete location alloca-

tion models called (1) p-median, (2) p-center, (3) p-dispersion,

(4) set covering, (5) maximal covering, (6) fixed charge, (7)

hub, and (8) maximum. Ohsawa [40] provided a single facil-

ity, quadratic euclidean distance bicriteria model defined in the

continuous space, with convex combinations of the minimum

and minimax objectives. Other researchers have proposed var-

ious methods for solving LAPs in the literature (see, for ex-

ample, [19] and [33]). For more details about facility location

problem as well as various solving methodologies, interested

readers should refer to [6] and [15]–[17].

0018-9391 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Farhani et al. [17] showed that modeling and solving multi-

criteria location problems have had a substantial growth in the

past decade. Recently, a more realistic hybrid version of the LAP

integrated with other models such as supply chain management

and queuing theory has received considerable attention [5], [37].

As a result, in this study, we concentrate on a deterministic LAP

combined with queuing theory, called the queuing LAP (QLAP).

B. Queuing-Location-Allocation Problem

Queuing theory includes some analytical techniques related

to everyday waiting lines. Reduction of the wasted time because

of these waiting lines is the desire of any manufacturer, service

provider, system owner, and the like [11], [26]. This desire can

be achieved by appropriately allocating the necessary resources

to the customers. Some applications of the QLAP model in-

clude healthcare and emergency services, public safety, and

fire-fighting among others [48]. For a two-server network, the

problem of districting using queuing techniques was investi-

gated by Berman and Larson [2]. In order to locate two servers

in a congested network, they developed a nonlinear model and a

heuristic algorithm to determine the optimal service territories

of each server, where each server behaves as an M/G/1 sys-

tem. Berman and Drezner [4] proposed a facility location model

within an M/M/m queuing framework, in which one or more

servers were allowed to be located at any potential location.

Wang et al. [53] proposed a facility location model within

an open finite M/M/1 queuing network, in which at most one

server can be located at any potential location. They considered

the sum of the aggregate travel time plus the aggregate waiting

time of customers per unit time as the objective functions in

their mathematical model. Berman et al. [3] proposed a model

similar to [53] model, in which more constraints on lost demand

were considered and minimizing the number of facilities was

the primary objective function. Syam [49] developed a multiple-

server location–allocation model for service system design. He

solved a comprehensive nonlinear location–allocation model for

service system design that incorporated several relevant costs.

Aboolian et al. [1] proposed a multiple-server center location

model, in which each customer selects the nearest facility. Their

objective was to minimize the maximum time spent by any

customer including travel time and waiting time at the server

sites.

Pasandideh and Niaki [41] proposed a biobjective facility lo-

cation model within an M/M/1 queuing framework and used

the desirability function technique to solve the problem with a

genetic algorithm. Hajipour and Pasandideh [27] proposed an

adaptive version of a multiobjective particle swarm optimiza-

tion to optimize biobjective facility location models for con-

gested systems. Recently, Pasandideh et al. [43] developed a

novel multiobjective facility location model with batch arrivals.

To solve the model, they proposed two parameter-tuned meta-

heuristic algorithms named simulated annealing and the genetic

algorithm. Following this, Rahmati et al. [47] developed a mul-

tiserver facility location model and proposed three Pareto-based

metaheuristic algorithms to solve the problem at hand.

C. Redundancy Allocation Problem (RAP)

Fyffe et al. [20] introduced the RAP with weight and cost

constraints and solved it by using dynamic programming. Coit

and Liu [10] presented system designs which consisted of mul-

tiple subsystems by considering a predetermined redundancy

strategy for each subsystem. They used a genetic algorithm to

solve the optimization problem. In another study, Coit [9] pro-

posed a zero-one integer programming method in which the

selection of active or cold-standby redundancy could be selec-

tively chosen for individual subsystems. The proposed method

was specifically developed to accommodate the case where there

was a choice of a redundancy strategy. Snyder and Daskin [51]

proposed models for choosing facility locations to minimize

cost, while also taking into account the expected transporta-

tion cost after failures of facilities. The goal was to choose

facility locations that were both inexpensive under traditional

objective functions and also reliable. They presented an optimal

Lagrangian relaxation algorithm to solve these reliability prob-

lems. For more details about RAP, interested readers can refer

to [7] and [32].

The remainder of the paper is organized as follows: In the

next section, the problem is first described and then the pro-

posed mathematical model is stated. In Section III, three meta-

heuristic algorithms including MOVDO, NSGA-II, and MOSA

are proposed to solve the model. Section IV analyzes the results

and statistical comparisons of the proposed algorithms on sev-

eral problems of different sizes. The conclusions are made and

possible future research works are recommended in Section V.

II. REDUNDANCY QUEUING-LOCATION-ALLOCATION

PROBLEM

In this section, the problem of the redundancy queuing-

location-allocation is first introduced. Then, the parameters and

decisions variables of the model are introduced in Sections 2.2

and 2.3. Finally, the proposed mathematical formulation is pre-

sented in Section 2.4.

A. RQLAP

The problem of redundancy queuing-location-allocation is

introduced to determine:

1) the optimal number of facilities:

2) the optimal allocation process for demand nodes into the

facilities; and

3) the optimal number of servers at each facility.

The goal is to find the facilities which are both inexpensive

and also reliable. In the problem, we model the congestion of

the facilities by means of multiserver queuing systems. The

proposed RQLAP is a multiobjective mathematical model de-

signed to simultaneously optimize the goal of the LAP, QLAP,

and RAP. A multiobjective optimization problem can be defined

as a vector of decision variables. This vector satisfies constraints

and optimizes a vector function of the objective functions, forms

a mathematical description of the performance criteria that are

usually in conflict with each other, and considers the concept

of the optimization word, which means acceptable values of
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Fig. 1. RQLAP framework.

all the objective functions from the viewpoint of the decision

makers [8]. The three objectives considered here are: maximiz-

ing reliability, minimizing cost of system, and waiting time.

The applications of such a model consist of medical facilities,

post offices, automated teller machines, vending machines, and

intercity service centers [1].

In this model, the customers’ arrivals are assumed to indepen-

dently follow a Poisson process and service times are consid-

ered to follow an exponential distribution. Fig. 1 schematically

presents the RQLAP.

It is also assumed the servers in a given facility to have a

unique service rate, whereas the service rates of the servers

belonging to different facilities are assumed to be different.

Moreover, demand nodes travel to each facility to receive ser-

vice, where each demand node can only be assigned to a single

facility.

B. Parameters

I: Number of customer nodes indexed by i; i = 1,

2, . . . , I .

J : Number of service-site nodes indexed by j; j = 1,
2, . . . , J .

P : Maximum number of servers that are on-duty; (P ≤
J).

λi : Demand rate of service requests from customer node i.

µj : Service rate of server j.

vj : Scale parameter for gamma distribution in server-site

j.

kj : Shape parameter for gamma distribution in server-site

j.

wj : Expected waiting time at open facility j.

rj : Reliability of each server in server-site j.

Rj : Total reliability of server-site j.

ψj : Demand rate at open facility node j.

tij : Traveling time of demand node i into facility j.

cj : Fixed cost of establishing a facility at potential node j.

csj : Unit staffing cost at facility j.

u: Maximum number of servers that can be used at each

facility.

ξ: A large number.

π0j : Idle probability of the open facility j.

C. Decision Variables

yij =

{

1, if customer i is allocated to server−site j

0, otherwise

hj =

{

1, if server−site j is opened
0, otherwise

mj : Number of servers at server-site j

D. RQLAP Model

The parameters ψj and π0j denote the demand rate and the

idle probability at open facility j, respectively. In an M/M/m

queuing system, let wj be the expected waiting time at open

facility j. These parameters can be obtained as follows [26]:

ψj =

I
∑

i=1

λiyij ; j = 1, . . . , J (1)

wj =

[

π0,j

mj !

(

ψj

µj

)m j mjµj

(mjµj − ψj )2
+

1

µj

]

. (2)

Then, the first objective function of the model (f1), the ag-

gregate waiting times of the customers per time unit (to be

minimized), is obtained as follows:

f1 =

I
∑

i=1

J
∑

j=1

λiyij

[

π0,j

mj !

(

ψj

µj

)m j mjµj

(mjµj − ψj )2
+

1

µj

]

.

(3)

The second objective function considers the goal of the cus-

tomers in which the minimum probability of a facility to fail

(system reliability) is maximized. At each facility, we assume

the servers to be parallel structures. Using this fact and the

gamma distributions, it is possible to compute the reliability of

each server and the total reliability of the facilities [see (5) and

(6) below]. In addition, at each facility, scale and shape parame-

ters are recorded. Larger values of the parameters of the gamma

distribution increase the reliability of the server site. Thus, the

second objective function f2) that needs to be maximized is:

Maxf
2

= Min {Rj (t)} (4)

where

rj (t) = e(−vj .t) .

kj −1
∑

l=0

(vj .t)
l

l!
; j = 1, . . . , J (5)

Rj (t) = (1 − (1 − rj (t))m j ) ; j = 1, . . . , J. (6)

The third objective function, presented in (7), considers the

total cost of the system including the fixed costs associated with

establishing facilities as well as the staffing costs that needs to
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TABLE I

SIMILARITIES BETWEEN THE VIBRATIONS DAMPING PROCESS AND THE OPTIMIZATION PROCESS

be minimized:

Minf3 =

J
∑

j=1

cjhj + csjmj . (7)

To make the model more realistic, we also consider the con-

straints such as service capacity and nearest facility selection.

As a result, the proposed RQLAP model can be formulated

into a constrained nonlinear mixed integer programming model

which is presented in the next section:

Min f1 =

I
∑

i=1

J
∑

j=1

λiyij

[

π0,j

mj !

(

ψj

µj

)m j mjµj

(mjµj − ψj )2
+

1

µj

]

(8)

Maxf
2

= Min {1 − (1 − rj (t))m j } (9)

Minf3 =

J
∑

j=1

cjhj + csjmj (10)

Subject to:

J
∑

j=1

hj ≤ P (11)

J
∑

j=1

yij = 1; i = 1, . . . , I (12)

yij ≤ hj ; i = 1, . . . , I, j = 1, . . . , J (13)

I
∑

i=1

λiyij ≤ mjµj ; j = 1, . . . , J (14)

1 ≤ mj ≤ u (15)

J
∑

j=1

tijyij ≤ (tij − ξ)hj + ξ; i = 1, . . . , I, j = 1, . . . , J

(16)

hj ∈ {0, 1}; j = 1, . . . , J

yij ∈ {0, 1}; i = 1, . . . , I, j = 1, . . . , J (17)

mj integer; j = 1, . . . , J

ψj =

I
∑

i=1

λiyij ; j = 1, . . . , J.

Constraint (11) ensures that the maximum number of can-

didate facilities is on-duty. Constraints (12) ensure that each

customer must be assigned to one and only one facility. Con-

straints (13) requires the server-site j to be open for the ith

customer to be assigned to it. Constraints (14) ensure that the

service capacity is greater than the demand rate of each facility.

Constraints (15) bound the number of servers at each facility.

Constraints (16) ensure that the demand node select the nearest

facility. Constraints (17) impose the range of decision variables

in the model.

III. NOVEL METAHEURISTIC ALGORITHM

In this section, we first introduce a multiobjective version of

the VDO algorithm that we will use to solve the proposed mul-

tiobjective optimization problems. We will then employ two

well-developed Pareto-based MOEAs, namely, NSGA-II and

MOSA, to demonstrate the performance of the MOVDO ap-

proach.

The VDO algorithm was first introduced by Mehdizadeh and

Tavakkoli-Moghaddam [35] to solve parallel machine schedul-

ing problems. It is a stochastic search method based on the con-

cept of the vibration damping in mechanical vibration. VDO

is a neighborhood search technique that begins with an initial

solution, initial amplitude, and an iteration number. The ampli-

tude controls the possibility of the acceptance of a deteriorating

solution, and the iteration number determines the number of

repetitions until a solution reaches a stable state under the am-

plitude. The vibrations damping process and the optimization

process are similar in the sense that: 1) the states of an oscil-

lation system represents feasible solutions of the optimization

problem; 2) the energies of the states correspond to the objective

function value (OFV) computed at those solutions; and 3) the

minimum energy state corresponds to the optimal solution to the

problem and rapid quenching can be viewed as local optimiza-

tion. TableI highlights the similarities between the vibrations

damping process and the optimization process.

In vibration theory, the concept of vibration is identified with

the one of oscillation. If the damping is small, it has very little

influence on the natural frequencies of the system, and hence

the calculation of the natural frequencies is made primarily

on the basis of no damping. In the VDO algorithm, a scope

of a solution is bigger and the probability of obtaining of a

new solution is greater at high amplitudes. In other words, in

the VDO algorithm, the damping coefficient has influence on

the maximum amplitude. At high amplitudes, the scope of a

solution is larger and the probability of obtaining a new solution

is higher. When the amplitude is reduced, the probability of

obtaining a new solution decreases. This process is similar to

the simulated annealing algorithm where instead of amplitude,
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we deal with temperature. Therefore, when the amplitude is

reduced, the solution space and consequently the probability of

obtaining a new solution decreases. Finally, the algorithm stops

when the amplitude reaches zero [35], [36], [38].

In the analogy between an optimization problem and the vi-

bration damping process, the states of the oscillation system

represent feasible solutions of the optimization problem, the en-

ergies of the states correspond to the OFV computed at those

solutions, the minimum energy state corresponds to the optimal

solution to the problem, and rapid quenching can be viewed as

local optimization.

The VDO algorithm starts by generating random solutions

in the search space. Then, the algorithm parameters including

initial amplitude (A0), max of iteration at each amplitude (L),
damping coefficient (γ), and standard deviation (σ) are initial-

ized. The solutions are then evaluated by means of the OFV. The

algorithm consists of two main loops. The first loop generates

a solution randomly and then using a neighborhood structure

a new solution is obtained and chosen as the best solution.

The neighborhood structure is based on the swap strategy [28].

However, similarly to the SA algorithm, the solution with a

lower OFV can be selected with respect to the Rayleigh dis-

tribution function [38]. In fact, the new solution is accepted

if ∆ = OFV (New Solution)—OFV (Current Solution) < 0.

Besides, if ∆ > 0, we generate a random number r between

(0, 1) [31]. The current solution is selected with respect to the

following criterion:

r < 1 − exp

(

−
A2

2σ2

)

. (18)

The second loop reduces the amplitude in each iteration.

The algorithm is stopped when the amplitude (A) reaches

zero:

At = A0 exp

(

−
γt

2

)

. (19)

After the above brief illustration of the VDO algorithm, we

introduce the first procedure for applying a multiobjective ver-

sion of the VDO algorithm called MOVDO to solve and manage

Pareto-optimal solutions. To do so, we apply two main concepts

of multiobjective metaheuristics; namely, FNDS and CD, to

compare the solutions. In FNDS, R initial populations are com-

pared and sorted. The chromosomes are chosen and evaluated

using the concept of domination [13]. In order to do this, all

chromosomes in the first nondominated front are first found.

Then, in order to find the chromosomes in the next nondomi-

nated front, the solutions of the previous fronts are disregarded

temporarily. This procedure is repeated until all solutions are

set into fronts.

After sorting the populations, a CD measure is defined to

evaluate solution fronts of populations in terms of the relative

density of individual solutions [13]. To do this, consider Z and

fk ; k = 1, 2, . . . , M as the number of nondominated solutions in

a particular front (F ) and the objective functions, respectively.

Besides, let di and dj be the value of the CD on the solution i

Fig. 2. Evolution process in the proposed MOVDO approach.

and j, respectively. Then, the CD is obtained using the following

steps:

1) set di = 0 for i = 1, 2, . . . , Z;

2) sort all objective functions fk ; k = 1, 2, . . . ,M in ascend-

ing order;

3) the CD for end solutions in each front (d1 and dZ ) are

d1 = dZ → ∞;

4) the CD for dj ; j = 2, 3, . . . , (Z − 1) are dj = dj +
(fkj + 1

− fkj −1
).

To select individuals of the next generation, the crowded

tournament selection operator ≻ is applied [13]. In order to do

that, the following steps are required.

Step 1) choose n individuals in the population randomly.

Step 2) the nondominated rank of each individual should be

obtained and the CD of the solutions having equal non-

dominated rank is calculated.

Step 3) the solutions with the least rank are the selected ones.

Moreover, if more than one individual share the least

rank, the individual with the highest CD should be se-

lected.

In other words, the comparison criterion of MOVDO al-

gorithm’s solutions can be written as follows: If qx < qy or

(qx = qy and dx > dy ) then x ≻ y where qx and qy are the ranks

and dx and dy are the CDs. In this paper, a polynomial neigh-

borhood structure for the selected chromosome is performed.

After operating the aforementioned concepts and operators,

the parents and offspring population should be combined to

ensure the elitism. Since the combined population size is nat-

urally greater than the original population size N , once more,

nondomination sorting is performed. In fact, chromosomes with

higher ranks are selected and added to the populations until the

population size becomes N . The algorithm stops when a pre-

determined number of iterations (or any stopping criteria) are

reached.

Fig. 2 illustrates the evolution process of the proposed

MOVDO schematically. The process is started by initializing

the initial population of the solution vectors Pj . Then, the new

operators are implemented on Pj to create a new population Qj .

The combination of Pj and Qj creates Rj for keeping elitism

in the algorithm. In this step, vectors of Rj are sorted in several

fronts based on FNDS and CD. Using the proposed selection

method, a population of the next iteration Pj+1 is chosen to

have a predetermined size.
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Fig. 3. MOVDO pseudocode.

In the main loop of the MOVDO algorithm, the parents and

offspring populations should be combined to ensure the elitism.

Since the combined population size is naturally greater than

the original population size (N), the nondomination sorting op-

erator is applied. In fact, solutions with higher ranks are se-

lected and added to the populations until the population size

becomes N. The last front also consists of the population based

on the CD. The solutions that are excluded are called rejected

habitats.

It is worthwhile to mention that using Pareto dominance so-

lutions, the algorithm is a computationally efficient algorithm

implementing the idea of a selection method based on classes

of dominance of all the solutions. In order to improve the clar-

ity of the proposed algorithm, we present the pseudocode and a

flowchart for the MOVDO method in Figs. 3 and 4, respectively.

The chromosome structure is based on the chromosome pro-

posed by Hajipour and Pasandideh [27] and Rahmati et al. [47].

To demonstrate the performance of the proposed MOVDO,

two Pareto-based MOEAs, that is, NSGA-II and MOSA are

applied. The main difference between these two MOEAs and

MOVDO is in the evolution process of the algorithms from

Pt to Qt . Furthermore, NSGA-II and MOSA are different in

their selection strategies. NSGA-II uses a binary tournament

selection and MOSA uses the roulette wheel selection strat-

egy. Accordingly, after generating or modifying populations by

means of single-objective operators of the algorithms (e.g., GA,

SA, or VDO), the population is dealt with in a multiobjective

way in a similar fashion in all the algorithms. Besides, to mini-

mize the impact of using different operators on the performance

Fig. 4. MOVDO flowchart.

comparison process of the algorithms, operators are designed

identically.

To do so, the neighborhood structure of the proposed

MOVDO is designed similar to the mutation operator of NSGA-

II and the neighborhood structure of MOSA. Moreover, in

NSGA-II, the crossover operator is also designed similarly using

a uniform crossover operator [28]. A flowchart of the proposed

NSGA-II is depicted in Fig. 5. Moreover, to clarify the process

of the proposed MOSA, Fig. 6 represents a pseudocode of this

algorithm.

In the next section, we solve the RQLAP. We analyze the re-

sult and demonstrate the effectiveness of the proposed MOVDO

in the area of multiobjective optimization problems.

IV. RESULT ANALYSIS AND COMPARISONS

In order to solve the proposed RQLAP, we implemented three

multiobjective Pareto-based metaheuristic algorithms. The al-

gorithms are calibrated by statistical approaches in the litera-

ture including response surface methodology and the Taguchi

method which are provided in Table II. In a single objective

algorithm, the objective function is the representation of the ef-

ficiency and the computational (CPU) time is the representation

of the effectiveness, although in a multiobjective algorithm for

assessing the efficiency, different metrics such as: mean to ideal

(MID), diversity, and spacing metrics can be applied to develop

a good measure of performance [56]. Meanwhile, time can be

still used as a good metric for evaluating the effectiveness. To
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Fig. 5. NSGA-II flowchart.

evaluate the performances of the proposed MOVDO, we ap-

plied four standard metrics including spacing, number of Pareto

solution, computational time, and the multiobjective coefficient

of variation.

A. Multiobjective Coefficient of Variation (MOCV)

Measures the division of diversity into MID which considered

convergence and diversity of the Pareto solutions [47].

B. Spacing

Measures the standard deviation of the distances among solu-

tions of the Pareto front in which smaller values are better [56].

C. Number of Found Solutions (NOS)

Counts the number of the Pareto solutions in Pareto optimal

front in which bigger values are better [56].

1) Computational Time (CPU): he CPU time of running the

algorithms to reach near optimum solutions.

Fig. 6. MOSA pseudocode.

TABLE II

PARAMETER VALUES OF THE ALGORITHMS ALONG WITH

THEIR TUNING PROCEDURE
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TABLE III

MULTIOBJECTIVE CALCULATIONS OF THE ALGORITHM METRICS

As mentioned before, the proposed multiobjective algorithm

is applied to solve the multiobjective facility location problems

in the literature [43]. The experiments are implemented on 20

test problems. Furthermore, to eliminate uncertainties of the

solutions, each problem is analyzed three times under differ-

ent random environments. Then, the averages of these three

runs are treated as the ultimate responses. The MOVDO algo-

rithm compares with MOSA and NSGA-II as most applicable

Pareto-based MOEAs in the literature to demonstrate the ca-

pability of the proposed algorithm to solve the multiobjective

optimization problems.

To evaluate the performance of the proposed MOVDO, Ta-

ble III reports the multiobjective metrics results on the 20 test

problems, in which “NAS” indicates that the algorithm can-

not find the Pareto front in the reported time. MATLAB Soft-

ware [34] has been used to code the proposed metaheuristic

algorithms, and the programs have been executed on a 2 GHz

laptop with an 8 GB RAM.

The algorithms are statistically compared based on the anal-

ysis of variance (ANOVA) test. These outputs are reported in

Table IV in terms of the defined metrics. In order to clarify our

statistical results, Box-plots are represented in Figs. 7–10.

Based on the statistical outputs presented in Table IV and

Figs. 8 and 10, NSGA-II shows better performances in terms

of NOS, while MOVDO has better performance in terms of

the CPU time. In addition, according to MOCV and spacing,

we represent the comparability of MOVDO in comparison with

NSGA-II and MOSA, in which the algorithms have no signifi-

cant differences and are statistically equivalent. We should note

that this conclusion is confirmed at the 95% confidence level.

Moreover, the graphical comparisons of all the metrics on 20

test problems are shown in Fig. 11. Based on these graphical

outputs, by increasing the size of the problems, the MOVDO

TABLE IV

ANALYSIS OF VARIANCE RESULTS

algorithm performs well especially in the terms of the NOS

and CPU time metrics. Furthermore, in test problems 19 and

20, NSGA-II and MOSA could not find the Pareto front. How-

ever, in these large size problems, MOVDO can find the Pareto

front. These features conclude the robustness of the proposed
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Fig. 7. Box-plot of the algorithm comparisons based on the MOCV metric.

Fig. 8. Box-plot of the algorithm comparisons based on the NOS metric.

MOVDO in solving large-size multiobjective optimization

problems.

To increase the readability of the proposed MOVDO ap-

proach, Fig. 12 is used to represent the nondominated solutions

of a single run of the proposed MOVDO algorithm at the final

iteration.

In summary, a decision maker can select the best algorithm

based on his/her preference(s). MOVDO is the best method if

computational time is the most important metric for the decision

maker. In addition, MOVDO is more effective than NSGA-II and

MOSA in solving large problems. NSGA-II is the best method

if the NOS in the most important metric for the decision maker.

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we introduced the RQLAP in the literature and

formulated the problem as a multiobjective nonlinear integer

mathematical programming model. The congestion and relia-

bility concepts were considered in the problem formulation.

The RQLAP was solved to determine the number of optimal

facilities, the optimal allocation of the demand nodes into the

facilities, and the optimal number of servers at each facility.

Fig. 9. Box-plot of the algorithm comparisons based on the spacing metric.

Fig. 10. Box-plot of the algorithm comparisons based on the CPU time metric.

The goals were to optimize the waiting time, costs, and relia-

bility, simultaneously. Due to the complexity of the problem,

we developed the multiobjective version of a novel metaheuris-

tic algorithm based on vibration theory called MOVDO. We

used NSGA-II and MOSA, two common metaheuristic algo-

rithms, to optimize the model and demonstrate the performance

of the algorithm. We developed three metaheuristic algorithms,

including MOVDO, NSGA-II, and MOSA to solve this NP-hard

problem. We used the standard metrics for multiobjective com-

parison to show that the MOVDO approach works better than

the other two algorithms, especially for larger size problems and

the metric of computation time.

For future research, the model can be extended by consid-

ering capacitated queue as M/M/m/k queuing systems. In the

proposed model, the service capacity is unlimited, while, in real

world situations, the service may be capacitated. The perfor-

mance of the proposed MOVDO can be evaluated in differ-

ent optimization problems. We also propose the application of

the proposed method to real-world problems including auto-

mated teller machines location, police department stations, and

telecommunication switching centers, among others.
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Fig. 11. Graphical comparison of the algorithms based on the four metrics.

Fig. 12. Pareto solutions obtained from the proposed MOVDO approach.
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