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The Redundant Discrete Wavelet Transform
and Additive Noise

James E. Fowler, Senior Member, IEEE

Abstract—The behavior under additive noise of the redundant
discrete wavelet transform (RDWT), which is a frame expansion
that is essentially an undecimated discrete wavelet transform, is
studied. Known prior results in the form of inequalities bound dis-
tortion energy in the original signal domain from additive noise in
frame-expansion coefficients. In this letter, a precise relationship
between RDWT-domain and original-signal-domain distortion for
additive white noise in the RDWT domain is derived.

Index Terms—Additive noise, frame expansion, redundant
wavelet transform.

I. INTRODUCTION

I T is often necessary to calculate distortion energy in the orig-
inal signal domain from an equivalent quantity in the domain

of a linear transform. That way, signal-processing operations
can be performed in the transform domain with known effects
in the original signal domain. For this reason, orthonormal sets
are widely used, since, when the transform takes the form of an
expansion using an orthonormal basis, Parseval’s theorem guar-
antees or that the energy of the original signal in
a Hilbert space can be determined from that of its transform .

However, the constraints of orthonormal expansion sets can
sometimes be too restrictive for some signal-processing ap-
plications. When one widens consideration to more general
expansions, the increased functionality and flexibility often come
at the cost of an exact energy relationship as above. Instead, one
often has merely a bounding relationship in the form of

(1)

thatframestheenergyinonedomainwithrespecttothatoftheother
domain for some constants and . Expansions with
such energy bounds are, hence, known as frame expansions.

One of the key benefits of the generality of a frame expansion
lies in the robustness of the dual-frame, or pseudo-inverse, frame
reconstruction to added noise. Goyal et al. [1] show that, given a
frame with and itsdual ,
zero-mean white noise satisfies

(2)

where is the dual-frame reconstruction of .
If the frame is redundant (i.e., ), then [2]. In this
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case,lessnoiseenergywillresultintheoriginalsignaldomainfrom
added noise in the domain of the redundant frame expansion.

In this letter, we focus on a specific redundant frame ex-
pansion known as the redundant discrete wavelet transform
(RDWT), which is essentially an undecimated version of the
discrete wavelet transform (DWT) that is ubiquitous to modern
signal-processing applications. Since it is a frame expansion,
the RDWT has energy bounds as in (1). As the initial contri-
bution of this letter, we determine values for the frame-bound
constants and , assuming that an orthonormal filter pair
underlies the RDWT. Then, as the primary contribution of this
letter, we analyze the performance of the RDWT under additive
noise. We find that, even though the RDWT is a highly redun-
dant frame expansion, we can determine exactly the variance
(i.e., expected distortion energy per sample) in the original
signal domain of white noise added in the RDWT domain.
Despite extensive use of the RDWT in prior signal-processing
applications, the frame-bound and noise-analysis results we
present here are apparently new, as we are unaware of their
appearance in any prior literature.

The remainder of this letter is organized as follows. First, in
Section II, we briefly overview the RDWT. The main contribu-
tions of the letter follow in Section III, wherein we derive frame
bounds for the RDWT, and in Section IV, wherein we inves-
tigate the noise performance of the RDWT. Finally, we make
some concluding remarks in Section V.

II. RDWT

The RDWT1 has a long history, having been independently
discovered a number of times and given a number of different
names, including the algorithme à trous [4], [5], the undec-
imated DWT (UDWT) [6], the overcomplete DWT (ODWT)
[7], the shift-invariant DWT (SIDWT) [8], and discrete wavelet
frames (DWFs) [9]. There are several ways to implement the
RDWT and several ways to represent the resulting overcomplete
set of coefficients. The original implementation was in form of
the algorithme à trous [4], [5], which, in essence, removes the
downsampling operator from the usual implementation of the
DWT. In this implementation, instead of signal downsampling,
the filter responses themselves are upsampled, thereby inserting
“holes” (trous in French) between nonzero filter taps.

Let and be the scaling and wavelet fil-
ters, respectively, of an orthonormal DWT. The RDWT scaling
filter at scale is defined recursively as

even
odd

(3)

1Our use of the “RDWT” moniker is from [3].
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where . The wavelet filters are defined simi-
larly. The RDWT of is then implemented recursively
with the filter-bank operations

(4)

(5)

where and . The -scale RDWT is
such that

(6)

In the frequency domain, we have ,
,

(7)

(8)

and, since the filters and are orthonormal

(9)

(10)

(see [2, Sec. 7.3.3]). In order to reconstruct in the original
signal domain given in the RDWT domain, one recursively
performs the synthesis operation

(11)

TheRDWTisaframeexpansion,whichisafact thatwewillverify
below by calculating its frame bounds. The à trous synthesis pro-
cedure of (11) is the dual-frame reconstruction for this frame.

We note that an alternative implementation of the RDWT
was independently proposed by Shensa [10] and Beylkin [11].
In essence, this implementation employs filtering and down-
sampling as in the usual critically sampled DWT; however, all
“phases” of downsampled coefficients are retained and arranged
as “children” of the signal that was decomposed. The process is
repeated on all the lowpass bands to achieve multiple decom-
position scales that form a “tree” of decompositions. Although
this alternative tree-based RDWT is a useful and common im-
plementation in practice, we will focus on the à trous imple-
mentation here since it is much more amenable to mathematical
analysis and derivation, which is a characteristic that we exploit
as we study the noise properties of the RDWT in Section III.

III. FRAME BOUNDS OF THE RDWT

Lemma 1: A single-scale RDWT operating in is a
tight-frame expansion with frame bounds .

Proof: See [12, Ex. 5.2].
Lemma 2: If is the -scale RDWT of , then

(12)

Proof: See Appendix A.

Theorem 1: A -scale RDWT operating in is a frame
expansion with frame bounds and .

Proof: By the definition of a frame, it is sufficient to show
that the frame bounds exist to show that the RDWT is a frame.
To establish frame bounds, we use a proof by induction. The
inductive basis is given by Lemma 1. The inductive step is as
follows. Suppose that for , we have

(13)

for , the
-scale RDWT of . Then, for the -scale RDWT, we have

from Lemma 2 and (13),
, which establishes inductively that the

lower bound satisfies .
For the upper bound, we note that, from (6) and (13), we

have .
From Lemma 2 and (13), we then have

, which estab-
lishes that the upper bound satisfies

(14)

In Appendix B, we show that the bounds of and
are the tightest possible frame bounds since we can find se-
quences that asymptotically meet these bounds.

IV. ADDITIVE NOISE IN THE RDWT DOMAIN

In this section, we consider zero-mean, white-noise sig-
nals in the RDWT domain, such that and

for and 0 otherwise. With the
following theorems, we establish the effect of RDWT synthesis
on this noise; we note that a similar procedure was used in
[13] to analyze the critically sampled DWT. Throughout,
denotes the space of infinite-dimensional sequences.

Theorem 2: Suppose we have taking value in such
that . Suppose a single subband of

consists of zero-mean white noise of variance , while all
the other subbands are zero. Then, the reconstruction due to
the à trous synthesis algorithm of (11) is zero-mean noise with
variance

(15)

where is the scale of the subband in which the noise resides.
Proof: Establishing that has zero mean is straightfor-

ward, so we will focus on the variance. The noise in will be
in either or , while all the other subbands are zero. Let us
consider first the case that noise is in . Consequently, we have
from (11)

(16)

The power spectral density of the output of the synthesis oper-
ation will be

(17)
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since the power spectral density of is , and
. Invoking (9), we have that the variance of is then

(18)

For , the proof is similar. In this case, we have from (11)

(19)

while the power spectral density is

(20)

Invoking (10), we have that the variance of is then

(21)

Theorem 3: Suppose taking value in is a zero-
mean, white-noise signal with variance . That is, suppose that
the noise coefficients are mutually uncorrelated between sub-
bands. Then, the reconstruction from (11) is zero-mean noise
with variance

(22)

Proof: Because the noise in a given subband is uncorre-
lated from that in the other subbands, the output of the synthesis
operation (11) for that subband will be uncorrelated from the
synthesis outputs for the other subbands. Thus, the total vari-
ance of the output is the sum of the output variances due to each
individual subband, as given by Theorem 2. Consequently, we
have

(23)

Using the fact that , for , we
have

(24)

V. CONCLUSION

Strictly speaking, the result of (2) applies only to finite-di-
mensional spaces , whereas the frame bounds in Section III
were derived assuming , and the noise analysis of Sec-
tion IV concerned white-noise signals in . If we ignore for

the moment these space differences, (2) would suggest that the
noise variance (expected energy per signal sample) in the orig-
inal signal domain for white-noise with variance is
bounded as

(25)

assuming , , , and is
reconstructed from with the à trous synthesis procedure
of (11). For a -scale RDWT, , and Theorem 1
indicates and . Thus, we have

(26)

We note that (26) suggests a limited ability to predict the effect
in the original signal domain of noise added in the RDWT
domain, particularly as becomes large. This observation
conforms to our intuition concerning frames—since the frame
bounds given by Theorem 1 widen as increases, we expect
to be able to predict energy from one domain to the other with
decreasing precision.

However, Theorem 3 tells us that we can make a much
stronger characterization of the noise variance in the original
signal domain than we are led to believe from (26). Theorem
3 indicates that, rather than being bounded by ever-widening
bounds, the noise variance actually is given by (22), ap-
proaching as becomes large.

We note that, although the preceding development focused on
1-D signals, it is straightforward to generalize the derivations
to the case of 2-D image signals that are decomposed using a
separable 2-D RDWT. In this case, Theorem 3 generalizes to

(27)

In such image-processing applications, the RDWT is usually
implemented with biorthogonal filters rather than orthonormal
filters, as assumed here. If the biorthogonal system is “near-or-
thonormal,” as is often the case in practice (e.g., the ubiqui-
tous 9-7 biorthogonal basis), then we will approximately have
equality in (9) and (10) and consequently in (27).

Finally, in terms of application of the results presented here,
we note that we have exploited (27) directly in an analysis
concerning motion compensation in the RDWT domain for
the RDWT-based coding of video in [14]. There, (27) is the
keystone of a derivation that shows that multiple-phase motion
compensation in the RDWT domain substantially outperforms
an equivalent single-phase process, with the inverse RDWT
providing substantial reduction of the variance of the mo-
tion-compensation prediction residual, as indicated by (27).
Additionally, we suspect that the results here have analytical
ramifications for RDWT-domain watermarking such as we
previously considered in [15] and [16]; we are currently inves-
tigating this issue.
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APPENDIX A
PROOF OF LEMMA 2

Consider the sum . In the frequency
domain, we have from (7) and (8)

(28)

where we use the fact that the filters are power complemen-

tary, i.e, . Consequently,

, where we again employ (7). Thus, we
have

(29)

We then rearrange the sum in (6) as
, and

we arrive at (12) by substituting (29) in for the first three terms.

APPENDIX B
SIGNALS SATISFYING RDWT FRAME BOUNDS

We now show that the bounds of and are the
tightest possible frame bounds since we can find sequences

that asymptotically meet these bounds. Specifically, con-
sider a constant sequence . Technically, this is not in

; however, we define as
for and 0 otherwise. Clearly, , .
Since and are orthonormal filters,

, and . Thus, we have in the limit

(30)

(31)

Let and be the coefficient sequences produced by (4)
and (5) with . Then, from (30)

(32)
and so

(33)

since , . Similarly, from (31), we have
.

Now, consider the quantity , where

. From (1), , . From (6) and
(33), we have

(34)

Consequently, we have and, from (14), . Thus,
.

A similar derivation using and
for establishes that .
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