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Abstract We consider finitely determined map germs f : (R3, 0) → (R2, 0) with f−1(0) = {0} and we
look at the classification of this kind of germ with respect to topological equivalence. By Fukuda’s cone
structure theorem, the topological type of f can be determined by the topological type of its associated
link, which is a stable map from S2 to S1. We define a generalized version of the Reeb graph for stable
maps γ : S2 → S1, which turns out to be a complete topological invariant. If f has corank 1, then f can
be seen as a stabilization of a function h0 : (R2, 0) → (R, 0), and we show that the Reeb graph is the
sum of the partial trees of the positive and negative stabilizations of h0. Finally, we apply this to give a
complete topological description of all map germs with Boardman symbol Σ2,1.
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1. Introduction

The classification of singular points of C∞ map germs is one of the most important prob-
lems in singularity theory. The classical classification is done via A-equivalence, where we
take C∞-diffeomorphism germs in the source and the target. However, this is a difficult
problem that imposes a lot of rigidity. Given this, it seems natural to investigate the clas-
sification of map germs up to weaker equivalence relations. Here we consider topological
equivalence or C0–A-equivalence, where the changes of coordinates are homeomorphisms
instead of C∞-diffeomorphisms. Even in this case, Nakai showed in [17] that there are
moduli in the topological classification of polynomial map germs f : (R3, 0) → (R2, 0).

This paper is devoted to the topological classification of C∞ map germs from R
3 to

R
2 that are finitely determined. Finite determinacy is a key notion in singularity theory

because if f : (R3, 0) → (R2, 0) is finitely determined, then it may be assumed to be
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polynomial. Restricted to the class of finitely determined map germs from R
3 to R

2 of a
given degree, it follows from Thom or Nishimura’s work (see [18,23]) that the number
of topological types is finite. In other words, this problem is tame in the sense that it
does not have topological moduli.

The topological structure of a finitely determined map germ f : (R3, 0) → (R2, 0) is
determined by the so-called link of f (see [6]). The link of f is obtained by taking a small
enough representative f : U ⊂ R

3 → R
2 and the intersection of its image with a small

enough sphere S1
δ centred at the origin in R

2. When f has isolated zeros (i.e. f−1(0) =
{0}) the link is a stable map γ : S2 → S1 and f is topologically equivalent to the cone
of γ. As a consequence, two finitely determined map germs f, g : (R3, 0) → (R2, 0) are
topologically equivalent if their associated links are topologically equivalent. Then some
open problems arise in a natural way related to our classification problem.

(1) Find a good combinatorial model to describe the topology of stable maps from S2

to S1.

(2) Show that if f , g are topologically equivalent, then their associated links are also
topologically equivalent.

(3) Find relations between the analytic invariants of f (for example, corank, Boardman
symbol, etc.) and the topological invariants of the link.

(4) Characterize all the stable maps that can be realized as the link of a finitely deter-
mined map germ f : (R3, 0) → (R2, 0).

Inspired by the work of Arnold, Prishlyak and Sharko (see [1,19,22]), we introduce in
§ 3 an adapted version of the Reeb graph to answer problem (1). The classical Reeb graph
is defined for a Morse function γ : M → R, but here we have to extend it to the case in
which the map takes values on S1 instead of R. Then our generalized version of the Reeb
graph turns out to be a complete topological invariant for stable maps γ : S2 → S1 (see
Corollary 3.11). Moreover, the Reeb graph is also the key tool that gives the answer to
problem (2) (Corollary 3.14).

In § 4 we direct special attention to the case in which f has corank 1. In this case, f can
be written as f(x, y, z) = (x, hx(y, z)) and gives a stabilization of h0 : (R2, 0) → (R, 0).
The topology of f is now determined by the two stabilizations h+

x , with x > 0, and h−
x ,

with x < 0. We introduce the notion of partial trees associated with h+
x and h−

x and
show that the sum of the partial trees is equivalent to the Reeb graph of the link of f

(Theorem 4.10). In the last part we give a complete description of those map germs with
Boardman symbol Σ2,1 and provide a complete topological classification of this type of
map germ up to multiplicity 6 (Theorem 4.13). This partly answers problems (3) and (4).

The case in which f has non-isolated zeros (i.e. f−1(0) �= {0}) is more complicated. In
that case the link is a stable map γ : M → S1, where M is now a compact surface with
boundary and genus zero. However, we need a generalized version of the cone to describe
the topology of f (see [3]). The topological classification of map germs with non-isolated
zeros will be considered in a forthcoming paper [2].
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Some recent papers treat the topological classification of finitely determined map germs
f : (Rn, 0) → (Rp, 0) by looking at the topological type of the link (see, for instance,
[3,11,14–16]). However, as far as we know, this is the first time that it is considered for
the n > p case.

All map germs considered are C∞ unless otherwise stated. We adopt the usual notation
and basic definitions that are common in singularity theory (for example, A-equivalence,
finite determinacy, stability, bifurcation set, etc.) and that the reader can find in Wall’s
survey paper [24].

2. Finite determinacy and the link of a map germ

Two C∞ map germs f, g : (R3, 0) → (R2, 0) are A-equivalent if there exist C∞-diffeo-
morphism germs ψ : (R3, 0) → (R3, 0) and φ : (R2, 0) → (R2, 0) such that f = φ ◦ g ◦ ψ.
If φ, ψ are homeomorphisms instead of C∞-diffeomorphisms, then we say that f and g

are topologically equivalent (or C0–A-equivalent).
For simplicity, we write just diffeomorphism instead of C∞-diffeomorphism.
We say that f : (R3, 0) → (R2, 0) is k-determined if for any map germ g with the same

k-jet we have that g is A-equivalent to f . We say that f is finitely determined if it is
k-determined for some k.

Let f : U → R
2 be a C∞ map, where U ⊂ R

3 is an open subset. We denote by
S(f) = {p ∈ U | Jf(p) does not have rank 2} the singular set of f , where Jf(p) is the
Jacobian matrix of f . We also denote the discriminant set of f by Δ(f) = f(S(f)).

When we start a classification of generic singularities, the first step is to describe the
stable singularities. The characterization of stable singularities of maps from R

3 to R
2 is

well known (see [7]) and is given by the following proposition.

Proposition 2.1. Let f : (R3, S) → (R2, 0) be a C∞ multigerm germ such that f is
singular at each point of S. Then f is stable if only if |S| � 2 and f is A-equivalent to
one of the following normal forms.

(1) For |S| = 1:

• (x, y2 + z2), called a definite fold point D;

• (x, y2 − z2), called an indefinite fold point I;

• (x, y3 + xy + z2), called a cusp point.

(2) For |S| = 2:

• (x1, y
2
1 + z2

1), (y2
2 + z2

2 , x2), called a nodefold D&D;

• (x1, y
2
1 + z2

1), (y2
2 − z2

2 , x2), called a nodefold D&I;

• (x1, y
2
1 − z2

1), (y2
2 − z2

2 , x2), called a nodefold I&I.

The classification of monogerms can be obtained easily by using Mather’s techniques
of classification of local R-algebras. For multigerms, we use the following fact: given
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S = {x1, . . . , xr} ⊂ R
n, a multigerm f : (Rn, S) → (Rp, 0) is stable if and only if each

branch fi : (Rn, xi) → (Rp, 0) is stable and the spaces

dfx1(Tx1A(f1)), . . . , dfxr (TxrA(fr))

are in general position in R
p (here A(fi) denotes the analytic stratum of fi, that is, the

submanifold of points x in R
n such that the germ of fi at x is A-equivalent to the germ

fi at xi). In our case, n = 3 and p = 2, there are only three algebras whose contact
class in the jet space has codimension less than or equal to 3, corresponding to the three
monogerms in the list above. For multigerms, we have to combine the three types in such
a way that they intersect transversely, obtaining only the three types of stable bigerms.

When f : (Rn, 0) → (Rp, 0) is not stable but it is finitely determined, then roughly
speaking f has an isolated instability at the origin. This is known as the Mather–Gaffney
finite determinacy criterion [24]. In fact, the Mather–Gaffney criterion is valid for holo-
morphic map germs f : (Cn, 0) → (Cp, 0), but we can obtain some consequences of this
criterion in the real case as follows.

Theorem 2.2. A holomorphic map germ f : (Cn, 0) → (Cp, 0) is finitely determined
if and only if there is a representative f : U ⊂ C

n → C
p such that

(i) S(f) ∩ f−1(0) = {0},

(ii) for every finite subset S ⊂ U − {0} the multigerm of f at S is stable.

Since our case of interest is n = 3 and p = 2, from condition (ii) the cusps and
the nodefolds are isolated points in U − {0}. Then we can shrink the neighbourhood
U if necessary in Theorem 2.2 to get a representative f : U ⊂ C

3 → C
2 such that the

restriction f |U −{0} has only simple fold singularities. The word simple here means that
the folds are not double points.

Coming back to the real case, we now consider a finitely determined map germ
f : (R3, 0) → (R2, 0). After coordinate changes in the source and the target, we can
assume that f is polynomial. If fC : (C3, 0) → (C2, 0) is the complexification of f , it
follows from Wall’s survey paper [24] that fC is also finitely determined. Then we have
as a consequence of Theorem 2.2 the following real criterion.

Corollary 2.3. Let f : (R3, 0) → (R2, 0) be a finitely determined map germ. Then
there exists a representative f : U ⊂ R

3 → R
2 such that

(i) S(f) ∩ f−1(0) = {0},

(ii) the restriction f |U − {0} has only definite and indefinite simple fold singularities.

If f is finitely determined, then its discriminant Δ(f) is a plane curve with an isolated
singularity at the origin. The number of half-branches of Δ(f) will play a crucial role
in the analysis of the Reeb graph associated with a link of f and, consequently, in the
topological classification of f .
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Denote by Jr(n, p) the r-jet space from (Rn, 0) to (Rp, 0). For positive integers r

and s with s � r, let πs
r : Js(n, p) → Jr(n, p) be the canonical projection defined by

πs
r(j

sf(0)) = jrf(0). For a positive number ε > 0 we set

Dn
ε = {x ∈ R

n | ‖x‖2 � ε},

Bn
ε = {x ∈ R

n | ‖x‖2 < ε}

and

Sn−1
ε = {x ∈ R

n | ‖x‖2 = ε}.

We denote by Dn, Bn and Sn−1 the standard disc, the ball and the sphere of radius 1,
respectively.

Fukuda proved the following cone structure theorem in [5,6].

Theorem 2.4. For any semi-algebraic subset W of Jr(n, p) there exists an integer s

(s � r) depending only on n, p and r, and there exists a closed semi-algebraic subset ΣW

of (πs
r)

−1(W ) having codimension greater than or equal to 1 such that for any C∞ map
f : R

n → R
p with jsf(0) belonging to (πs

r)
−1(W ) \ΣW we have the following properties.

Case A (f−1(0) = {0}). There is an ε0 > 0 such that for any number ε with
0 < ε � ε0 we have:

(i) the set S̃n−1
ε = f−1(Sp−1

ε ) is a C∞ submanifold without boundary that is diffeo-
morphic to the standard unit sphere Sn−1;

(ii) the restricted map f |S̃n−1
ε : S̃n−1

ε → Sp−1
ε is topologically stable (C∞ stable if (n, p)

is a nice pair in Mather’s sense);

(iii) if D̃n−1
ε = f−1(Dp−1

ε ), then the restricted map f |D̃n−1
ε : D̃n−1

ε → Dp
ε is topologi-

cally equivalent to the cone of f |S̃n−1
ε .

Case B (f−1(0) �= {0}). There exist a positive number ε0 and a strictly increasing
C∞ function δ : [0, ε0] → [0,∞) with δ(0) = 0 such that for every ε and δ with 0 < ε � ε0

and 0 < δ � δ(ε) we have:

(i) f−1(0) ∩ Sn−1
ε is an (n − p − 1)-dimensional manifold and it is diffeomorphic to

f−1(0) ∩ Sn−1
ε0

;

(ii) Dn
ε ∩f−1(Sp−1

δ ) is a C∞ manifold, generally with boundary, and it is diffeomorphic
to Dn

ε0
∩ f−1(Sp−1

δ(ε0)
);

(iii) the restriction f |Dn
ε ∩f−1(Sp−1

δ ) : Dn
ε ∩f−1(Sp−1

δ ) → Sp−1
δ is a topologically stable

map (C∞ stable if (n, p) is a nice pair in Mather’s sense) and its topological class
is independent of ε and δ.

Remark 2.5. In the original version of Fukuda’s theorem [5], Case A (i) has the
restriction n �= 4, 5. The reason is that the proof uses the generalized Poincaré conjecture,
but at that time the conjecture was known to be true only in dimensions not equal to 3, 4.
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Assuming that f is r-determined for some r and taking W = {jrf(0)}, we can apply
Theorem 2.4 to obtain a representative of f satisfying Case A or Case B, depending on
if f−1(0) = {0} or f−1(0) �= {0}. Note that when n � p we always have f−1(0) = {0}
but when n > p we may have either of the two possibilities.

Definition 2.6. Let f : (R3, 0) → (R2, 0) be a finitely determined map germ such that
f−1(0) = {0}. We say that the stable map f |S̃2

ε : S̃2
ε → S1

ε is the link of f , where f is
a representative that satisfies the Fukuda conditions of Case A of Theorem 2.4 adapted
for the case in which n = 3 and p = 2.

It follows from the definition that the link of f is a stable map γ : S2 → S1, that is,
γ has only Morse singularities with distinct critical values. Moreover, the link is well
defined up to A-equivalence and f is topologically equivalent to the cone of γ. Hence, we
have the following immediate consequence.

Corollary 2.7. Two finitely determined map germs f, g : (R3, 0) → (R2, 0) with
f−1(0) = {0} = g−1(0) are topologically equivalent if their associated links are topo-
logically equivalent.

Remark 2.8. When f−1(0) �= {0}, it is also common to call the link of f to the stable
map f |D3

ε ∩ f−1(S1
δ ) : D3

ε ∩ f−1(S1
δ ) → S1

δ , where f is a representative that satisfies the
Fukuda conditions of Case B of Theorem 2.4 adapted for case in which n = 3 and p = 2.
However, in this case, f is not topologically equivalent to the cone of the link in the
classical sense. Instead of this, we have to consider a generalized version of the cone
that turns out to be topologically equivalent to f (see [3] for details). The topological
classification of this class of map germs will be considered in a forthcoming paper [2].

3. The generalized Reeb graph

The Reeb graph was introduced by Reeb in [20] and it is well known that it is a complete
topological invariant for Morse functions from S2 to R (see [1,22]). In this section we
extend the concept of a Reeb graph to stable maps from S2 to S1.

Proposition 3.1. Let γ : S2 → S1 be a stable map. Then γ is not a regular map.

Proof. Suppose that γ is a regular map; then γ(S2) ⊂ S1 would be an open set.
Since γ(S2) is also closed, we get γ(S2) = S1, and hence γ is surjective. By Ehresmann’s
fibration theorem [4], f is a locally trivial fibration. In particular, if F is a fibre we have
that

2 = χ(S2) = χ(S1)χ(F ) = 0,

which is absurd. �

Given a continuous map f : X → Y between topological spaces, we consider the fol-
lowing equivalence relation on X: x ∼ y ⇐⇒ f(x) = f(y) and x and y are in the same
connected component of f−1(f(x)).



The Reeb graph of a map germ from R
3 to R

2 with isolated zeros 325

(a) (b) (c)

Figure 1. Vertices of Reeb graphs.

Proposition 3.2. Let γ : S2 → S1 be a stable map. Then the quotient space S2/∼
admits the structure of a connected graph in the following way:

(1) the vertices are the connected components of level curves γ−1(v), where v ∈ S1 is
a critical value;

(2) each edge is formed by points that correspond to connected components of level
curves γ−1(v), where v ∈ S1 is a regular value.

Proof. Since γ is stable, we have a finite number of critical values v1, . . . , vr and for
each i = 1, . . . , r, γ−1(vi) has a finite number of connected components. Then

γ|S2 − γ−1({v1, . . . , vr}) : S2 − γ−1({v1, . . . , vr}) → S1 − {v1, . . . , vr}

is regular and the induced map

γ̃ : (S2 − γ−1({v1, . . . , vr}))/∼ → S1 − {v1, . . . , vr}

is a local homeomorphism. Each connected component of S1 − {v1, . . . , vr} is homeo-
morphic to an open interval, so each connected component of (S2 −γ−1({v1, . . . , vr}))/∼
is also homeomorphic to an open interval. �

Each vertex of the graph can be of three types, depending on if the connected com-
ponent has a maximum/minimum critical point, a saddle point or just regular points.
Then the possible incidence rules of edges and vertices are given in Figure 1.

Let v1, . . . , vr ∈ S1 be the critical values of γ. We choose a base point v0 ∈ S1 and an
orientation. We can reorder the critical values such that v0 � v1 < · · · < vr and we label
each vertex with the index i ∈ {1, . . . , r} if it corresponds to the critical value vi.

Definition 3.3. The graph given by S2/∼, together with the labels of the vertices as
previously defined, is said to be the generalized Reeb graph associated with γ : S2 → S1.

For simplicity, from now on we will just say Reeb graph as opposed to generalized
Reeb graph unless otherwise specified.

Proposition 3.4. Let γ : S2 → S1 be a stable map. Then the Reeb graph of γ is
a tree.
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Figure 2. Two non-equivalent stable maps with the same Reeb graph.

Proof. Let Γ be the Reeb graph of γ. Since Γ is connected, in order to show that Γ

is a tree we only need to prove that its Euler characteristic is χ(Γ ) = 1. We have that
χ(Γ ) = V −E, where V and E denote the number of vertices and edges of Γ , respectively.

On one hand, V = M + S + I, where M , S, I denote the numbers of vertices of
each type, maximum/minimum, saddle or regular, respectively. Note that V �= 0 by
Proposition 3.1.

On the other hand, by Euler’s formula, E = 1
2

∑
deg(vi), where vi are the vertices of

Γ and deg(vi) is the degree of vi, that is, the number of edges adjacent to vi. Since γ is
stable, the degree of each vertex of maximum/minimum type is 1, while that of regular
type is 2 and that of saddle type is 3 (see Figure 1). Hence,

χ(Γ ) = V − E = M + S + I − 1
2 (M + 2I + 3S) =

M − S

2
= 1,

where the last equality follows from the Morse formula M − S = χ(S2) = 2. �

Remark 3.5. The classical Reeb graph is defined in the same way, but the vertices
are just the connected components of the level curves γ−1(v) that contain a critical
point. Hence, our generalized Reeb graph contains some extra vertices corresponding to
the regular connected components of γ−1(v), where v is a critical value. Of course the
classical Reeb graph can be obtained from the generalized one just by eliminating the
extra vertices and joining the two adjacent edges. But in general, the generalized Reeb
graph provides more information.

We present in Figure 2 two examples of stable maps γ1, γ2 : S2 → S1 with their respec-
tive generalized Reeb graphs. Both examples share the same classical Reeb graph, but
the generalized Reeb graphs are different. The example on the left-hand side is a non-
surjective map, while the map on the right-hand side is surjective, therefore the maps are
not topologically equivalent. This shows that the classical Reeb graph is not sufficient to
distinguish between these two examples.

Notice that if γ : S2 → S1 is not surjective, then γ may be regarded as a Morse function
from S2 to R (via stereographic projection). In this case, the generalized Reeb graph can
be deduced from the classical one just by adding the extra vertices each time that one
passes through a critical value.
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It is obvious that the labelling of vertices of the Reeb graph is not uniquely determined,
since it depends on the chosen orientations and the base points on each S1. Different
choices will produce either a cyclic permutation or a reversal of the labelling in the Reeb
graph. This leads us to the following definition of equivalent Reeb graphs.

Let γ, δ : S2 → S1 be two stable maps. Let Γγ and Γδ be their respective Reeb graphs.
Consider the induced quotient maps γ̄ : Γγ → S1

γ and δ̄ : Γδ → S1
δ , where S1

γ , S1
δ denote

S1 with the graph structure whose vertices are the critical values of γ, δ, respectively, as
illustrated in Figure 2.

Definition 3.6. An isomorphism between two graphs Γ1 and Γ2 is a bijection f from
V (Γ1) to V (Γ2) such that two vertices v and w are adjacent in Γ1 if and only if f(v) and
f(w) are adjacent in Γ2, where V (Γi) = {vertices of Γi}.

Definition 3.7. We say that Γγ is equivalent to Γδ, and we denote this equivalence
by Γγ ∼ Γδ, if there exist graph isomorphisms j : Γγ → Γδ and l : S1

γ → S1
δ such that the

following diagram is commutative:

Vγ
γ̄|Vγ ��

j|Vγ

��

Δγ

l|Δγ

��
Vδ

δ̄|Vδ �� Δδ

where Vγ = {vertices of Γγ}, Vδ = {vertices of Γδ} and Δγ and Δδ are their respective
discriminant sets.

Theorem 3.8. Let γ, δ : S2 → S1 be two stable maps. If γ and δ are topologically
equivalent, then their respective Reeb graphs are equivalent.

Proof. Since γ and δ are topologically equivalent, there exist homeomorphisms
h : S2 → S2 and k : S1 → S1 such that k ◦ γ ◦ h = δ. Then h maps critical points
into critical points and k maps critical values into critical values. Hence, h induces a
graph isomorphism from Γγ to Γδ and k induces a graph isomorphism from S1

γ to S1
δ ,

which gives the equivalence between the Reeb graphs. �

Theorem 3.8 allows us to extend the definition of a Reeb graph to C0-stable maps
between topological spheres.

Definition 3.9. Let γ : M → P be a continuous map, where M is homeomorphic to
S2 and P is homeomorphic to S1. We say that γ is C0-stable if there exist a stable C∞

map δ : S2 → S1 and homeomorphisms k : M → S2, h : P → S1 such that the following
diagram is commutative:

M
γ ��

k

��

P

h

��
S2 δ �� S1
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We say that y ∈ P is a critical value of γ if h(y) is a critical value of δ. Moreover, M/∼
has a graph structure induced by the Reeb graph of δ. We call this graph the Reeb graph
of γ and denote it by Γγ . The notion of equivalence of graphs given in Definition 3.7
can also be extended for C0-stable maps in the obvious way. By Theorem 3.8, the Reeb
graph Γγ is well defined up to equivalence of graphs.

Theorem 3.10. Let γ, δ : S2 → S1 be two stable maps such that Γγ ∼ Γδ. Then γ is
A-equivalent to δ.

Proof. This is an adaptation of the proof of [9, Theorem 4.1]. Since Γγ ∼ Γδ, there
exist graph isomorphisms j : Γγ → Γδ and l : S1

γ → S1
δ as in Definition 3.7. We choose a

homeomorphism h : Γγ → Γδ and a diffeomorphism k : S1
γ → S1

δ that realize the graph
isomorphisms j, l, respectively, and such that δ̄ ◦ h = k ◦ γ̄.

Since k ◦ γ is A-equivalent to γ, by Theorem 3.8 we have Γk◦γ ∼ Γγ . Moreover, these
graphs are the same because k ◦ γ̄ = k ◦ γ. In other words, the following diagram is
commutative:

Γδ
δ̄ �� S1

Γγ

h

��

k◦γ

���������

For simplicity, we write simply γ instead of k ◦ γ. By construction, h(Vγ) = Vδ, but now
γ and δ have the same critical values v1, . . . , vn ∈ S1. We choose a base point and an
orientation in S1 and assume that

v1 < v2 < · · · < vn.

Denote by arc(a, b) the oriented arc from a to b in S1, and by arc(a, b) its closure.
Let wi be the middle point of arc(vi, vi+1) for i = 1, . . . , n with vn+1 = v1, and let
ξ : S1 \ {wn} → R be an orientation-preserving diffeomorphism.

For each critical value vi with i = 1, . . . , n we can choose εi > 0 as in Definition A 6,
and by Theorem A 14 there exists a diffeomorphism

hi : (ξ ◦ γ)−1[ξ(vi) − 2ε2
i , ξ(vi) + 2ε2

i ] → (ξ ◦ δ)−1[ξ(vi) − 2ε2
i , ξ(vi) + 2ε2

i ]

such that ξ ◦ γ = ξ ◦ δ ◦ hi. Since ξ is a diffeomorphism, it follows that γ = δ ◦ hi when
restricted to

γ−1(arc(ξ−1(ξ(vi) − 2ε2
i ), ξ

−1(ξ(vi) + 2ε2
i ))).

Let ai, a
−
i , bi, b

−
i ∈ S1 be given by

ai = ξ−1(ξ(vi) + 2ε2
i ), a−

i = ξ−1(ξ(vi) − 2ε2
i ),

bi = ξ−1(ξ(vi) + ε2
i ), b−

i = ξ−1(ξ(vi) − ε2
i ).

Since ξ is orientation preserving,

wi < a−
i < b−

i < vi < bi < ai < wi+1.
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Define

Ai = γ−1(arc(a−
i , ai)), A′

i = δ−1(arc(a−
i , ai)),

Bi = γ−1(arc(bi, b
−
i+1)), B′

i = δ−1(arc(bi, b
−
i+1))

for i = 1, . . . , n with bn+1 = b1. With this notation, hi : Int(Ai) → Int(A′
i) is a diffeo-

morphism such that γ = δ ◦ hi on Int(Ai) for all i = 1, . . . , n.
Notice that γ|Bi and δ|B′

i are regular maps for all i = 1, . . . , n. Then by Theorem A 4
there exist diffeomorphisms φi and ψi such that the following diagrams are commutative:

γ−1(bi) × arc(bi, b
−
i+1)

p �� arc(bi, b
−
i+1)

Bi

φi

��

γ|Bi

������������������

δ−1(bi) × arc(bi, b
−
i+1)

p̃ �� arc(bi, b
−
i+1)

B′
i

ψi

��

δ|B′
i

������������������

where p and p̃ are the projections to the second component.
Since the Reeb graphs of γ and δ are equivalent, it follows that γ−1(bi) is diffeomorphic

to δ−1(bi). Consequently, Bi is diffeomorphic to B′
i via a diffeomorphism that gives the

A-equivalence between γ|Bi and δ|B′
i.

Notice that the boundary of Ai is diffeomorphic to a finite union of circles S1. Then
the diffeomorphisms hi when restricted to the boundary of Ai may be assumed to be
orientation preserving. Hence, hi|γ−1(bi) and hi+1|γ−1(b−

i+1) are isotopic because both
are isotopic to the identity. Let

Fi : γ−1(bi) × arc(ai, a
−
i+1) → δ−1(bi) × arc(ai, a

−
i+1)

be an isotopy between hi|γ−1(bi) and hi+1|γ−1(b−
i+1) for i = 1, . . . , n.

Define
βi : γ−1(bi) × arc(bi, b

−
i+1) → δ−1(bi) × arc(bi, b

−
i+1)

by

βi(x, t) =

⎧⎪⎨
⎪⎩

(hi(x), t) if bi < t � ai,

(Fi(x, t), t) if ai � t � a−
i+1,

(hi+1(x), t) if a−
i+1 � t < b−

i+1,

and let αi : Int(Bi) → Int(B′
i) be given by αi = ψ−1

i ◦ βi ◦ φi with i = 1, . . . , n.
Since each βi is a diffeomorphism, it follows that αi is also a diffeomorphism. Moreover,

δ ◦ αi = γ on Int(Bi), because

δ ◦ αi = δ ◦ ψ−1
i ◦ βi ◦ φi = p̃ ◦ βi ◦ φi = p ◦ φi = γ.

We now define a map H : S2 → S2 given by

H(x) =

{
hi(x) if x ∈ Int(Ai), i = 1, . . . , n,

αi(x) if x ∈ Int(Bi), i = 1, . . . , n.
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By construction, hi = αi on Int(Ai) ∩ Int(Bi) and αi = hi+1 on Int(Bi) ∩ Int(Ai+1)
for all i = 1, . . . , n. Therefore, H is well defined and C∞. Moreover, H : S2 → S2 is a
diffeomorphism such that γ = δ ◦ H. �

Theorems 3.8 and 3.10 together give that the Reeb graph is a complete topological
invariant for stable maps from S2 to S1. In fact, we have a little bit more, as we can see
in the following corollary.

Corollary 3.11. Let γ, δ : S2 → S1 be two stable maps. Then the following statements
are equivalent:

(1) γ, δ are A-equivalent;

(2) γ, δ are topologically equivalent;

(3) Γγ ∼ Γδ.

In the last part of this section we consider the Reeb graph of the link of a finitely
determined map germ with isolated zeros.

Remark 3.12. Let f : (R3, 0) → (R2, 0) be a finitely determined map germ with
f−1(0) = {0} and let γf : S̃2

ε → S1
ε be the link of f . The critical values of γf are given

by S1
ε ∩ Δ(f). In fact, if we denote by A1, . . . , Ar the half-branches of Δ(f), then by the

cone structure theorem each half-branch of Ai intersects S1
ε at a unique critical value vi

of γf . Analogously, the edges of Γγf
correspond to the connected components of f−1(αj),

where α1, . . . , αr are the arcs of S1
ε limited by two consecutive half-branches of Δ(f).

Theorem 3.13. Let f, g : (R3, 0) → (R2, 0) be two finitely determined map germs
such that f−1(0) = {0} = g−1(0). If f and g are topologically equivalent, then the Reeb
graphs of their links are equivalent.

Proof. By hypothesis, there exist two homeomorphism germs h, k such that the
following diagram commutes:

(R3, 0)
f ��

h

��

(R2, 0)

k

��
(R3, 0)

g �� (R2, 0)

(3.1)

We take representatives of f , g, h and k, and for any small enough ε > 0 the diagram

S̃2
ε

γf ��

h

��

S1
ε

k

��
Mε

g|Mε �� Pε

(3.2)

is also commutative, where Mε = h(S̃2
ε ) and Pε = k(S1

ε ).
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S

P

Yi

Ai +1

Ai
1

wi

vi

ε0

ε1 α i

β i

Figure 3. A connected component of U .

From the commutativity of (3.2), it follows that g|Mε is C0-stable. Choose ε0, ε1 > 0
such that γf : S̃2

ε0
→ S1

ε0
and γg : S̃2

ε1
→ S1

ε1
are the links of f and g, respectively, and

S1
ε1

⊂ k(D2
ε0

). By Definition 3.9, let Γg|Mε0
be the Reeb graph associated with g|Mε0 .

Then we can conclude that Γg|Mε0
is equivalent to Γγf

, where Γγf
is the Reeb graph

of γf .
Consider A1, . . . , An, the half-branches of the discriminant Δ(g), ordered in the anti-

clockwise orientation. By the cone structure of f (see Theorem 2.4), each half-branch
Ai intersects Pε0 at a unique point vi so that v1, . . . , vn are the critical points of g|Mε0 .
Analogously, each Ai intersects S1

ε1
at a unique point wi, where w1, . . . , wn are now the

critical points of γg. We have a graph isomorphism l : Pε0 → S1
ε1

given by l(vi) = wi for
all i = 1, . . . , n.

Let C1, . . . , Cr be the connected components of g−1(Δ(g)) − {0} =
⋃n

i=1 g−1(Ai).
Again by the cone structure of f , each connected component Cj intersects Mε0 in a
unique connected component Vj of some g−1(vi) so that V1, . . . , Vr are the vertices of
Γg|Mε0

. Finally, each Cj intersects S̃2
ε1

in a unique connected component Wj of g−1(wi)
in such a way that W1, . . . , Wr are now the vertices of Γγg . We have a bijection ϕ defined
by ϕ(Vj) = Wj for all j = 1, . . . , r. In order to have a graph isomorphism between Γg|Mε0

and Γγg we need to show that ϕ is edge preserving.
Consider U = k(D2

ε0
) − (Δ(g) ∪ B2

ε1
) and let Yi be one of its connected components

limited by two consecutive half-branches Ai and Ai+1. We denote by αi and βi the arcs
of S1

ε1
and Pε0 , respectively, which bound Yi for all i = 1, . . . , n (see Figure 3). As pointed

out in Remark 3.12, the connected components of g−1(αi) and g−1(βi) give all the edges
of the graphs Γγg and Γg|Mε0

, respectively.
Take X to be any connected component of f−1(Yi) for some 1 � i � n. Since g|X : X →

Yi is regular, the induced map g̃ : X/∼ → Yi is a local homeomorphism, and hence a
covering space. But Yi is simply connected, so g̃ is in fact a homeomorphism. We deduce
that the boundary of X/∼ has two components: one is an edge of Γγg given by the
quotient of X ∩ g−1(αi) and the other is an edge of Γg|Mε0

given by the quotient of
X ∩ g−1(βi).

Notice that all the edges of Γγg and Γg|Mε0
can be obtained in this way, and hence

we have a bijection between the edges of Γγg
and Γg|Mε0

, which is compatible with the
above bijection ϕ defined between the vertices. �
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Again, Theorem 3.13 together with Corollary 2.7 and Theorem 3.10 show that the
Reeb graph is a complete topological invariant for map germs with isolated zeros.

Corollary 3.14. Let f, g : (R3, 0) → (R2, 0) be finitely determined map germs such
that f−1(0) = {0} = g−1(0). Then the following statements are equivalent:

(1) f , g are topologically equivalent;

(2) the Reeb graphs of the links of f , g are equivalent;

(3) the links of f , g are topologically equivalent.

4. Topological classification of corank 1 map germs with f−1(0) = {0}

Let f : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ. After an
appropriate change of coordinates in the source and the target, we can write f as
f(x, y, z) = (x, hx(y, z)). In other words, f can be seen as an unfolding of the map
germ h0 : (R2, 0) → (R, 0). In the case in which f−1(0) = {0}, this also implies that
h−1

0 (0) = {0}.

Lemma 4.1. Let f : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ
given by f(x, y, z) = (x, hx(y, z)). Then h0 : (R2, 0) → (R, 0) is a finitely determined map
germ.

Proof. Since f is finitely determined, we can assume that it is polynomial. Then
its complexification fC is also finitely determined and by the Mather–Gaffney criterion,
S(fC)∩f−1

C
(0) = {0} (see [24]). This implies that S((h0)C)∩ (h0)−1

C
(0) = {0}, and hence

h0 is finitely determined for the contact group K. But for function germs it is well known
that the finite determinacy with respect to the contact group K is equivalent to the finite
determinacy with respect to the group A (see again [24]). �

We get a first important consequence of this lemma for the case in which f−1(0) = {0}.

Theorem 4.2. Let f : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ
with f−1(0) = {0}. Then the associated link of f is not surjective.

Proof. Consider f written as f(x, y, z) = (x, hx(y, z)), where h0 is also finitely deter-
mined and h−1

0 (0) = {0}. By Fukuda’s theorem (Theorem 2.4), h−1
0 (S0

ε ) is diffeomorphic
to S1 for small enough ε > 0.

Suppose that the associated link of f is surjective. Then (0, ε) and (0,−ε) belong to
the image of the map γf : f−1(S1

ε ) → S1
ε . But

γ−1
f ({(0, ε), (0,−ε)}) = f−1({(0, ε), (0,−ε)}) � h−1

0 ({ε, −ε}) � S1,

where � indicates homeomorphism of sets. This gives a contradiction because S1 is
connected, {(0, ε), (0,−ε)} is not connected and γf is a continuous map. �
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Remark 4.3.

(1) It follows from Theorem 4.2 that the stable map γ : S2 → S1 presented on the
right-hand side of Figure 2 cannot be realized as the link of a corank 1 finitely
determined map germ f : (R3, 0) → (R2, 0). At this point, we do not know if in fact
this stable map can be realized or not as the link of a corank 2 map germ.

(2) Another consequence of Theorem 4.2 is that if f has corank 1 and f−1(0) = {0},
then the generalized Reeb graph can be obtained from the classical one since the
link is not surjective (see Remark 3.5). From now on in this section, the Reeb graph
referred to will be the classical version unless otherwise specified.

Given that f(x, y, z) = (x, hx(y, z)), we say that f is a stabilization of h0 if there
is a representative f : U = (−ε, ε) × V → R

2 such that for any x with 0 < |x| < ε,
hx : V ⊂ R

2 → R is stable (i.e. it is a Morse function with distinct critical values).

Proposition 4.4. Let f : (R3, 0) → (R2, 0) be a finitely determined map germ given
by f(x, y, z) = (x, hx(y, z)). Then f is a stabilization of h0.

Proof. By Corollary 2.3, if f is finitely determined, we can choose a representative
f : U ⊂ R

3 → R
2 such that S(f) ∩ f−1(0) = {0} and the restriction f |U−{0} is stable

with only simple definite and indefinite folds. By shrinking U if necessary, we can assume
that U = (−ε, ε) × V , where V is a neighbourhood of 0 in R

2 and ε > 0. Let us take
x0 ∈ (−ε, ε), x0 �= 0.

Suppose that hx0 has a degenerate singularity at p ∈ V ; then the Hessian determinant
of hx0 at p is equal to 0. Since p ∈ S(hx0), (x0, p) ∈ S(f) and (x0, p) is not a fold point
of f in U − {0}. Analogously, if hx0 is singular at two distinct points p0, p1 ∈ V such
that hx0(p0) = hx0(p1), then (x0, p0), (x0, p1) ∈ S(f) and f should have a double fold at
(x0, p0), (x0, p1) ∈ U − {0}. �

Let f : (R3, 0) → (R2, 0) be a finitely determined map germ given by f(x, y, z) =
(x, hx(y, z)). We take a representative f : U = (−ε, ε)×V → R

2 such that for any x with
0 < |x| < ε, hx : V ⊂ R

2 → R is stable. By Lemma 4.1, h0 has an isolated singularity.
By shrinking U if necessary, we can also assume that h0 is regular in V −{0}. Moreover,
in the case in which f has an isolated zero, we also impose that f−1(0) = {0} on U , and
hence h−1

0 (0) = {0} on V .
Because of stability, all the functions hx : V ⊂ R

2 → R are A-equivalent if −ε < x < 0
and we will denote by h−

x one of these functions. Analogously, all functions hx : V ⊂
R

2 → R are A-equivalent if 0 < x < ε and we will denote by h+
x one of these functions.

Given a finitely determined map germ f : (R3, 0) → (R2, 0), we denote by X(f) the
set germ in (R3, 0) defined by the closure of f−1(Δ(f)) − S(f). By Corollary 2.3, since
f has only folds outside the origin, f is transverse to Δ(f), and hence X(f) is a surface
outside the origin.

Lemma 4.5. Let f : (R3, 0) → (R2, 0) be a finitely determined corank 1 map germ
given by f(x, y, z) = (x, hx(y, z)). Then S(f), X(f) and Δ(f) are transverse to the planes
{x} × R

2 and to the lines {x} × R, respectively, with 0 < |x| < ε and ε small enough.
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Proof. It follows from Proposition 4.4 that there exists ε > 0 small enough and
V ⊂ R

2 an open neighbourhood of 0 such that hx : V → R is stable for all x with
0 < |x| < ε.

Suppose that (x0, y0, z0) ∈ S(f) ∩ {x0} × R
2 and consider a parametrization of S(f)

near (x0, y0, z0) given by α(t) = (x(t), y(t), z(t)). We only need to show that x′(t) �= 0.
For simplicity we write H(x, y, z) = hx(y, z). Then S(f) is given by the implicit equa-

tions ∂H/∂y = ∂H/∂z = 0. By taking partial derivatives of these equations, we obtain

x′ ∂2H

∂x∂y
+ y′ ∂

2H

∂y2 + z′ ∂2H

∂y∂z
= 0, x′ ∂2H

∂x∂z
+ y′ ∂2H

∂y∂z
+ z′ ∂

2H

∂z2 = 0.

If x′ = 0, since (y′, z′) �= (0, 0) we get that

∂2H

∂y2

∂2H

∂z2 −
(

∂2H

∂y∂z

)2

= 0.

But this is the Hessian of hx at the singular point (y, z), which contradicts the fact that
hx is a Morse function.

We note that Δ(f) is parametrized by f(α(t)) = (x(t), H(x(t), y(t), z(t))) near
f(x0, y0, z0). Since x′(t) �= 0, we also have that Δ(f) is transverse to {x0} × R at
f(x0, y0, z0).

Finally, let (x0, y
′
0, z

′
0) ∈ X(f) ∩ {x0} × R

2 be a point such that f(x0, y0, z0) =
f(x0, y

′
0, z

′
0). Then the transversality between X(f) and {x0} × R

2 is a consequence
of the fact that f is transverse to Δ(f) and that X(f) = f−1(Δ(f)) and {x0} × R

2 =
f−1({x0} × R) near that point. �

Let f : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ with f−1(0) = {0}
given by f(x, y, z) = (x, hx(y, z)). By Lemmas 4.1 and 4.5, we consider small enough
representatives f : (−ε, ε) × V → R

2 such that for any 0 < |x| < ε, hx : V → is stable
and, moreover, S(f), X(f) are transverse to {x}×R

2, and Δ(f) is transverse to {x}×R.
We fix x0 ∈ R such that 0 < |x0| < ε and take δ > 0 small enough such that

(hx0)
−1([−δ, δ]) ⊂ V and [−δ, δ] intersects all the positive (respectively, negative) half-

branches of Δ(f) if x0 > 0 (respectively, if x0 < 0).
Consider the following equivalence relation on (hx0)

−1([−δ, δ]): v ∼ w ⇐⇒ hx0(v) =
hx0(w) with v and w in the same connected component of h−1

x0
(hx0(v)). Then the quotient

(hx0)
−1([−δ, δ])/∼ has a graph structure whose vertices are

(1) the connected components of h−1
x0

(v), where v is any critical value of hx0 ;

(2) the connected components of the boundary of (hx0)
−1([−δ, δ]); this type of vertex

will be called the boundary vertex and will be denoted by the symbol ◦.

Moreover, we denote by v1 < · · · < vn the ordered set of critical values of hx0 together
with the value corresponding to the boundary vertex. We assign to each vertex the label
i ∈ {1, . . . , n} if it has the value vi. The graph (hx0)

−1([−δ, δ])/∼ together with the labels
of the vertices is called the Reeb graph of hx0 .
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Figure 4. Sum of partial trees.

Definition 4.6. We define the partial tree of h+
x as being the Reeb graph of hx0 if

x0 > 0, and we define the partial tree of h−
x as being the Reeb graph of −hx0 if x0 < 0.

Example 4.7. Consider the map germ f : (R3, 0) → (R2, 0) given by f(x, y, z) =
(x, hx(y, z)), where hx(y, z) = y4 + xy2 + 3x5 + z2. Here hx has three critical values for
x < 0, but only one critical value for x > 0. The partial trees of h+

x and h−
x are shown in

Figure 4.

We remark that the partial trees h+
x and h−

x do not depend on of the choice of the
representatives, the choice of x0 or the choice of the interval [−δ, δ]. This follows from the
fact that the functions hx : V → R are all A-equivalent if either −ε < x < 0 or 0 < x < ε.
Then we can use the same arguments as those of the proof of Theorem 3.8.

Consider the partial trees of h+
x and h−

x . Assume that u1 < · · · < ur and v1 < · · · < vs

are the critical values of h+
x and h−

x , respectively. Since f−1(0) = {0}, the link γf is not
surjective and, without loss of generality, we can assume that (0, ε) is a regular value that
belongs to the image of the link. Consequently, ur and vs correspond to the boundary
vertices of h+

x and h−
x , respectively.

Definition 4.8. Let Γx>0 and Γx<0 be the graphs corresponding to the partial trees
of h+

x and h−
x , respectively. Consider Γ , the graph obtained by connecting the upper edge

of Γx>0 −{ur} to the lower edge of Γx<0 −{vs}. We relabel each vertex vs−i by ur+(i−1),
where i = 1, . . . , s − 1. We say that Γ is the sum of the partial trees of h+

x and h−
x .

Remark 4.9. The sum of the partial trees of the map germ in Example 4.7 is also
shown in the right-hand side of Figure 4.

The main result of this section is the following theorem.

Theorem 4.10. Let f : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ
with f−1(0) = {0} given by f(x, y, z) = (x, hx(y, z)). Then the sum of partial trees of
h+

x and h−
x is equivalent to the Reeb graph of the associated link of f .

Proof. Take ε > δ > 0 small enough and V ⊂ R
2 a neighbourhood of the origin such

that the following four conditions are satisfied:

(i) γf : S̃2
δ → S1

δ is the link of f ;

(ii) the function hx|V : V → R is stable for all x ∈ (−ε, ε), x �= 0;
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S1
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Figure 5. The set Ui.

(iii) {x} × V intercepts all half-branches of S(f) with the same sign of x;

(iv) S̃2
δ ⊂ (−ε, ε) × V ;

(v) h−1
0 (0) = {0} and h0 is regular on V − {0}.

We have from (v) that S(f) ∩ ({0} × R
2) = {0} and Δ(f) ∩ ({0} × R) = {0}. Hence,

(0, δ) and (0,−δ) are regular values of γf : S̃2
δ → S1

δ . Moreover, since the link of f is
not surjective, just one of the points (0,−δ), (0, δ) belongs to the image of the link. We
assume here that (0, δ) ∈ Im(γf ).

Let A1, . . . , An be the half-branches of Δ(f) considered in the anti-clockwise orienta-
tion and such that (0,−δ) is the base point. We also assume that A1, . . . , Ar are on the
half-plane x > 0 and that Ar+1, . . . , An are on the half-plane x < 0.

By the cone structure of f , each half-branch Ai intersects S1
δ at a unique point vi,

so that v1 < · · · < vn are the critical points of γf in the chosen orientation. By the
transversality of Δ(f) to the vertical lines {x} × {R}, given that δ < x < ε we have that
each half-branch Ai also intersects {x}×{R} at a unique point wi. But now w1 < · · · < wr

are the critical values of h+
x and wn < · · · < wr+1 are the critical values of h−

x .
Since we are considering the classical version of the Reeb graph, each critical value

corresponds to a unique vertex. Thus, there is a bijection given by ϕ(vi) = wi for i ∈
{1, . . . , n} between the vertices of Γγf

and the vertices of Γ , the sum of the partial trees
of h+

x and h−
x . Moreover, the bijection is compatible with the labels of the vertices as

defined in Definition 4.8.
To finish the proof, we only need to show that there is also a bijection between the

edges compatible with ϕ. Consider the following sets (Figure 5):

• Ui, the set of points limited by Ai, Ai+1, S1
δ and {x} × R;

• αi, the arc of S1
δ limited by Ai and Ai+1;

• βi, the line segment of {x} × R limited by Ai and Ai+1;

• Yi = Ui ∪ αi ∪ βi;

with δ < x < ε if 1 � i < r and −ε < x < −δ if r + 1 � i < n.
Each one of the connected components of f−1(αi) and f−1(βi) gives an edge for the

graphs Γγf
and Γ , respectively.

Let X be any connected component of f−1(Yi). Notice that f |X : X → Yi is regular.
So, the induced map f̃ : X/∼ → Yi is a local homeomorphism, and hence a covering map.
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Since Yi is simply connected and X is connected, we have that f̃ is a homeomorphism.
Hence, X/∼ contains only one edge of Γγf

corresponding to X ∩ f−1(αi), and also only
one edge of Γ corresponding to X ∩ f−1(βi).

Moreover, since f−1(0, δ) is diffeomorphic to S1, the arc of S1
δ delimited by As and

As+1 corresponds to a unique edge of Γγf
. We associate this edge with the edge of Γ

used to join the partial trees of h+
x and h−

x .
In this way, we can define a bijection φ between the edges of Γγf

and the edges of Γ ,
which is compatible with ϕ. Hence, the graphs Γγf

and Γ are equivalent. �

4.1. Classification of germs with Boardman symbol Σ2,1

Next, we state a result due to Rieger and Ruas [21] that gives a classification of
corank 1 map germs according to its 2-jet. We denote by Σ1J2(3, 2) the space of 2-jets
of corank 1 map germs from (R3, 0) to (R2, 0) and A2 denotes the space of 2-jets of
diffeomorphisms in the source and target.

Lemma 4.11. There exist the following orbits in Σ1J2(3, 2) under the action of A2:

(x, y2 + z2), (x, y2 − z2), (x, xy + z2), (x, xy − z2), (x, z2), (x, 0).

The germ f(x, y, z) = (x, y2 ± z2) is 2-A-determined. Thus, if a map germ has a 2-jet
equivalent to (x, y2 ± z2), then it is in fact A-equivalent to the definite or indefinite
fold. Hence, we do not need to consider this case. The orbits distinct from (x, 0) have
Boardman symbol Σ2,1.

Now, we centre our attention on corank 1 finitely determined map germs f : (R3, 0) →
(R2, 0) with f−1(0) = {0} and Boardman symbol Σ2,1. By the splitting lemma [21], we
can choose coordinates in the source and the target such that f is given by f(x, y, z) =
(x, h̃x(y) + z2). Moreover, h̃0 is A-equivalent to yk, for some k even, and by using the
versal unfolding of yk we can assume that

h̃x(y) = yk + ak−2(x)yk−2 + · · · + a1(x)y.

Notice that k is the multiplicity of h̃0.
We want to construct the partial trees of h+

x and h−
x , where hx(y, z) = h̃x(y) + z2.

The Jacobian and Hessian matrices of hx(y, z) are, respectively,

J =
(
h̃′

x(y) 2z
)

, H =

(
h̃′′

x(y) 0
0 2

)
.

Hence, the critical points of hx are those of the form (y, 0), where y is a critical point
of h̃x. Moreover, (y, 0) is a saddle point of hx if and only if y is a maximum of h̃x, and
(y, 0) is a maximum or minimum of hx if and only if y is a minimum of h̃x.

Example 4.12. Let f : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ
with f−1(0) = {0}, with Boardman symbol Σ2,1 and with multiplicity 4. After change
of coordinates in the source and target, we can assume that f is given by

f(x, y, z) = (x, y4 + a(x)y2 + b(x)y + z2).
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Figure 6. Bifurcation set of y4.
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Figure 7. Sum of partial trees in Example 4.12.
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Figure 9. Partial trees.

Notice that the bifurcation set B of the versal unfolding of h0 in this case is given in the
(a, b)-plane by b(−4a3b−27b3) = 0 (see Figure 6), which permits us to choose appropriate
functions a(x) and b(x) such that we can obtain all possible types of tree.

Then there are three possibilities for the Reeb graph of the link of f , according to the
number of saddles.

• Zero saddles: f is topologically equivalent to (x, y4 + x2y + z2) (see Figure 7 (a)).

• One saddle: f is topologically equivalent to (x, y4 + xy2 + 3x5y + z2) (see Fig-
ure 7 (b)).

• Two saddles: f is topologically equivalent to (x, y4 − x2y2 + x5y + z2) (see Fig-
ure 7 (c)).

Theorem 4.13. Let f : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ,
f−1(0) = {0} with Boardman symbol Σ2,1 and with multiplicity less than or equal to 6.
Then all the possibilities for the Reeb graph of the link of f are realized and are presented
in Table 1.

Proof. Assume that f is given by

f(x, y) = (x, y6 + a(x)y4 + b(x)y3 + c(x)y2 + d(x)y + z2).

Notice that h̃x may have zero, one or two saddles, as shown in Figure 8.
All the possibilities for the partial trees of the link of f are given in Figure 9.
In this way, all the Reeb graphs of the link of f can be obtained by taking all possible

combinations among these six models of partial trees. Note that (a)+(a) is equivalent to
the Reeb graph of (x, y2 + z2); (a) + (b) and (b) + (b) are equivalent to the Reeb graphs
given in Example 4.12. �

Appendix A. Morse functions and cobordism

In this appendix we describe some results about Morse function theory and cobordism
theory given by Arnold, Milnor and Izar (see [1,8–10,13]). We adopt the notation and
basic definitions that are usual in Morse theory and cobordism theory. The reader can
use [12,13] as basic references.



340 E. B. Batista, J. C. F. Costa and J. J. Nuño-Ballesteros

Table 1. Classification of map germs with multiplicity less than or equal to 6.

germ associated tree

(x, y2 + z2)

2

1

(x, y4 + xy2 + 3x5y + z2) 2

1

34

(x, y4 − x2y2 + x5y + z2)

21

3
4

56

(x, y6 + 2xy4 + x2y2 + x4y + z2)
2

1

3
4

56

(x, y6 + 2xy4 + x3y3 − x2y3 − x4y2 + 5
4x2y2 + x4y + z2)

2

1

34

56

(x, y6 + xy4 + x3y3 + x4y2 + x7y + z2)
2

1

3

4 56

(x, y6 + x3y4 + 1
9xy4 + x3y3 + 1

9x4y2 + x6y + z2)
2
1

3

45 6

(x, y6 − 3
10x2y4 − 1

15x3y3 − 1
2x5y2 − 1

5x6y + z2)

21
3
4

56
78



The Reeb graph of a map germ from R
3 to R

2 with isolated zeros 341

Table 1. (Cont.)

germ associated tree

(x, y6 + 6x3y4 + 9x6y2 + 9x9y + z2)

21

3
4
5

6
78

(x, y6 − 4x2y4 + x4y3 − 3x5y2 + z2)

21
3
4
5

6 78

(x, y6 − 6x2y4 + xy4 + x4y3 − 6x3y2 − 6x6y + z2)

21

3
4
5

67
8

(x, y6 − 4x4y4 + 4x8y2 − 2x10y + z2)

21
3 4
5 6

78
910

(x, y6 − 93
20x4y4 + 4x8y2 − 2x10y + z2)

21
34

5
6

7 8
910

(x, y6 + 1
2xy5 + 1

16x2y4 + 1
12x4y3 − 1

8x7y2 + z2)

2 13
4
5 6

78
910

(x, y6 − 1
10xy5 − 23

40x3y4 − 35
32x5y3 − 441

640x7y2 + z2)

21
34

5
6

7
8 910
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Table 1. (Cont.)

germ associated tree

(x, y6 − x2y4 + x4y3 + x6y2 + z2)

21 3
4
5

6
7

8 910

(x, y6 + 1
45x2y4 − 1

15x4y3 − 1
20x6y2 + 1

15x9y + z2)

21 3
4
5

6
7

89 10

(x, y6 − 3
6x2y4 + 1

3x5y3 + 3x6y2 − x9y + z2)

2 13
4
5

6
7

89 10

(x, y6 − 6x2y5 − 4
5xy5 + 4x3y4 − 5x8y3 + 15x8y2 + z2)

21 3
4
5 6

78
910

(x, y6 + 6xy5 + 16x3y4 + 14x5y3 + 4x7y2 + z2)

21
34

5 6
78
910

(x, y6 − 27
10xy5 − 9

5x3y4 + 33
160x5y3 + 81

320x7y2 + 81
80x10y + z2)

2 13
4
5

6
7 8

910

Definition A 1. We say that (M ; V0, V1) is a triad if M is a C∞ compact manifold
with boundary and ∂M is the disjoint union of two closed submanifolds V0 and V1 (see
Figure 10).

Definition A 2. A Morse function on a triad (M ; V0, V1) is a C∞ function f : M →
[a, b] such that
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V0
V1

M

Figure 10. Cobordism.

(i) f−1(a) = V0 and f−1(b) = V1,

(ii) all critical points of f are interior (lie in M − ∂M) and non-degenerated,

(iii) f is injective when restricted to the set of its critical points.

Roughly speaking, by using Morse functions it is possible to express any complicated
cobordism as a composition of simpler cobordisms.

Theorem A 3 (Milnor [13]). For every Morse function f on a triad (M ; V0, V1),
there exists a gradient-like vector field ξ for f .

Theorem A 4 (Milnor [13]). If a triad (M ; V0, V1) admits a function without critical
points, then it is a product cobordism, i.e. it is diffeomorphic to the triad (V0× [0, 1], V0×
{0}, V0 × {1}).

Corollary A 5. If fi : (Mi; Vi, V
′
i ) → ([0, 1], {0}, {1}), i = 0, 1, are Morse functions

without critical points and if V0 is diffeomorphic to V1, then there exists a diffeomorphism
h : M0 → M1 such that f0 = f1 ◦ h.

Definition A 6 (characteristic embedding; see [13]). Let (M ; V0, V1) be a triad
with a Morse function f : M → R and a gradient-like vector field ξ for f . Suppose that
p ∈ M is a critical point of f and let V0 = f−1(c0) and V1 = f−1(c1) be the levels such
that c0 < c = f(p) < c1, where c is the unique critical value of f in [c0, c1].

Since ξ is a gradient-like vector field for f , there exists a neighbourhood U of p in M

and a parametrization α : Bn
2ε → U such that f ◦ α(x, y) = f(p) − ‖x‖2 + ‖y‖2 and such

that ξ has coordinates (−x, y) through U , where x = (x1, . . . , xλ), y = (xλ+1, . . . , xn)
for some 0 � λ � n and ε > 0. Set Vε = f−1(c + ε2) and V−ε = f−1(c − ε2). We may
assume that 4ε2 < min{|c − c0|, |c − c1|} so that V−ε lies between V0 and f−1(c), and Vε

lies between f−1(c) and V1. The situation is represented schematically in Figure 11.
The left characteristic embedding of p is a map φL : Sλ−1 × Bn−λ → V0 obtained as

follows. First define an embedding φ : Sλ−1 × Bn−λ → V−ε by

φ(u, θv) = α(εu cosh(θ), εv sinh(θ)), u ∈ Sλ−1, v ∈ Sn−λ−1, 0 � θ < 1.

Starting at the point φ(u, θv) in V−ε, the integral curve of ξ is a non-singular curve that
leads from φ(u, θv) back to some well-defined point φL(u, θv) in V0. Define the left-hand
sphere SL of p in V0 to be the image φL(Sλ−1×{0}). Notice that SL is just the intersection
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p

C0 C1C1+C0 – Cε2 ε2

Figure 11. Neighbourhood of a critical point p.
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α
ε

ε

φ (u,θ v)L

Figure 12. Characteristic embedding.

of V0 with all integral curves of ξ leading to the critical point p. The left-hand disc DL

is a smoothly embedded disc with boundary SL, defined to be the union of all segments
of these integral curves beginning in SL and ending at p (see Figure 12).

Similarly, the right characteristic embedding φR : Bλ × Sn−λ−1 → V1 is obtained by
defining the embedding φ : Bλ × Sn−λ−1 → Vε by

(θu, v) �→ α(εu sinh(θ), εv cosh(θ)),

and then translating the image to V1. The right-hand sphere SR of p in V1 is defined to
be φR({0}×Sn−λ−1). It is the boundary of the right-hand disc DR, defined as the union
of the segments of integral curves of ξ beginning at p and ending in SR.

Definition A 7 (surgery; see [13]). Given a manifold V of dimension n − 1 and
an embedding φ : Sλ−1 × Bn−λ → V , let χ(V, φ) denote the quotient manifold obtained
from the disjoint sum

(V − φ(Sλ−1 × {0})) + (Bλ × Sn−λ−1)

by identifying φ(u, θv) with (θu, v) for each u ∈ Sλ−1, v ∈ Sn−λ−1, 0 < θ < 1. If V ′

denotes any manifold diffeomorphic to χ(V, φ), then we will say that V ′ can be obtained
from V by surgery of type (λ, n − λ).
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It is not hard to prove the next technical result.

Lemma A 8.

(i) If V is an (n−1)-manifold, a surgery of type (0, n) gives a disjoint union of V with
a sphere Sn−1.

(ii) A surgery of type (n, 0) over an (n − 1)-sphere gives the empty set.

(iii) A surgery of type (1, 1) over S1 gives either two disjoint copies of S1 or just one
copy of S1.

(iv) A surgery of type (1, 1) over two copies of S1 gives either one, two or three copies
of S1.

Definition A 9. An elementary cobordism is a triad (M ; V0, V1) possessing a Morse
function f with exactly one critical point.

Theorem A 10 (Milnor [13]). If V1 = χ(V0, φ) can be obtained from V0 by surgery
of type (λ, n − λ), then there exists an elementary cobordism (M ; V0, V1) and a Morse
function f : M → R with exactly one critical point, of index λ.

Let Lλ denote the smooth manifold with boundary of points (x, y) ∈ R
λ ×R

n−λ = R
n

that satisfy the inequalities −1 � −‖x‖2 + ‖y‖2 � 1 and ‖x‖‖y‖ < (sinh 1)(cosh 1).

Definition A 11. With the notation of Theorem A 10, we define ω(V0, φ), the quotient
manifold obtained from the disjoint sum

(V0 − φ(Sλ−1 × {0})) × B̄1 + Lλ,

by the following identification: for each u ∈ Sλ−1, v ∈ Sn−λ−1 and 0 < θ < 1, identify
the point (φ(u, θv), c) in the first summand with the unique point (x, y) ∈ Lλ such that

(1) −‖x‖2 + ‖y‖2 = c,

(2) (x, y) lies on the orthogonal trajectory that passes through (u sinh θ, v sinh θ).

It is not difficult to see that ω(V0, φ) is well defined and is a smooth manifold with
boundary.

Theorem A 12 (Milnor [13]). Let (M ; V0, V1) be an elementary cobordism with
characteristic embedding φL : Sλ−1 × Bn−λ → V0. Then (M ; V0, V1) is diffeomorphic to
the triad (ω(V0, φL); V0, χ(V0, φL)).

The next lemma follows from Theorems A 10 and A 12.

Lemma A 13 (Izar [8]). Let (M ; V0, V1) be an elementary cobordism with Morse
function f : M → R and characteristic embedding φL : Sλ−1 × Bn−λ → V0. If
k : ω(V0, φ) → M is the diffeomorphism of Theorem A 12 and g : ω(V0, φ) → R is the
Morse function on ω(V0, φL) of Theorem A 10, then g = f ◦ k.
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Theorem A 14 (Izar [9]). Let (M ; V0, V1) and (M ′; V ′
0 , V ′

1) be two triads with
Morse functions f : M → [c0, c1] and g : M ′ → [c0, c1], where M and M ′ are compact
2-manifolds. Suppose that:

(1) f , g have a unique critical value c, with c0 < c < c1;

(2) f , g have a unique critical point p ∈ f−1(c) and q ∈ g−1(c) such that the index of
f at p is equal to the index of g at q;

(3) the level curves f−1(ci) and g−1(ci), i = 0, 1, have the same topological type.

Then there exists a diffeomorphism h : M → M ′ such that f = g ◦ h.

Proof. Without loss of generality, we can assume that M and M ′ are connected.
Notice that outside the connected component that contains the critical point, M and
M ′ are product cobordisms. Since the index of f at p is equal to the index of g at
q, and since the level curves f−1(ci) and g−1(ci), i = 0, 1, have the same topological
type, we see from Lemma A 8 that these product cobordisms have the same number of
connected components. By Corollary A 5, there exists a diffeomorphism between these
product cobordisms conjugating the functions f and g.

Thus, (M ; V0, V1) is a triad with Morse function f : M → [c0, c1] with gradient-like
vector field ξ. There exist a neighbourhood of p and a parametrization α : B2

2ε → U

such that f(α(x, y)) = c − ‖x‖2 + ‖y‖2. Let V−ε = f−1(c − ε2), Vε = f−1(c +
ε2) and consider the characteristic embedding φ : Sλ−1 × B2−λ → V−ε, φ(u, θv) =
α(εu cosh(θ), εv sinh(θ)). By Theorem A 12, there exists a diffeomorphism � between
(Mε; V−ε, Vε) and (ω(V−ε, φ); V−ε, χ(V−ε, φ)).

Analogously for (M ′; V ′
0 , V ′

1), by taking the same ε, there exists a parametrization β

and an embedding φ′(u, θv) = β(εu cosh(θ), εv sinh(θ)). Again by Theorem A 12, we have
a diffeomorphism �′ between (M ′

ε; V
′
−ε, V

′
ε ) and (ω(V ′

−ε, φ
′); V ′

−ε, χ(V ′
−ε, φ

′)).
Let k be a diffeomorphism from V−ε to V ′

−ε that preserves the orientation of S1 and
such that k ◦ φ = φ′. Then

(ω(V ′
−ε, φ

′); V ′
−ε, χ(V ′

−ε, φ
′)) = (ω(k(V−ε), k ◦ φ); k(V−ε), χ(k(V−ε), k ◦ φ)),

which also is diffeomorphic to (ω(V−ε, φ); V−ε, χ(V−ε, φ)). In fact, the diffeomorphism

H = (k×idB̄1)+idLλ
: (V−ε−φ(Sλ−1×{0}))×B̄1+Lλ → (V ′

−ε−φ′(Sλ−1×{0}))×B̄1+Lλ

is compatible with the following equivalence relation: if (φ(u, θv), c)∼(x, y), then −‖x‖2+
‖y‖2 =c and (x, y) is in the orthogonal trajectory passing through (u cosh(θ), v sinh(θ)),
but this implies that (k◦φ(u, θv), c) ∼ (x, y). The induced map H̄ gives a diffeomorphism
between (ω(V−ε, φ); V−ε, χ(V−ε, φ)) and (ω(V ′

−ε, φ
′); V ′

−ε, χ(V ′
−ε, φ

′)).
We have the diagram

ω(V ′
−ε, φ

′) �′
�� M ′

ε

g �� [c0, c1]

ω(V−ε, φ)

H̄

��

� �� Mε

h1

��

f

�����������
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where H̄ conjugates the functions f ◦ � and g ◦ �′, since H is the identity function on
Lλ and preserves the levels in (V \ φ(Sλ−1 × {0})) × B̄1. Then we obtain a diffeomor-
phism h1 : Mε → M ′

ε conjugating f and g. By Lemma A 13, h1 can be extended to a
diffeomorphism h : M → M ′ such that f = g ◦ h. �
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