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Abstract We consider the topological classification of finitely determined map germs

[ f ] : (R3, 0) → (R2, 0) with f −1(0) �= {0}. The case f −1(0) = {0} was treated in

another recent paper by the authors. The main tool used to describe the topological

type is the link of [ f ], which is obtained by taking the intersection of its image with a

small sphere S1
δ centered at the origin. The link is a stable map γ f : N → S1, where

N is diffeomorphic to a sphere S2 minus 2L disks. We define a complete topological

invariant called the generalized Reeb graph. Finally, we apply our results to give a

topological description of some map germs with Boardman symbol �2,1.
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1 Introduction

Since our study is local we will work with the notion of map germs from R
3 to R

2.

Map germs are equivalence classes of mappings which coincide in a neighborhood of

the origin in R
3. We will denote it by [ f ] : (R3, 0) → (R2, 0). Given a map germ [ f ]

from R
3 to R

2 with non isolated zeros, we can take a representative f of [ f ], where

f : U ⊂ R
3 → R

2, U is a neighborhood at the origin and f −1(0) �= {0}.

This paper is devoted to the topological classification of smooth map germs from R
3

to R
2 with non isolated zeros which are finitely determined. The hypothesis of finite

determinacy guarantees that our map germs can be assumed polynomials. Restricted

to polynomial map germs from R
3 to R

2 of a given degree, it follows from Thom’s

work (Thom 1964) that the number of topological types is finite. In other words, this

problem is tame in the sense that it does not have topological moduli.

The topological structure of a finitely determined map germ [ f ] : (R3, 0) →

(R2, 0) is given by the so-called link of [ f ] (cf. Fukuda 1981, 1985). The link of

[ f ] is obtained by taking a small enough representative f : U ⊂ R
3 → R

2 and the

intersection of its image with a small enough sphere S1
δ centered at the origin in R

2.

When [ f ] has isolated zeros (i.e., f −1(0) = {0}, where f is a representative of [ f ]),

the link is a stable map γ f : S2 → S1 and f is topologically equivalent to the cone

of γ f . As a consequence, two finitely determined map germs [ f ], [g] : (R3, 0) →

(R2, 0) with isolated zeros are topologically equivalent if their associated links are

topologically equivalent. A complete description of topological classification of this

case was recently studied in Batista et al. (2017).

In this paper, we assume [ f ] has non isolated zeros (i.e., f −1(0) �= {0}). This

case is more complicated than the previous one, because the link is now a stable

map γ f : N → S1, where N is a compact surface with boundary and genus zero,

diffeomorphic to S2 minus 2L disks.

Inspired in the works of Arnold, Prishlyak or Sharko (cf. Arnold 2007; Prishlyak

2002; Sharko 2003) we introduced in Batista et al. (2017) the notion of generalized

Reeb graph and showed that it turns out to be a complete topological invariant for

stable maps from S2 to S1. Here, we extend the results of generalized Reeb graph for

a stable map γ : N → S1, where N is a manifold with boundary. In Sect. 4 we show

that it is also a complete topological invariant, as it happens in the case of surfaces

without boundary (cf. Batista et al. 2017).

In Sect. 5 we take special attention to the case that [ f ] has corank 1. In this case, there

exists a representative f written as f (x, y, z) = (x, hx (y, z)) and gives a stabilization

of [h0] : (R2, 0) → (R, 0). The topology of f is now determined by two stabilizations

h+
x , with x > 0 and h−

x , with x < 0. We introduce the notion of partial trees associated

to h+
x and h−

x and show that the sum of these partial trees is equivalent to the Reeb

graph of the link of [ f ]. In the last part of this paper, we apply our results to obtain

the topological description of some map germs with Boardman symbol �2,1.

It is important to cite that recently many papers treat that the problem of topological

classification of finitely determined map germs [ f ] : (Rn, 0) → (Rp, 0) by looking
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at the topological type of the link (cf. Costa and Nuño-Ballesteros 2013; Moya-Pérez

and Nuño-Ballesteros 2010, 2014, 2015). However, as far as we know, this paper is

the first one which considers the case of non isolated zeros.

All map germs considered here are smooth (C∞) except otherwise stated. We adopt

the usual notation and basic definitions that are common in Singularity theory (e.g., A-

equivalence, finite determinacy, stability, etc.) as the readers can find in Wall’s survey

paper (Wall 1981).

2 The Link of a Finite Determined Map Germ

Definition 2.1 Two smooth map germs [ f ], [g] : (R3, 0) → (R2, 0) are said to be

A-equivalent if there exist diffeomorphism germs [ψ] : (R3, 0) → (R3, 0) and [φ] :

(R2, 0) → (R2, 0) such that [ f ] = [φ] ◦ [g] ◦ [ψ]−1. If [φ], [ψ] are homeomorphism

germs instead of diffeomorphism germs, then we say that [ f ] and [g] are topologically

equivalent (or C0 − A-equivalent).

Notice that notions of A-equivalence and topological equivalence given in Defini-

tion 2.1 also can be applied for mappings (not germs) from R
3 to R

2 in a analogous

way. Just replace the words “diffeomorphism germs” (resp. homeomorphism germs)

by “diffeomorphisms” (resp. homeomorphisms).

A crucial notion in Singularity Theory is finite determinacy. In fact, if a map germ

[ f ] : (R3, 0) → (R2, 0) is finite determined, it may be assumed polynomial.

Definition 2.2 A map germ [ f ] : (R3, 0) → (R2, 0) is said to be k-determined if for

any map germ [g] with the same k-jet, [g] is A-equivalent to [ f ]. The germ [ f ] is said

to be finitely determined if it is k-determined for some k.

Let f : U → R
2 be a smooth map, where U ⊂ R

3 is an open subset. We denote by

S( f ) = {p ∈ U | J f (p) does not have rank 2} the singular set of f , where J f (p) is the

Jacobian matrix of f . We also denote the discriminant set of f by �( f ) = f (S( f )).

Another important set is X ( f ) = f −1(�( f )) − S( f ).

Definition 2.3 Let f : U ⊂ R
3 → R

2 be a smooth map and p ∈ S( f ).

1. We say that p is a definite fold point if the map germ of f at p is A-equivalent to

(x, y2 + z2);

2. We say that p is a indefinite fold point if the map germ of f at p is A-equivalent

to (x, y2 − z2).

The next corollary follows from the Mather-Gaffney finite determinacy criterion

(Wall 1981), and the well known classification of stable singularities from R
3 to R

2

(see Batista et al. 2017 for details).

Corollary 2.4 Let [ f ] : (R3, 0) → (R2, 0) be a finitely determined map germ. Then

there exists a representative f : U ⊂ R
3 → R

2 such that

(i) S( f ) ∩ f −1(0) = {0},

(ii) the restriction f |U\{0} has only definite and indefinite simple fold singularities.
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If [ f ] : (R3, 0) → (R2, 0) is a finitely determined map germ, the discriminant

�( f ) is a plane curve with an isolated singularity at the origin. The number of half

branches of �( f ) will play a crucial role in the analysis of the topological behavior

of f . In addition, when f −1(0) �= {0}, this set f −1(0) is also a (space) curve with an

even number of half branches.

Denote by J r (n, p) the r -jet space from (Rn, 0) to (Rp, 0). For positive integers r

and s with s ≥ r , let π s
r : J s(n, p) → J r (n, p) be the canonical projection defined

by π s
r ( j s f (0)) = jr f (0). For a positive number ǫ > 0 we set

Dn
ǫ = {x ∈ R

n | ‖x‖2 ≤ ǫ}, Bn
ǫ

= {x ∈ R
n | ‖x‖2 < ǫ} and Sn−1

ǫ = {x ∈ R
n | ‖x‖2 = ǫ}.

We denote Dn , Bn and Sn−1 the standard disk, ball and sphere of radius 1, respectively.

Fukuda has proved the following theorem in Fukuda (1985):

Theorem 2.5 For any semialgebraic subset W of J r (n, p), with n > p, there exist an

integer s (s ≥ r) depending only on n, p and r, and there exists a closed semialgebraic

subset �W of (π s
r )−1(W ) having codimension ≥ 1 such that for any C∞ map f :

R
n → R

p with j s f (0) belonging to (π s
r )−1(W ) \ �W and with f −1(0) �= {0} there

exist a positive number ǫ0 and a strictly increasing C∞ function δ : [0, ǫ0] → [0,∞)

with δ(0) = 0 such that for every ǫ and δ with 0 < ǫ ≤ ǫ0 and 0 < δ ≤ δ(ǫ) we have:

(i) f −1(0) ∩ Sn−1
ǫ is an (n − p − 1)-dimensional manifold and it is diffeomorphic

to f −1(0) ∩ Sn−1
ǫ0

.

(ii) Nǫ,δ := Dn
ǫ ∩ f −1(S

p−1
δ ) is a C∞ manifold, in general with boundary and it is

diffeomorphic to Nǫ0,δ(ǫ0).

(iii) the restriction fǫ,δ = f |Nǫ,δ : Nǫ,δ → S
p−1
δ is a topologically stable map

(C∞ stable if (n, p) is a nice pair in Mather’s sense) and its topological class is

independent of ǫ and δ.

Assuming that [ f ] is r -determined for some r and taking W = { jr f (0)}, we can

apply Theorem 2.5 to obtain a representative f of [ f ] satisfying (i), (ii) and (iii), up

to A-equivalence.

Definition 2.6 Let [ f ] : (R3, 0) → (R2, 0) be a finitely determined map germ with

f −1(0) �= {0}. We say that the stable map f |Nǫ,δ : Nǫ,δ → S1
δ is the link of [ f ],

where 0 < δ ≪ ǫ ≪ 1 are given in Theorem 2.5.

By Theorem 2.5 the link is well defined up to A-equivalence. However we do not

have a cone structure as in the case f −1(0) = {0} given in Batista et al. (2017). The

topology of the domain of the link can be described easily.

Proposition 2.7 The manifold Nǫ,δ is homeomorphic to S2 minus 2L disks, where 2L

be the number of half branches of f −1(0) �= {0}.

Proof Let M = D3
ǫ ∩ f −1(D2

δ ). Since M is a contractible 3-manifold with boundary,

it is homeomorphic to the standard disk D3. Hence ∂ M is homeomorphic to standard

sphere S2. On the other hand, ∂ M is equal to the union of Nǫ,δ with 2L disks. As a

consequence, Nǫ,δ is homeomorphic to S2 minus 2L disks.
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In a recent paper (Batista et al. 2017) we have obtained a cone structure theorem for

map germs with f −1(0) �= {0}. In order to state this theorem we need the definitions

of link diagram and generalized cone.

Definition 2.8 A link diagram is a diagram of the form

V
r

←−−−− N
γ

−−−−→ S p−1

where N is a manifold with boundary, γ is a continuous map, V is a contractible space

and r is a continuous surjective mapping such that the attaching space (N × I ) ∪r V

is homeomorphic to the closed disk Dn (here we set I = [0, 1] and we identify

N ≡ N × {0} ⊂ N × I ).

Definition 2.9 Given a link diagram V
r

←−−−− N
γ

−−−−→ S p−1 the generalized

cone is the induced map

C(γ, r) : (N × I ) ∪r V → c(S p−1)

defined in the obvious way (that is, [x, t] �→ [γ (x), t] if (x, t) ∈ N × I and [y] �→ 0

if y ∈ V , where c(S p−1) is the usual cone of S p−1).

Note that in the particular case that V = {0}, the generalized cone coincides with

the usual notion of cone.

Definition 2.10 Two link diagrams

V0
r0

←−−−− N0
γ0

−−−−→ S p−1 and V1
r1

←−−−− N1
γ1

−−−−→ S p−1

are topologically equivalent if there are homeomorphisms α : V0 → V1, φ : N0 → N1

and ψ : S p−1 → S p−1 such that r1 = α ◦ r0 ◦ φ−1 and γ1 = ψ ◦ γ0 ◦ φ−1.

Theorem 2.11 (Batista et al. 2017) Let [ f ] : (R3, 0) → (R2, 0) be a finitely deter-

mined map germ such that f −1(0) �= {0}. For each 0 < δ ≪ ǫ ≪ 1 small enough

there exists a continuous and surjective map rǫ,δ : Nǫ,δ → Vǫ , such that:

1. The link diagram

Vǫ

rǫ,δ
←−−−− Nǫ,δ

fǫ,δ
−−−−→ S1

δ

is independent of ǫ, δ up to topological equivalence.

2. The restriction f |D3
ǫ ∩ f −1(D2

δ ) : D3
ǫ ∩ f −1(D2

δ ) → D2
δ is topologically equiv-

alent to the generalized cone:

C( fǫ,δ, rǫ,δ) : (Nǫ,δ × I ) ∪rǫ,δ
Vǫ → c(S1

δ ),

where I = [0, δ].
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Definition 2.12 Let [ f ] : (R3, 0) → (R2, 0) be a finitely determined map germ with

f −1(0) �= {0}. The link diagram of [ f ] is the link diagram

Vǫ

rǫ,δ
←−−−− Nǫ,δ

fǫ,δ
−−−−→ S1

δ

given in Theorem 2.11 for 0 < δ ≪ ǫ ≪ 1.

Corollary 2.13 Let [ f ], [g] : (R3, 0) → (R2, 0) be two finitely determined map

germs, with f −1(0) �= {0} and g−1(0) �= {0}. If their associated link diagrams are

topologically equivalent then [ f ] and [g] are topologically equivalent.

The proof of Theorem 2.11 is based on the integration of stratified vector fields
with respect to the stratification by stable types. In the case n = 3 and p = 2 the
stratification of a representative f : U → W by stable types (N ,M) is given by:

N =
{

U \ f −1(�( f )), f −1(�( f )) \ (S( f ) ∪ f −1(0)), S( f ) \ {0}, f −1(0) \ {0}, {0}
}

,

M = {W \ �( f ), �( f ) \ {0}, {0}} .

Theorem 2.14 Let [ f ], [g] : (R3, 0) → (R2, 0) be two finitely determined map

germs, with f −1(0) �= {0} and g−1(0) �= {0}. If their links are topologically equivalent

then their link diagrams are also topologically equivalent.

Proof Letγ1 : Nǫ,δ → S1
δ andγ2 : Mǫ,δ → S1

δ be the links of [ f ] and [g], respectively.

For simplicity we will put N1 = Nǫ,δ and N2 = Mǫ,δ . We also write V1 = f −1(0),

V2 = g−1(0), and r1 : N1 → V1, r2 : N2 → V2 for the maps given in Theorem 2.11.

Since γ1 and γ2 are topologically equivalent, N1 is homeomorphic to N2. Thus,

N1 and N2 have the same number of boundary components, and consequently V1 is

homeomorphic to V2.

For each v ∈ S1
δ , the stratification by stable types of γ1 induces a stratification Nv

on γ −1
1 (v). Since r1 is a regular map when restricted to N1 \ r−1

1 (0), each stratum of

Nv that intersects ∂ N1 is diffeomorphically mapped by r1 in to the half branch of V1

corresponding to the boundary component intersected by the stratum.

On the other hand, the stratum of Nv that does not intersect ∂ N1 is either a closed

curve, a critical point of γ1 or a curve whose union with a singular point of γ1 gives a

closed curve. Notice that S( f ) is a simply connected curve, then r1 maps each critical

point of γ1 to the origin. Moreover, since V1 is simply connected and r1 is regular

when restricted to N1 \ r−1
1 (0), r1 maps every point of the connected components

that do not intersect ∂ N1 to the origin. Therefore, r1 is completely determined by the

stratification of N1.

Since γ1 and γ2 are topologically equivalent there exist homeomorphisms φ : N1 →

N2 and ψ : S1
δ → S1

δ such that γ2 = ψ◦γ1◦φ−1. But φ must preserve the stratification

by stable types of each level curve. By using the above comments, we can construct

another homeomorphism α : V1 → V2 such that r2 = α ◦ r1 ◦ φ−1. Hence the link

diagrams are topologically equivalent. ⊓⊔

Corollary 2.15 Let [ f ], [g] : (R3, 0) → (R2, 0) be two finitely determined map

germs, with f −1(0) �= {0} and g−1(0) �= {0}. If their links are topologically equivalent

then [ f ] and [g] are topologically equivalent.
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3 The Generalized Reeb Graph

The Reeb graph was introduced by Reeb (1946) and it is well known that it is a

complete topological invariant for Morse functions from S2 to R (see Arnold 2007;

Sharko 2003). In Batista et al. (2017) we extended the concept of Reeb graph for stable

maps from S2 to S1. In this section, again we will extend the concept of Reeb graph,

but now for stable maps γ : N → S1, where N is a connected and compact surface

with boundary.

Let N be a connected and compact surface with boundary ∂ N (at first, also we can

consider the case ∂ N = ∅). We recall that a smooth map γ : N → S1 is stable if:

1. γ is a Morse function with distinct critical values;

2. γ has no critical points in ∂ N ;

3. γ |∂ N is regular.

Remark 3.1 1. If N is homeomorphic to a sphere S2 minus 2L disks then we have that

γ |Ci : Ci → S1 is a diffeomorphism, where Ci ’s are the connected components

of ∂ N , i = 1, . . . , 2L .

2. The level curves of γ intersect ∂ N transversely.

Let γ : N → S1 be a stable map. Consider the following equivalence relation on

N :

x ∼ y ⇔ γ (x) = γ (y) and x and y belong in the same connected component of

γ −1(γ (x)).

Proposition 3.2 If N is a connected compact surface with boundary, and γ : N → S1

is a stable map. Then the quotient space N/ ∼ admits a graph structure as follows:

1. The vertices are the connected components of level curves γ −1(v), where v ∈ S1

is a critical value;

2. Each edge is formed by points that correspond to connected components of level

curves γ −1(v), where v ∈ S1 is a regular value.

Proof Since γ is stable its critical points are isolated and N being compact, γ has a

finite number of critical points. Moreover, N connected implies N/ ∼ connected.

Let v1, . . . , vr be the critical values of γ . Then,

γ |N − γ −1({v1, . . . , vr }) : N − γ −1({v1, . . . , vr }) → S1 − {v1, . . . , vr }

is regular, and the induced map

γ̃ : (N − γ −1({v1, . . . , vr }))/ ∼→ S1 − {v1, . . . , vr }

is a local homeomorphism. Each connected component of S1 − {v1, . . . , vr }

is homeomorphic to an open interval, so each connected component of (N −

γ −1({v1, . . . , vr }))/ ∼ is also homeomorphic to an open interval. ⊓⊔

All possibilities for the topological types of level curves of γ are given in Fig. 1.
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(b)(a) (c) (e) (f)(d)

Fig. 1 Level curves

Fig. 2 Incidence rules

Fig. 3 Graphs N/ ∼ for stable maps

By Remark 3.1 item (2), the level curves of γ that can intersect ∂ N are only (d), (e)

and (f) types. Furthermore, by item (1), each level curve of γ can intersect at most once

a connected component Ci of ∂ N , and these intersections happen in regular points.

By Proposition 3.2 we can associate a graph to N/ ∼, which will be denoted by

Ŵγ . Each edge of Ŵγ can be of two types: one corresponds to connected components

of circle type and will be denoted by a slim trace; another corresponds to connected

components of interval type and will be denoted by a bold trace. We denote by Ŵ the

subgraph of Ŵγ given by the slim edges with their respective vertices, and by Ŵ′ the

subgraph of Ŵγ given by the bold edges with their respective vertices.

Each vertex of the graph can be of six types, depending on if the connected compo-

nent has a maximum/minimum critical point, a saddle point, a half open saddle point,

a open saddle point or a regular point. Then, the possible incidence rules of edges and

vertices when γ : N → S1 is stable are given in Fig. 2.

The Fig. 3 represents some possible structures of the graph N/ ∼ for stable maps.

Notice that Ŵ and Ŵ′ are not necessarily connected graphs.

Let v1, . . . , vr ∈ S1 be the critical values of γ : N → S1. We choose a base point

v0 ∈ S1 and an orientation. We can reorder the critical values such that v0 ≤ v1 <

. . . < vr and we label each vertex with the index i ∈ {1, . . . , r}, if it corresponds to

the critical value vi .
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Fig. 4 Reeb graphs with first Betti number greater than zero

Definition 3.3 Let γ : N → S1 be a stable map. The graph given by N/ ∼ together

with the types of edges and the labels of the vertices, as previously defined, is called

the generalized Reeb graph associated to γ .

It is well-known that Reeb graphs of stable maps γ : S2 → R are always trees. In

Batista et al. (2017), we show that for stable maps from S2 to S1 the generalized Reeb

graphs are also trees. When N is a manifold with boundary this is not true anymore

as we can see in Fig. 4. We are interested in the case when N is homeomorphic to

S2 minus 2L disks. In the next theorem we collect some results whose prove can be

found in Batista et al. (2016). For simplicity, from now on we will just call Reeb graph

to the generalized Reeb graph, unless otherwise specified.

Theorem 3.4 (Batista et al. 2016) Let γ : N → S1 be a stable map such that N is

homeomorphic to S2 − 2L disks. Let Ŵγ = Ŵ ∪ Ŵ′ be the Reeb graph of γ . We have:

(1) β0(Ŵ
′) ≤ L.

(2) If β0(Ŵ
′) = 1, then β1(Ŵγ ) = 2L − 1.

(3) If γ is regular, then L = 1 and Ŵγ = Ŵ′, and it is a circle.

Here we write βi for the i th-Betti number.

Example 3.5 If 2L = 2, by Theorem 3.4 β0(Ŵ
′) ≤ L = 1 and β1(Ŵ

′) = 2L − 1 = 1.

Consequently, β1(Ŵ) = S′, where S′ is the number of vertices of type (b). If S′ = 0,

Ŵγ = Ŵ′, and it is a circle. If S′ �= 0, Ŵγ is a circle of bold trace connected to S′ trees

of slim trace, as indicated in Fig. 4.

In the remaining of this section we see that the Reeb graph is a complete topological

invariant for stable maps γ : N → S1, where N is a surface homeomorphic to S2

minus 2L disks, with L ≥ 0.

It is obvious that the labeling of vertices of the Reeb graph is not uniquely deter-

mined, since it depends on the chosen orientations and the base point on S1. Different

choices will produce either a cyclic permutation or a reversion of the labeling in the

Reeb graph. This leads us to the following definition of equivalent Reeb graphs.
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Let γ, δ : N → S1 be two stable maps, with Ŵγ and Ŵδ their respective Reeb

graphs. Consider the induced quotient maps γ̄ : Ŵγ → S1
γ and δ̄ : Ŵδ → S1

δ , where

S1
γ and S1

δ are S1 with the graph structure whose vertices are the critical values of γ, δ,

respectively.

Definition 3.6 We say that Ŵγ is equivalent to Ŵδ and we denote it by Ŵγ ∼ Ŵδ , if

there exist graph isomorphisms j : Ŵγ → Ŵδ and l : S1
γ → S1

δ , such that the following

diagram is commutative:

Vγ

γ̄ |Vγ
−−−−→ �γ

j |Vγ

⏐⏐�
⏐⏐�l|�γ

Vδ
δ̄|Vδ

−−−−→ �δ

where Vγ = {vertices of Ŵγ }, Vδ ={vertices of Ŵδ} and �γ and �δ are the respective

discriminant sets.

Notice that if two Reeb graphs are equivalent then it is possible to pass from one

to the other by using two operations: cyclic permutation or reversion.

Theorem 3.7 Let γ, δ : N → S1 be two stable maps. If γ and δ are topologically

equivalent then their respective Reeb graphs are equivalents.

Proof Since γ and δ are topologically equivalent there exist homeomorphisms h :

N → N and k : S1 → S1 such that k ◦ γ ◦ h−1 = δ. Then h maps critical points into

critical points and k maps critical values into critical values. Hence h induces a graph

isomorphism from Ŵγ to Ŵδ and k induces a graph isomorphism from S1
γ to S1

δ which

give the equivalence between the Reeb graphs. ⊓⊔

The above theorem allows us to extend the definition of Reeb graph for C0-stable

maps.

Definition 3.8 Let γ : N → P be a continuous map, where N is homeomorphic to

S2 minus 2L disks (denoted by S2 − 2L) and P is homeomorphic to S1. We say that

γ is C0-stable if there exist a stable map δ : S2 − 2L → S1 and homeomorphisms

k : N → S2 − 2L , h : P → S1 such that the following diagram is commutative

N
γ

−−−−→ P

k

⏐⏐�
⏐⏐�h

S2 − 2L
δ

−−−−→ S1

We say that y ∈ P is a critical value of γ if h(y) is a critical value of δ. Moreover,

N/ ∼ has a graph structure induced by the Reeb graph of δ. We call this graph the

Reeb graph of γ and also we denote it by Ŵγ . The notion of equivalence of graphs

given in Definition 3.6 can be also extended for C0-stable maps in the obvious way.

By Theorem 3.7, the Reeb graph Ŵγ is well defined up to equivalence of graphs.
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Theorem 3.9 Let γ, δ : N → S1 be stable maps such that Ŵγ ∼ Ŵδ , then γ is

topologically equivalent to δ.

The proof of Theorem 3.9 can be found in the PhD thesis of the first named author

(Batista 2015), and it is similar to the proof presented in Batista et al. (2017) for the

case of stable maps from closed surfaces to S1. The next result follows from Theorems

3.7 and 3.9:

Corollary 3.10 The Reeb graph is a complete topological invariant for stable maps

from N to S1, where N is homeomorphic to S2 minus 2L disks.

4 Topological Classification of Map Germs

Given a finitely determined map germ [ f ], we define the Reeb graph of [ f ] as the

Reeb graph of the link of [ f ]. It follows from Corollary 2.15 and Theorem 3.9 that if

two map germs have equivalent Reeb graphs then they are topologically equivalent.

Here we prove the converse of this.

Theorem 4.1 Let [ f ], [g] : (R3, 0) → (R2, 0) be finitely determined map germs,

with f −1(0) �= {0} and g−1(0) �= {0}. If [ f ] and [g] are topologically equivalent,

then the Reeb graphs of their associated links are equivalent.

Proof If S( f ) = {0} and S(g) = {0}, by Theorem 3.4 the Reeb graphs of [ f ] and [g]

are equivalent.

Consider S( f ) �= {0} and S(g) �= {0}. By hypothesis, there exist two homeomor-

phisms germs [h], [k] such that the following diagram commutes:

(R3, 0)
[ f ]

−−−−→ (R2, 0)

[h]

⏐⏐�
⏐⏐�[k]

(R3, 0)
[g]

−−−−→ (R2, 0)

We take representatives f, g, h and k of [ f ], [g], [h] and [k], respectively and for any

small enough 0 < δ ≪ ǫ ≪ 1, the next diagram is also commutative:

Nǫ,δ

γ f
−−−−→ S1

δ

h

⏐⏐�
⏐⏐�k

Mǫ,δ

g|Mǫ,δ
−−−−→ Pδ

(1)

where Mǫ,δ = h(Nǫ,δ) and Pδ = k(S1
δ ).

From the commutativity of diagram (1) it follows that g|Mǫ,δ is C0-stable. Choose

ǫ0, ǫ1 > 0 and δ0, δ1 > 0 such that γ f : Nǫ0,δ0 → S1
δ0

and γg : Nǫ1,δ1 → S1
δ1

are the

links of [ f ] and [g], respectively, and S1
δ1

⊂ k(D2
δ0

). Let Ŵg|Mǫ0,δ0
be the Reeb graph

of g|Mǫ0,δ0 . Then, Ŵg|Mǫ0,δ0
is equivalent to Ŵγ f

, where Ŵγ f
is the Reeb graph of γ f .
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Fig. 5 Connected component Yi

Consider A1, . . . , An the half branches of the discriminant �(g) ordered in the anti-

clockwise orientation. By the cone structure of f (Theorem 2.11), each half branch Ai

intersects Pδ0 in a unique point vi so that v1, . . . , vn are the critical points of g|Mǫ0,δ0 .

Analogously, each Ai intersects S1
δ1

in a unique point wi , where now w1, . . . , wn

are the critical points of γg . We have a graph isomorphism l : Pδ0 → S1
δ1

given by

l(vi ) = wi , ∀i = 1, . . . , n.

Let C1, . . . , Cr be the connected components of g−1(�(g))−{0} = ∪n
i=1g−1(Ai ).

Again by the cone structure of f , each connected component C j intersects Mǫ0,δ0 in a

unique connected component V j of some g−1(vi ), so that V1, . . . , Vr are the vertices

of Ŵg|Mǫ0,δ0
. Finally, each C j intersects Nǫ1,δ1 in a unique connected component W j

of g−1(wi ), in such a way that W1, . . . , Wr are now the vertices of Ŵγg . We have

a bijection ϕ defined by ϕ(V j ) = W j , ∀ j = 1, . . . , r . In order to have a graph

isomorphism between Ŵg|Mǫ0,δ0
and Ŵγg we need to show that ϕ is edge preserving.

Consider U = k(D2
δ0

)−(�(g)∪B2
δ1

), and let Yi be one of its connected components

limited by two consecutive half branches Ai and Ai+1. We denote by αi and βi the

arcs of S1
δ1

and Pδ0 respectively, which bound Yi , ∀i = 1, . . . , n (see Fig. 5). Note that

the connected components of g−1(αi ) and g−1(βi ) give all the edges of the graphs

Ŵγg and Ŵg|Mǫ0,δ0
, respectively.

Take X any connected component of f −1(Yi ), for some 1 ≤ i ≤ n. Since g|X :

X → Yi is regular, the induced map g̃ : X/ ∼ → Yi is a local homeomorphism and

hence, a covering space. But Yi is simply connected, so g̃ is in fact a homeomorphism.

We deduce that the boundary of X/ ∼ has two components: one is an edge of Ŵγg

given by the quotient of X ∩ g−1(αi ) and the other is an edge of Ŵg|Mǫ0,δ0
given by

the quotient of X ∩ g−1(βi ).

Notice that all the edges of Ŵγg and Ŵg|Mǫ0,δ0
can be obtained in this way, hence we

have a bijection between the edges of Ŵγg and Ŵg|Mǫ0,δ0
which is compatible with the

above bijection ϕ defined between the vertices. ⊓⊔

Corollary 4.2 Let [ f ], [g] : (R3, 0) → (R2, 0) be finitely determined map germs,

with f −1(0) �= {0} and g−1(0) �= {0}. The following statements are equivalent:

1. [ f ] and [g] are topologically equivalent;

2. the links of [ f ] and [g] are topologically equivalent;

3. the Reeb graphs of [ f ] and [g] are equivalent.
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5 The Corank 1 Case

If [ f ] : (R3, 0) → (R2, 0) has corank 1, after a coordinate change in the source, we

can assume that a representative f of [ f ] is given by

f (x, y, z) = (x, hx (y, z)). (2)

We say that [ f ] is a stabilization of [h0] if there is a representative f : U = (−ǫ, ǫ)×

V → R
2 such that for any x , with 0 < |x | < ǫ, hx : V ⊂ R

2 → R is stable (i.e., it

is a Morse function with distinct critical values). The proofs of the following results

can be found in Batista et al. (2017).

Lemma 5.1 Let [ f ] : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ

as in (2). Then:

(1) [h0] : (R2, 0) → (R, 0) is a finitely determined map germ.

(2) [ f ] is a stabilization of [h0].

(3) Let f be a representative of [ f ]. Then, S( f ), X ( f ) and �( f ) are transverse to

the planes {x} × R
2 and to the lines {x} × R, respectively, with 0 < |x | < ǫ and

ǫ small enough.

Let [ f ] : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ as in

(2). We take a representative f : U = (−ǫ, ǫ) × V → R
2 such that for any x , with

0 < |x | < ǫ, hx is stable and h0 is regular in V − {0}.

Because of stability, all the functions hx are A-equivalent if −ǫ < x < 0 and

we will denote by h−
x one of these functions. Analogously, all functions hx are A-

equivalent if 0 < x < ǫ and we will denote by h+
x one of these functions. The next

lemma shows the connectedness of the subgraph Ŵ′ of the Reeb graph Ŵγ f
:

Lemma 5.2 Let [ f ] : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ

with f −1(0) �= {0}. Consider γ f : Nǫ,δ → S1
δ the link of [ f ] with Ŵγ f

= Ŵ ∪ Ŵ′

its Reeb graph. Then Ŵ′ is connected and S′′ = 2L − 2, where S′′ is the number of

vertices of type open saddle and 2L is the number of boundary components of Nǫ,δ .

Proof Consider a representative f of [ f ] such that f (x, y, z) = (x, hx (y, z)) and

Nǫ,δ homeomorphic to S2 minus 2L disks. Then by Lemma 5.1 S( f ) and �( f ) are

transverse to the planes {x}×R
2 and to the lines {x}×R, respectively, with 0 < |x | < ǫ

and ǫ small enough.

Since S( f ) and �( f ) are simply connected, {0} × R
2 intersects S( f ) only at the

origin. Similarly, {0} × R intersects �( f ) only at the origin. Therefore, every point

(0, h0(y, z)) is a regular value of f if h0(y, z) �= 0. Thus (0, ǫ) and (0,−ǫ) are regular

values of γ f .

Since the only level curves of γ f in {0} × R
2 are γ −1

f (0, ǫ) and γ −1
f (0,−ǫ), and

the restriction of γ f to each boundary component of ∂ Nǫ,δ is a diffeomorphism, it

follows that both γ −1
f (0, ǫ) and γ −1

f (0,−ǫ) have at least 2L connected components

of interval type, which alternate in Nǫ,δ .

Let a, b ∈ S1
δ . Consider α and β two connected components of the level curves

γ −1
f (a) and γ −1

f (b), respectively, which intersect some component of ∂ Nǫ,δ . Then,
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Fig. 6 Labeled vertices following orientation and sign

we can take a path in ∂ Nǫ,δ ∪ γ −1
f (0, ǫ) ∪ γ −1

f (0,−ǫ) connecting α and β. Thus,

β0(Ŵ
′) = 1 and, by Theorem 3.4, β1(Ŵ

′) = 2L − 1.

On the other hand, since χ(Ŵ′) = −S′′, it follows that β1(Ŵ
′) = S′′ + 1. Therefore

S′′ = 2L − 2. ⊓⊔

Remark 5.3 Note that γ −1
f (0, ǫ) and γ −1

f (0,−ǫ) do not have connected components

of circle type. In fact, consider M = D2
ǫ ∩ h−1

0 (D1
δ ). We have that M is a contractible

2-manifold with boundary. Hence, M is homeomorphic to the disk D2. Therefore ∂ M

is homeomorphic to S1. Since [h0] is finitely determined, Theorem 2.5 is valid and as

a consequence, D2
ǫ ∩ h−1

0 (S0
δ ) is homeomorphic to 2L intervals.

Now we define the partial trees of h+
x and h−

x . We follow the same notation as

in the paragraph before Lemma 5.2. Take x ∈ [−δ, δ] and choose λ > 0 such that

D2
ρ ∩ (hx )

−1([−λ, λ]) ⊂ V and {x}× [−λ, λ] intersects all the positive half branches

(resp. negative) of �( f ) if x > 0 (resp. x < 0), where ρ > 0 is such that D2
ρ contains

all the critical points of hx in its interior.

Consider the restriction hx : D2
ρ ∩(hx )

−1([−λ, λ]) → [−λ, λ] and the equivalence

relation used to define Reeb graphs. For x �= 0, hx is stable and h−1
x ([−λ, λ])/ ∼

admits a graph structure similar to the Reeb graph. If x = 0 we can also define a graph

for h0 which consists of one vertex corresponding to the level curve h−1
0 (0) and 2L

vertices corresponding to the level curves h−1
0 ({−λ, λ}).

Since the boundary of h−1
0 ([−λ, λ]) is homeomorphic to S1, we can choose one of

the vertices given by the level curves h−1
0 ({−λ, λ}) as a initial point and choose also

an orientation to h−1
0 ([−λ, λ]).

We can label the initial point with the letter ±a (according to the sign of λ) and

the other boundary vertices with the other letters ±b,±c,±d . . . , always following

the chosen orientation and the sign of λ, as illustrated in Fig. 6. We will denote the

vertices that correspond to the connected components of h−1
x ({−λ, λ}) by “◦”.

By Lemma 5.1 the map germ [ f ] is a stabilization of [h0] and the values −λ and

λ are regular for both functions h0 and hx . Hence, we can define a canonic bijection

between the boundary vertices set of the Reeb graph of h0 and the boundary vertices

set of the Reeb graph of hx . We will denote by h+
x and h−

x the topological equivalence

classes of functions hx , with 0 < |x | ≤ δ, depending on the sign of x .

Definition 5.4 Given 0 < |x | < δ, consider λ > 0, ρ > 0 and hx : D2
ρ ∩

(hx )
−1([−λ, λ]) → [−λ, λ] as above. We define the partial tree of h+

x as the Reeb

123



The Reeb Graph of a Map Germ from R
3 to R

2. . . 383

Fig. 7 Partial trees

Fig. 8 Corresponding partial

trees of Fig. 7

graph of hx with x > 0 together with the labeling of its boundary vertices, denoted by

Ŵx>0. Analogously, we define the partial tree of h−
x as the Reeb graph of −hx with

x < 0, denoted by Ŵx<0.

Lemma 5.5 The graphs Ŵx<0 and Ŵx>0 are trees.

The proof of this lemma follows from β1(Ŵx>0) ≤ β1(M) = 0 and β1(Ŵx>0) ≤

β1(M) = 0, where M = D2
ρ ∩ (hx )

−1([−λ, λ]).

Example 5.6 The Fig. 7 illustrates an example of Ŵx>0 and Ŵx<0. The Fig. 8 illustrates

the same example, but the partial trees are drawn more conveniently.

Definition 5.7 Let u1 < . . . < ur and v1 < . . . < vs be the vertices corresponding

to the level curves of critical values of Ŵx>0 and Ŵx<0, respectively. Consider Ŵsum

the graph obtained by connecting the edge that incides in the vertex of type “◦” of

Ŵx>0 with the edge that incides in the vertex with same label of Ŵx<0. We relabel each

vertex vi by ur+s+1−i , where i = 1, . . . , s. We call Ŵsum the sum of partial trees of

h+
x and h−

x (see Fig. 9).

The main result of this section is the following:

Theorem 5.8 Let [ f ] : (R3, 0) → (R2, 0) be a corank 1 finitely determined map germ

with f −1(0) �= {0}, and take a representative f such that f (x, y, z) = (x, hx (y, z)).

Then, Ŵsum is equivalent to the Reeb graph of [ f ].
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Fig. 9 Sum of partial trees

Proof If S( f ) = {0} we have S(hx ) = ∅ for any x �= 0 small enough. Then both

partial trees are formed just by one edge of bold trace and two vertices. Consequently,

Ŵsum is a circle of bold trace and the result holds.

If S( f ) �= {0}, take 0 < δ ≪ ǫ ≪ 1 and λ > 0 small enough. Let V ⊂ R
2 be a

neighborhood of the origin such that the following four conditions are satisfied:

(i) γ f : Nǫ,δ → S1
δ is the link of [ f ];

(ii) hx |V : V → R is stable for all x ∈ (−λ, λ), x �= 0;

(iii) {x} × V intercepts all the half branches of S( f ) with the same sign of x ;

(iv) Nǫ,δ ⊂ (−λ, λ) × V ;

(v) h−1
0 (0) is a curve and h0 is regular on V − {0}.

From (v), S( f ) ∩ ({0} × R
2) = {0} and �( f ) ∩ ({0} × R) = {0}. Hence (0, δ) and

(0,−δ) are regular values of γ f . Moreover, since γ f is surjective, both points (0,−δ),

(0, δ) belong to the image of γ f .

Let A1, . . . , An be the half branches of �( f ) considered in the anti-clockwise

orientation and such that (0,−δ) is the base point. We also assume that A1, . . . , Ar

are on the half plane x > 0 and that Ar+1, . . . , An are on the half plane x < 0. By

the conic structure of f , each half branch Ai intersects S1
δ in a unique point vi , so that

v1 < · · · < vn are the critical points of γ f in the chosen orientation. By transversality

of �( f ) to the vertical lines {x} × R, given δ < x < λ we have that each half branch

Ai also intersects {x} × R in a unique point wi . But now w1 < · · · < wr are the

critical values of h+
x and wn < · · · < wr+1 are the critical values of h−

x .

Since each critical value corresponds to a unique vertex, there exists a bijection

given by ϕ(vi ) = wi for i ∈ {1, . . . , n} between the vertices of Ŵγ f
and the vertices

of Ŵsum . Moreover, this bijection is compatible with the labels of the vertices as in

Definition 5.7.

To finish the proof, we show that there is also a bijection between the edges com-

patible with ϕ. Consider the following sets (Fig. 10):

• Ui is the set of points limited by Ai , Ai+1, S1
δ and {x} × R;
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Fig. 10 Connected component

Ui

α

• αi is the arc of S1
δ limited by Ai and Ai+1;

• βi is the segment of line of {x} × R limited by Ai and Ai+1;

• Yi = Ui ∪ αi ∪ βi

Where δ < x < λ if 1 ≤ i < r and −λ < x < −δ if r + 1 ≤ i < n.

Each one of the connected components of f −1(αi ) and f −1(βi ) gives an edge for

the graphs Ŵγ f
and Ŵsum , respectively.

Let X be any connected component of f −1(Yi ). Notice that f |X : X → Yi is

regular. So, the induced map f̃ : X/ ∼→ Yi is a local homeomorphism and hence,

a covering map. Since Yi is simply connected and X is connected, f̃ is a homeomor-

phism. Hence, X/ ∼ contains only one edge of Ŵγ f
corresponding to X ∩ f −1(αi ), and

also only one edge of Ŵsum corresponding to X ∩ f −1(βi ). Moreover, since γ −1
f (0, δ)

has L connected components, all of interval type, the arc of S1
δ delimited by As and

As+1 corresponds to L edges of Ŵγ f
. The same holds for γ −1

f (0,−δ). We associate

each one of these edges with the edges of Ŵsum . In this way, we can define a bijection

φ between the edges of Ŵγ f
and the edges of Ŵsum , which is compatible with ϕ. Hence

the graphs Ŵγ f
and Ŵsum are equivalent. ⊓⊔

5.1 Germs with Boardman Symbol �2,1

We consider map germs whose representative has the form f (x, y, z) = (x, h̃x (y) ±

z2), with

h̃x (y) = yk+1 + ak−1(x)yk−1 + ak−2(x)yk−2 + · · · + a1(x)y.

We have two cases:

(i) Boardman symbol �2,1 and k even. The zero-set of f has two half branches. By

Proposition 2.7, Nǫ,δ is homeomorphic to a cylinder. Hence, Ŵγ f
is formed by a circle

of bold trace attached to S′ trees of slim trace, where S′ is the number of half-open

saddles of γ f . If hx (y, z) = h̃x (y) + z2 every vertex of type maximum/minimum is

smaller than the half-open saddle vertex to which it is connected.

Remark 5.9 The Reeb graph of [ f ] when S′ = 0 (as in Fig. 4), is realized by

f (x, y, z) = (x, y).
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Fig. 11 Sum of partial trees for f (x, y, z) = (x, y3 + x2 y + z2)

Fig. 12 Sum of partial trees for f (x, y, z) = (x, y3 − x2 y + z2)

Example 5.10 Let [ f ] : (R3, 0) → (R2, 0) be a finitely determined map germ such

that a representative of [ f ] is f (x, y, z) = (x, y3 + a(x)y + z2). Then there are two

possibilities for the Reeb graph of γ f , according to its number of half-open saddles

S′:

• If S′ = 1 then f is topologically equivalent to (x, y3 + x2 y + z2) (see Fig. 11).

• If S′ = 2 then f is topologically equivalent to (x, y3 − x2 y + z2) (see Fig. 12).

(ii) Boardman symbol �2,1 and k odd. By Lemma 5.2, β0(Ŵ
′) = 1 and β0(Ŵ) +

β0(Ŵ
′) = 1 + S′, then β0(Ŵ) = S′. Given x �= 0 small enough, denote by hx (y, z) =

h̃x (y)− z2, and consider α1, . . . , αr , the connected components of the level curves of

hx of type half-open saddle.

Since β0(Ŵ) = S′, each αi divides h−1
x ([−λ, λ]) in three connected components,

such that two of them intersect ∂h−1
x ([−λ, λ]). We will denote by Bi the one component

which does not intersect ∂h−1
x ([−λ, λ]).

Lemma 5.11 Let [ f ] : (R3, 0) → (R2, 0) be a corank 1 finitely determined map

germ with Boardman symbol �2,1 and f −1(0) �= {0}. Then, all the critical values of

type saddle or maximum/minimum of hx |Bi are bigger than vi , where vi = hx (αi ).

Proof Let Ŵhx |Bi
be the Reeb graph of hx |Bi , for some 1 ≤ i ≤ r . Notice that Ŵhx |Bi

is

a tree formed by vertices of type: boundary, saddles or maximum/minimum, because

Bi is homeomorphic to a disk. In particular, the points belonging to ∂ Bi ∩αi correspond

to the only vertex of boundary type in Ŵhx |Bi
.

Since vi = hx (αi ) is a minimum value of hx |Bi , the vertex corresponding to h−1
x (vi )

can be connected just to a vertex corresponding to a critical value bigger than vi . Then,
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Fig. 13 Structure of Ŵ′

if Ŵhx |Bi
have just one saddle vertex, it cannot correspond to a critical value smaller

than vi .

Assume there exist w1 < · · · < wr critical values of hx |Bi , with r > 1, whose

level curves are of saddle type and such that w1 < vi . Then, w1 has degree 3. There

are three possibilities for the vertices which are connected to the vertex corresponding

to w1:

• 3 vertices of saddle type;

• 2 vertices of saddle type and 1 vertex of maximum/minimum type;

• 1 vertex of saddle type and 2 vertices of maximum/minimum type.

However, since w1 < w j for all j = 2, . . . , r and each critical value of type

maximum/minimum is a local maximum value of hx |Bi , it follows that none of these

possibilities holds. Otherwise, the vertex corresponding to w1 would be connected to

three vertices with bigger critical values, but this is not possible by Arnold (2007). ⊓⊔

By Lemma 5.2, γ f has two level curves with connected components of open saddle

type. Then Ŵ′ have the structure illustrated in Fig. 13.

Remark 5.12 (1) The Reeb graph formed only by bold traces (as in Fig. 13), is realized

by f (x, y, z) = (x, y2 − z2).

(2) Since all critical points of γ f belong to the plane z = 0, the level curves of γ f

are contained in the connected components that intersect z = 0. Consequently,

the Reeb graph of γ f admits vertices of half-open saddle type only on the edges

containing the points γ −1
f (0, ǫ)/ ∼.

(3) Each vertex of half-open saddle type has critical value bigger than those of vertices

of open saddle type of Ŵγ f
and all minimum values of hx correspond to vertices

of saddle, half-open saddle or open saddle types. Therefore, the vertices of Ŵγ f

of open saddle type correspond to the global minimum values of hx .

As a consequence, we deduce the partial trees of γ f from the graph of h̃x .

Example 5.13 Let [ f ] : (R3, 0) → (R2, 0) be a corank 1 finitely determined map

germ with a representative given by f (x, y, z) = (x, y4 + a(x)y2 + b(x)y − z2).

Then there are 3 possibilities for the Reeb graph of γ f , according to the number S′

and position of the half-open saddles:
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Fig. 14 Sum of partial trees for f (x, y, z) = (x, y4 + xy2 + x3 y − z2)

Fig. 15 Sum of partial trees for f (x, y, z) = (x, y4 +
1

3
x2 y3 − 2x4 y2 − x6 y − z2)

Fig. 16 Sum of partial trees for f (x, y, z) = (x, y4 +
1

3
x2 y3 − 2x2 y2 − x3 y − z2)

• If S′ = 1 then f is topologically equivalent to (x, y4 + xy2 + x3 y − z2) (see Fig.

14).

• If S′ = 2 such that the half-open saddles are on the same side of the global

minimum, then f is topologically equivalent to (x, y4+ 1
3

x2 y3−2x4 y2−x6 y−z2)

(see Fig. 15).

• If S′ = 2 such that the half-open saddles are on the opposite side of the global

minimum, then f is topologically equivalent to (x, y4+ 1
3

x2 y3−2x2 y2−x3 y−z2)

(see Fig. 16).

Theorem 5.14 Let [ f ] : (R3, 0) → (R2, 0) be a corank 1 finitely determined map

germ with f −1(0) �= {0}, Boardman symbol �2,1 and multiplicity ≤ 5. Then all the

possibilities for the Reeb graph of the link of [ f ] are realized and are presented in

Table 1.
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Table 1 Corank 1 finitely determined map germ with f −1(0) �= {0}, Boardman symbol �2,1 and multi-

plicity ≤ 5

Germ Graph

(x, y)

(x, y2 − z2)

(x, y3 + x2 y + z2)

(x, y3 − x2 y + z2)

(x, y4 + xy2 + x3 y − z2)

(
x, y4 +

1

3
x2 y3 − 2x4 y2 − x6 y − z2

)

(
x, y4 +

1

3
x2 y3 − 2x2 y2 − x3 y − z2

)

(
x, y5 − 1

3 x3 y3 − 5
3 xy3 + x4 y + z2

)
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Table 1 continued

Germ Graph

(
x, y5 + 1

3 x3 y3 + 2xy3 + x4 y + x2 y + z2
)

(
x, y5 + 15x3 y3 + 56x6 y + z2

)

(
x, y5 + 3xy3 − 2x2 y3 − x2 y2 + 9

5
x2 y + z2

)

(
x, y5 − 5

3 x4 y3 + 1
3 x3 y3 − x7 y + z2

)

(
x, y5 − 35

8 xy4 + x3 y3 + 5x2 y3 − 7
4 x4 y2 + 3x5 y + z2

)

(
x, y5 + 5

4 xy4 − 55
12 x3 y3 + 589

1500
x2 y3 − 55

8 x4 y2 − 81
25

x5 y + z2
)

(
x, y5 + 5

4 xy4 + 2x3 y3 + 1
2 x4 y2 + x6 y + z2

)
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Table 1 continued

Germ Graph

(
x, y5 + 1

4 x4 y4 + 31
8 x2 y4 + 31

30 x5 y3 − 11
4 x4 y3 −

33
40 x7 y2 − 315

8 x6 y2 − 63
8 x9 y + z2

)

(
x, y5 − 3

4 x2 y4 − 10xy4 + 8x3 y3 + 25x2 y3 − 45
2 + x4 y2 + z2

)

(
x, y5 + 11

8 xy4 − 31
6 x2 y3 − 5x3 y2 + 6x4 y + z2

)

(
x, y5 + 7

4 x2 y4 − 7
32 xy4 − 51

125
x3 y3 − 1

160 x2 y3 −
1

125
x4 y2 − 1

640 x3 y2 + 1
125

x5 y + z2
)

(
x, y5 + 15

8 x2 y4 − 5
3 x4 y3 − 15

4 x6 y2 + z2
)

(
x, y5 + 9

4 xy4 + 7
3 x3 y3 + 4

3 x2 y3 − 5
2 x4 y2 − 6x6 y + z2

)

(
x, y5 + 2xy4 − 4

3 x3 y3 − x2 y3 − x4 y2 − x6 y + z2
)
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Table 1 continued

Germ Graph

(
x, y5 − 109

20 xy4 − 2x3 y4 − 227
50

x2 y3 − 28
5

x4 y2 −

46x3 y2 + 4423
100 x5 y + 3x5 y + z2

)

(
x, y5 + 5

4 x2 y4 + 5
3 x4 y3 − 2

3 x3 y3 − x3 y − 2x5 y + z2
)

(
x, y5 + 5

4 xy4 + 5
3 x3 y3 − 1

3 x2 y3 − 1
2 x3 y2 − x5 y + z2

)

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 17 Possible partial trees

Proof Let [ f ] : (R3, 0) → (R2, 0) be a map germ with f −1(0) �= {0}, Boardman

symbol �2,1 and multiplicity ≤ 5. By Lemma 5.11 and Remark 5.12 all the pos-

sibilities for the partial trees of the link of [ f ] are given in Fig. 17. If [ f ] has odd

multiplicity, the possible Reeb graphs of [ f ] can be obtained by taking the combina-

tions among (a), (c), (f), (g), (h) and (i) models of partial trees. On the other hand, if

[ f ] has even multiplicity, the possible Reeb graphs of [ f ] can be obtained by taking

the combinations among (b), (d) and (e) models of partial trees. In this way, all the

possibilities for the Reeb graph of [ f ] are given in Table 1.

Also, by Examples 5.10 and 5.13, and Remarks 5.9 and 5.12, the first seven graphs

in the table are realized by the respective germs. For the remaining graphs in the

Table 1, it is sufficient to verify that they are equivalent to the sum of the partial trees

of their respective germs as illustrated in Fig. 18 for f (x, y, z) = (x, y5 − 1
3

x3 y3 −
5
3

xy3 + x4 y + z2). ⊓⊔

123



The Reeb Graph of a Map Germ from R
3 to R

2. . . 393

F
ig

.
1

8
S

u
m

o
f

p
ar

ti
al

tr
ee

s
fo

r
f
(x

,
y
,

z)
=

(x
,

y
5

−
1 3

x
3

y
3

−
5 3

x
y

3
+

x
4

y
+

z2
)

123



394 E. B. Batista et al.

References

Arnold, V.I.: Topological classification of Morse functions and generalisations of Hilbert’s 16-th problem.

Math. Phys. Anal. Geom. 10, 227–236 (2007)

Batista, E.B.: Sobre a classificação topológica de germes finitamente determinados de R
3 em R

2. PhD

thesis, UNESP - São José do Rio Preto (2015)

Batista, E.B., Costa, J.C.F., Nuño-Ballesteros, J.J.: The Reeb graph of a map germ from R
3 to R

2 with

isolated zeros. Proc. Edinb. Math. Soc. 60, 319–348 (2017)

Batista, E.B., Costa, J.C.F., Nuño-Ballesteros, J.J.: The cone structure theorem for map-germs with non

isolated zeros. Preprint (2017). Avaliable at www.uv.es/nuno/Preprints/Cone.pdf

Batista, E.B., Costa, J.C.F., Nuño-Ballesteros, J.J.: The generalized Reeb graph of stable functions. Preprint

(2016)

Costa, J.C.F., Nuño-Ballesteros, J.J.: Topological K-classification of finitely determined map germs. Geom.

Dedicata 166, 147–162 (2013)

Fukuda, T.: Local topological properties of differentiable mappings I. Invent. Math. 65(2), 227–250

(1981/1982)

Fukuda, T.: Local topological properties of differentiable mappings II. Tokyo J. Math. 8(2), 501–520 (1985)

Moya-Pérez, J.A., Nuño-Ballesteros, J.J.: The link of finitely determined map germ from R
2 to R

2. J. Math.

Soc. Jpn. 62(4), 1069–1092 (2010)

Moya-Pérez, J.A., Nuño-Ballesteros, J.J.: Gauss words and the topology of map germs from R
3 to R

3. Rev.

Mat. Iberoam. 31(3), 977–988 (2015)

Moya-Pérez, J.A., Nuño-Ballesteros, J.J.: Topological classification of corank 1 map germs from R
3 to R

3.

Rev. Mat. Complut. 27(2), 421–445 (2014)

Prishlyak, A.O.: Topological equivalence of smooth functions with isolated critical points on a closed

surface. Topol. Appl. 119, 257–267 (2002)

Reeb, G.: Sur les points singuliers d’une forme de Pfaff completement intégrable ou d’une fonction

numérique. C. R. Acad. Sci. Paris 222, 847–849 (1946)

Sharko, V.V.: Smooth and topological equivalence of functions on surfaces. Ukrainian Math. J. 55, 832–846

(2003)

Thom, R.: Local topological properties of differentiable mappings, Colloquium on Differential Analysis

(Tata Inst.). Oxford University Press, Oxford, pp. 191–202 (1964)

Wall, C.T.C.: Finite determinacy of smooth map-germs. Bull. Lond. Math. Soc. 13(6), 481–539 (1981)

123

www.uv.es/nuno/Preprints/Cone.pdf

	The Reeb Graph of a Map Germ from mathbbR3 to mathbbR2 with Non Isolated Zeros
	Abstract
	1 Introduction
	2 The Link of a Finite Determined Map Germ
	3 The Generalized Reeb Graph
	4 Topological Classification of Map Germs
	5 The Corank 1 Case
	5.1 Germs with Boardman Symbol Σ2,1

	References


