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Abstract

Chronic lymphocytic leukemia (CLL) is a frequent hematological neoplasm in which underlying 

epigenetic alterations are only partially understood. Here we analyze the reference epigenome of 

seven primary CLLs and the regulatory chromatin landscape of 107 primary cases in the context of 

normal B-cell differentiation. We identify that the CLL chromatin landscape is largely influenced 

by distinct dynamics during normal B-cell maturation. Beyond this, we define extensive 

catalogues of regulatory elements de novo reprogrammed in CLL as a whole and in its major 

clinico-biological subtypes classified by IGHV somatic hypermutation levels. We uncover that 

IGHV-unmutated CLLs harbor more active and open chromatin than IGHV-mutated cases. 

Furthermore, we show that de novo active regions in CLL are enriched for NFAT, FOX and 

TCF/LEF transcription factor family binding sites. Although most genetic alterations are not 

associated with consistent epigenetic profiles, CLLs with MYD88 mutations and trisomy 12 show 

distinct chromatin configurations. Furthermore, we observe that non-coding mutations in IGHV-

mutated CLLs are enriched in H3K27ac-associated regulatory elements outside accessible 

chromatin. Overall, this study provides an integrative portrait of the CLL epigenome, identifies 

extensive networks of altered regulatory elements and sheds light on the relationship between the 

genetic and epigenetic architecture of the disease.
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Introduction

Over the last three decades, alterations in the epigenomic landscape have gradually emerged 

as an essential molecular feature of cancer cells, with implications in the pathogenesis, 

evolution, clinical behavior and therapy of virtually every tumor type1. Out of the broad 

variety of marks that make up the epigenetic portfolio2, DNA methylation has been the most 

widely studied in cancer1. In addition, few recent studies have started to analyze genome-

wide maps of other marks such as histone modifications and chromatin accessibility3–9. 

However, the reference epigenome, as defined by the standards of the International Human 

Epigenome Consortium (IHEC, http://ihec-epigenomes.org/research/reference-epigenome-

standards), of purified tumor cells from cancer patients has not been reported yet. 

Furthermore, given the essential link between the genome and epigenome in cancer 

development10,11, a comprehensive analysis of (non-)coding somatic mutations and the 

reference epigenome within the same cancer samples is needed to decipher their mutual 

relationships. Here, we present an integrative analysis of whole-genome maps of the DNA 

methylome, six histone modifications with non-overlapping functions (i.e. H3K4me3, 

H3K4me1, H3K27ac, H3K36me3, H3K9me3 and H3K27me3), chromatin accessibility, 

three-dimensional chromatin architecture, transcriptome and genome of chronic lymphocytic 

leukemia (CLL).

CLL is the most frequent leukemia in Western countries and is characterized by 

heterogeneous molecular features and clinical behaviour12,13. Overall, two major molecular 

subtypes can be distinguished based on the mutational status of the immunoglobulin variable 

region loci (IGHV), with those CLL patients having low mutation levels or unmutated IGHV 

(U-CLL) showing a more aggressive behavior than those with mutated IGHV (M-

CLL)14,15. Similar to other neoplasms, the molecular portrait of CLL has mostly been 

characterized as individual layers of information, such as the genome, transcriptome, DNA 

methylome and chromatin accessibility8,16–22. Here, we have thoroughly analyzed the 

epigenome of CLL by sequencing the full reference epigenome of seven CLLs and the 

chromatin regulatory landscape of 100 additional cases, which were previously characterized 

by whole-genome and/or whole-exome sequencing (WGS/WES), RNA-seq and DNA 

methylation microarrays in the context of the International Cancer Genome Consortium 

(ICGC)20,23. This comprehensive dataset has allowed us to reveal novel insights into the 

biology and clinical behavior of CLL, and provides a rich resource for researchers studying 

gene regulation, cell differentiation, and cancer (epi)genomics.

Results

Reference epigenomes of CLL and normal B cells

We have generated reference epigenomes, consisting of genome-wide maps of six histone 

marks, DNA accessibility, DNA methylation and gene expression, of seven representative 

CLLs, two U-CLL and five M-CLL cases, and five normal mature B-cell subpopulations 

covering different stages of the differentiation program (Fig. 1a). We confirmed sample 

identity by comparing the genetic fingerprint of each patient obtained by SNP arrays with 

genotypes extracted from ChIP-seq, ATAC-seq, WGBS and RNA-seq data. Patient 

characteristics can be found in Supplementary Table 1. Unsupervised analyses of each layer 
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of the reference epigenome revealed differences both between neoplastic CLLs and B cells, 

and within normal B cell subpopulations, which showed maturation stage-specific 

epigenomic profiles (Fig. 1b). We further characterized the dynamics of the six histone 

modifications and DNA accessibility in CLL and the five normal B-cell subpopulations by 

K-means clustering. Overall, we identified a mean of 2,729 regions (ranging from 533 to 

8,444 depending on the mark, representing from 4.8 to 19.3% of all regions) whose levels 

were stable in normal B cells and either increased (cluster 1, C1) or decreased (cluster 2, C2) 

specifically in CLL as a whole (Fig. 1c, Supplementary Fig. 1-2 and Supplementary Table 

2). This finding indicates that CLL cells show a global de novo reconfiguration of their 

chromatin, affecting histone marks with non-overlapping functions as well as chromatin 

accessibility. In addition, as previously reported16,19, we observed that de novo DNA 

hypomethylation is more frequent than DNA hypermethylation in the studied CLLs 

(Supplementary Fig. 3 and Supplementary Table 3). Beyond these findings, we also 

observed that the CLL chromatin landscape can be linked to different modulation patterns 

occurring during the normal B-cell differentiation process (Fig. 1c, Supplementary Fig. 2 

and Supplementary Table 2). These included regions with similarities to naive (NBCs) and 

memory B cells (MBCs), which have been proposed as potential cells of origin of CLL12, 

and regions showing unexpected associations with germinal centre B cells (GCBCs) and 

plasma cells (PCs), which have not been described to share molecular features with CLL 

(e.g. C6 and C7 in Fig. 1c). As expected based on the epigenetic patterns shown above, we 

also observed de novo increase and decrease of gene expression in CLL as well as different 

modulation patterns of gene expression levels in relation to normal B cells (Supplementary 

Fig. 4 and Supplementary Table 2). To provide insights into the interplay between histone 

marks and other layers of the reference epigenome, next we analyzed chromatin 

accessibility, DNA methylation and gene expression levels of protein coding genes in 

regions undergoing de novo changes of each histone mark in CLL (Fig. 1d-f, Supplementary 

Fig. 5, Supplementary Table 4). Regions with de novo increase (C1) of histone marks related 

to promoters and enhancers (H3K4me3, H3K4me1 and H3K27ac) showed a corresponding 

increase of chromatin accessibility, decreased DNA methylation and increased expression of 

the associated genes in CLLs (Fig. 1d-f and Supplementary Fig. 1a). Regions with de novo 

decrease of these marks (C2) showed an expected decrease in accessibility and gene 

expression in CLL (Fig. 1d, f), whereas DNA methylation levels were consistently low in all 

normal and leukemic samples in these regions (Fig. 1e and Supplementary Fig. 1b). Thus, 

those regulatory regions becoming inactive in CLL do not gain DNA methylation but 

maintain an imprint of their past activity, supporting the concept that DNA methylation is 

mostly an accumulative trait24, holding cellular memory of past activity. In contrast, the 

chromatin configuration of regulatory elements is more dynamic and closely related to 

transcriptional changes.

In terms of functional categories, the genes showing de novo increase or decrease of specific 

histone marks in CLL were involved in different functions, i.e. genes with increased levels 

of H3K27ac, H3K4me3 and H3K4me1 were related to immune response mechanisms and 

GTPase activity, while those with decreased levels of H3K4me3 and H3K4me1, tended to be 

involved in organism development and gene expression regulation (Fig. 1g and 

Supplementary Table 5).

Beekman et al. Page 3

Nat Med. Author manuscript; available in PMC 2019 February 05.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Chromatin state transitions from normal B cells to CLL

The previous results revealed an extensive modification of the CLL chromatin landscape as 

compared to normal B cells. To capture overlapping and mutually-exclusive patterns of the 

different histone modifications25, we generated a chromatin state model specific for B cells 

using chromHMM26 (Fig. 2a). First of all, with this model we studied the overall 

relationship between CLL and normal B cells based on the integrative chromatin landscape 

using the percentage of overlap among chromatin states. As observed previously for the 

separate histone mark layers of the reference epigenome (Fig. 1b), CLL overall shows the 

highest resemblance to normal naive and memory B cells (Supplementary Fig. 6). Next, we 

analyzed the regions with CLL-specific increased or decreased histone mark levels in an 

integrative manner. We observed that regions with gains of H3K4me3, H3K4me1 and 

H3K27ac in CLL tended to coincide with each other and to a lesser extent with regions with 

increased H3K36me3 and decreased H3K27me3 levels. Furthermore, decrease of H3K4me3 

and H3K4me1 co-occurred and partially coincided with the loss of H3K27ac and the gain of 

H3K9me3 (Fig. 2b). Next, we used the chromatin state model to analyze the impact of CLL-

specific histone mark, DNA accessibility and DNA methylation alterations on chromatin 

states (Fig. 2c, Supplementary Fig. 7 and Supplementary Table 6). Globally, we observed 

that increase or decrease of H3K27ac in CLL was associated with a corresponding increase 

or decrease of active enhancers and promoters (Fig. 2c). Similarly, increased H3K4me1 and 

H3K4me3 levels were related to an increase of enhancers and promoters in CLL, 

respectively (Fig. 2c). Mapping specific chromatin state transitions from normal B cells to 

CLL (Fig. 2d and Supplementary Fig. 8), we observed that the gain of active enhancers in 

CLL, upon the increase of H3K4me3, H3K4me1 and H3K27ac, mainly originated from 

regions classified as weak enhancers or heterochromatin-low signal in normal B cells (Fig. 

2d). These data suggest that some fully activated enhancers in CLL are primed in normal B 

cells, while others become enhancers de novo upon malignant transformation.

We also observed that a decrease in H3K4me3 and H3K4me1 in CLL did not alter active 

regulatory elements, but rather led to a major decrease of poised promoters (Fig. 2c), which 

mostly became H3K27me3-repressed chromatin in CLL (Fig. 2d). In addition, CLL-specific 

decrease of H3K27me3 also lead to loss of poised state in a low percentage of the regions, 

either becoming active (i.e. changing towards weak or active promoters) or inactive (i.e. 

changing towards heterochromatin-low signal) in CLL (Supplementary Fig. 8). Loss of the 

poised promoter state seems a general phenomenon in CLL, as a significantly lower 

percentage of the genome was covered by this chromatin state in CLL as compared to 

normal B cells (0.008-0.399% vs. 0.232-0.610%, P < 1 x 10-3, two-sided Wilcoxon rank 

sum test). The transition from poised promoters in normal B cells into stably repressed 

chromatin in CLL may represent a loss of epigenetic plasticity in CLL without an apparent 

impact on gene activity. This was for example reflected by the fact that a significantly larger 

number of the genes decreasing H3K4me3 (n=406 out of 911, 44.6%, P < 1 x 10-3, Fisher’s 

exact test) or H3K4me1 levels (n=509 out of 952, 53.5%, P < 1 x 10-3, Fisher’s exact test) 

were neither expressed in CLL nor in normal B cells, as compared to the total number of 

protein coding genes showing this gene expression pattern (6,186 out of 21,257 genes, 

29.1%) (Supplementary Fig. 9). An additional observation supporting the loss of plasticity at 

these regions in CLL was the fact that they were associated with genes enriched for various 
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gene ontology terms related to organism development (Fig. 1g), which are inactive but 

remain poised in mature B cells.

Identification of altered regulatory regions involved in CLL pathogenesis

We next designed a stringent approach (Supplementary Fig. 10) to distil, from the previous 

global analyses, a set of altered regulatory regions that may play an important role in CLL 

pathogenesis. Using this approach, we detected 534 genomic regions that consistently 

gained or lost regulatory activity in all seven CLLs as compared to all normal B cells. The 

majority of these regions (n=498, 93.3%) showed a de novo activation of regulatory 

elements (Fig. 3a and Supplementary Table 7), which were significantly enriched in super-

enhancers27 (n=51 super-enhancers out of 498 regions (10.2%) as compared to the 

background of n=350 super-enhancers out of 7,121 regions (0.5%), P < 1 x 10-3, Fisher’s 

exact test). In contrast, we only identified one super-enhancer showing loss of activity in 

CLL, located within the CLL-silenced gene EBF128. To explore whether de novo changes in 

chromatin are mediated by specific transcription factors (TF), we mined the regions of 

interest for TF binding sites. Remarkably, we observed that de novo active chromatin regions 

were highly enriched for binding motifs of NFAT, FOX and TCF/LEF TF families (Fig. 3b 

and Supplementary Table 8). These data indicate that chromatin activation, in particular 

affecting super-enhancers, is an epigenetic feature of CLL, and seems to be mediated by 

specific TF families. Furthermore, as regions with higher chromatin activity tend to have a 

higher number of local three-dimensional (3D) chromatin interactions29, we generated in 

situ HiC-seq30 data in one out of the seven CLLs and MBCs to study this phenomenon. De 

novo active regions in CLL showed higher levels of local 3D interactions in CLL as 

compared to MBCs, indicating that chromatin activation in CLL also involves a 

reconfiguration of the local 3D architecture (Fig. 3c).

Next, we linked the detected regions to their target genes by a multi-step approach using 

both linear and 3D proximity, measured by promoter capture Hi-C of one of the seven CLL 

cases (generated within this study) and normal B cells (previously published)31 and 

consequent correlation with gene expression (Supplementary Figure 11a). A total of 275 

target genes were assigned to the 534 detected regions (Supplementary Figure 11b and 

Supplementary Table 7). Globally, those genes related to de novo active regions are involved 

in surface receptor signalling, response to bacteria/lippopolysaccharide, lymphoid organ 

development as well as cell adhesion and activation (Supplementary Figure 11c and 

Supplementary Table 5). More specifically, the list of 275 target genes included 11 out of 14 

genes (e.g. EBF1, FMOD and LEF1) whose differential expression has been shown to be 

specific for CLL as compared to other B cell neoplasms32,33. Therefore, we have identified 

the genome-wide regulatory regions that control the specific transcriptional program of 

CLL, and distinguish the disease from normal B-cell differentiation. This information 

represents a solid background to investigate the onco-epigenetic mechanisms underlying 

leukemic transformation.

The potential role of the 534 identified regions in distant gene regulation, which is a 

distinctive feature of enhancers, became apparent from the fact that 41.8% (n=223 out of 

534) were assigned to one or more distant target genes. For two of these distant target genes, 
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FMOD, a bona fide gene whose expression has diagnostic power in CLL32,33 and TCF4, 

which encodes a transcription factor involved in the WNT signalling pathway reported to be 

over-expressed in CLL34, we exemplary show the identified regulatory elements (Fig. 3d, e 

and Supplementary Fig. 12). Both for the target gene locus and for the regulatory elements, 

higher chromatin accessibility (ATAC-seq) and lower DNA methylation levels were 

observed in CLL as compared to normal B cells. Furthermore, by 4C-seq in two CLL cases, 

we observed that these distant super-enhancers showed 3D interactions with the FMOD and 

TCF4 promoter (Supplementary Fig. 12), further confirming that these are their target genes 

in CLL. Interestingly, an upstream TCF4 super-enhancer has been identified in plasmacytoid 

dendritic cell neoplasms35, while the CLL-associated super-enhancer is located downstream 

of the gene. These findings suggest the existence of disease-specific enhancer deregulation 

leading to similar downstream transcriptional effects (e.g. TCF4) or disease-specific 

transcriptional deregulation (e.g. FMOD).

The regulatory chromatin landscape of clinico-biological CLL subgroups

The previous analyses did not have sufficient power to distinguish specific epigenetic 

modifications that may drive the clinico-biological heterogeneity of CLL, specifically of the 

two molecular subtypes U-CLL and M-CLL14,15. Therefore, we performed ChIP-seq for 

H3K27ac and ATAC-seq in 100 additional CLL cases (37 U-CLLs, 61 M-CLLs and two 

CLLs with unknown IGHV mutation status), bringing the total sample size for these marks 

to 107 cases. In line with the validation analysis performed in the seven CLLs with reference 

epigenomes, we also confirmed sample identity of the 100 additional cases. Patient 

characteristics can be found in Supplementary Table 1. This CLL cohort was extensively 

characterized previously in the context of the ICGC using RNA-seq (n=78), DNA 

methylation arrays (n=105), copy number arrays (n=105) and WES and/or WGS (n=105)20. 

Unsupervised principal component analysis of H3K27ac and ATAC-seq data confirmed that 

the main source of variability was the difference between CLL as a whole and normal B 

cells (Fig. 4a). In contrast, the second and third component showed significant differences 

between U-CLL and M-CLL (Fig. 4a), indicating that a major fraction of chromatin 

variability is associated with the clinical heterogeneity in CLL patients. Next, we compared 

U-CLL and M-CLL, and identified 2,818 and 8,803 significant differential regions for 

H3K27ac and ATAC-seq, respectively (Supplementary Table 9). Overall, the majority of 

these regions showed higher levels of these marks in U-CLLs, suggesting that clinical 

aggressiveness in CLL is associated with a more accessible and active chromatin. In addition 

to the immunogenetic classification of CLL, we also compared the chromatin profiles of a 

DNA methylation-based CLL classification comprising three clinico-biological entities 

named NBC-like, MBC-like and intermediate CLLs16,19,36. We observed that the 

chromatin landscapes of MBC-like and intermediate CLLs (both M-CLL) were distinct from 

NBC-like CLLs (i.e. U-CLL) but similar to each other (Supplementary Fig. 13), reflecting 

that the IGHV mutation status is a strong determinant of the regulatory chromatin landscape 

of CLL.

To properly interpret the pathogenic relevance of the differences between U-CLL and M-

CLL, we analyzed them in the context of the normal B-cell differentiation. We observed that 

38.9% of the differences in H3K27ac (n=1,095 out of 2,818) and 40.9% of the differentially 
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accessible regions (n=3,603 out of 8,803) were stable during B-cell differentiation (Fig. 4b 

and Supplementary Table 9). Hence, these regions represented subtype-specific epigenetic 

alterations with de novo increase or decrease of regulatory activity in U-CLL or M-CLL. 

Using the previously explained strategy (Supplementary Fig. 11a), we identified the target 

genes of the de novo changes of activity/accessibility in U-CLL and M-CLL (Fig. 4c), which 

were enriched for distinct biological functions (Supplementary Table 5). Notably, de novo 

altered chromatin accessibility in U-CLL and M-CLL was associated with markedly 

different TF motifs (Fig. 4d and Supplementary Table 8). Regions gaining accessibility in U-

CLL were enriched in binding sites of multiple TFs including the IRF TF family, whereas 

regions losing accessibility in M-CLL were highly enriched for CTCF binding sites, 

suggesting that U-CLL and M-CLL may show differential 3D architectures.

In addition to the regions de novo changing in U-CLL or M-CLL, we identified that the 

activity/accessibility of 60% of all differential regions was extensively modulated during 

normal B-cell differentiation. From the DNA methylation perspective, differences in U-CLL 

and M-CLL have previously been assigned to an epigenetic imprint of their cell of origin, 

i.e. GC-inexperienced and GC-experienced cells, respectively16. From the chromatin 

perspective, however, we observed a more complex scenario and we categorized the regions 

with differential chromatin into 30 patterns based on the similarities of U-CLL or M-CLL to 

different dynamics during normal B-cell differentiation (Fig. 5a with results of six main 

patterns and Supplementary Table 9). B-cell dynamic regions with differential H3K27ac 

showed various patterns without a clear bias of CLLs towards particular normal 

subpopulations (Fig. 5b). In contrast, the first principal component of B-cell dynamic 

regions with higher accessibility in M-CLL showed expected cell of origin-based 

similarities, i.e. U-CLLs derive from cells that have matured outside the germinal center and 

still maintain a naive-like chromatin accessibility whereas M-CLL stem from GC-

experienced cells and thus show similarities to GCBC, MBCs and PCs (Fig. 5b). These 

differentially accessible regions partially overlapped with the previously identified CLL cell 

of origin DNA methylation signature16, and showed concordant higher levels of ATAC-seq 

and lower levels of DNA methylation in M-CLL in comparison with U-CLL (Fig. 5c and 

Supplementary Table 10). These results imply that both CLL subtypes retain a DNA 

methylation and chromatin accessibility imprint of their differential cellular origins.

Interestingly, the analysis of the B-cell dynamic regions with higher ATAC-seq levels in U-

CLL uncovered a relationship between U-CLL and PCs and GCBCs, while M-CLL 

resembled more NBCs and MBCs (Fig. 5b), which also became apparent in our initial 

unsupervised analysis (Fig. 4a). The gene ontology analysis of the target genes of active and 

accessible regions shared by U-CLL, PCs and GCBCs, suggests that the similarities between 

these cells may be related, among others, to cell cycle regulation and (wnt) signalling 

(Supplementary Table 5). One example of a gene showing this activation pattern is GFI1 

(Supplementary Fig. 14), which encodes a protein involved in cell cycle regulation and 

becomes up regulated in mature B cells upon antigen stimulation and shows oncogenic 

activity in aggressive T cell leukemias37,38. These findings suggest that beyond linking 

chromatin patterns of U-CLL and M-CLL to their cellular origins, chromatin variability in 

CLL subtypes and normal B cells also seem to reflect different biological behaviors. For 

instance, U-CLL activates genes operative in proliferative B cell subpopulations such as 
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GCBCs and tonsillar PCs. This phenomenon suggests that U-CLLs may exploit molecular 

mechanisms present in specific normal B cell subpopulations to achieve higher 

proliferation39.

Linking somatic genetic changes and the chromatin landscape in CLL

Our thoroughly characterized CLL samples20 provide an opportunity to shed light onto the 

relationship between chromatin activity/accessibility and somatic genetic changes in CLL. 

First of all, we investigated whether alterations in 14 common driver genes and copy number 

variants in CLL (selected based on the presence in at least five cases in our series) were 

related to specific chromatin signatures by comparing affected vs. non-affected cases (Fig. 

6a and Supplementary Table 11). MYD88 mutations showed a consistent pattern of de novo 

chromatin activation or accessibility associated with over expression of a total of 67 unique 

target genes, including genes encoding proteins previously linked to NF-kappaB signalling, 

such as CBLB, PIM1, TNFRSF13B and TNFRSF2140–43 (Fig. 6b and Supplementary 

Table 12). Similarly, cases with trisomy 12 showed extensive changes in chromatin patterns 

as compared to unaffected cases, but were intriguingly similar to normal B cells (Fig. 6c and 

Supplementary Table 12). The broad spectrum of genetic features in CLL also includes 

driver-less cases, which are CLLs lacking recognized genetic drivers (mainly M-

CLLs)18,20. In our series, driver-less (n=15) cases did not show any specific chromatin 

pattern as compared to other M-CLLs, but rather displayed a pattern consistent with their 

mutated IGHV status (Fig. 6a and Supplementary Fig. 15). Collectively, these findings 

suggest that, although few genetic alterations in CLL are associated with particular 

chromatin profiles, the overall CLL-specific regulatory chromatin landscape does not seem 

to be established by genetic alterations. Instead, it may be mostly influenced by other factors 

such as antigen stimulation, B-cell receptor conformation and the microenvironment13,44.

Secondly, we investigated the relationship between all somatic mutations (mostly non-

coding) detected by WGS and the chromatin landscape in each of the five cases with 

reference epigenomes available. Although, as earlier reported in cancer45, most mutations 

were located in heterochromatin, we also identified a bias of the mutations towards 

regulatory elements such as promoters and enhancers in M-CLLs (Fig. 6d). A more 

exhaustive analysis matching somatic mutations detected by WGS to H3K27ac or ATAC-seq 

peaks in the exact same cases (n=44 CLLs), revealed that the percentage of mutations in 

active or accessible chromatin per case was respectively ranging from 0.05% to 2.85% and 

from 0.15% to 1.40%. Nevertheless, we detected a three-fold enrichment of somatic 

mutations in H3K27ac-associated regions in M-CLLs (Fig. 6e, f). Notably, these mutations 

mostly occurred in H3K27ac-associated regions lacking ATAC-seq peaks (six-fold 

enrichment, Fig. 6g). The exclusive presence of this enrichment in M-CLL cases suggested 

that it was mediated by the somatic hypermutation (SHM) machinery. Indeed, separating 

SHM targets as previously defined20 (Supplementary Table 13) from non-targets, we 

observed a 19-fold enrichment of somatic mutations in M-CLLs in H3K27ac-positive/

ATAC-seq-negative regions in the former and a depletion (fold enrichment of 0.4) in the 

latter regions (Fig. 6h), suggesting that accessible regions are protected from the SHM 

machinery.
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Thirdly, we investigated whether particular somatic mutations, mostly in the non-coding 

fraction, were associated with a local change in chromatin activity and accessibility, 

representing thus potential non-coding drivers in CLL. To address this issue, we combined 

the somatic mutations of the 44 CLL cases with their H3K27ac and ATAC-seq signals 

(Supplementary Figure 16). Out of 106,137 somatic mutations detected in these 44 CLLs, 

only 114 (0.11%) were associated with a local change in H3K27ac or ATAC-seq signal in 

the affected CLL case (excluding the immunoglobulin loci), a number consistent with the 

expected number by chance after performing a random permutation test (a mean of 106.3 

random mutations were found that were associated with a local change in H3K27ac or 

ATAC-seq signal with a standard deviation of 10.9). Hence, with the number of cases 

available in this study, we did not observe a significant association between somatic 

mutations and local quantitative changes in genomic activity/accessibility in CLL. We 

cannot exclude, however, that they may exist if larger series of patients were investigated.

Discussion

In this study we provide an extensive epigenomic characterization of CLL samples and 

normal B-cell subpopulations, which extends previous studies of the reference epigenome of 

cancer cell lines46 with detailed information on primary tumors. The identity of all CLL 

samples studied was validated by genetic fingerprinting. This frequently underestimated 

quality control step is emerging as an important issue in large-scale sequencing studies47. 

The strategy of analyzing the CLL epigenome in the context of the entire mature B-cell 

differentiation program has led to new insights into CLL pathogenesis and clinical behavior. 

We observe that the epigenomic configuration of CLL as a whole and of its clinico-

biological subtypes can be divided into three different types of patterns. First, U-CLL and 

M-CLL cases show imprints of their cellular origin, i.e. GC-inexperienced and experienced 

B cells, respectively. Intriguingly, this pattern is only evident for DNA methylation, as 

previously shown16, and for chromatin accessibility, but not for active regulatory regions 

marked with H3K27ac. This suggests that not all epigenetic marks seem to hold epigenetic 

memory, and that the different cellular origins of M-CLL and U-CLL cannot directly be 

translated into differential chromatin activation. Based on previous findings this may be 

expected as cell of origin-related differential DNA methylation in M-CLL and U-CLL is not 

related to differential expression of the target genes36. Second, the CLL chromatin 

landscape can also be linked to other, more complex, dynamics during the normal B-cell 

differentiation process, including sets of regions that relate CLL as a whole, M-CLLs or U-

CLLs to a variety of combinatorial patterns in NBCs, GCBCs, MBCs and PCs. Although 

these patterns and their implications in CLL biology deserve further investigation, they 

already reveal interesting insights. For instance, U-CLLs, although derived from germinal 

center-inexperienced B cells, acquire chromatin features of proliferative GCBCs, a fact that 

may partially be associated with the higher proliferation of U-CLLs as compared to M-

CLLs39. Third, CLLs also reconfigure their chromatin landscape independently of B-cell 

differentiation. We provide detailed maps of de novo reprogrammed regulatory elements 

shared in all CLL samples or present specifically in its clinico-biological subtypes (U-CLL 

and M-CLL). The former may represent onco-epigenetic events essential for the neoplastic 

transformation whereas the latter may determine the specific biological features and clinical 
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behavior of CLL subtypes. Interestingly, it seems that extensive chromatin activation may be 

a feature of worse clinical behavior in CLL, as U-CLLs show more de novo accessible 

regions and active regulatory elements than M-CLL. De novo chromatin alterations in CLL 

as a whole, U-CLL and M-CLL seem to be mostly mediated by specific TF families. In 

particular, NFAT, FOX and TCF/LEF TF families are associated with the de novo active 

regions in CLL as a whole. Thus, their inhibition may revert chromatin activation and 

represent rational therapeutic options for CLL. In fact, in the case of NFAT and TCF/LEF, 

previous studies have highlighted their functional and therapeutic potential in 

CLL19,34,48,49. Furthermore, in light of the emerging importance of pharmacological 

agents inhibiting specific epigenetic marks50, the observed alterations in the chromatin 

landscape of CLL may also represent potential therapeutic targets. In this context, de novo 

chromatin reprogramming of CLL is marked by the transition from inactive regions in 

normal B cells to super-enhancers, which have been already shown to be targets for selective 

pharmacological inhibition in cancer51.

The large number of de novo chromatin changes homogeneously present in CLL or CLL 

subtypes contrasts with the vast genetic heterogeneity of the disease and the paucity of 

driver genes mutated in more than 5% of the cases18,20. In terms of the link between 

genetic and epigenetic changes in CLL, our dataset with both extensive genetic and 

chromatin characterization of CLL samples allowed us to identify that cases with MYD88 

mutations or trisomy 12 represent distinct molecular subgroups from the chromatin 

perspective, highlighting the specific clinico-biological features of these CLL 

subtypes52,53. In the case of MYD88, chromatin activation seems to be a direct effect, as 

the associated genes are downstream effectors of the toll-like receptor pathway. The specific 

chromatin signature of trisomy 12 CLLs, however, is intriguing. This signature, which is 

similar between trisomy 12 cases and normal B cells, is derived from the acquisition of 

chromatin changes in the heterogeneous group of CLLs lacking trisomy 12 rather than from 

a direct chromatin reprogramming mediated by trisomy 12. More globally, we observe that 

the mutational landscape of M-CLLs is enriched in regulatory elements, which may 

constitute potential non-coding drivers20,54. Intriguingly, these mutations in M-CLL are 

highly enriched in regions associated with H3K27ac-containing nucleosomes outside ATAC-

seq peaks, as initially observed for a mutated PAX5 enhancer in M-CLL20. This finding 

suggests that, although the SHM machinery overall targets active regulatory regions55, it 

seems that transcription factor binding sites in accessible regions are protected, possibly by 

blocking access to the SHM machinery or by a higher DNA repair rate. Lastly, we observe 

that within our CLL series non-coding mutations do not change the activity or accessibility 

of genomic regions in a quantitative way. Instead, potential non-coding driver mutations may 

modulate the regulatory potential of already existing promoter and enhancer elements by 

other means.

In conclusion, this study presents a comprehensive description of the epigenome of CLL 

samples with complete genetic characterization, and samples spanning the normal B-cell 

maturation process. The findings derived from the primary analysis of the dataset improve 

our understanding of the biological basis and clinical behavior of CLL. We identify de novo 

reprogrammed regulatory regions specifically associated with the development of CLL and 

its major clinical subtypes, which harbor diagnostic, prognostic and potential therapeutic 
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value. This so far unique dataset also represents a valuable resource for researchers both 

working in CLL and broader fields such as gene regulation, cell differentiation and 

neoplastic transformation, and to study the link between genetic variants (somatic and 

germline) and the epigenome in the context of disease development.

Online methods

Please be referred to the Life Sciences Reporting summary for further details that 

complement the sections below.

Patients

The clinical and biological characteristics of the 107 patients are shown in Supplementary 

Table 1. Cases were defined as IGHV-MUT when the identity of immunoglobulin genes was 

less than 98%. The tumor samples were obtained before administration of any treatment. All 

patients gave informed consent for their participation in the study following the International 

Cancer Genome Consortium (ICGC) guidelines and the ICGC Ethics and Policy 

committee23, and this study was approved by the clinical research ethics committee of the 

Hospital Clinic of Barcelona.

Collection and preparation of patient and normal samples

Tumor samples were obtained from fresh or cryopreserved mononuclear cells. The CLL 

fraction was only purified when the tumor content was <85% as assessed by 

immunostaining of CD19, CD20, CD5 and CD45 followed by flow cytometry. If the tumor 

content was <85%, CLL cells were purified by selecting CD19 positive cells using 

AutoMACS (Miltenyi Biotec), until a tumor content of >85% was reached (which was 

usually obtained after one round of AutoMACS purification). Normal B cell fractions were 

collected and isolated as previously described, using the indicated surface markers (Fig. 

1a)24.

ChIP-seq, ATAC-seq, RNA-seq, WGBS, in situ Hi-C, promoter capture Hi-C, 4C-seq and 
WGS data generation

ChIP-seq of the six different histone marks and ATAC-seq data were generated as described 

(http://www.blueprint-epigenome.eu/index.cfm?p=7BF8A4B6-

F4FE-861A-2AD57A08D63D0B58). Catalog numbers of antibodies (Diagenode) used are 

H3K27ac: C15410196/pAb-196-050 (LOT: A1723-0041D), H3K4me1: C15410194/

pAb-194-050 (LOT: A1863-001P), H3K4me3: C15410003-50/pAb-003-050 (LOT: 

A5051-001P), H3K36me3: C15410192/(pAb-192-050 (LOT: A1847-001P), H3K9me3: 

C15410193/pAb-193-050 (LOT: A1671-001P), H3K27me3: C15410195/pAb-195-050 

(LOT: A1811-001P).

Single stranded RNA-seq data of the reference epigenomes was generated as previously 

described56. Briefly, RNA was extracted using TRIZOL (Life Technologies) and libraries 

were prepared using a TruSeq Stranded Total RNA Kit with Ribo-Zero Gold (Illumina). 

Adapter-ligated libraries were amplified and sequenced using 100-bp single-end reads. Fastq 

files of (non-stranded) RNA-seq data of 78 CLL cases were mined22.
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WGBS of the reference epigenomes was generated as previously described24. Briefly, 1–2 

μg of DNA was sheared and fragments of 150–300 bp were selected using AMPure XP 

beads (Agencourt Bioscience). After adaptor ligation (Illumina TruSeq Sample Preparation 

kit), DNA was treated with sodium bisulfite using the EpiTexy Bisulfite kit (Qiagen). Two 

rounds of bisulfite conversion were performed to ensure a conversion rate of over 99%. 

Enrichment for adaptor-ligated DNA was carried out through seven PCR cycles and paired-

end DNA sequencing (2 × 100 bp) was then performed using the Illumina HiSeq 2000 

platform. Methylation estimates of 105 CLL cases, analyzed by the 450k Human 

Methylation Array (Illumina), were mined20.

Promoter capture Hi-C interactions of normal B cells31 as well as in situ Hi-C data of 

GM1287830 were mined. In situ Hi-C of one CLL case and MBCs and promoter capture Hi-

C of one CLL case were performed as previously described30,31. 4C templates were 

prepared for two CLL patients and the JVM-2 cell line as previously described57,58 using 

107 cells per 4C library. First and second restriction enzymes per region were for the FMOD 

enhancer: NlaIII, BfaI; the TCF4 enhancer: DpnII, Csp6I; the FMOD promoter; NlaIII, 

Csp6I and the TCF4 promoter: DpnII, Csp6I. RE1 and RE2 primers per region were for the 

FMOD enhancer: 5'- AGGGAAGGCAGGGAAACATG-3', 5'-

TACACGCTCATTAACACTGC-3'; the TCF4 enhancer: 5'-

TAACTAGAAATGGGGTGATC-3', 5'- AAAAGTGTCAACCTGGAGAA-3'; the FMOD 

promoter: 5’-GCTGTCCCTTGTCATTCATG-3’, 5’-CTGTGTCCTACCCATTTCAC-3’; 

and the TCF4 promoter: 5’- TCGGAAAAGTTGAATCGATC-3’, 5’-

TTTGATTAAAAAGCGAGTGG-3’.

For 42 CLL patients, WGS data were mined20. WGS data of two CLL patients was 

generated as previously described20.

Read mapping and data processing

Fastq files of ChIP-seq data were aligned to genome build GRCh38 (using bwa 0.7.7, picard 

and samtools) and wiggle plots were generated (using PhantomPeakQualTools) as described 

(http://dcc.blueprint-epigenome.eu/#/md/methods).

Peaks of the histone mark data were called as described (http://dcc.blueprint-

epigenome.eu/#/md/methods) using MACS2 (version 2.0.10.20131216). As for many CLL 

samples (87 out of 107) no input data was available, for all samples H3K27ac peaks were 

also called without input control. ATAC-seq fastqs were aligned to genome build GRCh38 

using bwa 0.7.759 (parameters: -q 5, -P, -a 480) and SAMTOOLS v1.3.160 (default 

settings). BAM files were sorted and duplicates were marked using PICARD tools v2.8.1 

(http://broadinstitute.github.io/picard, default settings). Finally, low quality and duplicates 

reads were removed using SAMTOOLS v1.3.160 (parameters: -b, -F 4, -q 5, -b, -F 1024). 

ATAC-seq peaks were determined using MACS2 (v2.1.1.20160309, parameters: -g hs -q 

0.05 --keep-dup all -f BAM – nomodel –shift -96 –extsize 200) without input control. For 

downstream analysis peaks with p-values <1e-5 (H3K36me3, H3K9me3 and H3K27me3) or 

<1e-9 (H3K4me3, H3K4me1, H3K27ac, ATAC-seq) were included. For each mark a set of 

consensus peaks, only including regions on chromosome 1-22, present in the normal B cells 

(n=15 biologically independent samples for histone marks and n=18 biologically 

Beekman et al. Page 12

Nat Med. Author manuscript; available in PMC 2019 February 05.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts

http://dcc.blueprint-epigenome.eu/#/md/methods
http://dcc.blueprint-epigenome.eu/#/md/methods
http://dcc.blueprint-epigenome.eu/#/md/methods
http://broadinstitute.github.io/picard


independent samples for ATAC-seq) and in the CLL samples (n=7 biologically independent 

samples for the reference epigenomes, n=104 biologically independent samples for the 

extended H3K27ac series and n=106 biologically independent samples for the extended 

ATAC-seq series) was generated by merging the locations of the separate peaks per 

individual sample. To generate the consensus peak file for the reference epigenomes, only 

peaks with input were used except for ATAC-seq for which peaks without input were used; 

for the extended H3K27ac series peaks with (20 CLLs and 15 normal B cells) and without 

input (104 CLLs and 15 normal B cells) were used; and for the extended ATAC-seq series 

only peaks without input (106 CLLs and 18 normal B cells) were used. For the histone 

marks the number of reads per sample per consensus peak were calculated using the 

genomecov function of bedtools. For the ATAC-seq the number of insertions of the Tn5 

transposase per sample per consensus peak were calculated by first determining the 

estimated insertion sites (shifting the start of the first mate 4bp downstream), followed by 

the genomecov function of bedtools. Using DEseq261, variance stabilized transformed (vst) 

values were calculated for all consensus peaks (H3K27ac and ATAC-seq data of extended 

CLL series) or for the peaks that were present in >1 sample (reference epigenome data). The 

number of consensus peaks for the reference epigenome analyzes for which vst values were 

calculated were: 38,499 (H3K4me3); 37,871 (H3K4me1); 47,191 (H3K27ac); 15,561 

(H3K36me3); 27,371 (H3K9me3); 12,878 (H3K27me3); and 91,671 (ATAC-seq), and for 

the extended CLL series: 100,640 (H3K27ac); and 143,668 (ATAC-seq). For the extended 

CLL series, we corrected the vst values for the consensus SPOT score, i.e., the percentage of 

total number of reads that fall within the consensus peaks, using the ComBat function from 

the sva R package62. To that purpose, the cell condition (CLL and the different normal B-

cell subtypes) was assigned to each sample and samples were clustered in 20 bins of 5% 

according to their consensus SPOT score. The bins on the extremes which contained less 

than five samples were joined with neighboring bins, to ensure that each bin contained at 

least five samples. PCAs were generated with the prcomp function in R using the (corrected) 

vst values of all peaks that were present in >1 sample.

RNA-seq data of the reference epigenomes and the fastq files of the 78 samples mined from 

a previous study22 were aligned to genome build GRCh38, signal files were produced and 

gene quantifications (gencode 22, 60,483 genes) were calculated as described (http://

dcc.blueprint-epigenome.eu/#/md/methods) using the GRAPE2 pipeline with the STAR-

RSEM profile (adapted from the ENCODE Long RNA-Seq pipeline). The expected counts 

and FPKM estimates were used for downstream analysis. The PCA of the RNA-seq data was 

generated with the prcomp function in R using log10 transformed FPKM (+0.01 

pseudocount) data of 36,190 genes with an FPKM standard deviation of >0 in the 22 

analyzed samples.

Mapping and determination of methylation estimates were performed as described (http://

dcc.blueprint-epigenome.eu/#/md/methods) using GEM3.0. Per sample, only methylation 

estimates of CpGs with 10 or more reads were used for downstream analysis. The PCA of 

the DNA methylation data was generated with the prcomp function in R using methylation 

estimates of 15,825,190 CpGs (chr1-22) with available methylation estimates in all 19 

analyzed samples.

Beekman et al. Page 13

Nat Med. Author manuscript; available in PMC 2019 February 05.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts

http://dcc.blueprint-epigenome.eu/#/md/methods
http://dcc.blueprint-epigenome.eu/#/md/methods
http://dcc.blueprint-epigenome.eu/#/md/methods
http://dcc.blueprint-epigenome.eu/#/md/methods


Processing of the promoter capture Hi-C data was performed as previously described31. The 

CHIGAGO software63 was used to determine interacting fragments (CHICAGO score > 5). 

Hi-C data was processed using TADbit64 for read quality control, read mapping, interaction 

detection, interaction filtering, and matrix normalization. First, the quality of the 

experiments was assessed using a Hi-C specific FastQC protocol (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc) implemented in TADbit64. Next, a 

fragment-based strategy in TADbit was used for mapping the paired-end reads to the 

reference genome (GRCh38) (similar protocol as described65). Mapping resulted in around 

65% of reads mapped uniquely to the genome. Next, non-informative contacts between two 

reads were filtered out, including self-circles, dangling-ends, mapping-errors, random breaks 

and duplicates as previously described65,66. The final interaction matrices resulted in 83 

and 119 million of valid interactions for the CLL and MBC sample, respectively. 

Assignment of topologically associated domains (TADs) in GM12878 (hg19) was performed 

using TADbit64 on the 

GSE63525_GM12878_combined_intrachromosomal_contact_matrices.tar.gz dataset30, 

followed by liftOver to GRCh38. 4C-seq analysis was performed using the pipeline 

4cseqpipe (http://compgenomics.weizmann.ac.il/tanay/?page_id=367) and r3Cseq67. For the 

4cseqpipe, default settings were used. For r3Cseq, default settings were used, mapping read 

counts and interactions using 5,000 base pair windows. Both for 4cseqpipe and r3Cseq, 

reads corresponding to self-ligated or non-digested fragments were removed.

Somatic mutations present in the two newly sequenced CLL patients were defined as 

previously described20. Of the 106,197 somatic mutations (chr1-22, genome build hg19) in 

the 44 CLL patients, 106,137 were successfully lifted over to genome build GRCh38 and 

were used for the downstream analysis.

Data quality and donor, normal B cell and histone mark identity

The data quality measures of all epigenetic data generated within this study (ChIP-seq and 

input of all histone marks, ATAC-seq, WGBS and RNA-seq (reference epigenomes only) 

can be found in Supplementary Table 14. To confirm that all data generated within this study 

correspond to the correct patient sample, genotypes extracted from each mark of the 

reference epigenome were matched with the genotype fingerprints of the patients detected 

by copy number arrays20. For H3K27ac, Input DNA and ATAC-seq genotypes were called 

using BaseRecalibrator, PrintReads and HaplotypeCaller68 and only positions with Phred 

score >= 20 were used for the analysis. In the case of WGBS, SNP genotypes with Phred 

score >= 20 were extracted from the VCF files generated by bs_call in the standard 

methylation calling pipeline69. For RNA-seq, SNPs were called on the RNA-Seq data using 

FreeBayes70. Only positions that passed the FreeBayes default filters were used for the 

analysis. Sample genotype calls were compared with respect to the genotype from the SNP 

array using an IBS (Identity by State) based statistic. For two sets of genotype calls, SNP 

positions genotyped in both sets were scored as 0, 1 or 2 according to whether they shared 0, 

1 to 2 alleles IBS. This score was then averaged across all such loci to give an average 

sharing statistic for a pair. Genotype call sets from the same individual would be expected to 

have an IBS sharing statistic close to 2, while non-matching sets should be in the range 1.2 – 

1.6. For the normal B cell subpopulations, snapshots of chromatin states of subpopulation-
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specific genes and gene expression levels were investigated to confirm that the data 

correspond to the correct B cell differentiation stages (Supplementary Fig. 17). Read profiles 

of the different histone marks and ATAC-seq data around transcription start sites (TSS) and 

gene bodies (GB) were generated to verify the nature of these different layers 

(Supplementary Fig. 18 and 19). To that end, for the TSS profiles bins of 100 bp around the 

TSS of all protein coding genes on chromosome 1-22 (50 bins in total, spanning -2500bp to 

+2500bp) were assigned, while for the GB profiles of the same genes 80 bins were assigned: 

15 bins of 100bp (-1500 until TSS), 50 bins each corresponding to 2% of the gene body and 

15 bins of 100 bp each (transcriptional termination site until +1500bp). The mean number of 

reads per bin per sample per mark for the 22 reference epigenome samples (25 in case of 

ATAC-seq) was calculated using the genomcov function of bedtools and corrected for the 

total number of mapped reads.

K-means clustering, jaccard coefficients and detection of differentially methylated CpGs 
and regions

For individual histone marks and ATAC-seq data, only consensus regions present in at least 

three and in a maximum of 19 out of the 22 samples (22 out of 25 for the ATAC-seq data) 

were used, i.e., excluding individual specific and constitutive regions. For the RNA-seq 

dataset, only genes that were expressed (FPKM values equal or greater than 0.1) in at least 

three out of the 22 samples were included to exclude individual specific genes. Of the 

included consensus peaks/genes, those differential among the six different subgroups (CLL 

and five normal B-cell subpopulations) were defined using the likelihood ratio test (FDR 

<0.01) of the DEseq2 package61. When performing K-means clustering the absolute vst 

levels (which are dependent on the size of the regions/genes) affect the clustering, while we 

were only interested in relative differences. Therefore, z-scores are necessary to correct for 

this phenomenon. Hence, K-means clustering was performed using the z-scores of the vst 

values of the differential regions/genes. For each, 20 clusters were assigned, which were 

merged based on pattern similarity.

Pairwise jaccard coefficients of the regions with de novo increase or decrease of the different 

histone marks in CLL were assigned by calculating the number of base pairs that overlap 

among the regions divided by the total number of base pairs covered by these regions. The 

dissimilarity matrix (1-jaccard coefficient) was used for clustering. Differentially methylated 

CpGs (DMCs) and regions (DMRs) were calculated using methilene71 version 0.2-7. 

Firstly, from the 15,825,190 CpGs (chr1-22) with available methylation estimates in all 19 

analyzed samples, only the ones that were not modulated during normal B cell 

differentiation (maximum pairwise difference in methylation among normal B cells was 

0.25) were selected. Next from this subset of CpGs, DMCs and DMRs were assigned that 

showed an absolute difference in methylation of at least 0.25 comparing CLL versus normal 

B cells using default settings in the metilene pipeline. Furthermore, for the detection of 

DMRs, a minimum number of 3 CpGs and a maximum distance between 2 CpGs of 100 

basepairs were used.
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Linking histone mark clusters with chromatin accessibility, DNA methylation and gene 
expression

Per histone mark region the overlapping consensus ATAC-seq peaks of the reference 

epigenome data were selected. Next, per region per sample was determined whether an 

ATAC-seq peak was present (1) or absent (0). If no overlapping peaks were found, 

chromatin accessibility was considered absent (0) in all samples. If more than one consensus 

peak was found in the histone mark region the mean of present (1) and absent (0) peaks was 

calculated per sample. Next, for all regions in one cluster a mean of present and absent peaks 

was calculated per sample.

Median methylation levels of all CpGs within the histone mark regions per cluster were 

calculated per sample.

Per host gene mean log10(FPKM + 0.01 pseudocount) RNA-seq levels were calculated for 

CLL, the five different normal B cells separate and normal B cells all together (seven values 

in total). Boxplots of log10(fold changes) of all genes located in the analyzed regions were 

generated subtracting the mean log10(FPKM + 0.01 pseudocount) expression levels of 

normal B cells from the mean expression of CLLs per gene. Finally, if the log10(FPKM 

+ 0.01 pseudocount) expression of a gene was lower than -1 in the CLLs and the five 

different B-cell subpopulations subgroups it was considered neither expressed in B cells nor 

in CLL.

Chromatin states and chromatin state transitions

A B-cell specific chromatin state model with 12 emission states was generated using the 

chromHMM software26 using the six histone marks in the 15 normal B cells, corrected for 

their corresponding input. Next, this model was used to assign chromatin states in the seven 

CLL cases. Chromatin states were assigned per 200bp window.

To calculate the overall similarity between CLL and normal B cells based on chromatin 

states, all regions with differential histone marks among the normal B cells samples (i.e. all 

the regions of all the 6 histone mark k-means clusters from cluster 3 onwards) were 

included. From all the included regions (2,167,103 windows of 200 base pairs), the 

chromatin states were taken and the pair wise fraction of overlap between samples were 

calculated. The dissimilarity matrix (1-fraction of overlap) was used to cluster the samples.

For all individual regions with de novo increase or decrease of the individual histone marks 

in CLL, the percentage of each of the 12 chromatin states was counted per sample. Per 

sample, all percentages were added up to calculate the overall distribution of chromatin 

states in these regions. In this way, each region, independent of the size, equally contributed 

to the final distribution.

To calculate chromatin state transitions, each region was divided into 200bp windows. Per 

200bp window, the percentages of the 12 chromatin states in 15 normal B cells were 

calculated as well as the percentages in the seven CLL samples. These vectors were 

multiplied, generating a 12x12 matrix (rows = normal B cells, columns = CLLs). All 

matrices of all 200bp windows per region were summed up and corrected for the total 
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number of 200bp windows within the region. In this way, the corrected matrix for each 

region, independent of the size, had a total value of one. Corrected matrices of all regions 

per cluster were added up and divided by the total number of regions to calculate the final 

transition matrix.

Defining de novo (in)active regulatory elements in CLL and their local chromatin 
interactions

A graphical representation of the strategy is shown in Supplementary Fig. 10. All 8,950 

peaks with de novo increase or decrease of H3K27ac, H3K4me3 and H3K4me1 were 

merged into 7,121 peaks. For each peak the percentage of base pairs covered by active 

regulatory elements (active promoter + strong enhancer 1 + strong enhancer 2) and inactive 

chromatin (poised promoter + H3K7me3/H3K9me3 repressed + heterochromatin;low 

signal) were calculated in normal B cells (n=15 biologically independent samples) and CLLs 

(n=7 biologically independent samples). Regions were assigned as de novo active regions in 

CLL if: (i) no significant difference in the percentage of active regulatory elements was 

observed in normal B cells (Kruskal-Wallis test, p-value <0.1 and in at least one pairwise 

comparison a difference of >10%), (ii) the percentage of active regulatory elements in CLL 

was significantly higher than in normal B cells (Wilcoxon rank sum test (two-sided), FDR-

value <0.01 and minimal difference of 25%) and (iii) the percentage of inactive chromatin in 

CLL was significantly lower than in normal B cells (Wilcoxon rank sum test (two-sided), 

FDR-value <0.01 and minimal difference of 25%). Regions were assigned as de novo 

inactive regions in CLL if: (i) no significant difference in the percentage of active regulatory 

elements was observed in normal B cells (Kruskal-Wallis test, p-value <0.1 and in at least 

one pairwise comparison a difference of >10%), (ii) the percentage of active regulatory 

elements in CLL was significantly lower than in normal B cells (Wilcoxon rank sum test 

(two-sided), FDR-value <0.01 and minimal difference of 25%) and (iii) the percentage of 

inactive chromatin in CLL was significantly higher than in normal B cells (Wilcoxon rank 

sum test (two-sided), FDR-value <0.01 and minimal difference of 25%). De novo (in)active 

regulatory elements with a size of more than 10,000 base pairs were considered super-

enhancers.

Local chromatin interactions of the de novo active regions in CLL were calculated by using 

the valid interactions (normalized by one round of ICE66 and by genomic decay) to generate 

genome-wide interaction maps to perform a meta-analysis of selected regions by merging 

individual local sub-matrices at 10 kb resolution in a similar fashion as previously 

published72.

Assignment of target genes and GO analysis

A graphical representation of the assignment of target genes strategy is shown in 

Supplementary Fig. 11a. Potential protein coding target genes of regulatory regions (de novo 

active and inactive regions in CLL) and active and accessible chromatic regions (extended 

CLL series) were assigned by taking the union of (i) the host gene, (ii) the most proximal 

up- and downstream gene on the positive and negative strand and (iii) genes interacting in 

3D space as defined by promoter capture Hi-C. To avoid false positives, per regulatory 

element, only genes located within the topologically associated domain (TADs) of 
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GM12878 were considered. A potential target gene was assigned to the final list of target 

genes when a significant difference in expression was observed between the compared 

groups (DEseq2 package, nbinomWaldTest, FDR < 0.05 (CLL vs. normal B cells or patients 

with vs. without mutations/copy number variants) or FDR < 0.01 (U-CLL vs. M-CLL)), and 

only when (i) the gene was expressed in at least one of the compared subgroups 

(mean(log10(fpkm +0.01)) > -1.0) and (ii) the group with the presence of the regulatory 

element or the highest H3K27ac or ATAC-seq levels showed higher expression levels.

GO enrichment was performed using the GOstats R package73. As the universe, all 

GENCODE22 annotated protein coded genes were used. The statistical analysis was 

conditioned based on the GO structure.

Transcription factor analysis

For the analysis in the 534 de novo regions, reference GRCh38 sequences were extracted 

from the overlapping consensus ATAC-seq peaks enriched in at least two CLL samples (for 

the 498 de novo active regions) or in at least two B cell samples (for the 36 de novo inactive 

regions). In the case of the comparison of U-CLL versus M-CLL, reference GRCh38 

sequences were extracted from the differentially enriched peaks in the de novo clusters. The 

AME tool from MEME suite74 was used for the enrichment analysis of known motifs from 

the non-redundant vertebrate 2016 Jaspar database75 using a one-tailed Wilcoxon rank-sum 

test with the maximum score of the sequence, a 0.05 FDR cutoff and a background formed 

by reference GRCh38 sequences extracted from the consensus ATAC-seq peaks enriched in 

at least two samples.

Defining differential chromatin activity and accessibility in U-CLL vs. M-CLL and their 
dynamics in normal B cells

Differential enrichment of H3K27ac/ATAC-seq levels of the consensus regions (extended 

CLL series) in U-CLL and M-CLL was calculated using DESeq261. The proper condition 

(U-CLL, M-CLL or normal B cell) per sample and the consensus SPOT (see read mapping 

and data processing) were introduced into the model. We performed the analysis by 

contrasting U-CLL and M-CLL samples using the nbinomWaldTest in DEseq2. Next, peaks 

that were constitutively present in all CLLs or peaks that were not present in at least 10% of 

any of the two compared subgroups were removed after which the FDR was calculated. 

Regions with an FDR < 0.001 were considered significantly enriched.

By calculating, for each differential region, whether the mean z-score of the vst value of 

each normal B-cell subpopulation (five in total) was closer to the mean z-score of U-CLL or 

M-CLL, 32 patterns (25) of dynamics in normal B cells could be assigned. Two of these 

patterns, i.e., when all normal B cells are closer to U-CLL or all normal B cells are closer to 

M-CLL represented de novo changes in respectively M-CLL and U-CLL, while all other 

patterns represented modulation of H3K27ac or ATAC-seq levels in these regions in normal 

B cells.
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Defining differential chromatin activity and accessibility in patients with mutations in 
driver genes or copy number variants

Patients compared for these analyses are indicated in Supplementary Table 11. Differential 

enrichment of H3K27ac/ATAC-seq levels of the consensus regions (extended CLL series) in 

samples with and without mutations/copy number variants (CNAs) was performed using 

DESeq261. The proper condition (mutated (MT), wild type (WT), loss, gain or normal B 

cell) per sample and the consensus SPOT (see read mapping and data processing) were 

introduced into the model. We performed the analysis by contrasting mutated vs. WT 

(mutations) or loss/gain vs. WT (CNAs) using the nbinomWaldTest in DEseq2. Next, peaks 

that were constitutively present in all CLLs or peaks that were not present in at least 10% of 

any of the two compared subgroups (with a minimum of two samples) were removed after 

which the FDR was calculated. Regions with an FDR < 0.001 were considered significantly 

enriched. To exclude any bias due to differences in number of reads, regions covering the 

copy number alterations were filtered out in case a positive correlation between the copy 

number change (gain/loss) and the H3K27ac/ATAC-seq signal was found. For example, 

regions on chromosome 12 were filtered out in the comparison of tri12-positive vs tri12-

negative CLLs if they had a higher H3K27ac/ATAC-seq signal intensity in tri12-positive 

cases.

Enrichment of mutations in H3K27ac, ATAC-seq peaks and chromatin states

Per case, the percentage of mutations within H3K27ac peaks (n=43 cases), ATAC-seq peaks 

(n=43 cases) and/or the 12 chromatin states (n=5 cases) in the exact same case were 

calculated. For the H3K27ac and ATAC-seq data, only peaks called without correction for 

input were used, to avoid a potential bias between samples for which the corresponding 

input was present and those for which this was absent. To calculate the enrichment of these 

mutations within these regions, the calculated percentages were divided by the total 

percentage of the genome that was covered by H3K27ac or ATAC-seq peaks or the specific 

chromatin states in the exact same case.

Association of somatic mutations with local chromatin changes

A schematic representation of the approach is shown in Supplementary Fig. 16. Consensus 

H3K27ac and ATAC-seq peaks of the extended CLL series that harbored a somatic mutation 

in at least one of the 44 CLL cases were included for this analysis (the immunoglobulin loci 

were excluded). Regions for which somatic mutations were considered to be associated with 

a local increase in H3K27ac/ATAC-seq levels were assigned if: (i) one or more of the 

patients with somatic mutations had an H3K27ac/ATAC-seq peak in this region and (ii) one 

or more of the same patient(s) had a z-score of H3K27ac/ATAC-seq levels of >2, using the 

mean and standard deviation of CLLs without the somatic mutation and normal B cells. 

Regions for which somatic mutations were considered to be associated with a local decrease 

in H3K27ac/ATAC-seq levels were assigned if: (i) at least 10% of the patients without 

somatic mutations in this region had an H3K27ac/ATAC-seq peak and (ii) one or more of the 

patients with somatic mutations had a z-score of H3K27ac/ATAC-seq levels of < -2, using 

the mean and standard deviation of CLLs without the somatic mutation and normal B cells. 

Next, the mutations per case were permutated (i.e. each patient got assigned the somatic 
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mutations of another case) to calculate how many associating mutations were found by 

chance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. CLL reference epigenomes.
(a) Overview of analyzed CLL and normal B-cell samples (upper panel) for the nine layers 

of the reference epigenome (lower panel). $no whole-genome bisulfite sequencing data 

available; ┼six instead of three biologically independent samples analyzed for chromatin 

accessibility. (b) Unsupervised principal component analysis for the nine layers of the 

reference epigenome. Number of datapoints analyzed to generate the PCAs: H3K4me3 

(n=38,499 independent genomic regions), H3K4me1 (n=37,871 independent genomic 

regions), H3K27ac (n=47,191 independent genomic regions), H3K36me3 (n=15,561 
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independent genomic regions), H3K9me3 (n=27,371 independent genomic regions), 

H3K27me3 (n=12,878 independent genomic regions), ATAC-seq (n=91,671 independent 

genomic regions), WGBS (n=15,825,190 independent CpGs), RNA-seq (n=36,190 

independent genes). Sample sizes were for U-CLL: n=2 biologically independent samples 

(all nine layers), for M-CLL: n=5 biologically independent samples (all nine layers), for 

NBC-PB, GCBC and PC-T: n=3 biologically independent samples (all nine layers), for 

NBC-T: n=3 biologically independent samples (all layers except WGBS that does not 

include NBC-T), for MBC: n=3 biologically independent samples (all layers except ATAC-

seq for which 6 biologically independent samples were used). (c) K-means clustering of 

independent genomic regions showing differences in the dynamics of H3K27ac levels in 

CLL and normal B cells. For each cluster (C1-C15) the number of independent genomic 

regions is indicated in brackets. C1 and C2 respectively represent regions with de novo 

increase and de novo decrease in CLL. (d) Fraction of regions in CLL (n=7 biologically 

independent samples) and normal B cells (n=15 biologically independent samples) 

harboring ATAC-seq peaks in regions with de novo increase (C1) or de novo decrease (C2) 

in CLL of H3K4me3 (respective P-values 5.5 x 10-4 and 4.2 x 10-6), H3K4me1 (respective 

P-values 6.1 x 10-3 and 2.9 x 10-5) and H3K27ac (respective P-values 5.5 x 10-4 and 1.9 x 

10-4). P-values were calculated using a Wilcoxon rank sum test (two-sided). (e) Median 

DNA methylation levels in CLL (n=7 biologically independent samples) and normal B cells 

(n=15 biologically independent samples) of regions with de novo increase (C1) or de novo 

decrease (C2) in CLL of H3K4me3 (respective P-values 4.5 x 10-4 and 1.6 x 10-1), 

H3K4me1 (respective P-values 4.5 x 10-4 and 1.6 x 10-1) and H3K27ac (respective P-values 

4.5 x 10-4 and 4.2 x 10-1). P-values were calculated using a Wilcoxon rank sum test (two-

sided). (f) Boxplots of log10 transformed fold changes (FC) in gene expression (GE) levels 

in CLL versus normal B cells of all genes located within regions with de novo increase 

(cluster 1, C1) or de novo decrease (cluster 2, C2) in CLL. For each gene the mean log10 

transformed GE levels of CLL (n=7 biologically independent samples) and normal B cells 

(n=15 biologically independent samples) were calculated and subtracted to obtain the log10 

transformed FC between CLL and normal B cells. H3K4me3 (P-value 8.2 x 10-77, mean, 

minimum, 25th, 50th and 75th percentile and maximum log10(FC) and number of 

datapoints (= independent genes) C1: 0.43, -1.85, 0.09, 0.29, 0.65, 3.47, 624 and C2: -0.15, 

-3.62, -0.33, -0.04, 0.10, 1.41, 911), H3K4me1 (P-value 3.9 x 10-50, mean, minimum, 25th, 

50th and 75th percentile and maximum log10(FC) and number of datapoints (= independent 

genes) C1: 0.29, -1.42, 0.05, 0.21, 0.49, 3.47, 971 and C2: -0.05, -2.09, -0.23, -0.02, 0.10, 

2.27, 952), H3K27ac (P-value 5.3 x 10-137, mean, minimum, 25th, 50th and 75th percentile 

and maximum log10(FC) and number of datapoints (= independent genes) C1: 0.44, -1.05, 

0.12, 0.32, 0.64, 3.47, 1,081 and C2: -0.25, -2.42, -0.46, -0.09, 0.09, 1.63, 713), H3K36me3 

(P-value 1.1 x 10-52, mean, minimum, 25th, 50th and 75th percentile and maximum 

log10(FC) and number of datapoints (= independent genes) C1: 0.52, -0.65, 0.19, 0.34, 0.72, 

3.47, 233 and C2: -0.37, -2.32, -0.68, -0.26, 0.01, 1.13, 235), H3K9me3 (P-value 3.3 x 10-10, 

mean, minimum, 25th, 50th and 75th percentile and maximum log10(FC) and number of 

datapoints (= independent genes) C1: -0.16, -1.73, -0.44, -0.04, 0.07, 1.32, 160 and C2: 0.16, 

-1.91, 0.06, 0.17, 0.30, 1.74, 206) and H3K27me3 (P-value 3.0 x 10-17, mean, minimum, 

25th, 50th and 75th percentile and maximum log10(FC) and number of datapoints (= 

independent genes) C1: -0.22, -2.32, -0.51, -0.06, 0.12, 0.98, 92 and C2: 0.52, -0.93, 0.00, 
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0.35, 0.93, 3.47, 262). P-values were calculated using a Student's t-test (two-sided). (g) 

Heatmap of p-values of gene ontology (GO) terms (rows, n= 190 independent GO terms, 

only the top 20 terms per cluster were included) that were significantly enriched (p-value < 

0.05) among the genes overlapping with regions with de novo increase (C1) or de novo 

decrease (C2) of the six histone marks in CLL. The GO term enrichment and significance 

were calculated per cluster separately. The number of independent genes per cluster used in 

this calculation is indicated below the heatmap, their exact numbers were: H3K4me3 (C1: 

624, C2: 911), H3K4me1 (C1: 971, C2: 952), H3K27ac (C1: 1,081, C2: 713), H3K36me3 

(C1: 233, C2: 235), H3K9me3 (C1: 160, C2: 206) and H3K27me3 (C1: 92, C2: 262). U-

CLL, CLL with unmutated IGHV; M-CLL, CLL with mutated IGHV; NBC-PB, naive B cell 

from peripheral blood; NBC-T, naive B cell from tonsil; GCBC, germinal centre B cell; 

MBC, memory B cell; PC-T, plasma cell from tonsil; GE, gene expression.
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Fig. 2. Chromatin states and its transitions in CLL.
(a) Emissions of the generated chromatin state model. Represented are the percentages of 

regions assigned to a specific chromatin state (columns) that contain a specific histone mark 

(rows). (b) Jaccard coefficients of genomic regions that show de novo increase (C1) or de 

novo decrease (C2) of the six different histone marks in CLL. Number of regions analyzed: 

H3K4me3 C1 (n=1,170 independent regions), H3K4me3 C2 (n=1,423 independent regions), 

H3K4me1 C1 (n=1,418 independent regions), H3K4me1 C2 (n=1,198 independent regions), 

H3K27ac C1 (n=2,421 independent regions), H3K27ac C2 (n=1,320 independent regions), 
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H3K36me3 C1 (n=285 independent regions), H3K36me3 C2 (n=251 independent regions), 

H3K9me3 C1 (n=344 independent regions), H3K9me3 C2 (n=293 independent regions), 

H3K27me3 C1 (n=208 independent regions), H3K27me3 C2 (n=325 independent regions). 

(c) Distribution of the different chromatin states in all analyzed samples separately (seven 

CLLs and 15 normal B cells) at regions with de novo increase (C1) or de novo decrease (C2) 

of H3K4me3, H3K4me1 and H3K27ac in CLL. (d) Chromatin state transitions from B cells 

to CLL. Percentages of regions with de novo increase (C1) or de novo decrease (C2) of 

H3K4me3, H3K4me1 and H3K27ac in CLL that harbor a specific chromatin state in normal 

B cells (rows, n=15 biologically independent samples) and the same (diagonal, no change of 

chromatin state) or another state (chromatin state switch) in CLL (columns, n=7 biologically 

independent samples). The total matrix represents 100 percent of the regions. U-CLL, CLL 

with unmutated IGHV; M-CLL, CLL with mutated IGHV; NBC-PB, naive B cell from 

peripheral blood; NBC-T, naive B cell from tonsil; GCBC, germinal centre B cell; MBC, 

memory B cell; PC-T, plasma cell from tonsil. ActProm, Active Promoter; WkProm, Weak 

Promoter; PoisProm, poised Promoter; StrEnh1, Strong Enhancer 1; StrEnh2, Strong 

Enhancer 2; WkEnh, Weak Enhancer; Txn_Trans, Transcription Transition; Txn_Elong, 

Transcription Elongation; Wk_Txn, Weak Transcription; H3K9me3_Repr, H3K9me3 

Repressed; H3K27me3_Repr, H3K27me3 Repressed; Het;LowSign, Heterochromatin;Low 

Signal.
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Fig. 3. CLL specific regulatory landscape.
(a) Number of independent genomic regions with de novo gain or loss of regulatory 

elements in CLL. (b) Binding motifs of NFAT, FOX and TCF/LEF transcription family 

members, which are highly enriched in the accessible loci of the de novo active regions 

(n=934 independent genomic loci) versus the background (n=1,868 independent genomic 

loci). Statistical significance was determined using the one-tailed Wilcoxon rank-sum test 

and the p-values were adjusted using the Bonferroni correction. Out of the list of all enriched 

TF motifs (Supplementary Table 8), we considered only those expressed in the seven CLLs 

with reference epigenomes. (c) Normalized interaction frequencies of 3D chromatin 

interactions within a 100kb window in CLL1525 (upper row) and memory B cells (MBCs, 

lower row) in regions that are de novo active in CLL (left panels), active in CLL and MBCs 
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(middle panels) and inactive in both (right panels). (d and e) Examples of identified de novo 

active regions in CLL (red arrows), targeting FMOD (d) and TCF4 (e). Indicated are in the 

upper panels the chromatin states in all seven biologically independent CLLs and 

representative samples of each of the normal B-cell subpopulations and below this the 

median ATAC-seq, DNA methylation and RNA-seq levels of the seven biologically 

independent CLLs and 15 biologically independent normal B cells. U-CLL, CLL with 

unmutated IGHV; M-CLL, CLL with mutated IGHV; NBC-PB, naive B cell from peripheral 

blood; NBC-T, naive B cell from tonsil; GCBC, germinal centre B cell; MBC, memory B 

cell; PC-T, plasma cell from tonsil. ActProm, Active Promoter; WkProm, Weak Promoter; 

PoisProm, poised Promoter; StrEnh1, Strong Enhancer 1; StrEnh2, Strong Enhancer 2; 

WkEnh, Weak Enhancer; Txn_Trans, Transcription Transition; Txn_Elong, Transcription 

Elongation; Wk_Txn, Weak Transcription; H3K9me3_Repr, H3K9me3 Repressed; 

H3K27me3_Repr, H3K27me3 Repressed; Het;LowSign, Heterochromatin;Low Signal.
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Fig. 4. De novo chromatin activity and accessibility changes in an extended CLL cohort.
(a) Unsupervised principal component analysis (first three components) of the extended 

CLL cohort. Number of datapoints analyzed to generate the PCAs: H3K27ac (n=58,790 

independent genomic regions) and ATAC-seq (n=115,352 independent genomic regions). 

Respective P-values for H3K27ac between U-CLL (n=39 biologically independent samples) 

and M-CLL (n=63 biologically independent samples) of PC1, PC2 and PC3 were 8.4 x 10-1, 

6.5 x 10-6 and 4.3 x 10-16) and for ATAC-seq between U-CLL (n=38 biologically 

independent samples) and M-CLL (n=66 biologically independent samples) of PC1, PC2 

and PC3 were 1.5 x 10-1, 9.5 x 10-10 and 5.2 x 10-16). P-values were calculated using a 

Student's t-test (two-sided). (b) Heatmap of signal intensities of H3K27ac and ATAC-seq in 

regions that show a de novo change in levels of these marks in U-CLL and M-CLL. Signal 
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intensities are indicated as row z-scores. On the left the number of independent regions per 

cluster is indicated. (c) Heatmap of gene expression levels of target genes associated with 

regions that show de novo change in H3K27ac (activity) or ATAC-seq (accessibility) levels 

in U-CLL and M-CLL. Gene expression levels are indicated as row z-scores. On the left the 

number of independent target genes is indicated. (d) Top five enriched transcription factor 

binding sites in regions that show a de novo change in ATAC-seq levels in U-CLL and M-

CLL. Out of the list of all enriched TF motifs (Supplementary Table 8), we considered only 

those expressed in the CLL subgroup with higher accessibility levels. Number of regions 

analyzed vs. background were: de novo increased accessibility in U-CLL (n= 2,125 vs. 

4,250 independent genomic regions) or M-CLL (n=175 vs. 350 independent genomic 

regions) and de novo decreased accessibility in U-CLL (n=238 vs. 476 independent genomic 

regions) or M-CLL (n=1,065 vs. 2,130 independent genomic regions). Statistical 

significance was determined using the one-tailed Wilcoxon rank-sum test and the p-values 

were adjusted using the Bonferroni correction. U-CLL, CLL with unmutated IGHV; M-

CLL= CLL with mutated IGHV; NBC-PB, naive B cell from peripheral blood; NBC-T, 

naive B cell from tonsil; GCBC, germinal centre B cell; MBC, memory B cell; PC-T, plasma 

cell from tonsil.
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Fig. 5. B cell related chromatin activity and accessibility signatures in the extended CLL cohort.
(a) Heatmap of the signal intensities of H3K27ac and ATAC-seq at differential regions 

between U-CLL and M-CLL that show dynamic modulation of these marks in normal B 

cells. Signal intensities are indicated as row z-scores. For each change (up in U-CLL (left 

panels) or down in U-CLL (right panels)) and each mark the six main (out of the 30 

possible) dynamic patterns are shown. On the left the number of independent regions per 

cluster is indicated. (b) Principal component analysis of all regions that show differential 

changes in U-CLL versus M-CLL and dynamic modulation in normal B cells. In this case, 

all regions of all 30 dynamic patterns were included in the analysis, number of datapoints 

analyzed to generate the PCAs: H3K27ac (n=1,723 independent genomic regions) and 

ATAC-seq (n=5,200 independent genomic regions). Sample sizes: U-CLL (n=39 

biologically independent samples for H3K27ac and 38 for ATAC-seq), M-CLL (n=63 

biologically independent samples for H3K27ac and 66 for ATAC-seq), NBC-PB, NBC-T, 

GCBC and PC-T (n=3 biologically independent samples for H3K27ac and ATAC-seq), 
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MBC (n=3 biologically independent samples for H3K27ac and 6 for ATAC-seq). (c) (left 

panel) Heatmap of signal intensities of ATAC-seq in the 64 independent genomic regions 

that show differential higher levels in M-CLL compared to U-CLL that overlap with the 

previously defined 1,649 CpG signature. Signal intensities are indicated as row z-scores. 

(right panel) Heatmap of DNA methylation estimates of the 91 independent CpGs that 

overlap with the ATAC-seq regions represented in the left panel. U-CLL, CLL with 

unmutated IGHV; M-CLL= CLL with mutated IGHV; NBC-PB, naive B cell from 

peripheral blood; NBC-T, naive B cell from tonsil; GCBC, germinal centre B cell; MBC, 

memory B cell; PC-T, plasma cell from tonsil.
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Fig. 6. Somatic genetic alterations in relation to chromatin activity and accessibility.
(a) Number of regions with significant gain or loss of H3K27ac or ATAC-seq levels in CLLs 

with somatic genetic alterations in the indicated genes/regions as compared to CLL cases 

without these alterations or in driver-less CLLs as compared to CLLs with mutations in 

driver genes. Regions with gain/loss within the investigated structural variant were excluded. 

Statistical significance was determined using the two-sided nbinomWaldTest in the DEseq2 

package, corrected for multiple testing (Benjamini-Hochberg). Sample sizes: MYD88-MT 

vs. MYD88-WT (H3K27ac: n=5 vs. 57, ATAC-seq: n=6 vs. 59 biologically independent 

samples), SF3B1-MT vs. SF3B1-WT (H3K27ac: n=7 vs. 95, ATAC-seq: n=7 vs. 97 

biologically independent samples), ATM-MT vs. ATM-WT (H3K27ac: n=10 vs. 28, ATAC-

seq: n=10 vs. 27 biologically independent samples), TP53-MT vs. TP53-WT (H3K27ac: 

n=5 vs. 97, ATAC-seq: n=5 vs. 99 biologically independent samples), IGLL5-MT vs. 

IGLL5-WT (H3K27ac: n=6 vs. 56, ATAC-seq: n=7 vs. 58 biologically independent 

samples), NOTCH1-MT vs. NOTCH1-WT (H3K27ac: n=9 vs. 29, ATAC-seq: n=9 vs. 28 

biologically independent samples), SYNE1-MT vs. SYNE1-WT (H3K27ac: n=6 vs. 96, 

ATAC-seq: n=6 vs. 98 biologically independent samples), MGA-MT vs. MGA-WT 

(H3K27ac: n=5 vs. 33, ATAC-seq: n=5 vs. 32 biologically independent samples), driverless 

vs. with mutations in driver genes (H3K27ac: n=15 vs. 47, ATAC-seq: n=15 vs. 50 

biologically independent samples), tri12 vs. non-tri12 (H3K27ac: n=14 vs. 88, ATAC-seq: 

n=13 vs. 91 biologically independent samples), del10q vs. non-del10q (H3K27ac: n=5 vs. 
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97, ATAC-seq: n=5 vs. 99 biologically independent samples), del17p vs. non-del17p 

(H3K27ac: n=6 vs. 96, ATAC-seq: n=6 vs. 98 biologically independent samples), del13q vs. 

non-del13q (H3K27ac: n=45 vs. 57, ATAC-seq: n=46 vs. 58 biologically independent 

samples), del11q vs. non-del11q (H3K27ac: n=8 vs. 30, ATAC-seq: n=8 vs. 29 biologically 

independent samples), amp2p vs. non-amp2p (H3K27ac: n=5 vs. 33, ATAC-seq: n=5 vs. 32 

biologically independent samples). (b) Heatmap of signal intensities of regions up and down 

regulated for H3K27ac and ATAC-seq levels in MYD88 mutated CLLs. Signal intensities 

are indicated as row z-scores. (c) Heatmap of signal intensities of regions up and down 

regulated for H3K27ac and ATAC-seq levels in CLLs with trisomy 12. Regions with gain of 

H3K27ac or ATAC-seq levels in chromosome 12 in the trisomy12 cases were excluded. 

Signal intensities are indicated as row z-scores. (d) Percentage of mutations in specific CLL 

cases falling into regions with the different chromatin states in the exact same cases. (e) 

Enrichment of somatic mutations in regions with ATAC-seq and/or H3K27ac in the exact 

same case (indicated are the ratios of observed versus expected number of mutations in these 

regions). (f) Mean enrichment in U-CLL (H3K27ac: n=25, ATAC-seq: n=24 biologically 

independent samples) and M-CLL (H3K27ac: n=17, ATAC-seq: n=18 biologically 

independent samples) of somatic mutations in regions with H3K27ac (mean U-CLL: 0.99, 

mean M-CLL: 2.98, P-value 2.7 x 10-5) or ATAC-seq (mean U-CLL: 0.76, mean M-CLL: 

1.04, P-value 2.3 x 10-2) in the exact same case (indicated are ratios of observed versus 

expected number of mutations in these regions). Error bars indicate standard deviations. P-

values were calculated using a Wilcoxon rank sum test (two-sided). (g) Mean enrichment in 

U-CLL (n=24 biologically independent samples) and M-CLL (n=17 biologically 

independent samples) of somatic mutations in regions with ATAC-seq and/or H3K27ac in 

the exact same case (indicated are the ratios of observed versus expected number of 

mutations in these regions). Respective means U-CLL: 1.47, 0.77, 0.74, 1.00, respective 

means M-CLL: 5.97, 1.08, 0.99, 0.99, and respective P-values: 8.5 x 10-5, 1.7 x 10-2, 3.5 x 

10-1 and 1.0 x 10-4. Error bars indicate standard deviations. P-values were calculated using a 

Wilcoxon rank sum test (two-sided). (h) Mean enrichment in U-CLL (n=24 biologically 

independent samples) and M-CLL (n=17 biologically independent samples) of somatic 

mutations in regions with ATAC-seq and/or H3K27ac in the exact same case (indicated are 

the ratios of observed versus expected number of mutations in these regions) in loci that are 

known targets of the SHM machinery (upper panel, excluding IG loci, respective means U-

CLL: 0.39, 0.80, 1.39, 1.00, respective means M-CLL: 18.87, 2.91, 5.25, 0.92, and 

respective P-values: 5.3 x 10-6, 8.2 x 10-3, 1.0 x 10-1 and 8.5 x 10-6) and other regions (lower 

panel, respective means U-CLL: 0.44, 0.75, 0.69, 1.00, respective means M-CLL: 0.62, 0.71, 

0.69, 1.00, and respective P-values: 1.6 x 10-1, 8.0 x 10-1, 9.3 x 10-1 and 8.8 x 10-2). Error 

bars indicate standard deviations. P-values were calculated using a Wilcoxon rank sum test 

(two-sided). MT, mutated; WT, wild type; tri12, trisomy 12; del, deletion; amp, 

amplification; U-CLL, CLLs with unmutated IGHV; M-CLL, CLLs with mutated IGHV; 

SHM, somatic hypermutation; NBC-PB, naive B cell from peripheral blood; NBC-T, naive 

B cell from tonsil; GCBC, germinal centre B cell; MBC, memory B cell; PC-T, plasma cell 

from tonsil. ActProm, Active Promoter; WkProm, Weak Promoter; StrEnh1, Strong 

Enhancer 1; StrEnh2, Strong Enhancer 2; WkEnh, Weak Enhancer; Wk_Txn, Weak 

Transcription; Het;LowSign, Heterochromatin;Low Signal.
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