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Abstract 

We propose a reference state for finite-dimensional coherent states, which is easy to deal with 
in comparison to former suggestions which we briefly review. We also advance explicit 
calculations which shows that the phase of the overlap of finite coherent state has a structure 
analogous to the usual infinite-dimensional continuous coherent states. 

1. Introduction 

The theory of coherent states has been of great importance in various branches of 
physics since its earliest formulations back in the 1920s by Schr6dinger [1] and later 
in the 1960s by Glauber [2], Sudarshan [-3] and Klauder [4]. These are the so-called 
field coherent states, that we shall call continuous coherent states (CCS), for reasons 
that will soon be obvious. Many generalization have been proposed since then [5-7].  
They are all dynamic in nature, in the sense that the coherent states for a given 
physical quantum system depend strongly on the Hamiltonian operator. More re- 
cently, there has been some proposals of a "kinematic" generalization of coherent 
states for finite dimensional spaces based on Schwinger's quantum kinematics [8-11]. 
We shall call them "finite coherent states". (FCS). Both the constructions have, in 
common, though, the definition of a "reference state" which acted upon by a suitable 
operator, generates the whole set of coherent states. 

The choice of a reference state for the finite case is quite ambiguous. In the present 
work we discuss this problem and propose an alternative definition which is sure to 
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solve several problems. As we shall show, the present definition is both natural and 
easy to deal with. In Section 2, we review very briefly the continuous formulation only 
to establish notations and to compare it to the finite theory. In Section 3, we also 
review the finite-space formalism based on Schwinger's quantum kinematics. We also 
discuss the problem of definition of finite coherent states as a problem of choosing 
a reference state. We review some earlier choices in the literature as well, and present 
our own. In Section 4, we make some explicit calculations, showing that the overlap 
phase of the FCS and the CCS have a similar structure. We conclude this paper in 
Section 5, where we make further suggestions. Proofs of mathematical identities used 
in the text are given in the Appendices. 

2. The continuous coherent states 

Let I q(x)) be the continuous indexed set of position eigenkets of a single quantum 
mechanical particle in one dimension and Ip(x)} the set of momentum states together 
with the position and momentum observables following the usual relations (eigen- 

value equations): 

and 

QIq(x)} - xlq(x)) (2.1a) 

Pip(x)) = xlp(x)}, (2.1b) 

[4,  P] = i/" (Heisenberg relation), (2.2) 

(we use h = 1 units from now on) 

(q(x)lq(x')) = 6(x - x') (normalization), (2.3) 

+o:3 -boo 

[ =  f dxlq(x))(q(x)] = f dxlp(x))(p(x)[ (completeness), (2.4) 

- - c t 3  - - C O  

1 e/XX, (overlap equation). (q(x)lP(x')} = (2.5) 

We use here a slightly different notation from the usual one, as can be seen above, 
where the Iq(x)} ket stands for a position eigenket with eigenvalue x. The same 
happens for the momentum eigenket Ip(x)). It pays off, at least for two reasons: the 
first is to set the CCS in a form as analogous as possible to the FCS formalism. 
Another reason is that some equations can be written in a more compact and elegant 
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way. For example, the Fourier transform operator may be written as 

+ o o  

P = .f dxlp(x))(q(x)l. (2.6) 

- -oo  

We can write the transition operators in position and momentum spaces as 

17¢ = e i¢0 and t~, = e i"p, (2.7) 

so that 

17elq(x)) = ]q(x - ~)) and O.]p(x)) = ]p(x - ~)). (2.8) 

Eqs. (2.1) and (2.8) give us the well known relation [8]. 

17~0. = e'~" O. 17~. (2.9) 

We also define the usual non-hermitian "lowering" operator 

= ~22((~ + P) (2.10) 

together with its conjugate and the number operator 

= a ÷ .a ,  (2.11) 

followed by its eigenstates { In)}, such that 

.~ln)=nln) n = 0,1,2 . . . .  (2.12) 

and 

al05 = 0 .  (2.13) 

The "vacuum" state 10) is an eigenstate of the Fourier transform operator: 

FIO) = [0), (2.14) 

as a matter of fact it can be shown that (Appendix A) 

Pin)  = (i)"ln). (2.15) 

The CCS may be defined as 

14, q) = b[~, q]10), (2.16) 

where the displacement operator is 

/) [~, q] = e-i¢./2 17~ U- q (2.17) 

and the vaccum state is the reference state: 10, 0) = 10) for the CCS. 
So, there is an infinite continuous set of coherent states in a one-to-one relation to 

the points of the "classical" phase space plane. These states have many important 
properties such as over-completeness, minimum uncertainty for position and 
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momentum measurements and the dynamic fact that "once a coherent state, always 
a coherent state" for the evolution under a harmonic oscillator Hamiltonian [7]. 

One particularly important relation is the overlap of two coherent states: 

(~, /~[~* ~t) = e(- 1/4)[({-{,)2+(n-t/,)Z]e(i/2)({,r/-¢q,). (2.18) 

The complex number above has a phase which is half the symplectic area defined on 
a one degree-of-freedom classical phase space by the vectors 

V = ~ q + t l ~  p and V '=  ~3q+ @ (2.19) 

and the symplectic two-form [12] 

(2 = dq A dp. (2.20) 

This is one of the facts, besides the minimum uncertainty relation mentioned above, 
that shows a close connection between coherent states and classical mechanics. 

We will be able to show in the next sections an analogous structure for the FCS. 

3. F in i te  phase  spaces  and coherent  s ta tes  

In this section we make an option for self-containedness and review some known 
results, the main references being [8,9]. 

Let W (m be a finite N-dimensional quantum space spanned by a basis of"position 
vectors" { [/t~)>} k = 0, 1, 2 . . . . .  N - 1 or "momentum states" {I v~m)} such that (We 
use from now on the sum over repeated upper and lower indices convention.) 

]#~N)>(#ktm[ = [v~m>(vk(m[ = 7(m (completeness relation), (3.1) 

( ~lk(N) l lA~N)> = (vk(N)[ y j(N)) = (~ jk (basis orthonormality) (3.2) 

and 

. k(N) , ,(s)\  = F~(N) = (3.3) ( i t  vj / = V ~ ( N ) / ~  e2nijk/N/x ~ (overlap equation). 

The F k(m are matrix elements of the finite N-dimensional Fourier transform operator: 

p(N) = I v~N)>(pk(N)I. (3.4) 

The set of indices takes values in the ring Z~¢ [9] of MOD N integers: k = [0IN, 
[I-IN ..... IN - 1IN so that the finite phase space is just Zu x Z~. 

Translation operators U and V defined by 

Olv~ m) = I v ~ l )  and l~[p~ m) = •k-l(N) ) , (3.5a) 

O lp~N)) -= vklp k(N)) and I~lv~ m) = VklV(k N)) , (3.5b) 

So  that 

I ~m" 0 "  = v"" 0 m. 12" (3.6) 
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which is the discrete analogue of Eq. (2.9). We can define then, the finite coherent 
states as 

Im, n(m> =/'}~2lOCm>, (3.7) 

where [0(N)> is a suitable reference state, and 

b~2 = v - ' " / 2 ( N ) 8  ""  P - " .  (3.8) 

A natural choice for this state would be an eigenstate of ~e(N) with eigenvalue one. 
But, as with continuous states, this choice is not unique. It can be shown that the 

P(u) operator has a [(N + 4)/4] degeneracy [13] for eigenvalue one, where [x] means 
"the largest integer not greater than x". 

There are at least two former suggestions we would like to discuss before introduc- 
ing our own. In [14,15] the authors introduce the following operator: 

A ~ )  = (1~ - l?t) - i(/) - 0 t) (3.9) 

as a finite-dimensional analogue of the lowering operator ti and define l0 N)) by 

A'~N) Io(N)> = 0. (3.10) 

Though the /](m operator has some very interesting properties, that we hope to 
discuss deeply in a future paper), Eq, (3.10) is still ambiguous as can be seen by 
considering some examples: 

For N = 2, ~(N) is the null operator, because 

0 t(2)~-- 0 (2) and l~t(2)= [~(2). 

For N = 4 we have a double degeneracy. The states 

I x >  = ~I~_ (I~(o~)> + I¢~)>) 
42 

and 

IY> ½(i/204)) + Ip~4)> (4)\ 

both satisfy 

A(mlX) = A(N)iY) = 0 

together with 

F(4)IX> = IX> F(*)] Y> = IY>- 

In [14], the authors also suggest the eigenstates of the following hermitian operator: 

ft (N)= 27 (N~- ½(0 t(m + t) (N) + I 7"N) + I 9~N)) (3.11) 

as possible candidates for a reference state. The h(N) operator would be a kind of 
finite-dimensional version of the oscillator Hamiltonian 

a = ½(0 ~ + P~). 
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Again, let us consider some examples: For N = 2 we can compute that the states 

1 
IX- )  = x/4  + 2x/~[(1 + x/2)[fo2)> + []A]2)>] 

and 

I x + >  = 12"f2 E _ i/~oZ~> + (1 + ~) l#]z )>3  
x/4  + 

satisfy 

] t { Z ) [ x + )  = (2 _+x/-})lXg). 

Thus, the ~(2) operator "lifts up" the degeneracy we had for the ~]~z~ operator, so we 
may choose 

[0(2)> = IX->. 

In the same way for N = 4, we have 

h(4'lX> = 2IX> - x/21y> 

and 

/~(4)ly> = - x/21X> + 21y> 

Thus, the reduced matrix of ~(4)in the two-dimensional sub@ace spanned by IX> and 
is IY>: 

2 

By diagonalization, we find easily that the states 

= 1 X IX'> ~ ( [  > - I y > )  

and 

1 
IY'> = ~ ( I X >  + ly>) 

satisfy 

/t~4~]X'> = (2 + x/2)[X'> 

and 

tt(4)[ Y') = (2 -- x~) l  Y') 

In this way, we can observe again, that the ~(4) operator lifts up the degeneracy we 
had for ,~(4). These examples are encouraging, but we lack a proof for all N. We can 
prove, though, that indeed ft (N) commutes with ptm and so they share the same 
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eigenvectors. (see Appendix B) It still remains to be proved, though, that ~(N) is 
non-degenerate for the eigenvalue-one subspace of F (N). 

Anyway, it is a very cumbersome procedure to follow if we are to analytically 
diagonalize ~(m. Another suggestion was given in [11], based on a work of Mehta 
[13]: Define the following N states in the usual continuous infinite-dimensional space: 

+ oo [-/'2X'~ 1/2q 
IQ~)> --(~)l"s~ iq/k ) J(sN +j ) ) .  (3.12) 

Mehta, in his work, proved essentially the following result: 

F~(N)(Qk(N)Is ) = (i)S(Qj(N)Is) (no sum over s). (3.13) 

We can define then a state 10 (N)) such that 

CN(~tJ(N)IO(N) ) = (QJ(N)I0) (for all j). (3.14) 

The constant CN is determined by normalization of 10(N)). 
The reference state defined this way certainly satisfies the correct eigenvalue 

equation for p(N), but it is very difficult to treat analytically. In fact, its components are 
given by an infinite sum of Gaussians: 

+ ~  
( __ ~(sN + j)2 /2) 

(I~J(N)Io (N)) = (CN) -1 ~ e , (3.15) 
s :  - ~  

where we used here the well-known "Gaussian-like" position (or momentum) repres- 
entation for the ground state of the harmonic oscillator: 

(q(x)10) = (p(x)10~ = (rt)- 1/4 e-X~/2. (3.16) 

We suggest a much simpler algorithm for the choice of a reference state that belongs to 
the "eigenvalue-one" subspace of/~(N). For this, we follow an algebraic formalism also 
introduced by Mehta. First, observe that 

N - 1  
•Jk(N)Vm k(N) = ~ e 2 n i k ( j - r a ) / N  = N6~, (3 .17 )  

k=O 

which means that 

p(N). pt(N) = ~N) (3.18) 

and that 

QzJ(N) Iff2(N)II'ttkN)) = ~J-- k" (3.19) 

Remember that the indices are ZN-valued, so these equations are all MOD N rela- 
tions. (Thus, - k stands for N - k, for instance and the sum in (3.17) may run from 
any t e Z to N + t). 

It follows that 

~3(N) : ~ t ( N )  
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and so 

fi4(N) = i(N). (3.20) 

The above equation implies that the eigenvalues of fi(N) are the fourth-roots of unity: 

:(4) = e2nik /N 
k 

just as in the continuous theory. Let us define the following four operators: 

~(N) 1 ,,(4) ~ k ( N )  Bj = ~ V - j k $  wherej ,  k = 0, 1,2,3. (3.21) 

Notice that  the k-index above is a Z4, which stands both as a dummy index in the sum 
and as the kth power of fi(N). 
Using (3.17) for N = 4 makes it possible to invert Eq. (3.21): 

fi~(N) = B~N)vKS(~) (3.22) 

and calculate the product: 

~(N). h(N) ±.,(4) .(4) ~j(N) fim(N) (making j + m = s) k ~ n  = 1 6 V - j k V - n m  ~t " 

__ 1 , (4) , , (4) , ,m(4)~s(N)  1,  (4) DstN) X ~ ( N )  
- -  ~ v - s k v k m v - n  $ = 4 v - s k I  L'kn = k kn 

that shows that the h(N) ~k are idempotent. 
The above result together with Eq. (3.22) for j = 1 gives us 

A(N) ^(N) ^(N) ^(N) k(4) ^ F Bj = B k • B j  v = B(kN)~k jyk (4)  = vj(4)Bĵ (s) 

In particular, 

fi(")~(oN) _- ~(oN). 

So, if we define 

10(N)> = IIB(oN) I ~(oN)> II -1 .  B(oN) I ~(ON)> (3.23) 

as our normalized reference state it will certainly be an eigenvalue-one state of f i  (N). Its 
components  in the (N) {[/~k }} basis can be easily computed. Eq. (3.21) fo r j  = 0 gives us 

]~(N) = ¼(~'(N) _[_ if(N) -F- f f2(N) ~_ f i t ( N ) ,  (3.24) 

since 

then 

ii B(oN) i ~(0~)> ij 2 = (~0(N) i/~2(N) i #(0N)> = /~ 0(N) in ô (N) I~'0" (N),,/. 

While 

(,,J(~) n(~') ,,(~)', _- ¼((#(N) I/~(oN) > + (/~(N) Ifi(N)I~(0N)> + (/~J(N) Ifi2(N)I/~(0N)> r" u 0  ,~0 / 
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So, 

(#s(ml0(m) = [-2(N + x / /N ) ] -  ,/2 (I + x/N5So). (3.25) 

4. The overlap of  finite coherent states 

Let us define N 2 unitary operators  as 

r$ 

Because of (3.6), these operators  obey the relations below: 

~- Yrs £~--r--s  

and 

)~(m. ~?(m . (m¢-(m 
rs ~*pq ~ Vsp "Xr+ps+q" 

Eq. (3.8) can be redefined as 

5(m ~(m , (m pq ~- ~Lp__qV_pq/2.  

Using (3.5) we have 

-(N) . (N) \  ,,(N) I,,(N) \ 
rs Ptk / = V r ( k - s ) l P ' k - s / "  

The overlap of two coherent  states is then 

(p, q(m[r ' S(N)> = (0(~)I.¢~}N> ~.)?~N_) 10(~)>., (N). ,  (N) Vpq/2 V--rs/2 . 

Because of (3.23) the reference state is 

10 (N)) = [2 (N  + ,~-N)]- 1/21/~m)2i(m 

with 

,~J(N) = 1 + , , / - ~ , ~ .  

So, 

(p,q(mir, s(m> = [2(N + v/-N)] - l : (u )  ~k(N),(u) /,,(N) /~k -q+s  *'~ V(pq-rs ) /V(r -p) (k+s)~  

where we used Eqs. (4.2)-(4.5). Taking k = m - s we get 

f N ~ q -  1 ~(N) ~m-s(N)v(N)  ,,(N) (p,q(N)lr, s(m ) = [-2(N + v " ' , J  "'ra-q'" V(pq--rs)/2V(r--p)m, 

But 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

N - 1  
~(N) ,]m-s(N).(N) N//N¢~O_ q)(1 f ~ £ m -  s~.,(N) m-q-- v(,_p),, ---- ~ (1 + + X/'" vO Jv(,_V) m 

m=O 

= ]~vr-p(N),~s  ~m vm"(N)'(N) , / ~ v ' . - P ( N ) ~  " + , / ~ v ' . - ~ ( N ) X ;  + ~ . - ~  v . v ~  

= N,~g + v / N ( 4  -~(~) + v',-~(")) + Nv'~-~(~)~. 
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This result can be summar ized  as 

~(N) ~m-s(N)~,(N) 
m-q  ~'~ V(r-p)m 

= 2(N + w/N) if r =  p and  q =  s 

= ( N  + 2~//N)v~ -p~m if r ~ p and q = s, 

= N + 2 , v /N  if r = p and q =~ s,  

2v/-N cos [rt(r - p)(s ~u~ = - q ) / N ]  v~r-p)~s+q)/2 

where we made  use of the identity 

e i" + e ia = 2 cos [(~ - fl)/2] e i ~" + a)/z. 

So finally, 

(p,  q~m[r, s cm) 

= 1  i f r = p a n d q = s  

~u, N 2x//N)/2(N w/N) = vq~,-p)/z( + + 

= v~Ut~_s,/2(N + 2.v/-N)/2(N + x / N )  

c o s  [ T t ( r  - p)(s ~u~ = - q) /N]  V(rq_ps)/2 

A.C. Lobo, M.C. Nemes /Physica A 241 (1997) 637-648 

(4.8) 

if r ¢ p and q = s 

if r = p and q ¢ s 

if r 4: p and q :~ s. 

if r ¢ p and q v~ s,  

By inspection of all possibilities above,  we can see that  if the over lap is non-null ,  then 

its phase is given by 

P H A S E ( p ,  q~m] r, s ~N)) = (2rc/N)(rq - ps)/2 (4.9) 

in a close ana logy to Eq. (2.18) for the CCS 

5. Conclusions 

In our  view, the FCS formal ism is an al ternat ive definition of coherent  states for 
f ini te-dimensional  q u a n t u m  systems (like spin systems, for instance). Its k inemat ic  
nature  makes  the theory  more  flexible than usual group- theoret ica l  app roach  [7], 
because it does not  depend on dynamic  details specifically, such as the, Hami l ton ian  
of the physical  system. 

We expect this work  to help clear up some aspects of  theory. In part icular,  to reveal 
some links with classical mechanics  in ana logy to the cont inuous  theory (CCS). 
Eq. (3.23), (3.25) and (4.9) are the central  results of  this work.  The  two first equat ions 
state an umabiguous  and clear definition for the reference state of  finite coherent  
states. It  has several advantages  over  former  definitions. It  can be expressed 
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analytically very easily on the {I#~N))} basis, making it possible to compute exact 
results like that of Eq. (4.9). The other way around, Eq. (4.9) make us more confident 
that our choice for the reference is appropriate. 

The idea that the finite phase space has a kind of "pre-symplectic" structure is not 
a new one [16], so, our results of Section 4 may be important on this respect. The A (N) 
operator discussed in Section 3 has very interesting properties that are similar to its 
"continuous" counterpart and may be closely related (as we suspect) to the eigenvalue 
structure of the finite Fourier transform [ 17]. We also hope that research in this route 
may lead to a better understanding of the h operator. 

Appendix. A 

Let us prove first that 

(q(x)l n) = (i)"(p(x)l n) .  

In fact, using that 

In) = (n!)- i/2 (a')"lO) 

and the well-known relations 

(q(x)l(~l ~v) = x(q(x)l ~) 

(q(x)lPl ~5 = - id(q(x)l  ~ )  

(p(x)lPl ~) = x(p(x)[ ~) 

(p(x)l Ol W) = id(p(x)l  ~ )  

together with (2.6), (2.10) and (3.16) gives us 

(q(x)] n) --- (n!)- 1/2(q(x)l(a')nlO ) 

= [2(n!)]- i/2 (x - ~x)n(q(x)10) = [2(n!)]-~/2(x - ~)n(p(x)[0) 

= [2(n!)]- t/2(p(x)l(P + i0)nl0) = (n!)- x/2(i)~(p(x)l(a')"lO) 

= (i)"(p(x)l n) .  

SO, 

+ o o  

Fin) = f dx(p(x)lq(x))(q(x)ln ) 
- -  9 ¢  

+ 0 0  

= (i)" f dxlp(x))(q(x)ln) = (i)"ln). 

- o o  

(A.1) 

(a.2) 

(A.3) 

(A.4) 

(a.5) 
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Appendix. B 

Let us prove first, that 

F,(N). ¢2(N). p(,,) = ~.,(N). 

This follows from Eqs. (3.1)-(3.5). In fact, 

1~Ss))(v~(~)l 0(~)1 v~)5(fs)l = I' (N))~s 1 (~(N) I t~j k + 

= 1, ( N ) ) /  ,k(N) I ~t(N) 
/~k+l X/~ [ : " 

In a similar way 

Eq. (B.1) and (B.2) (and their adjoints) give us 

which  is the  resul t  we w a n t e d  to p rove .  

(8.1) 

(8.2) 

(8.3) 
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