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Abstract: In this paper, we investigate the concept of regional enlarged observability (ReEnOb) for
fractional differential equations (FDEs) with the Hilfer derivative. To proceed this, we develop an
approach based on the Hilbert uniqueness method (HUM). We mainly reconstruct the initial state
ν1

0 on an internal subregion ω from the whole domain Ω with knowledge of the initial information
of the system and some given measurements. This approach shows that it is possible to obtain the
desired state between two profiles in some selective internal subregions. Our findings develop and
generalize some known results. Finally, we give two examples to support our theoretical results.

Keywords: Hilfer fractional derivatives; fractional diffusion systems; regional enlarged observability;
Hilbert uniqueness method
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1. Introduction

In recent decades, fractional calculus theory has proven to be a significant tool for the
formulation of several problems in science and engineering, where fractional derivatives
and integrals can be utilized to describe the characteristics of various real materials in vari-
ous scientific disciplines; see, e.g., [1–5]. This theory has recently received a large amount
of consideration by many academics; we mention Euler, Laplace, Riemann, Liouville, Mar-
chaud, Riesz, and Hilfer; see, e.g., [6–8]. Distributed parameter systems can be analysed in
terms of controllability, observability, and stability, which lead to numerous applications.
However, one of the most basic concerns in system analysis and control is observability,
which is concerned with the reconstruction of a system’s initial state that is taken from
measurements on a system by means of so-called sensors; see, [9]. Amouroux et al. [10]
developed two approaches to investigate regional observability (ReOb) for distributed
systems. The first is state-space-based, and the second allows for estimating the state on the
considered subregion. El Jai et al. [11] introduced the concept of regional strategic sensors
for a class of distributed systems and presented the sensor characterization for various
geometrical situations. In [12], Al-Saphory et al. considered and analysed the notion of
regional gradient strategic sensors, and the results applied to a two-dimensional linear
infinite distributed system in Hilbert space.

In a problem governed by a diffusion system, it is commonly known that the position-
ing of sensors is restricted by severe practical restrictions. In fact, observation processes
are generally restricted to subsets, boundaries, or points [13,14]. This indicates that the
operators of the observation can be unbounded in their state spaces.

Recently, the study of ReOb for partial differential equations (PDEs) has received
considerable attention in the literature. Zerrik et al. [15] reviewed regional boundary
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observability for a two-dimensional diffusion system. In [16], Chen investigated infinite
time exact observability for the Volterra system in Hilbert spaces. Chen and Yi [17] studied
the observability and admissibility of Volterra systems in Hilbert spaces. Zouiten et al. [18]
studied the following ReEnOb for a linear parabolic system.

∂
∂t ν(y, t) = Aν(y, t) in Ω× [0, T],
ν(ξ, t) = 0 on ΣT ,
ν(y, 0) = ν0(y) in Ω,
M(t) = Cν(t), t ∈ [0, T],

(1)

where A is an infinitesimal operator and generates a strongly continuous semigroup
{Q(t)}t≥0 on the state space L2(Ω), Ω is an open bound of L2(Ω), and M is the output
function (OuPuFu), which represents the measurements. The authors used the HUM
approach to reconstruct the initial state between two profiles in an internal subregion.

More recently, many researchers have investigated the ReOb for fractional differential
equations (FDEs). In [19], Zguaid and El Alaoui investigated the notion of the regional
boundary observability of Caputo fractional systems. Zguaid et al. [20] studied ReOb for
a class of linear time-fractional systems using the HUM approach and proved that the
considered approach allows to transform the ReOb problem into a solvability one. Regional
gradient observability for Caputo fractional diffusion systems is considered in [21]. In [22],
Ge et al. presented the notion of the regional gradient observability for Riemann–Liouville
(R-L) diffusion systems for the first time. Cai et al. [23] investigated the concept of exact
and approximate ReOb of Hadamard–Caputo diffusion systems using the HUM approach.
Zguaid and El Alaoui [24] investigated the notion of regional boundary observability of
R-L linear diffusion systems by using an extension of HUM.

On the other hand, some works concerning the concept of ReEnOb-FDEs have recently
been conducted. In [25], Zouiten et al. studied the ReEnOb for R-L fractional evolution
equations with R-L derivatives:

DRL
0

η
t ν(y, t) = Aν(y, t) in Ω× [0, T],

ν(ξ, t) = 0 on ΣT ,

lim
t→0+

0 I1−η
t ν(y, t) = ν0(y) in Ω,

M(t) = Cν(t), t ∈ [0, T],

(2)

where Ω is an open bound of Rn(n = 1, 2, 3), with the regular boundary ∂Ω and DRL
0

η
t and

0 I1−η
t are R-L fractional derivatives and R-L fractional integrals of orders 0 < η ≤ 1 and

1− η, respectively. The authors developed an approach based on HUM allowing them to
reconstruct the initial state between two given functions in an internal subregion of the
whole domain. In [26], Zouiten and Boutoulout investigated the ReEnOb for the following
Caputo fractional diffusion system in a Hilbert space

DC
0

η
t ν(y, t) = Aν(y, t) in Ω× [0, T],

ν(ξ, t) = 0 on ΣT ,
ν(y, t) = ν0(y) in Ω,
M(t) = Cν(t), t ∈ [0, T].

(3)

The HUM approach for fractional differential systems is used for the process of
reconstructing the initial state between two profiles in a considered subregion of the
whole domain.

Inspired and motivated by the above discussion, in this manuscript we extend the
investigation of the notion of the ReEnOb for sub-diffusion systems with fractional deriva-
tives, augmented and restricted by some measurements given by the so-called OuPuFu.
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We note that FDEs have been widely used for modelling in various science and engineering
fields due to their well-described systems and high accuracy, as well as yielding better
results compared with systems with integer differentiation. Therefore, the results obtained
from Systems (2) and (3) are better than those of System (1). Moreover, use the Hilfer
fractional derivative as we know it has two parameters and contains Caputo and R-L
derivatives in its definition. Thus, our findings can be seen as a generalization of the
mentioned results.

This paper is interested in the concept of ReEnOb for the following sub-diffusion
system via Hilfer FDs of order η, type κ and augmented with the OuPuFu (5). We first
characterize the ReEnOb of a diffusion system augmented with the OuPuFu in an internal
subregion ω of Ω. Moreover, we recognize two types of sensors based on the boundness
issue of the observation operator C. Then, we reconstruct the initial state ν1

0 of the addressed
system using an approach that relies on the HUM approach introduced by Lions [27].
The investigation of the addressed problem shows that it is possible to obtain the desired
state between two profiles in some selective internal subregions. Let Ω be an open bound
of Rn(n = 1, 2, 3) with the regular boundary ∂Ω, and let J = [0, T]. The space ST = Ω× J

and ΣT = ∂Ω× J. We consider the following diffusion sub-system:
DH

0
η,κ
t ν(y, t) = Aν(y, t) in ST ,

ν(ξ, t) = 0 on ΣT ,
lim

t→0+
0 I1−ζ

t ν(y, t) = ν0(y) in Ω,
(4)

where DH
0

η,κ
t stands for the Hilfer fractional derivative (left-sided) of order 0 < η < 1,

type 0 ≤ κ ≤ 1 with respect to time t, the integral 0 I1−ζ
t , ζ = η + κ − ηκ, 0 < ζ ≤ 1 is the

left-sided R-L fractional integral operator (1), and the operator A is linear and has a dense
domain, so the coefficients are independent of time t. Moreover, operator A is infinitesimal
and generates a strongly continuous semigroup {Q(t)}t≥0 on the state space L2(Ω), which
is a Hilbert space. Here, the initial state ν0 ∈ L2(Ω) is assumed to be unknown. The
measurements and information of System (4) are obtained by the OuPuFu below:

M(t) = Cν(t), t ∈ J, (5)

where C is the observation operator, and it is a linear, not necessary a bounded, operator
determined by the number of sensors or their structure, with a dense domainD(C) ⊆ L2(Ω)
with range in the observation space O = L2(J;Rq) (q ∈ N is the number of considered
sensors), and O is a Hilbert space.

This paper is arranged as follows: In Section 2, we review the definitions, basic
concepts, and lemmas utilized throughout this paper. In Section 3, we characterize the
ReEnOb. Moreover, we present some remarks, then introduce and prove the main theorem
of the ReOb of the Hilfer diffusion System (4). In Section 4, the HUM approach is introduced
and applied in the reconstruction process of the initial state of System (4). In addition, two
theoretical illustrative examples are given to support our results. In Section 5, we give
some conclusions.

2. Preliminaries

In this section, we review the essential definitions, notations, and basic facts utilized
throughout this paper.

Definition 1. (See [7]) The R-L fractional integral (left-sided) of order η for a function f : J→ R
is defined as

0 Iη
t f (t) =

1
Γ(η)

∫ t

0
(t− s)η−1 f (s)ds, 0 < η < 1.
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Definition 2. (See [7]) The R-L fractional integral (right-sided) of order η for a function f : J→ R
is defined as

t Iη
T f (t) =

1
Γ(η)

∫ T

t
(s− t)η−1 f (s)ds, 0 < η < 1.

Definition 3. (See [1,28]) The R-L fractional derivative (left-sided) and R-L fractional derivative
(right-sided) of order 0 < η < 1 with respect to t for a function f are defined as

DRL
0

η
t f (t) =

(
0 I1−η

t f (t)
)′

=
1

Γ(1− η)

( ∫ t

0
(t− s)−η f (s)ds

)′
for a.e. t ∈ J,

and

DRL
t

η
T f (t) =−

(
t I1−η

T f (t)
)′

=− 1
Γ(1− η)

( ∫ T

t
(s− t)−η f (s)ds

)′
for a.e. t ∈ J,

respectively, where the notation ′ stands for differentiation.

Definition 4. (See [1,28]) The Hilfer fractional derivative (left-sided) and the Hilfer fractional
derivative (right-sided) of order 0 < η < 1, type 0 ≤ κ ≤ 1 with respect to t for a function f are
respectively defined by

DH
0

η,κ
t f (t) =

(
0 Iκ(1−η)

t

(
0 I1−ζ

t f
)′)

(t)

=0 Iζ−η
t DRL

0
ζ
t f (t)

=
1

Γ(ζ − η)Γ(1− ζ)

∫ t

0
(t− s)(ζ−η)−1

( ∫ s

0
(s− τ)−ζ f (τ)dτ

)′
ds,

for almost everywhere t ∈ J, where ζ = η + κ − ηκ, 0 < ζ ≤ 1, ζ ≤ η, and ζ > κ.

DH
t

η,κ
T f (t) =−

(
t Iκ(1−η)

T

(
t I1−ζ

T f
)′)

(t)

=− t Iζ−η
T DRL

t
ζ
T f (t)

=− 1
Γ(ζ − η)Γ(1− ζ)

∫ T

t
(s− t)(ζ−η)−1

( ∫ T

s
(τ − s)−ζ f (τ)dτ

)′
ds,

for a.e. t ∈ J.

Next, we recall a mild solution for the following Hilfer fractional evolution equation;
see [29].

Lemma 1. Let X = L2(Ω) be a Hilbert space, for any u0 ∈ X , 0 < η < 1, 0 ≤ κ ≤ 1 and
f ∈ J×X −→ X , the function u ∈ L2(J;X ) is said to be a mild solution of the following system DH

0
η,κ
t u(t) = Au(t) + f (t, u), t ∈ J,

lim
t→0+

0 I1−ζ
t u(t) = u0, (6)
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if u fulfils

u(t) =
1

Γ(ζ − η)

∫ t

0
(t− s)(ζ−η)−1sη−1

∫ ∞

0
ηθMη(θ)Q(sηθ))u0dθds

+
∫ t

0

∫ ∞

0
ηθMη(θ)Q((t− s)ηθ)(t− s)η−1 f (s, u(s))dθds,

(7)

where Pη(t) =
∫ ∞

0 ηθMη(θ)Q(tηθ)dθ, and the function Mη(θ) = ∑∞
n=1

(−θ)n−1

(n−1)Γ(1−ρn) , where
0 < ρ < 1, θ ∈ C is the Wright function, which fulfils the following equality:∫ ∞

0
θι Mη(θ)dθ =

Γ(1 + ι)

Γ(1 + ηι)
for ι ≥ 0, θ ≥ 0.

Remark 1. (See Remark 2.14 in [29]) Let 0 < η < 1, 0 ≤ κ ≤ 1, 0 < ζ ≤ 1 and t ∈ J; thus,
we have

DRL
0

ζ−η
t Sη,κ(t) = Rη(t), t ∈ (0, T], (8)

where
Rη(t) = tη−1Pη(t), (9)

and
Sη,κ(t) = 0 Iζ−η

t Rη(t). (10)

We can rewrite the equality in (7) as follows:

u(t) = Sη,κ(t)u0 +
∫ t

0
Rη(t− s) f (s, u(s))ds. (11)

Note that if the non-linear term of System (6) is zero, then the mild solution (11)
becomes u(·) = Sη,κ(·)u0. Consequently, the mild solution of (4) may alternatively be
expressed as

ν(t) = Sη,κ(t)ν0, t ∈ J. (12)

We give the following lemma, which will be utilized afterwards to prove our results.

Lemma 2. (See [30]) Let a function g be defined on interval [S, T], (S < T) and S, T ∈ R, then
the reflection operator Q acting on g is

Q[g(t)] = g(S + T − t).

Lemma 3. Let f be a function defined on the interval J and let f be differentiable and integrable in
the Hilfer derivative sense. We now introduce the reflection operator Q when acting on f as follows:

Q[ f (t)] = f (T − t), (13)

Moreover, the following assertions hold,

(i) 0 Iη
t Q[ f (t)] = Q

[
t Iη

T f (t)
]
.

(ii) Q
[

0 Iη
t f (t)

]
= t Iη

TQ[ f (t)].

(iii) − DH
0

η,κ
t Q[ f (t)] = Q

[
DH

t
η,κ
T f (t)

]
.

(iv) Q
[

DH
0

η,κ
t f (t)

]
= − DH

t
η,κ
T Q[ f (t)].
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Note that, assertions (i) and (ii) are given in [25,26]. Here, we state their proof due to the
demonstration of assertions (iii) and (iv).

Proof. Our proof is obtained by virtue of Equation (13) and by utilizing changes in the
variables, specifically, changes in the role of time.

(i): We show that 0 Iη
t Q[ f (t)] = Q

[
t Iη

T f (t)
]
. Since

0 Iη
t Q[ f (t)] =

1
Γ(η)

∫ t

0
(t− s)η−1Q f (s)ds

=
1

Γ(η)

∫ t

0
(t− s)η−1 f (T − s)ds.

(14)

Using the change in the variables, let s̃ = T − s, then −ds̃ = ds. Now, for s = 0 and
s = t, we obtain s̃ = T and s̃ = T − t, respectively. Let us fixM = 1

Γ(η) . Substituting these
values into (14), we obtain

0 Iη
t Q[ f (t)] = −M

∫ T−t

T
(t− T + s̃)η−1 f (s̃)ds̃,

Let s̃ := s, we obtain

0 Iη
t Q[ f (t)] =M

∫ T

T−t
(s− T + t)η−1 f (s)ds. (15)

We now consider the right-hand side:

Q
[

t Iη
T f (t)

]
= Q

[
M

∫ T

t
(s− t)η−1 f (s)ds

]

=M
∫ T

T−t
(s− T + t)η−1 f (s)ds.

(16)

Consequently, from (15) and (16), we can see that 0 Iη
t Q[ f (t)] = Q

[
t Iη

T f (t)
]
.

(ii): The proof follows the same way as (i). Considering the left-hand side:

Q
[

0 Iη
t f (t)

]
=Q

[
M

∫ t

0
(t− s)η−1 f (s)ds

]

=M
∫ T−t

0
(T − t− s)η−1 f (s)ds,

and the right-hand side:

t Iη
TQ[ f (t)] =M

∫ T

t
(s− t)η−1Q f (s)ds

= −M
∫ 0

T−t
(T − s− t)η−1 f (s)ds

=M
∫ T−t

0
(T − t− s)η−1 f (s)ds.
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(iii): We demonstrate − DH
0

η,κ
t Q[ f (t)] = Q

[
DH

t
η,κ
T f (t)

]
. Let us fix M̃ = 1

Γ(ζ−η)Γ(1−ζ)
, which

will be used in the remainder of the proof of this lemma. We first consider the left-hand side:

− DH
0

η,κ
t Q[ f (t)] = − 1

Γ(ζ − η)Γ(1− ζ)

∫ t

0
(t− s)(ζ−η)−1Q

( ∫ s

0
(s− τ)−ζ f (τ)dτ

)′
ds

= −M̃
∫ t

0
(t− s)(ζ−η)−1

( ∫ s

0
(s− τ)−ζ f (T − τ)dτ

)′
ds,

(17)

Let τ̃ = T − τ, then −dτ̃ = dτ. Now, for τ = 0 and τ = s, we obtain τ̃ = T and
τ̃ = T − s, respectively. Substituting these values into (17), we obtain

− DH
0

η,κ
t Q[ f (t)] = −M̃

∫ t

0
(t− s)(ζ−η)−1

(
−
∫ T−s

T
(s− T + τ̃)−ζ f (τ̃)dτ̃

)′
ds, (18)

Let s = T− s̃, then−ds̃ = ds. Now for s = 0 and τ = s, we obtain s̃ = T and s̃ = T− t,
respectively. Substituting these values into (18), we obtain

− DH
0

η,κ
t Q[ f (t)] = M̃

∫ T−t

T
(t− T + s̃)(ζ−η)−1

( ∫ T

s̃
(τ̃ − s̃)−ζ f (τ̃)dτ̃

)′
ds̃,

Let τ := τ̃ and s := s̃, we obtain

− DH
0

η,κ
t Q[ f (t)] = M̃

∫ T−t

T
(t− T + s)(ζ−η)−1

( ∫ T

s
(τ − s)−ζ f (τ)dτ

)′
ds.

On the other hand, we proceed with the right-hand side as follows:

Q
[

tD
η,κ
T f (t)

]
= Q

[
− M̃

∫ T

t
(s− t)(ζ−η)−1

( ∫ T

s
(τ − s)−ζ f (τ)dτ

)′
ds

]

= −M̃
∫ T

T−t
(s− T + t)(ζ−η)−1

( ∫ T

s
(τ − s)−ζ f (τ)dτ

)′
ds

= M̃
∫ T−t

T
(s− T + t)(ζ−η)−1

( ∫ T

s
(τ − s)−ζ f (τ)dτ

)′
ds,

Hence, − DH
0

η,κ
t Q[ f (t)] = Q

[
tD

η,κ
T f (t)

]
.

(iv): The proof follows the same way as (iii). We first consider the left-hand side:

Q
[

DH
0

η,κ
t f (t)

]
= Q

[
M̃

∫ t

0
(t− s)(ζ−η)−1

( ∫ s

0
(s− τ)−ζ f (τ)dτ

)′
ds

]

= M̃
∫ T−t

0
(T − t− s)(ζ−η)−1

( ∫ s

0
(s− τ)−ζ f (τ)dτ

)′
ds,
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then the right-hand side:

− DH
t

η,κ
T Q[ f (t)] = −

[
− M̃

∫ T

t
(s− t)(ζ−η)−1Q

( ∫ T

s
(τ − s)−ζ f (τ)dτ

)′
ds

]

= M̃
∫ T

t
(s− t)(ζ−η)−1

( ∫ s

0
(τ − s)−ζ f (T − τ)dτ

)′
ds

= M̃
∫ T

t
(s− t)(ζ−η)−1

(
−
∫ 0

T−s
(T − τ̃ − s)−ζ f (τ̃)dτ̃

)′
ds

= −M̃
∫ 0

T−t
(T − s̃− t)(ζ−η)−1

( ∫ T−s

0
(s̃− τ̃)−ζ f (τ̃)dτ̃

)′
ds̃

= M̃
∫ T−t

0
(T − s− t)(ζ−η)−1

( ∫ s

0
(s− τ)−ζ f (τ)dτ

)′
ds.

Consequently, Q
[

DH
0

η,κ
t f (t)

]
= − DH

t
η,κ
T Q[ f (t)].

Thus, this completes the proof of the lemma.

Since C is an admissible operator, as we will see later, then the OuPuFu of System (4)
is given by

M(t) = CSη,κ(t)ν0 = Kη,κ(t)ν0, t ∈ J, (19)

where Kη,κ : L2(Ω) −→ O is a fractional linear operator. Let us recall the observation space
O = L2(J;Rq)(q ∈ N). Two cases arise for obtaining the adjoint operator of Kη,κ .

• Case 1. C is bounded. In this case, we can define zonal sensors. Let operator C be
from L2(Ω) to O. Then, if C∗ is adjoint on the other hand, the adjoint of operator Kη,κ
can be obtained by

K∗η,κ : O −→ L2(Ω)

M∗ 7−→
∫ T

0
S∗η,κ(s)C

∗M∗(s)ds.

• Case 2. C is unbounded. We can define pointwise sensors. However, in this case,
the operator C can be introduced from D(C) ⊆ L2(Ω) to the observation space O.
Then, C∗ is adjoint. However, in order to give this case a sense of (5), we make an
assumption on C in the following definition, namely, C is an admissible observation
operator, as we will see in Definition 5 below.

Definition 5. (See [18]) The observation operator C is an admissible of (4) and (5), if for any
ν0 ∈ D(C) there is a constant L > 0, such that∫ T

0
‖CSη,κ(t)ν0‖2ds ≤ L ‖ ν0 ‖ .

Note that operator C being admissible assures that the map

ν0 7−→ CSη,κ(t)ν0 = Kη,κ(t)ν0
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can be extended to a bounded linear operator from L2(Ω) to the space O. Thus, we can
introduce K∗η,κ as the adjoint of operator Kη,κ as follows:

K∗η,κ : D(K∗η,κ) ⊆O −→ L2(Ω)

M∗ 7−→
∫ T

0
S∗η,κ(s)C

∗M∗(s)ds

3. Characterization of Enlarged Observability

In this section, we will characterize the ReEnOb of System (4) with the output func-
tion (5) in the subregion ω of Ω. Let ω be a positive Lebesgue measure, and let us define
the restriction mapping (projection mapping) pω, as follows:

pω : L2(Ω) −→ L2(ω)

ν 7−→ pων = ν|ω .

We can now define the adjoint p∗ω of pω as follows: (p∗ων)(y) := ν(y, ·) when y ∈ ω,
and (p∗ων)(y) := 0 when y ∈ Ω\ω. In addition, we note that the regional exact observability
of System (4) with (5) can be achieved at time t in the subregion ω, if Im(pωK∗η,κ) = L2(ω),
see, e.g., [25,26,31–33]. Now, let γ1(·) and γ2(·), γ1(·) ≤ γ2(·) almost everywhere in the
subregion ω, be two functions defined in L2(Ω). We thus define the following set

Z = {ν ∈ L2(ω)|γ1(·) ≤ ν(·) ≤ γ2(·) almost everywhere in the subregion ω},

where γ1(·) and γ2(·) are given functions in ω. We assume that the initial state is given by

ν0 =

{
ν1

0 in Z,
ν2

0 in L2(Ω)\Z.

The main objective of the investigation proposed in this paper is to demonstrate
ReEnOb for Hilfer time fractional-order diffusion systems, that is, we will answer the
following question: Given the Hilfer fractional diffusion System (4) with (5) in the subregion
ω at time t ∈ J, can we reconstruct ν1

0 between γ1(·) and γ2(·)?
The following definition will be used in the following.

Definition 6. If Ker(Kη,κ p∗ω) ∩ Z = {0}, then System (4) with (5) is exactly E -observable in the
subregion ω.

Definition 7. A sensor is exactly Z-strategic in the subregion ω if the observed system is exactly
Z-observable in subregion ω.

The following three remarks show that the results obtained in [18,25,26] are particular
cases of our results.

Remark 2. If κ = 0 and η = 1, then the Hilfer fractional diffusion (4) corresponds to the normal
diffusion process, which is investigated in [18].

Remark 3. If κ = 0 and 0 < η < 1, then the Hilfer fractional diffusion System (4) corresponds to
the R-L fractional diffusion process, which is investigated in [25].

Remark 4. If κ = 1 and 0 < η < 1, then the Hilfer fractional diffusion (4) corresponds to the
Caputo fractional diffusion process, which is considered in [26].

The following result can be obtained directly from Definition 7.
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Remark 5. If System (4) with the OuPuFu (5) is exactly Z-observable in ω1, then for any subregion
ω2 of ω1 it is also exactly Z-observable in ω2.

The following remark will be used in the proof of the theorem presented below.

Remark 6. Let X be a Hilbert space and F a linear subspace of X, then F ∩ F⊥ = {0}, where F⊥

is the orthogonal complement of F.

Theorem 1. The following assertions are equivalent:

1. System (4) with the OuPuFu (5) is exactly Z-observable in the subregion ω.
2. Im(pωK∗η,κ) ∩ Z 6= ∅.

Proof. We show that Statement 1 implies Statement 2, and Statement 2 implies Statement 1.
The following two facts play a key role in the proof.

Ker(Kη,κ p∗ω) = Im(pωK∗η,κ)
⊥, (20)

it follows from Remark 6 that

Im(pωK∗η,κ) ∩ Im(pωK∗η,κ)
⊥ = {0}. (21)

We demonstrate that the left-hand side implies the right-hand side, and vice versa:

Ker(Kη,κ p∗ω) ∩ Z = {0} ⇐⇒ Im(pωK∗η,κ) ∩ Z 6= ∅.

We first show that

Ker(Kη,κ p∗ω) ∩ Z = {0} =⇒ Im(pωK∗η,κ) ∩ Z 6= ∅.

Let y ∈ Ker(Kη,κ p∗ω)∩Z, then y = 0. From (20), one can see that y ∈ Im(pωK∗η,κ)
⊥ ∩Z.

Therefore, it follows from (21) that, Im(pωK∗η,κ) has at least one element, which is zero.
Thus, Im(pωK∗η,κ) ∩ Z 6= ∅.

We now prove that statement 2 implies statement 1, that is,

Im(pωK∗η,κ) ∩ Z 6= ∅ =⇒ Ker(Kη,κ p∗ω) ∩ Z = {0}.

Suppose
Im(pωK∗η,κ) ∩ Z 6= ∅, (22)

and
Ker(Kη,κ p∗ω) ∩ Z 6= {0}. (23)

Now, let y ∈ Ker(Kη,κ p∗ω) ∩ Z, then y 6= 0, y ∈ Z and y ∈ Ker(Kη,κ p∗ω). From (20)
and (21), we have y ∈ Im(pωK∗η,κ)

⊥ and y /∈ Im(pωK∗η,κ), respectively. Consequently, one
can see that

Im(pωK∗η,κ) ∩
(

Ker(Kη,κ p∗ω) ∩ Z
)
= ∅;

therefore,
Im(pωK∗η,κ) ∩ Z = ∅,

which contradicts (22). Thus, (23) is not true. Consequently,

Ker(Kη,κ p∗ω) ∩ Z = {0}.

Therefore, System (4) with (5) is exactly Z-observable in the subregion ω. This com-
pletes the proof.
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4. The Hilbert Uniqueness Method

In this section, we provide an approach for reconstructing the initial state of the system
between γ1(·) and γ2(·) in subregion ω. Let P be a space defined as

P =
{

g ∈ L2(Ω)|g = 0 in L2(Ω)\Z
}

. (24)

4.1. Pointwise Sensors

Let System (4) be observed by a pointwise sensor (l, δ(l − ·)), where l ∈ Ω is the
location of a sensor and δ is the Dirac mass (delta function), which is concentrated in l.
Here, the OuPuFu is introduced as

M(t) = ψ(b, T − t), t ∈ J. (25)

Let ψ0 be in P; thus, we examine the following system:
DH

0
η,κ
t ψ(y, t) = Aψ(y, t) in ST ,

ψ(ξ, t) = 0 on ΣT ,
lim

t→0+
0 I1−ζ

t ψ(y, t) = ψ0(y) in Ω.
(26)

For simplicity of notation, we denote ψ(y, t) := ψ(t). We note that System (26) admits
a unique solution ψ ∈ L2(J;D(A))∩C(Ω× J) given by ψ(t) = Sη,κ(t)ϕ0, if ψ0(x) ∈ D(A).
Let us denote a semi-norm on P by

ψ0 7−→ ‖ψ0‖2
P =

∫ T

0
‖Cψ(T − t)‖2dt. (27)

In the following lemma, we will see that a norm can be defined.

Lemma 4. If System (4) with OuPuFu (25) is exactly Z-observable in the subregion ω; conse-
quently, Equation (27) defines a norm in the space P.

Proof. Firstly, in light of Theorem 1 and Definition 6, we suppose that System (4) with the
OuPuFu (25) is exactly Z-observable in the space P. Now, for ψ0 ∈ P and a semi-norm in
P, we have

‖ψ0‖P = 0 =⇒ Cψ(T − t) = 0 for all t ∈ J.

Let
ψ0 ∈ L2(Ω) =⇒ pωψ0 ∈ L2(ω),

then,
Kη,κ p∗ω pωψ0 = CSη,κ(t)p∗ω pωψ0 = 0.

Hence,
pωψ0 ∈ Ker(Kη,κ p∗ω).

and for pωψ0 ∈ Z, one has pωψ0 ∈ Ker(Kη,κ p∗ω) ∩ Z and pωψ0 = 0, since the system is
exactly Z-observable in the subregion ω. Consequently, ψ0 = 0 and (27) is a norm.

We now consider the following system, which is controlled by the solution to System (26),
that is, 

Q
[
− DH

t
η,κ
T Υ(y, t)

]
= A∗Q

[
Υ(y, t)

]
+ C∗CQ[ψ(y, t)] in ST ,

Υ(ξ, t) = 0 on ΣT ,

lim
t→T−

Q
[

t I1−ζ
T Υ(y, t)

]
= 0 in Ω.

(28)
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Next, for ψ0 ∈ P, we define the operator Λ : P −→ P∗ by

Λψ0 = P
(

0 Iζ−η
T Υ(0)

)
, (29)

where P = p∗ω pω and Υ(0) = Υ(y, 0).
Next, let us consider the following system:

Q
[
− DH

t
η,κ
T Φ(y, t)

]
= A∗Q

[
Φ(y, t)

]
+ C∗Q[M(t)] in ST ,

Φ(ξ, t) = 0 on ΣT ,

lim
t→T−

Q
[

t I1−ζ
T Φ(y, t)

]
= 0 in Ω.

(30)

If we choose the initial state ψ0 of System (26) such that Φ(0) = Υ(0) in the subregion
ω, then one can see that System (30) stands for the adjoint of System (4). Thus, our problem
of ReEnOb can be simplified solved in Equation (29), since following Equation (31) is
equivalent to Equation (29).

Λψ0 = P
(

0 Iζ−η
T Φ(0)

)
. (31)

Theorem 2. System (4) augmented by (25) is exactly Z-observable in ω, if Equation (29) has a
unique solution ψ0 ∈ P, that coincides with the state ν1

0 observed between functions γ1(·) and
γ2(·) in the subregion ω. In addition, ν1

0 = pω ϕ0.

Proof. We note that, System (4) with (25) is exactly Z-observable in ω, then the norm ‖ · ‖P
can be defined on P by Lemma 4. Next, we prove that, if Λ is an isomorphism (see [18]),
then (29) admits a unique solution in the set P. For this, we have

〈Λψ0, ψ0〉L2(Ω) =
〈
P
(

0 Iζ−η
T Υ(0)

)
, ψ0

〉
L2(Ω)

=
〈

p∗ω pω

(
0 Iζ−η

T Υ(0)
)

, ψ0

〉
L2(Ω)

=
〈

0 Iζ−η
T Υ(0), ψ0

〉
L2(ω)

We note that the following propositions are important in the following proof.

Proposition 1. Let 0 < η < 1, 0 ≤ κ ≤ 1, 0 < ζ ≤ 1 and t ∈ J. Since System (30) is adjoint
of (4), then from (9) and (10), we have

R∗η(t) = tη−1P∗η (t),

and

S∗η,κ(t) =0 Iζ−η
t R∗η(t).

Therefore, the solution to System (28) is given by

Υ(t) =
∫ T−t

0
R∗η(T − t− s)C∗Cψ(T − s)ds. (32)

Proposition 2. Let 0 < η < 1, 0 ≤ κ ≤ 1, 0 < ζ ≤ 1 and t ∈ J, we have

0 Iζ−η
T Υ(0) =

∫ T

0
S∗η,κ(T − s)C∗Cψ(T − s)ds. (33)



Axioms 2023, 12, 648 13 of 19

Proof. In view of Fubini’s theorem and Equation (32), and for any τ ∈ J, we have

τ Iζ−η
T Υ(τ) =

1
Γ(ζ − η)

∫ T

τ
(t− τ)ζ−η−1Υ(t)dt

=
1

Γ(ζ − η)

∫ T

τ
(t− τ)ζ−η−1

∫ T−t

0
R∗η(T − t− s)C∗Cψ(T − s)dsdt

=
1

Γ(ζ − η)

∫ T

0

( ∫ T−s

τ
(t− τ)ζ−η−1R∗η(T − t− s)dt

)
C∗Cψ(T − s)ds

Let u = T − t − s, then du = −dt. Now, for t = τ and t = T − s, we obtain
u = T − τ − s and u = 0, respectively. Thus, we obtain

τ Iζ−η
T Υ(τ) =

1
Γ(ζ − η)

∫ T

0

( ∫ T−τ−s

0
(T − s− τ − u)ζ−η−1R∗η(u)du

)
C∗Cψ(T − s)ds

=
∫ T

0
S∗η,κ(T − s− τ)C∗Cψ(T − s)ds.

We now let τ = 0, we obtain

0 Iζ−η
T Υ(0) =

∫ T

0
S∗η,κ(T − s)C∗Cψ(T − s)ds.

Now, we continue the proof of our theorem

〈Λψ0, ψ0〉L2(Ω) =
〈

0 Iζ−η
T Υ(0), ψ0

〉
L2(ω)

=

〈 ∫ T

0
S∗η,κ(T − s)C∗Cψ(T − s)ds, ψ0

〉

=
∫ T

0
〈Cψ(T − s), CSη,κ(T − s)ψ0〉ds

=
∫ T

0
〈Cψ(T − s), Cψ(T − s)〉ds

=
∫ T

0
‖Cψ(T − s)‖2ds

= ‖ψ0‖2
G .

Thus, the operator Λ is an isomorphism. Therefore, we establish that Equation (29) has
a unique solution, which corresponds to the desired initial state ν1

0 = pωψ0. This completes
the proof.

4.2. Zone Sensors

Here we suppose the measurements of System (4) are given by an internal zone sensor
defined by (A, h) with A ⊂ Ω and h ∈ L2(A). The system is augmented with the OuPuFu

M(t) =
∫
A

ν(y, T − t)h(y)dy. (34)

In this case, we consider System (26), and we assume P is given by Equation (24).
Then, a semi-norm can be introduced by

‖ϕ0‖2
P =

∫ T

0
〈 ψ(T − t), h〉2L2(A)dt, (35)
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and if System (26) with (25) is exactly Z-observable in a subregion ω of Ω, then a norm can
be defined.

In this case, we can introduce the adjoint System of (26) as follows:
Q
[
− DH

t
η,κ
T Υ(y, t)

]
= A∗Q

[
Υ(y, t)

]
+ 〈 Q[ψ(t)], h〉L2(A)h(y) in ST ,

Υ(ξ, t) = 0 on ΣT ,

lim
t→T−

Q
[

t I1−ζ
T Υ(y, t)

]
= 0 in Ω.

(36)

Thus, the operator Λ can be defined by

Λ : P −→ P∗

ψ0 7−→ Λψ0 = P
(

0 Iζ−η
T Υ(0)

)
,

(37)

where P = p∗ω pω is a projection operator. For simplicity, let us write Υ(0) = Υ(y, 0).
We introduce the following system
Q
[
− DH

t
η,κ
T Φ(y, t)

]
= A∗Q

[
Φ(y, t)

]
+ 〈 Q[M(t)], h〉L2(A)pAh(y) in ST ,

Φ(ξ, t) = 0 on ΣT ,

lim
t→T−

Q
[

t I1−ζ
T Φ(y, t)

]
= 0 in Ω.

(38)

If the initial state ψ0 of System (26) is chosen such that Φ(0) = Υ(0) in the subregion
ω, then one can see that System (38) is the adjoint of System (4); thus, our ReEnOb problem
can be simplified and solved by the following equation

Λψ0 = P
(

0 Iζ−η
T Φ(0)

)
, (39)

Theorem 3. If System (4) with OuPuFu (34) is exactly Z-observable in the subregion ω, then
Equation (39) has a unique solution ψ0 ∈ P that corresponds with the observed initial state ν1

0
between functions γ1(·) and γ2(·) in the subregion ω.

Proof. The procedures of the proof are remarkably similar to those of Theorem 2.

4.3. Examples

Example 1. In this subsection, we will consider the case where C is unbounded (pointwise sensors).
The following time fractional diffusion system can be use to describe a chemical reaction or a
heat conduction.

Let Ω1 = [0, l] and S̄T = Ω1 × J, we thus consider
DH

0
η,κ
t ν(y, t) = ℵη,κ

∂2

∂y2 ν(y, t) + f (y, t) in S̄T ,

ν(0, t) = h1(y), ν(l, t) = h2(y) in J,
lim

t→0+
0 I1−ζ

t ν(y, t) = ν0(y) in Ω1,
(40)

where f (y, t) is the density of the sources that transmits the substance in/out the system,
A = ℵη,κ

∂2

∂x2 and ℵη,κ represents a constant of physical dimension [ℵη,κ ] = cm2sη , which only
depends on η and is independent of κ.
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For simplicity, we assume ℵη,κ = 1, f (y, t) = 0, h1(y) = h2(y) = 0, and l = 1, obtaining
Ω1 = [0, 1] and ¯̄ST = Ω1 × J. Hence, System (40) can be written as follows

DH
0

η,κ
t ν(y, t) = ∂2

∂y2 ν(y, t) in ¯̄ST ,

ν(ξ, t) = 0 in [0, T],
lim

t→0+
0 I1−ζ

t ν(y, t) = ν0(y) in [0, 1],
(41)

augmented with the OuPuFu

M(t) = Cν(y, t) = ν(b, t), (42)

where 1
4 = b ∈ [0, 1], and System (44) has a mild solution ν(y, t), t ∈ J given by

ν(y, t) =2
∞

∑
n=1

tη+κ(1−η)−1Eη,κ(η−1)−η(−n2π2tη) sin(nπy)

×
∫ 1

0
ν0(y) sin(nπy)dx,

(43)

where Eη,κ(·) stands for the two-parameter Mittag–Leffler function [4], and one can easily see that
the operator ∂2

∂y2 has a complete set of eigenfunctions φn = sin(nπy) in the Hilbert space L2(Ω1)

associated with the eigenvalues λn = −n2π. Let us assume the initial state that needs to be observed
in System (44) is given by ν0(y) = sin(2πy), η = 0.2, and κ = 0.4. Now, for the subregion

ω1 =
[

1
2 , 2

3

]
⊂ [0, 1], the following results hold.

Proposition 3. There exists a state for which System (44) with the OuPuFu (42) is not weakly
observable in Ω1, but is Z1-observable in the subregion ω1.

Proof. To show that System (44) with the OuPuFu (42) is not weakly observable in Ω1, it
sufficient to verify that ν0 ∈ Ker(Kη,κ). From Equation (43) and the assumptions above we
can now calculate

K0.2,0.4ν0 =2
∞

∑
n=1

t−0.48E0.2,−0.52(−n2π2t0.2) sin
(

nπ

4

)
×
∫ 1

0
sin(2πy) sin(nπy)dy

= 0.

Hence, ν0 ∈ Ker(Kη,κ). As a result, System (44) and (42) is not weakly observable
in Ω1,
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K0.2,0.4 p∗ω1
pω1 ν0 =2

∞

∑
n=1

t−0.48E0.2,−0.52(−n2π2t0.2) sin(0.25nπ)

×
∫ 1

0
p∗ω1

pω1 sin(2πy) sin(nπy)dy

=2
∞

∑
n=1

t−0.48E0.2,−0.52(−n2π2t0.2) sin
(

nπ

4

)
×
∫ 2

3

1
2

sin(2πy) sin(nπy)dy

=2t−0.48E0.2,−0.52(−π2t0.2) sin
(

π

4

)
×
∫ 2

3

1
2

sin(2πy) sin(πy)dy

=
(3
√

3− 8)t−0.48

6
√

2π
E0.2,−0.52(−π2t0.2)

6=0.

While on the other hand, this leads us to observe that the initial state ν0 is weakly
observable in the subregion ω1. In addition, for all y ∈ ω1, we have

γ̃1 =
∣∣ν0
|ω1

(y)
∣∣− 2

3
< ν0

|ω1

and
γ̃2 =

∣∣ν0
|ω1

(y)
∣∣+ 2

3
> ν0

|ω1
.

Thus, pω1 ν0 ∈ Z1 and (44) together with (42) is Z1-observable in ω1. This completes
the proof.

Let the space P1 be given by

P1 =
{

g ∈ L2(Ω1)|g = 0 in L2(Ω1)\Z1
}

.

From Lemma 4, we have

ψ0 7−→ ‖ψ0‖2
P1

=
∫ T

0
‖Cψ(T − t)‖2dt.

which defines a norm on P1, and thus we can introduce the adjoint System of (44) as follows:
Q
[
− DH

t
η,κ
T Φ(y, t)

]
= A∗Q

[
Φ(y, t)

]
+M(b, T − t) in S̄T ,

Φ(ξ, t) = 0 on ∂Ω1 × [0, T],

lim
t→T−

Q
[

t I1−ζ
T Φ(y, t)

]
= 0 in Ω1,

then, in view of Theorem 2, we can now conclude that Λψ0 = P
(

0 Iζ−η
T Φ(0)

)
has a unique

solution in P1, and the initial state ν0 is observed between functions γ̃1 and γ̃2 in the subregion ω1.
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Example 2. In this example, we consider C as bounded (zone sensors). Considering the following
diffusion system 

DH
0

η,κ
t ν(y, t) = ∂2

∂y2 ν(y, t) in [0, 1]× [0, T],

ν(ξ, t) = 0 in [0, T],
lim

t→0+
0 I1−ζ

t ν(y, t) = ν0(y) is unknown in [0, 1],
(44)

augmented with the OuPuFu

M(t) =
∫ 1

0
ν(y, T − t)h(y)dy = ν(b, t), (45)

where A = ∂2

∂y2 with eigenvalues λn = −n2π2 and the corresponding eigenfunctions

φn(y) = sin(nπy). Let us fix 1
3 = b ∈ [0, 1] = Ω2 and take any internal subregion

ω2 = [ 1
6 , 1

2 ] of the whole domain. We note that System (44) has a unique mild solution ν(y, t) in
L2([0, T];D(A)) ∩ C([0, 1]× [0, T]).

Proposition 4. There exists a state for which System (44) with the OuPuFu (45) is not weakly
observable in Ω2, but is Z2-observable in the subregion ω2.

Proof. To show that System (44) with the OuPuFu (45) is not weakly observable in Ω2, it is
sufficient to verify that ν0 ∈ Ker(Kη,κ). Thus, we can now derive

CSη,κ(t)ν0 = Kη,κ(t)ν0 =2
∞

∑
n=1

tη+κ(1−η)−1Eη,κ(η−1)−η(−n2π2tη)〈ν0, φn〉φn

(
1
3

)
,

where Eη,κ(·) stands for the two-parameter Mittag–Leffler function. Now, for all
y ∈ [0, 1], |φn| ≤

√
2, the Mittag–Leffler function Eη,κ(η−1)−η(−n2π2tη) is continuous

with |Eη,κ(η−1)−η(−n2π2tη)| ≤ K
1+|−n2π2|tη for t ≥ 0 with K > 0. Hence,

|CSη,κ(t)ν0| = 2
∞

∑
n=1

K
√

2‖ν0‖tη+κ(1−η)−1

1 + | − n2π2|tη

and

K∗η,κM(t) =2
∞

∑
n=1

φn(y)
∫ 1

3

0
ση+κ(1−η)−1Eη,κ(η−1)−η(−n2π2ση)〈C∗M(σ), φn〉dσ

= S∗η,κ(t)C
∗M(t).

Thus, the observation operator C is admissible. From the above, we can see that
KerKη,κ(t) 6= 0, which means System (44) is not observable in the whole domain [0, 1].
Next, we investigate the observability of the addressed system in the internal subregion ω2.

Kη,κ p∗ω pων0 =2
∞

∑
n=1

φn(y)tη+κ(1−η)−1Eη,κ(η−1)−η(−n2π2tη)〈p∗ω pων0, φn〉L2(ω2)
6= 0.

Thus, the initial state ν0 is weakly observable in the subregion ω2. In addition, for all
y ∈ ω2, we have

¯̃γ1 =
∣∣ν0
|ω2

(y)
∣∣− 2

3
< ν0

|ω2

and
¯̃γ2 =

∣∣ν0
|ω2

(y)
∣∣+ 2

3
> ν0

|ω2
.
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Thus, pω2 ν0 ∈ Z2 and (44) together with (42) is Z2-observable in ω2. This completes
the proof.

Let the space P2 be given by

P2 =
{

g ∈ L2(Ω2)|g = 0 in L2(Ω2)\Z2
}

.

From Lemma 4, we have

ψ0 7−→ ‖ψ0‖2
P2

=
∫ T

0
‖Cψ(T − t)‖2dt,

which defines a norm on P2, and we can introduce the adjoint system of (44) as follows:
Q
[
− DH

t
η,κ
T Φ(y, t)

]
= A∗Q

[
Φ(y, t)

]
+ 〈C∗M(t), h〉L2(ω2)

h(y) in Ω2 × [0, T],

Φ(ξ, t) = 0 on ∂Ω2 × [0, T],

lim
t→T−

Q
[

t I1−ζ
T Φ(y, t)

]
= 0 in Ω2,

Then, in view of Theorem 3, we can now conclude that Λψ0 = P
(

0 Iζ−η
T Φ(0)

)
has a

unique solution in P2, and the initial state ν0 can be observed between functions ¯̃γ1 and ¯̃γ2 in the
subregion ω2.

5. Conclusions

In this manuscript we studied the concept of regional enlarged observability (ReEnOb)
for fractional differential equations (FDEs) with Hilfer derivatives. We developed an
approach based on the Hilbert uniqueness method (HUM). Based on this approach and
with the knowledge of the initial information of the system and some given measurements,
we reconstructed the initial state ν1

0 on an internal subregion ω from the whole domain Ω.
Our findings show that it is possible to obtain the desired state between two profiles in
some selective internal subregions. Finally, we gave two illustrative examples to support
our theoretical results. It is of great interest for future works to investigate the ReOb of
sub-diffusion systems with the Hilfer derivative in cases where the reconstructed initial
state is in a subregion on the boundary of the whole domain. Furthermore, our paper
motivates the study of the ReEnOb of sub-diffusion systems via ψ-Hilfer or (k, ψ)-Hilfer
fractional derivatives.
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