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Abstract

In this paper we propose a practical and efficient method
for finding the globally optimal solution to the problem of
pose estimation of a known object. We present a frame-
work that allows us to use both point-to-point, point-to-line
and point-to-plane correspondences in the optimization al-
gorithm. Traditional methods such as the iterative closest
point algorithm may get trapped in local minima due to the
non-convexity of the problem, however, our approach guar-
antees global optimality.

The approach is based on ideas from global optimization
theory, in particular, convex under-estimators in combina-
tion with branch and bound. We provide a provably optimal
algorithm and demonstrate good performance on both syn-
thetic and real data.

1. Introduction

A frequently occurring and by now a classical problem in
computer vision, robotic manipulation and photogrammetry
is the registration problem, that is, finding the transforma-
tion between two coordinate systems, see [13, 6, 11] and
the references therein. The problem appears in several con-
texts: relating two stereo reconstructions, solving the hand-
eye calibration problem and finding the absolute pose of an
object given 3D measurements.

There are a number of solutions proposed and perhaps
the most well-known is by Horn et al [7]. They derive a
closed-form solution for the Euclidean (or similarity) trans-
formation that minimizes the sum of squares error between
the transformed points and the measured points. As pointed
out in [8], this is not an unbiased estimator if there are mea-
surement errors on both point sets.

The more general problem of finding the registration be-
tween two 3-D shapes was considered in [2], where the it-
erative closest point (ICP) algorithm was proposed to solve
the problem. The algorithm is able to cope with different

geometric primitives, like point sets, line segments and dif-
ferent kinds of surface representations. However, the al-
gorithm requires a good initial transformation in order to
converge to the globally optimal solution, otherwise only a
local optimum is achieved. A number of approaches have
been devoted to make the algorithm more robust to such dif-
ficulties, e.g. [5, 4], but the algorithm is still plagued by lo-
cal minima as no guarantee of global optimum is obtained.

In this paper, we generalize the method of Horn et al [7]
by incorporating point, line and plane features in a common
framework. Given point-to-point, point-to-line, or point-
to-plane correspondences, we demonstrate how the trans-
formation (Euclidean or similarity) relating the two coor-
dinate systems can be computed based on a geometrically
meaningful cost-function. Though the resulting optimiza-
tion problem becomes much harder - the cost-function is
a polynomial function of degree four in the unknowns and
there may be several local minima. Still, we present an effi-
cient algorithm that guarantees global optimality. A variant
of the ICP-algorithm with a point-to-plane metric was pre-
sented in [4], but it is based on local iterative optimization.

The algorithm presented in this paper is based on re-
laxing the non-convex problem by convex under-estimators
and then using branch and bound to focus in on the global
solution [9]. The under-estimators are obtained by replacing
bilinear terms in the cost-function with convex and concave
envelopes, see [10] for further details.

In summary, our main contributions are:

• A generalization of Horn’s method for the registration
problem using points, lines and planes.

• An efficient algorithm for computing the global op-
timum of the corresponding quartic polynomial cost-
function.

• The introduction of convex and concave relaxations
of monomials in the computer vision literature. This
opens up the possibility of attacking similar problems
for which so far only local algorithms exist.
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Figure 1. The experimental setup for the tests done in Section 5.

2. The Registration Problem

We will now review the methods of Horn et al as pre-
sented in [7]. Given two corresponding point sets we want
to find the best transformation that maps one set onto the
other. The best is here taken to mean the transformation
that minimizes the sum of squared distances between the
points, i.e.

m∑
i=1

||T (xp
i ) − yp

i ||22, (1)

where xp
i and yp

i , i = 1, .., m, are the 3D points in the re-
spective coordinate systems. Here we assume T to be either
a Euclidean or a similarity transformation,

T (x) = sRx + t,

with s ∈ R+, R ∈ SO(3) and t ∈ R
3 (s = 1 corresponds

to the Euclidean case). Following Horn [7], it turns out that
the translation t is given by

t =
1
m

∑
yp

i − R
1
m

∑
xp

i = ȳp − Rx̄p. (2)

This will turn equation (1) for the Euclidean case into

m∑
i=1

||Rdxp
i − dyp

i ||22 = (3)

=
m∑

i=1

(dxp
i )T dxp

i + (dyp
i )T dyp

i − 2(dxp
i )

T RT dxp
i , (4)

with dxp
i = (xp

i − x̄p) and dyp
i = (yp

i − ȳp). Due to the or-
thogonality of R this expression becomes linear in R. Now

Corresp. Euclidean/ Affine
type Similarity
Point-Point Horn [7] Linear Least Squares
Point-Plane Our algorithm Linear Least Squares
Point-Line Our algorithm Linear Least Squares
Combination Our algorithm Linear Least Squares

Table 1. Methods available for estimating the registration for dif-
ferent types of correspondences and transformations.

R can be determined from the singular value decomposition
of a matrix constructed from dxp

i and dyp
i . The details can

be found in [7].
In this paper we will consider not only point-to-point

correspondences but also point-to-line and point-to-plane
correspondences. In the following sections it will be shown
why the extension to these types of correspondences result
in more difficult optimization problems. In Figure 1, a mea-
surement device is shown which generates 3D point coor-
dinates and which will be used for validation purposes. Ta-
ble 1 describes different methods available for global op-
timization. Note that if the transformation considered is
affine, i.e., T (x) = Ax + t, then the problem is simply a
linear least squares problem.

2.1. Point-to-Plane Correspondences

We will now consider the point-to-plane problem. Sup-
pose we have a number of planes πi in one coordinate sys-
tem and points xπ

i i = 1, ..., mπ in another, and we assume
that point xπ

i lies on plane πi. Let d(x, π) be the minimum
distance between a point x and a plane π. The problem is
now to find s ∈ R+, R ∈ SO(3) and t ∈ R

3 that minimizes

fπ(s, R, t) =
mπ∑
i=1

d(sRxπ
i + t, πi)2. (5)

From elementary linear algebra we know that this can be
written as

fπ(s, R, t) =
mπ∑
i=1

((sRxπ
i + t − yπ

i ) ∗ ni)
2
, (6)

where yπ
i is any point on the plane πi, ni is a unit normal of

the plane πi and ∗ is the inner product in R
3. Thus we want

to solve the problem

min
s∈R+,R∈SO(3),t∈R3

mπ∑
i=1

(
nT

i (sRxπ
i + t − yπ

i )
)2

. (7)

In order to reduce the dimensionality of this problem we
now derive an expression for the translation t. This is sim-
ilar to the approach by Horn et al. (see [7]) in which all
measurements are referred to the centroids.

If we let R be any 3×3 matrix we can consider the prob-
lem (7) as minimizing (6) with the constraints gij(s, R, t) =
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rT
i rj − δij i, j = 1, 2, 3, where ri is the columns of R and

δij is the Dirac function. From the method of Lagrange
multipliers we know that for a local minimum (s∗, R∗, t∗)
(and hence a global) there must be numbers λi,j such that

∇fπ(s∗, R∗, t∗) +
3∑

i=1

3∑
j=1

λij∇gij(s∗, R∗, t∗) = 0. (8)

Here the gradient is taken with respect to all parameters.
We see that the constraint is independent of the translation
t, thus it will disappear if we apply the gradient with respect
to t. Moreover we see that we will get a linear expression
in t and, thus we are able to solve for t. It follows that

t = N−1
mπ∑
i=1

nin
T
i (yπ

i − sRxπ
i ), (9)

where N =
∑mπ

j=1 njn
T
j . Note that if N is not invertible

then there are several solutions for t. However if t and t̃
are two such solutions then their difference t̂ = t − t̃ is
in the null space of N thus

∑
njn

T
j t̂ = 0. Now one can

easily prove by inserting t̃ into the objective function (6)
that fπ(s, R, t̃) = fπ(s, R, t). This means that there are
infinitely many solutions and thus the problem is not well-
posed.

Next we turn to the problem of dealing with the rotation
and scaling. A common way to parametrize rotations is to
use quaternions (see [1]). Let q = (q1, q2, q3, q4)T be the
unit quaternion parameters of the rotation matrix R. If the
scale factor s is free to vary, one can equivalently drop the
condition ||q|| = 1. We note that for vectors a and b, both
in R

3, we can rewrite the term aT sRb as the quadratic form
qT Bq, where q is the 4×1 vector containing the quaternion
parameters and B is a 4 × 4 matrix that depends on a and
b. If we substitute (9) into (6) we see that the objective
function f can be written as

f(q) =
mp∑
i=1

(qT Biq + ki)2, (10)

where ki are constants. Hence our problem can be viewed
as minimization of this 4th degree polynomial in 4 unknown
variables.

2.2. Point-to-Line Correspondences

The problem of point-to-line correspondences can be
treated in a similar way as in the case of point-to-plane
correspondences. One difference is that in this case every
point-to-line correspondence gives three squared terms in-
stead of one as in the point-to-plane case. Let xl

i be the
measured 3D points and let li, i = 1, ..., ml, be the corre-
sponding lines. Then the sum of squared distances between

the transformed points and the lines can be written

fl(s, R, t) =
ml∑
i=1

||(I − viv
T
i )(sRxl

i + t − yl
i)||2, (11)

where vi is a unit direction vector for the line li and yl
i is

any point on the line li. Note that the three components
of (I − viv

T
i )(Rxl

i + t − yl
i) are linearly dependent since

(I − viv
T
i ) is a rank 2 matrix. However it would not make

sense to remove any of them since we would then not be
optimizing the geometrical distance any more.

Set Vi = (I − viv
T
i ). Note that V T

i Vi = ViVi = Vi. Us-
ing Lagrange multipliers we can now derive the following
expression for t

t = V −1

(
ml∑
i=1

Vi(yl
i − sRxl

i)

)
, (12)

where V =
∑ml

i=1 Vi. To see that we can formulate (11) as
a sum of squared quadratic forms we note that

fl(s, R, t) =
3∑

k=1

ml∑
i=1

||vk
i (Rxl

i + t − yl
i)||2, (13)

where vk
i is the row vector containing the k’th row of Vi.

Substituting (12) into (13) yields again a function of the
form

fl(q) =
3ml∑
i=1

(qT Biq + ki)2. (14)

2.3. Point-to-Point Correspondences

The case of point-to-point correspondences is the easiest
one. Let xp

i be the measured points and yp
i be the corre-

sponding points i = 1, ..., mp. The objective function can
in the same way as for the point-to-line case be written as

fp(s, R, t) =
3∑

k=1

mp∑
i=1

||ek(sRxp
i + t − yp

i )||2 (15)

where ek is the k’th row of the identity matrix. Substituting
(2) into (15) yields a function of the desired form:

fp(q) =
3mp∑
i=1

(qT Biq + ki)2. (16)

2.4. Merging the Different Kinds of Correspon-
dences.

If we have many types of correspondences and want to
combine them we find the goal function by adding (6), (13)
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and (15). We then use Lagrange multipliers to compute the
expression for t. One gets

t = M−1

(∑mp

i=1(y
p
i − Rxp

i ) + (17)

+
∑ml

i=1 Vi(yl
i − Rxl

i) +
∑mπ

i=1 nin
T
i (yπ

i − Rxπ
i )

)
,

where M = mpI +
∑ml

i=1 Vi +
∑mπ

j=1 njn
T
j . Substituting

this into the objective function we can now find an expres-
sion of the type

f(q) =
mπ+3ml+3mπ∑

i=1

(qT Biq + ki)2. (18)

3. Convex Optimization and Branch-and-
Bound Algorithms.

In this section we briefly present some notations and con-
cepts of convex optimization and branch and bound algo-
rithms. For a more detailed introduction see [3] and [9].

A convex optimization problem is a problem of the form

min g(x)
such that hi(x) ≤ bi i = 1, ..., m.

(19)

Here x ∈ R
n and both the objective function g(x) : R

n �→
R and the constraint functions hi(x)Rn �→ R are convex
functions. Convex problems have the very useful property
that a local minimizer to the problem is also a global mini-
mizer. Therefore it fits naturally into our framework.

The convex envelope of a function h : S �→ R (denoted
hconv) is a convex function which fulfills:

1. hconv(x) ≤ h(x), ∀x ∈ S.

2. If u(x) is convex on S and u(x) ≤ h(x), ∀x ∈ S then
hconv(x) ≥ u(x), ∀x ∈ S.

Here S is a convex domain. The concave envelope is de-
fined analogously. The convex envelope of a function has
the nice property that it has the same global minimum as
the original function. However computing the convex enve-
lope usually turns out to be just as difficult as solving the
original minimization problem.

3.1. Branch and Bound Algorithms

Branch and bound algorithms are iterative methods for
finding global optima of non-convex problems. They work
by calculating sequences of provable lower bounds which
converges to the global minima. The result of such an al-
gorithm is usually an ε−suboptimal solution i.e. a solution
that is at most ε from the global minimum.

Consider the following problem. We want to minimize
a non-convex scalar function f(t) over a rectangle D0.

For any rectangle Dn ∈ D0 let fmin(Dn) be the mini-
mum value of f on Dn and fl(Dn) be a lower bound for
f on Dn. Also we require that the approximation gap
fmin(Dn) − fl(Dn) uniformly goes to zero as the maxi-
mum length of the sides of Dn (denoted |Dn|) goes to zero.
Or in terms of (ε,δ) we require that

∀ε > 0, ∃δ > 0 s.t ∀Dn ∈ D0,

|Dn| ≤ δ ⇒ fmin(Dn) − fl(Dn) ≤ ε.

If such a function can be obtained then a strategy to obtain
an ε-suboptimal solution is to divide the domain into rectan-
gles with sides δ and compute fl in each rectangle. However
the number of such rectangles increases exponentially with
1/δ and therefore this may not be feasible. To avoid this
problem a strategy to create as few rectangles as possible
can be deployed. Assume that we know that fmin(D) < k.
If fl(Dn) > k for some n then there is no point in refining
Dn further since the minimum will not be attained in Dn.
Thus Dn and all Dk ⊆ Dn can be discarded.

The branch and bound algorithm begins by computing
fl(D0) and the point q∗ ∈ D0 which minimizes fl(q), ∀q ∈
D0. This is our current best estimate of the minimum. If
f(q∗) − fl(D0) ≤ ε then q∗ is ε-suboptimal and the al-
gorithm terminates. Otherwise the rectangle D0 is parti-
tioned into rectangles (D1, ..., Dk) (with k ≥ 2) and one
gets the lower bounds fl(Dn) and the points qi in which
these bounds are obtained. The new best estimate of the
minimum is then q∗ := argmin{qi}k

i=1
f(qi). If f(q∗) −

min1≤i≤k fl(Di) ≤ ε, then q∗ is suboptimal and the algo-
rithm terminates. Otherwise D0 is refined further, however,
the rectangles for which fl(Di) > f(q∗) are not consid-
ered. This algorithm is guaranteed to find an ε-suboptimal
solution for any ε > 0 but the worst case complexity is
exponential. In practice one obtains relatively fast conver-
gence.

4. Application to the Pose Estimation Problem

Recall that the problem is to minimize a function of the
type

f(q) =
m∑

i=1

(qT Biq + ki)2 (20)

where q = (q1, q2, q3, q4). In order to be able to use the
branch and bound algorithm we also have to have bounds
qL
i ≤ qi ≤ qU

i , i = 1, 2, 3, 4. In practice these bounds are
usually known since the scale factor can not be arbitrarily
large. The quadratic forms qT Biq + ki contain terms of the
form bijqiqj , and therefore we introduce the new variables
sij = qiqj , i = 1, .., 4, j = 1, ..., 4. Now consider the
constraints sij = qiqj , or equivalently

sij ≤ qiqj , (21)

sij ≥ qiqj . (22)
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In the new variables the objective function is convex. The
constraints (22) are convex if i = j and (21) is not convex
for any i, j. If we replace qiqj in (21) with the concave
envelope of qiqj then (21) will be a convex condition. We
also see that by doing this we expand the domain for sij and
thus the minimum for this problem will be lower or equal
to the original problem. Similarly we can relax qiqj in (22)
by its convex envelope and obtain a convex problem which
gives a lower bound on the global minimum of the objective
function f .

The convex envelope of qiqj i �= j, qU
i ≤ qi ≤ qL

i ,
qU
j ≤ qi ≤ qL

j , is well known (e.g. [10]) to be

(qiqj)conv = max
{

qiq
U
j + qU

i qj − qU
i qU

j

qiq
L
j + qL

i qj − qL
i qL

j

}
≤ qiqj ,

(23)
and the concave envelope is

(qiqj)conc = min
{

qiq
L
j + qU

i qj − qU
i qL

j

qiq
U
j + qL

i qj − qL
i qU

j

}
≥ qiqj .

(24)
Thus the equations (21) and (22) for i �= j can be relaxed
by the linear constraints

− sij + qiq
U
j + qU

i qj − qU
i qU

j ≥ 0, (25)

−sij + qiq
L
j + qL

i qj − qL
i qL

j ≥ 0, (26)

sij − (qiq
L
j + qU

i qj − qU
i qL

j ) ≥ 0, (27)

sij − (qiq
U
j + qL

i qj − qL
i qU

j ) ≥ 0. (28)

If i = j we need to relax q2
i in (21) with its concave enve-

lope. However this is simply a line aqi + b, where a and
b is determined by noting that the values (qL

i )2 and (qU
i )2

should be attained at the points qi = qL
i and qi = qU

i , re-
spectively. Figure 2 shows the upper and lower bounds of
s1 when −1 ≤ q1 ≤ 1. We see that even when the interval
has only been divided four times the upper bound is quite
close to the lower bound. This gives some indication on
how the lower bounds on the problem may converge quite
rapidly. Since all the non-convex constraints have been re-
placed by convex constraints, the relaxed problem is now
convex. Thus we can minimize this problem to obtain a
lower bound on the original problem and as we subdivide
the domain these lower bounds will tend to the global min-
imum of the original problem. To summarize we now state
the relaxed problem. Let q̂ be a 14×1 vector containing the
parameters (q1, ..., q4, s11, s12, ..., s44). The term qT Biq
can then be relaxed by the term bT

i q̂ where bi is a vector
of the same size as q̂. Note that entries of bi are obtained
directly from the entries of Bi. All the linear constraints can
be written as cj−aT

j q̂ ≥ 0 where cj is a constant and aj is a
vector of same size as q̂. These constraints can be written as
a matrix inequality c − AT q̂ ≥ 0 where c is a vector whose
entries are the cj and A is a matrix whose columns are the

−1 0 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

q
1

s 11

−1 0 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

q
1

s 11

Figure 2. Upper and lower bounds of s11, which relaxes q2
1 in the

interval [−1 , 1 ]. Left: the initial bound. Right: when the inter-
val has been divided four times. Note that the lower bound is exact
since q2

1 ≤ s11 is convex.

aj’s. Then the relaxed problem can be written

min
∑m

i=1(b
T
i q̂)2

subject to sii − q2
i ≥ 0 i = 1, ...4

c − AT q̂ ≥ 0.
(29)

In the case of finding a Euclidean transformation instead
of a similarity transformation we can simply add the extra
linear constraint

s11 + s22 + s33 + s44 − 1 = 0. (30)

Also we have to check if the problem is feasible in each
rectangle Dn - if it is not, the rectangle can be removed for
further consideration. To find new optimal function values
we check the values of f(q∗n/||q∗n||) to make sure that we get
a Euclidean transformation. Recall that q∗n is the minimizer
of the relaxed problem.

5. Experiments and Discussion

5.1. Local Minima

The problems usually exhibit local minima. To show
some typical behavior of these kinds of functions we gener-
ated a problem with eight plane-to-point correspondences.
This was done in the following way. We randomly gener-
ated eight planes πi and then picked a point yπ

i from each
plane. Then the points xπ

i = RT (yπ
i − t) were calculated

for known R and t. We used the Matlab built-in function
fmincon to search for the minima from some different start-
ing points. Table 2 shows the results. Note that the third
point is the global minimum. To get an idea of the shape of
the function, Figure 3 plots the function-values along a line
from one local minimum to the global minimum. To the left
is the values on the line from the first point in Table 2 and
on the right is the second point.
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local min point objective function value
(0, -0.0781, -1.0000, -0.4857) 2.1365
(0, 0.1189, -0.3349, -0.9316) 2.2161

(0.5917, 0.0416, 0.6995, 0.4088) 3.7123e-04
(0.6551, 0.2226, 0.7166, 0.2306) 0.0018

(0,0,0,0) 65.1556

Table 2. Local minima found by the Matlab function fmincon.
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Figure 3. The function values on two lines between the local min-
ima and the global minimum

5.2. Implementation

The implementation of the algorithm was done in Mat-
lab. We basically used the algorithm described in Sec-
tions 3.1 and 4. At each iteration the problem (29) is solved
for each rectangle Dn to obtain a lower bound on the func-
tion Dn. To speed up convergence we use minimizer q∗n of
the problem (29) as a starting guess for a local minimization
of the original objective function f . We then compare the
function-value at the local optimizer qloc

n and at q∗n. If any
of these values are lower than the current best minimum the
lowest one is deemed the new best minimum. Even thou
q∗n is the optimal value of the relaxed problem (29) it is of-
ten the case that f(q∗n) is larger that f(qloc

n ). Therefore we
reach lower values faster if we use the local optimizer and
thus intervals can be thrown away faster. If an interval is not
thrown away then we divide it into two. We divide the inter-
vals along the dimension which has the longest side. In this
way the worst case would be that the number of intervals
doubles at each iteration. However we shall see later that in
practice this is not the case. As a termination criterion we
use the total 4-dimensional volume of the rectangles. One
could argue that it would be sufficient to terminate when the
approximation gap (see Section 3.1) is small enough, how-
ever this does not necessarily mean that the ε-suboptimal
solution is close to the real minimizer.

To solve the relaxed problem we used SeDuMi (see
[12]). SeDuMi is a free add-on for Matlab that can be
used to solve problems with linear, quadratic and semi-
definiteness constraints. For the local minimization we used
the built in Matlab function fmincon.

Figure 4 shows the performance of the algorithm in two
cases. In both cases the data has been synthetically gener-
ated. The first problem is the case of ten point-to-plane, four
point-to-line and four point-to-point correspondences. The
solid line to the left in Figure 4 shows the number of feasible
rectangles for this problem at each iteration. The solid line
to the right shows the fourth root of the total volume of the
rectangles. Recall that this is a 4-dimensional problem and
therefore the fourth root gives an estimate of the total length
of the sides in the rectangles. This case exhibits the typical
behavior for this algorithm. The second case is the minimal
case of 7 point-to-plane correspondences. This seems to be
the case where our algorithm has the most difficulties. The
dashed lines shows the performance for this case. Note that
this case could probably be solved much more efficiently
with a minimal case solver, it is merely included to show
the worst case behavior of the algorithm. For comparison
the dotted line to the left shows what the number of rectan-
gles would be if no rectangles where thrown away. In the
first case the algorithm terminated after 38 iterations, and in
the second after 39.
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Figure 4. Left, the number of feasible rectangles at each iteration.
Right, the fourth root of the total volume of the rectangles.

5.3. Experiments on Real Data

This section presents two experiments made with real
data. The experimental setup can be viewed in figure 1. We
used a MicroScribe-3DLX 3d scanner to measure the 3D-
coordinates of some points on two different objects. The
3D-scanner consists of a pointing arm with five degrees
of freedom and a foot pedal. It can be connected to the
serial-port on a PC. To measure a 3D-coordinate one simply
moves the pointing arm to the point and presses the pedal.
The accuracy of the device is not very high. If one tries to
measure the same point but varies the pose of the pointer
one can obtain results that differ by approximately half a
millimeter. The test objects are the ones that are visible in
figure 1, namely the Rubik’s cube and the toy model. By re-
quest of the designer will refer to the toy model as the space
station.
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5.3.1 Rubik’s Cube Experiment

The first experiment was done by measuring on a Ru-
bik’s cube. The Rubik’s cube contains both lines planes
and points and therefore suits our purposes. We modeled
three of the sides of the cube and we measured nine point-
to-plane, two point-to-line and three-point-to-point corre-
spondences on these sides. Figure 5 shows the model of
the Rubik’s cube and the points obtained when applying
the estimated transformation to the measured data points.
The points marked with crosses are points measured on the

0

1

2

3

0
1

2
3

0

1

2

3

Figure 5. The model of the Rubik’s cube.

planes, the points marked with rings are measured on lines
and the points marked with stars are measured on corners.
It is difficult to see from this picture how well the points fit
the model, however to the left in figure 6 we have plotted
the residual errors of all the points. Recall that the residuals
are the squared distances. The first nine are the point-to-
plane, the next two are the point-to-line and the last four are
the point-to-point correspondences. We see that the point-
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Figure 6. Left, Residual errors for all correspondences. Right,
Leave-one-out residuals.

to-point residuals are somewhat larger than the rest of the
residuals. There may be several reasons for this, one is that
using the 3D-scanner it is much harder to measure corners
than to measure planes or lines. This is because a corner is
relatively sharp and thus the surface to apply the pointer to
is quite small making it easy to slip. To the right in figure 6
is the result from a leave-one-out test. Each bar represents
an experiment where we leave one data point out, calculate
the optimal transformation and measure the residual of the

left out point. Again the first nine are the point-to-plane,
the next two are the point-to-line and the last four are the
point-to-point correspondences.

For comparison we also implemented the algorithm by
Horn et al. [7] and an algorithm based on linear least
squares. The last algorithm first finds an optimal affine
transformation y = Ax + b and then finds sR by mini-
mizing ||A−sR||F where || · ||F is the frobenius norm. The
translation is then calculated from equation (18). Note that
in order to calculate the affine transformation one needs at
least 12 equations. Table 3 shows the results obtained from
the three methods when solving the Rubik’s cube experi-
ment. The residuals stated are the sum of the different types
of correspondence residuals. Note that this experiment is
somewhat unfair to the algorithm by Horn et al. since it
only optimizes the point-to-point correspondences. How-
ever due to the lack of other alternatives we still use it for
comparison. As one would expect the solution obtained by
Horn’s algorithm has a lower residual sum for the point-to-
point correspondences, since this is what it optimizes. Our
algorithm has a lower total residual sum since this is what
we optimize.

Residuals: Our Alg. Horn Lin.Least Sq.
point-point 0.0023 1.3e-04 0.0051
point-line 4.7e-04 0.0016 0.0027

point-plane 0.0018 0.0095 0.0049
Total 0.0045 0.0113 0.0127

Table 3. Residuals of the cube problem.

5.3.2 Space Station Experiment

The next experiment was done by measuring on the space
station. It is slightly more complicated than the Rubik’s
cube and it contains more planes to measure from. We mea-
sured 27 point-to-plane, 12 point-to-line and 10-point-to-
point correspondences on the space station. Figure 7 shows
the model of the space station and the points obtained when
applying the estimated transformation to the measured data
points.

To the left in figure 8 we have plotted the residual errors
of all the points, and to the right are the results of the leave-
one-out test.

Table 3 shows the results obtained from the three meth-
ods when solving the space station experiment. Note that
in this case the algorithm by Horn et al. [7] preforms bet-
ter since we have included more point-to-point correspon-
dences then in the Rubik’s cube experiment. Again our al-
gorithm has the lowest total residual sum, while Horn has
the lowest point-to-point residual.
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Figure 7. The model of the Space Station.
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Figure 8. Left, Residual errors for all correspondences. Right,
Leave-one-out residuals.

Residuals: Our Alg. Horn Lin.Least Sq.
point-point 0.0083 0.0063 0.0221
point-line 0.0018 0.0036 0.0015

point-plane 0.0046 0.0098 0.0046
Total 0.0147 0.0197 0.0282

Table 4. Residuals of the space station problem.

Residuals: Our Alg. Horn Lin.Least Sq.
point-point 0.0286 0.0220 0.0316
point-line 6.0630e-04 0.4986 0.0072

point-plane 0.0118 0.0404 0.0111
Total 0.0410 0.5610 0.0499

Table 5. Residuals of the simulated data for the Euclidean algo-
rithm.

5.4. Euclidean Algorithm with Synthetic Data

For completeness we also include an experiment where
the Euclidean version of the algorithm is tested against the
Euclidean versions of Horn and the linear least squares. We
artificially generated six point-to-point, three point-to-line
and seven point-to-plane correspondences. The results can
be seen in Table 5.

6. Conclusions and Future Work

We have presented a unified framework for the registra-
tion problem using points, lines and planes. Based on ge-

ometric distances, a practical algorithm that computes the
globally optimal solution has been developed and tested on
realistic scenarios.

Future work includes to investigate degenerate cases and
the use of robust norms to improve the general applicability
of the approach. In addition, the performance of the algo-
rithm should be tested on a wider range of experiments. An-
other natural path for further investigation is to incorporate
the methodology in the ICP algorithm in order to improve
robustness with respect to local minima.
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