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THE REGULAR LOCAL NONINTERACTING CONTROL PROBLEM 

FOR NONLINEAR CONTROL SYSTEMS* 

H. NIJMEIJERt AND J. M. SCHUMACHERt 

Abstract. We study the Noninteracting Control Problem for affine nonlinear control systems under the 

assumption that the number of scalar inputs equals the number of vector outputs. Our purpose is to find a 

static state feedback law for the system which achieves noninteraction. Using the recently developed 

differential geometric approach to nonlinear systems theory and working under a set of regularity assumptions, 

we give necessary and sufficient conditions for the local solvability of the problem. This work extends earlier 

results in the "geometric approach" for linear systems. 

Key words. nonlinear control systems, noninteracting control, controlled invariance, controllability 

distributions 

AMS(MOS) subject classifications. 93C10, 49E05 

1. Introduction. This paper is intended as a contribution to the theory of noninter­

acting control of nonlinear systems. In general terms, the problem can be described 

as follows. Suppose that a dynamical system has been given, in which two sets of 

variables have been designated as instruments and as targets, respectively. The targets 

and instruments may be either scalar variables or vectors. One says that we have a 

situation of noninteraction (or input-output decoupling) if each instrument affects only 

one target and none of the others. If the given system does not have this property, one 

may ask whether it is possible to add control loops to the system in such a way, that 

noninteraction is obtained. This is the problem of noninteracting control. 

To arrive at a precise problem statement, one has to specify: (i) the class of systems 

under study, (ii) the precise nature of the noninteraction one wants to obtain, and (iii) 

the control format. In this paper, we shall consider "affine" [13], [18], [22] systems, 

which constitute a class of nonlinear systems that has received considerable attention. 

We will assume that the input variables ("instruments") are scalars, but we allow the 

output variables ("targets") to be vectors. The condition of noninteraction will be 

defined using the concepts of "controllability distributions" [11], [14] and "output 

controllability" [16], [17]. The control schemes we shall consider consist of locally 

defined state feedback and (state-dependent) precompensation. This combination is 

often referred to in the literature simply as "static state feedback" [8], [18] or even 

just "feedback". Definitions of the concepts mentioned here will be given below. 

The noninteracting control problem has been studied extensively and from various 

points of view. Most of the literature is concerned with linear systems. In this field, 

one has the option of dealing with the problem via the transfer function, and this 

approach has been taken in some of the earliest work in noninteraction [5], [10] as 

well as in recent contributions [6]. Within the state-space framework, a breakthrough 

was made around 1970 ([24]; see also [1]). The innovation centered around the 

introduction of the notion of "controllability subspace" as a means of expressing the 

intuitive notion of "subsystem", which is of obvious importance in the theory of 

noninteraction. Controllability subspaces came to play a key role in a successful line 

of research that has been termed the "geometric approach" to linear systems theory. 
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For more detailed accounts of the long history of noninteracting control of linear 

systems, we refer to [12] and [6]. In the nonlinear domain, progress has been slower. 

"Although efforts have been made to develop a decoupling theory for nonlinear systems, 

( ... ) considerable difficulties ( ... ) have so far inhibited substantial progress", wrote 

the authors of [12] in 1971. A criterion for achievability of noninteraction by "static 

state feedback" was given by Sinha [20] for the case of scalar inputs and scalar outputs. 

Further work under the same restriction was reported in [3]. 

In the award winning paper [8] Isidori et al. were the first authors to give a 

geometric formulation for the general noninteracting control problem. They presented 

a solution to this problem [8, Thro. 5.1]; however, their necessary and sufficient 

conditions for solvability are, in the general case (allowing for vector outputs), not 

constructive (see [8, Thro. 5.1]). The purpose of this paper is to give constructive 

(verifiable) necessary and sufficient conditions also in the case of vector outputs, 

pertaining to the solvability of what we will call the regular local noninteracting control 

problem. In contrast to the results of [20], [3], [2] and also [8] we will use a nonlinear 

version of the concept of controllability subspaces. This extension was made in [11] 

and [ 14 ], leading to various definitions for the so-called "controllability distributions". 

The concept was applied to solve special versions of the decoupling problem in [16] 

and [17]. In this paper, we will show that controllability distributions can be used to 

rederive a major result from the linear theory [24] in a nonlinear context. This continues 

a line ofresearch [7]-[9], [11], [13]-[18] that is directed towards a systematic generaliz­

ation of the "geometric approach" [23] to nonlinear systems, using the methods of 

differential geometry. 

The organization of the paper is as follows. In § 2, the precise formulation is given 

of the decoupling problem that we consider here. The main result follows in § 3, which 

is largely devoted to lemmas that are needed in the sufficiency part of the proof. Some 

remarks on the structure of a decoupled system are given in § 4. 

2. Problem formulation. Consider the affine nonlinear control system 

m 

(2.1) i(t)=A(x(t))+ 2: B;(x(t))u;(t) 
i=I 

where x are local coordinates of a smooth n-dimensional manifold M, A, Bi. · · · , Bm 

are smooth vector fields on M and U; : IR+ ~ IR is a piecewise smooth input function, 

i e 1!1· Together with the dynamics (2.1) we consider as output functions 

(2.2) z;(t)= C;(x(t)), i E 1!1 

where C; : M ~ N; is a smooth map from M to a smooth p;-dimensional manifold N;, 

p; ~ 1, i e 111· We assume that each C;, i e 111, is a surjective submersion. We will observe 

later on that the output functions C;: M ~ N; play no role beyond specification of the 

distributions Ker C;*, i e 1!1· To rule out obvious unsolvable problems, we will assume 

that the maps C; are mutually independent, i.e. the rank of the map C = 
( C 1 , • • • , Cm): M ~ N 1 x · · · x Nm equals p 1 + · · ·+Pm· Also we will assume-as is 

usual in the differential geometric approach-that the distribution generated by the 

input vector fields has no singularities, so 

dim ~ 0 := dim {Bi.·· ·, Bm} = m. 

Furthermore we will assume that for the system (2.1) the accessibility distribution, see 

[14], equals TM. That is, the system (2.1) is strongly accessible, cf. [21], [22], i.e. the 

set of reachable points at time t > 0 from x0 e M has a non empty interior in M. In this 
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paper we allow for static state feedback. Thus an admissible control Jaw is of the form 

(2.3) u=a(x)+J3(x)v, 

where a: M _,.!Rm, f3: M _,.. !Rmxm are smooth maps, and v = (v., · · ·, Vm)' E 

nrrepresents a new input. To keep as much open-loop control as possible, we seek f3 
such that J3(x) = (J3ii(x)) is nonsingular for all x EM. Applying the feedback law (2.3) 

to (2.1), we obtain as the new dynamics 

(2.4) 
M m M 

.X(t)=A(x(t))+ 2: B;(x(t))v;(t), 
i=I 

where 

(2.5a) 
M m 

A(x)=A(x)+ 2: B;(x)ai(x), 
i=l 

(2.5b) i E 1Jl. 

In the static state feedback noninteracting control problem we seek a control law (2.3) 

such that in the modified dynamics the control vi( ·) does not affect the outputs zi( ·) 

for j ;I; i; moreover we want the scalar input vj( ·) to "control" the corresponding 

(vector-valued) output z;( · ), i E 1Jl. This problem can be nicely formulated in a differen­

tial geometric framework, see also [8]. For doing so we need some terminology. 

Consider the set V(M) of all smooth vector fields on M as a Lie algebra with Lie 

product [X., X2] for Xi. X2 E V(M). For any set of vector fields Sc V(M) we denote 

by {ShA the Lie subalgebra generated by S. Furthermore for Xi. X2 E V(M) define 

ad~ 1 X 2 = X2, ad~ 1 X 2 = [Xi. X2] and recursively adtX2 = [Xi. adt 1], k = 2, 3, · · ·. 

Associated with the system (2.4) we define the following Lie algebras, see also [19]: 

(2.6a) 

(2.6b) 

and th! Lie ideal generated by L0; in Lo which will be denoted by L0 ;, i E 1Jl. Clearly 

L0 ; c L0 ;, i E 1Jl. Also we introduce the corresponding distributions 

(2.7) R0 =Span {L0}, R; =Span {L0 ;}, R; =Span {L0;}, i E 1Jl. 

To take care that in the new dynamics (2.4) the input v;( ·) has no interaction with 

zi( · ), j ;I; i, we must have 

(2.8) kc n KerC#, i E 1Jl. 
}"i 

To achieve that v;( ·) "controls" the corresponding output z;( · ), i E 1Jl, we need the 

nonlinear version of output controllability, that is 

(2.9) i E 1J1 

which is equivalent to the fact that the set of reachable output values has nonempty 

interior in N;, i E 1Jl, see [16], [17]. Because R; c R;, we see that (2.9) implies 

(2.10) i E 1J1. 

There is a nice and in our context useful interpretation of (2.8), (2.9) and (2.10) in 

geometric terms. Recall the following definitions, see [7], [9], [13], [18]. An involutive 
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distribution D on M is called controlled invariant if there exists a feedback (2.3) such 
that the modified dynamics (2.4)-(2.5) satisfies 

[A,D]c D, 
(2.11) 

[B;, D]c D, i E '!I· 

An involutive distribution D on M is called a (degenerate) controllability distribution 

if there exists a feedback (2.3) and a subset I c '!I such that 

(2.12) D =Span ( {ad~B; Ii E /, ke Z+hA). 

Finally an involutive distribution D on M is called a regular controllability distribution 

if there exists a feedback (2.3) and a subset I c '!I such that 

[A, D]c D, 
(2.13) 

[B;, D] c D, i E '!I 

and 

(2.14) 

Returning to the noninteracting control problem, we see, by definition of the distribu­

tions Rj, i E '!I, that for all i E '!I 

(2.15) 
[A, R;] c: R.j, 

[Bj, R.a c: R.j, jE lp. 

That is, R; is controlled invariant and moreover it is a regular controllability distribution, 

i E '!I, whereas R; is a degenerate controllability distribution, i e m. 

In this way the static state feedback noninteracting control problem can be stated 

as follows: 

Given the system (2.1)-(2.2), find, if possible, a feedback law (2.3) such that 

the distributions R; defined by (2.6)-(2.7) satisfy (2.8) and (2.1 O). 

In this paper we will solve a regular local version of this problem, to be called the 

regular local noninteracting control problem. In this context "local" means, that given 

an arbitrary initial state x0 E M, we are interested in the existence of a local feedback 

(2.3), i.e. the maps a and f3 in (2.3) are only well defined on a neighborhood of x0• 

Working locally, we are able to fully exploit the differential geometric approach set 

up in [7], [8] and worked out in a series of papers [9], [13]-(18], [22], [25], [26]. It 

is a logical first step, and a common practice in the literature just cited, to exclude 

singularities. In this paper, too, we shall work under a series of regularity assumptions. 

In particular, we look for a specific set of "regular" distributions Rf, i E '!I, that satisfy 

the conditions (2.8) and (2.10). The exact definition of the word ''regular" will be 

given in§ 3; among its implications is that we demand that the distributions UierRf 

and (Uie 1Rt)na0 have constant dimension for all /c: '11· This surely is a restrictive 

assumption, but we feel that it is necessary to complete the ''regular" analysis before 

one can hope to successfully attack the singular cases. Moreover, one should realize 

that for analytic systems (2.1)-(2.2) the regularity assumptions will hold on an open 

and dense submanifold M' of M. Therefore, a (global) solution to the general noninter­

acting control problem has to satisfy the necessary and sufficient conditions of the 

next section on this submanifold M'. 
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3. Necessary and sufficient conditions for the regular local noninteracting control 

problem. We now come to the necessary and sufficient conditions for the solvability 

of the regular local noninteracting control problem. For this we need some notation 

and assumptions. 

Al. The distribution ~o =Span {Bi,· · ·, Bm} has dimension m on M. 

A2. The strong accessibility distribution of (2.1), R 0 =Span {ad~B; I k E "11.+} LA has 

dimension n. 
A3. The output maps (2.2) are mutually independent, i.e. the rank of the map 

C = ( C1 , • • • , Cm): M..,. N 1 x · · · x Nm equals p 1 + · · ·+Pm· 
For each subset I c rp let us define R1 as the maximal regular local controllability 

distribution contained in n j.E'. I Ker ci*. The involutive distributions R1' I c l!I, are 

well defined (see [11], [14]) but their dimension may vary on M. (We set R~ =TM, 
as a consequence of the rule from logic that the empty intersection of parts is the whole.) 

A4. The distributions R1, Le 1 Rt, (L;E 1 Rf) n D.0 , l c rp, as well as L;E 1 R7 and 

LiEl Rt n <lo, I c l!I, all have constant dimension on M (here the bar denotes involutive 

closure). 

THEOREM 3.1. Consider the system (2.1)-(2.2) and assume Al-A4 hold. Then the 

regular local static state feedback noninteracting control problem is solvable if and only if 

(3.1) 

Furthermore, if these conditions hold, then {Rt};"= 1 is the only solution of the noninteracting 

control problem. 

Before we are able to prove this theorem, we need some preliminary results on 

the distributions R1, I c l!I· The following lemmas are also of independent interest, 

and give, even in the linear case, additional information on the structure of the 

distributions R1, I c 1Jl. Everywhere below, we shall consider the system (2.1 )-(2.2), 

assuming that Al-A4 hold. 

LEMMA 3.2. Suppose that (3.1) holds. Then, for all iE rp, 

(3.2) AonRtSZ'. I, Rj. 
j .. i 

Proof Suppose that (3.1) were true and that (3.2) would not hold. It would then 

follow that 

(3.3) 110 c L: RJ c L RJ. 
j~i j-:;Ci 

Note that the last distribution in (3.3) is controlled invariant, since it is the sum of 

controlled invariant distributions. Under the condition of strong accessibility, any 

controlled invariant distribution containing A0 must be equal to TM (see [22]). Since 

it is clear from the definition of the distributions Rt that 

(3.4) I, RJc L: RJc Ker C;*' 
i"'i i"'i 

it would follow that Ker C;* = TM, or the map C; is trivial. This contradicts our 
assumptions. 0 

We can use the above lemma in some counting arguments. Set y 1 =dim (A0 n Rf), 
and define 

k k-1 

(3.5) Yk=dim L: (AonRt)-dim I, (6.0 nRt) 
i= 1 i=l 
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for k = 2, · · · , m. Note that the 'Yk 's are constant by A4. It is obviously true that 'Yk?; 0 

for all k, but if (3.1) holds then it follows from the above lemma that even 'Yk?; 1 for 

k E '!I· For, suppose that 'Yi= 0 for some i; then we would have 

i-1 

(3.6) AonRtc L: (AonRJ')c I (a0 nRj), 
j=I j~i 

a situation which has been excluded by Lemma 3.2. On the other hand, still under the 

assumption that (3.1) holds, it is clear that 

m m 

(3.7) I 'Yk =dim L: (Aon RT) =dim A0 = m. 
k=I i=l 

So the 'Yk's form a set of m integers~ 1 which add up to m. It follows, of course, that 

'Yk = 1 for all k. As a consequence, 

j j 

(3.8) dim l: (Aon Rn= L: 'Yi=j 
i=l i=l 

for all j E f!I. Since the order in which we numbered the output functions is arbitrary, 

the conclusion can be formulated as follows. 

LEMMA 3.3. Suppose that (3.1) holds. Then, for all I c 1JI. 

(3.9) dim L (Aon Rt)= IJ!. 
ieJ 

An obvious consequence of this is that the distributions A0 n Rt are independent. 

Now, set 81 =dim (A0 n Rf) and define the constants (see A4) 

(3.10) fh =dim (a0 n it Rt )-dim (Aon:~: Rf) 

for k = 2, · · · , m. If we reason in the same way as above, now using the fact that 

L:;:1 Rt= TM, then the conclusion we obtain is the following. 

LEMMA 3.4. Suppose that (3.1) holds. Then, for all I c 1J1. 

dim (Aon .I Rr) =IJ!. 
1eI 

(3.11) 

Since it is clear that 

(3.12) L: (Aon Rr> c A.on L: Rt 
iel iel 

for all I c: f!I, we obtain as a corollary: 

LEMMA 3.5. Suppose that (3.1) holds. Then, for all I c: f!I, 

(3.13) Aon L: Rt= L: (Aon Rt). 
iel iel 

Set p 1 =dim (Rf n A0), and define 

(3.14) pk=dim(RtnAo)-dim(Rt-1nAo) 

for k = 2, · · ·, m. These numbers are constants by Assumption A4. We can use them 

to prove: 
LEMMA 3.6. Suppose that (3.1) holds. Then, for all I c. f!I, 

(3.15) dim (Aon RT)= IJI. 
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Proof. It is sufficient to show that Pk ¥= 0 for all k E 11'1· So, suppose that Pk = 0 for 

some k E 11'1· Then we have 

(3.16) 

The distributions Rt_ 1 and Rt are both regular local controllability distributions, and, 

of course, Rt-i c Rf.It follows from [17] that there exists a feedback u = a(x)+,B(x)v 

for the system (2.1) ~uch that both Rt and Rt_1 are invariant for the modified dynamics. 

It then follows from the characteri~ation of regular local controllability distributions 

given in [11] (Lemma 4.1) that 

(3.17) R*-R* /!. - k-1· 

Since Rt c Rt and Rt_ 1 c ker Ck*, we obtain 

(3.18) 

Since we also have, by definition, 

(3.19) 

it follows from the strong accessibility condition that the map Ck is trivial, and we 

have reached a contradiction. D 
We can use this to establish the following lemma, which will be instrumental in 

proving that, under the assumption (3.1), the distribution Lei Rf is involutive. 
LEMMA 3.7. Suppose that (3.1) holds. Then, for any I c 1!1, 

R1 = R1 := inv. clos. [.L Rf]. 
1ef 

(3.20) 

Proof. Let I c 11'1· Since R1 is involutive, and Rf c R1 for all i E /, we have 

(3.21) L Rfc R1 c R1. 
iel 

By Lemmas 3.4 and 3.6, it follows that 

(3.22) 

From [14], we know that R1 is a regular local controllability distribution. By the same 

argument as was used in the proof of Lemma 3.6, it follows that (3.20) holds. D 
For linear systems, the above result already implies that, under the given circum­

stances, the subspace corresponding to the distribution L;eI Rf is equal to the maximal 

controllability subspace contained in the intersection of the kernels of the output 

mappings C; (i E 1!1\/)-a result which doesn't seem to have been formulated explicitly 

before. In the nonlinear context, we have to worry about involutiveness. Somewhat 

surprisingly, it turns out that this is not a problem. The key lemma is the following. 

LEMMA 3.8. Let R 1 and R2 be regular local controllability distributions such that 
-=-~,,... 

R 1 + R 2 and ~on R1 + R2 have fixed dimension, and 

(3.23) 

Then R1 + R2 is involutive (and hence-see [14]-R1 + R2 is itself a regular local controlla­

bility distribution). 
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Proof. Locally, we can choose sets of independent vector fields {B11 , • • ·,Bid 

and {B2i. · · · , B21} such that 

(3.24) 

(3.25) 

.::ion Ri =Span {B11 , • • ·, B1k}, 

.::ion R2 =Span {B2i. • • ·, B21}. 

Note that 

(3.26) [Bu, R2]c (R2+.::i0) n Ri + R2 = R2+(..::i0 n Ri + R2 ) = R2 +Span {B11 , ···,Bid 

for all i e fs;. Using [13], we see that there exist vector fields Bu, · · · , B1k such that 

(3.27) . Span {Bu, ... ' Blk} =Span {B11, ... ' B1k} =.::ion Ri. 

(3.28) [Bu, R2] c R2 , i E fs;. 

Likewise, one can find vector fields .821 , · · · , B21 such that 

(3.29) Span {B2i. · · ·, B21} =Span {B2i. · · ·, B21} =.::ion R2, 

(3.30) iEJ. 

Since R1 + R 2 is controlled invariant (see [14]) and R 1 c R1 + R2, we can find, as in 

[17], a closed-loop mapping A such that 

(3.31) 

(3.32) 

Now, note that 

[A, R1]c Ri. 

[A, R 1 + R 2] c Ri + R 2 • 

(3.33) [A, R2]c (R2+~0) n (R1 + R2) = R2+Span {B11,. .. 'B1k}. 

It follows from (3.33) and (3.28) (see [7]) that there exist functions 'Y; (i E le) such that 

A= A+ L ~= 1 Bu'Y; satisfies 

(3.34) 

Using the general formula 

(3.35) [X· c, Y]=[X, Y] · c-X· Y(c), 

we find that also 

(3.36) 

(3.37) 

[A, R1] c R 1 , 

[A, Ri + R2] c Ri + R2. 

By the characterization of regular local controllability distributions in [14], we know 

that, if we define 

(3.38) 

then 

(3.39) 

Ri =Span {ad-'.4Bis Is E /s,j El+}, i = 1, 2, 

Ri = inv.clos. R.;. 

Using the Jacobi identity, one can easily prove by induction that 

(3.40) 

for all j E Z+ and i E fs;. Using (3.35) again, we find that 

(3.41) 
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Another induction argument based on the Jacobi identity then shows that 

(3.42) [R 1 , R 2] c R1 + R2. 

Hence, R 1 + R2 is involutive. 0 

The result that we were after is now an easy consequence. 
LEMMA 3.9. Suppose that (3.1) holds. Then, for any subset I c IJ?, the distribution 

L;E 1 Rf is involutive. 

Proof It is sufficient to show that I~=t Rt is involutive for every k E IJ?, and we 
do this by induction. Of course, Rr is involutive by definition. Now assume that 
I~:: Rt is involutive. Then I~;:- 1 1 Rt= Rt_ 1 according to Lemma 3.7, and so it follows 
that I~: 1 1 Rt is a regular local controllability distribution. Moreover, the results of 

Lemmas 3.7, 3.6 and 3.5 show that 

(3.43) A0 ninv.clos. (t Rt)= Aon c~: Rt) +lion Rt. 

An application of the preceding lemma now completes the proof. 0 
One notes that it is now immediate that, under the assumption (3.1), we have 

(3.44) R1= I Rt 
iE I 

just as in the linear case. 

Now, let us proceed to an argument that will be directly needed in the proof of 
the main theorem. The issue is the "compatibility" of the distributions Rt. 

LEMMA 3.10. Suppose that (3.1) holds. Then, locally, there exists a basis of vector 
fields { B 1 , • • • , Bm} for A0 such that 

(3.45) Span {B;} = A0 n Rt, i Erp, 

(3.46) [Bt' Rj] c Rj' i,j Erp. 

Proof Take i E rp, and let B; be a vector field such that 

(3.47) Span {B;} = A0 n Rt. 

From the fact that the Rj's are controlled invariant, it follows that 

(3.48) j Erp. 

Since B; E Rt and Rt+ Rj is involutive (Lemma 3.9), we also have 

(3.49) [B;, Rj] c Rt+ Rj, j Erp. 

Consequently, we have (using Lemma 3.5) 

(3.50) [B;, Rj] c (Rj + A0 ) n (Rt+ Rj) = Rj + A0 n (Rt+ Rj) = Rj +Span {B;}. 

It is also clear that 

(3.51) [B;, I. Rf] c _I Rj +Span {B;}. 
)#I )~l 

From this, it follows (see [13]) that there exists a function {3; such that B; := B;/3; satisfies 

(3.52) [ B;, j~i Rj J c j~i Rj. 

But then we also have (from (3.50) and (3.52); cf. also [18]), for i ,= j 

(3.53) 
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Of course, the equality (3.53) also holds for i = j since Rf is involutive. Going through 

this construction for each i E '11, we obtain a set of vector fields {B1 , • • • , Bm} which 

satisfies (3.46), and which is then automatically a basis for A0 • 0 

We now proceed to the proof of the main theorem. 

Proof (of Theorem 3.1). For sufficiency, we assume that (3.1) holds. First of all, 

note that L:~=i R7 contains .1..0 and is controlled invariant for the system (2.1), so that, 

as noted in the proof of Lemma 3.2, 

(3.54) 

Since we have, for each i, 

(3.55) 

it follows that 

(3.56) 

i.e., (2.14) is satisfied. 

m 

l: Rf= TM. 
i=l 

I Rjc Ker ci*' 
j>'i 

Rf+KerCi*= TM (iE1J1) 

Next, we have to show that there exists a local feedback of the form u = 
a (x) + ,B(x )v that leaves each of the distributions Rf ( i E rp) invariant; i.e., the Rr's 

are "compatible". An appropriate (3 := diag (,8 1 , • • • , .Bm) was already shown to exist 

in Lemma 3.10. Vector fields B1 , · • ·, Bm can be constructed that satisfy [Bio Rj] c Rj 
( i,j E rp ), and there exists a unique nonsingular map f3: M-? ~mxm (locally defined) 

such that B;(x) = B;(x)f3j(x), where the vector fields Bi have been selected to satisfy 

(3.47); clearly, these vector fields are obtained from a nonsingular transformation of 

the original input vector fields appearing in (2.1). 

We have shown in Lemma 3.9 that Lj.=i Rj is locally controlled invariant, so 

(3.57) [A,~- Rf] c -~- RJ+.6.0 = I Rj+Span {B;}. 
Jr I Jr I J.,....1 

Also, we have 

(3.58) 

According to [7], it follows from this that we can, locally, define a function ai such 

that the vector field A+ Biai leaves Lj.=i RJ invariant: 

(3.59) [ ~ *] * A+ Biai> i~i Rj c j;i Ri . 

Having done this for each i Erp, we next consider the vector field A+ L:;':, 1 Bpi. The 

following holds: 

(3.60) 

[A+ _I Bpi, .I Rf] c [A+ Biai, I. Rj] +[.I B/xi, .I. Rj] 
J=I J'°' 1>'1 1>'1 J'°' 

This shows that the distributions Lj.=i RJ are compatible. Now, define 

(3.61) R;= n L: R~. 
j>'i k;o'j 
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Clearly, we have Rf c Ri for all i E IJl. It is immediate from (3.60) that 

(3.62) [A+ .I Bpj, R;] c::. Rh i E IJI. 
J=I 

Furthermore, one has 

(3.63) .RinAo= n L (RfnAo)=RtnAo. 
j .. i k .. j 

It now follows from Lemma 4.1of[l1] that Rf is the maximal regular local controllabil­

ity distribution in Ri, and that Rf is also invariant under A+ L:j: 1 Bpj, i.e., 

(3.64) [A+ .I Bpj, Rf] c::. Rf, 
J=I 

i E '!I· 

With the properties (3.45), (3.46) and (3.64) all fulfilled, we see that the first part of 
the proof is complete. To show that (3.1) is necessary, let {R;};E'!' be a set of regular 
local controllability distributions that gives a solution of the decoupling problem (see 

§ 2). Since 

m 

Ao= Span {B1o .. "Bm} =Span {B1". "Bm} c L (Aon R;) 
i=l 

(3.65) 
m 

cl: (A0 nRf)cA0 , 

i=l 

we see immediately that (3.1) must hold. Finally, it is also clear that, for any solution 

of the decoupling problem, we must have 

(3.66) 

By the same argument as was used in the proof of Lemma 3.6, it follows from (3.66) 
that Ri =Rf. This completes the proof of the theorem. D 

Remarks. (i) In connection with the solution of the noninteracting control problem 

given in [8] we note the following. The distributions A;= l:i,..i Rj, i E IJI, are locally 
compatible, i.e. there locally exists a feedback which leaves each of the A;'s, i E IJI, 

invariant. Moreover we have that Bj c b.; c Ker Ci*, j ~ i, and for any two disjoint 
subsets I, Jc 1J1 we have (n;e 1AJ+ (njeJAi) =TM. In other words we have shown that 
the ll/s, i E IJI, are compatible and satisfy the conditions of Theorem 5.1 of [8]; so we 
have produced a constructive local solution of the input-output decoupling problem. 
For the case of scalar outputs, such a constructive solution has already been provided 
in [8, Thm. 5.2]. 

(ii) In general the feedback u =a (x) + .B (x )vis only locally well defined. Without 
any further requirements on the state space M nothing can be said about the global 
solution of the noninteracting control problem. For instance, the question whether or 
not the manifold M is simply connected will probably be of importance (see [9]). 
From [18] comes the suggestion that the holonomy group of a certain integrable 
connection plays a crucial role. An approach to global problems via singularity theory 
is advocated by C.I. Byrnes in [27], [28]. Much further work will be needed to fully 
develop a theory of global nonlinear decoupling. 

(iii) Combining (2.10) (or (3.56)) with the result on nonlinear systems invertibility 
from [15], we see that each subsystem 

(3.67) 
x( t) = A(x( t)) + Bi(x( t) )vi( t), 

zi(t) = Ci(x(t)) 

x(O) = x0 , 
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is strongly invertible at x0 • In the case that each output function is 1-dimensional, so 

p, = · · ·=Pm= 1, our results coincide with the results obtained in [20], which is the 

nonlinear version of a result of [ 4], see also [8], [2]. 

(iv) As we also assume that p1 + · · ·+Pm= n the total output map C = 
( C1, · · · , Cm) is a (local) diffeomorphism, we have that n iem Ker C;* = 0 and our 

result follows by the fact that in this case the conditions a0 = a0 n Rf+· · · + a0 n R!, 
and Rt+ Ker C;* = TM, i e 111, are equivalent. By using some easy dimension arguments 

one can show that Rt= nj,.; Ker Cj* provided that the preceding condition holds, 
see also [16] and (3.44). 

(v) The strong accessibility assumption for (2.1) is not needed. What is necessary 

in Theorem 3.1 is that the strongly accessible distribution (see [14], [22]) R 0 satisfies 

C*(Ro) = T(N1 X • • • X Nm), where C = (Ci, ···,Cm). 

(vi) If the number of input channels exceeds the number of outputs, we obtain 

by doing similar computations as in Lemma 3.2-Lemma 3.7 that a sufficient condition 

for the solvability of the regular local noninteracting control problem is a0 = 
ffi;el'.!la0 n Rt, provided that A 1 -A4 hold. This serves as a starting point for a more 

general decoupling problem in [26]. 

4. The structure of a decoupled system. Next we want to discuss the (local) structure 

of an input-output decoupled system. We will show that as in the linear theory, see 

[12], our decoupled system possesses a natural local canonical form which can be 

built up from the distributions Rt. An alternative derivation is given in [8], and in 

[25] one can find a more algebraically oriented approach to the same problem. We 

consider a nonlinear system (2.1)-(2.2) satisfying the conditions and assumptions for 

the regular local noninteracting control problem, see § 3. For simplicity we will take 

m = 2; the general case follows by an easy induction argument. Form= 2 consider the 

nested sequence of involutive distributions 

(4.1) Rtn Rf c: Rte: Rt+ Rf= TM 

(here the last equality follows from the strong accessibility assumption). By [19] we 

know that around x0 e M there exists a coordinate system such that 

(4.2a) R* n R* =Span {_!_} 
t i ax3 ' 

(4.2b) 

(4.2c) { a a a } R*+R*=Span - - -
1 2 ax1' ax2' ax3 

with each x;, i e ~. possibly being a vector. 

Let us write the (locally) decoupled system as 

i =A(x)+ B1(x)v1 + Bix)vi, 

(4.3) Y1 = C1(x), 

Y2= Cz(x); 

then we have by definition of the regular local controllability distributions Rt and R! 
that for i = 1, 2 

(4.4) 
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and so 

(4.5) 
[A, Rf]c Rf, 

j= 1,2. 

From (4.4) and (4.5) one can easily verify, by using the Jacobi identity extensively, 

that there exist sets of vector fields {Xa} aeI and { Y,a},aeJ' which span Rf and Rr 
respectively, such that 

(4.6) [X", Y,a] E Rf n R! =Span{_!_}, 
ax3 

aEl, /3El. 

Here we recognize the ideal property of§ 2. But (4.6) exactly implies, e.g. [19], [22], 

that the distribution R! is locally given as 

(4.7) Rr =Span {_!_, _!_}. 
ax2 ax3 

Let us now see what this implies for our system. Using (4.2)-(4.7) and the fact that 

Rf c Ker C2* and Rf c Ker C,* we obtain that (4.3) reads in our local coordinates as 

(4.8) 

.i1 = A 1(x1) + B 1(x1)vi. 

X2 = A2(X2)+ B2(X2)V2, 

N 2 N 

X3=A3(X1,X2,X3)+ L B3;(X1,X2,X3)V;, 

Y1 = C(x,), 

Y2 = C(x2). 

i=l 

This is what one might call a local canonical form for the input-output decoupled 

system. This is a direct generalization of the well-known linear result of [12]. In the 

same way one has for m > 2 the following local canonical form: 

(4.9) 

x1 = A 1(x1)+ B1(x1)vi. 

* m -
Xm+I = Am+1(Xi. · · ·, Xm+l) + L B(m+l);(Xi,' · ·, Xm+JV;, 

i=l 

In thiscoordinatesystemonehas Rf= Span {a/ax;, a/axm+1}, i = 1, · · ·, m. It is immedi­

ately seen from (4.9) that we have output controllability in each channel; this is an 

aspect that is not covered in [8]. 

Acknowledgment. The developments of § 4 benefited from suggestions by a 
reviewer. 
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