THE REGULAR RING AND THE MAXIMAL RING OF QUOTIENTS OF A FINITE BAER *-RING

ΒY

ERNEST S. PYLE(1)

ABSTRACT. Necessary and sufficient conditions are obtained for extending the involution of a Baer *-ring to its maximal ring of quotients. Berberian's construction of the regular ring of a Baer *-ring is generalized and this ring is identified (under suitable hypotheses) with the maximal ring of quotients.

1. Introduction. J.-E. Roos has noted [9, pp. A122-A123] that if A is a finite Baer *-ring satisfying the (EP)-axiom and the (SR)-axiom (this and other terminology is explained in §2 below), then the involution of A can be extended to its maximal ring of quotients, and if A is an AW *-algebra, its maximal ring of quotients can then be identified with its regular ring. We are thus led to pose the following problem: Determine conditions on a Baer *-ring which make its involution extendible to its maximal ring of quotients in such a way that the maximal ring of quotients can be identified with the regular ring.

Our approach to this problem is as follows. We first obtain a necessary and sufficient condition for the involution of a Baer *-ring to be extendible to its maximal (right) ring of quotients, viz. that it satisfy *Utumi's condition: Every non*zero right ideal whose left annihilator is zero is large. We then obtain sufficient conditions for a Baer *-ring to satisfy this condition—one formulation is that it be finite, satisfy LP ~ RP (note that this much is required just to define the regular ring) and the (WEP)-axiom, and have a 2-proper involution (this and a great deal more was assumed by Berberian to establish regular ring, obtaining regular-ring). Finally, we generalize the construction of the regular ring, obtaining regular-ity through an identification with the maximal ring of quotients (all of which requires only the above-mentioned hypotheses).

2. Preliminaries. Throughout this paper, A will denote a *-ring with unity. An extension B of A is a right ring of quotients of A, written $B \ge A$, if for

Received by the editors January 22, 1974.

Copyright © 1975, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 16A08, 16A28, 16A30, 16A34; Secondary 46L10.

Key words and phrases Baer *-ring, maximal ring of quotients, regular ring of a Baer *-ring, LP ~ RP, (EP)-axiom, (SR)-axiom.

⁽¹⁾ This paper is based on the author's Ph.D. thesis, written under the direction of Professor Sterling K. Berberian at the University of Texas at Austin in 1972.

each pair $x, y \in B$ with $x \neq 0$, there exists $a \in A$ such that $xa \neq 0$ and $ya \in B$. (More precisely, $B \ge A$ if there exists an embedding $\sigma: A \to B$ such that, for each pair $x, y \in B$ with $x \neq 0$, there exists $a \in A$ such that $x\sigma(a) \neq 0$ and $y\sigma(a) \in A$. We follow the usual practice of suppressing σ and identifying A with $\sigma(A)$. There should be no confusion, for the embedding intended will always be clear from the context.) If $B_2 \ge A$ and $B_1 \ge A$, we say that B_1 can be *embedded* in B_2 over A if there exists a monomorphism $\sigma: B_1 \to B_2$ such that $\sigma(a) = a$ for all $a \in A$. If σ is surjective, we say that B_1 is *isomorphic* to B_2 over A and write $B_1 \cong_A B_2$; if, moreover, B_1 and B_2 are *-rings and σ is a *-isomorphism, we write $B_1 \cong_A B_2$.

Let D(A) be the set of all right ideals I of A such that $A \ge I$ (via the identity embedding) and let F(A) be the set of all right A-module homomorphisms $\theta: I \to A$, where I varies over D(A). (Notation. If $\theta \in F(A)$, we write M_{θ} for its domain.) Since D(A) is closed under finite intersections and $\theta^{-1}(I) \in D(A)$ for any $\theta \in F(A), I \in D(A)$ [10, p. 3], we may define operations on F(A) as follows:

 $(\theta + \sigma)(x) = \theta(x) + \sigma(x), \quad x \in M_{\theta} \cap M_{\sigma}; \quad (\theta \sigma)(x) = \theta(\sigma(x)), \quad x \in \sigma^{-1}(M_{\theta}).$

An equivalence relation is defined on F(A) by putting $\theta \equiv \sigma$ whenever there exists $I \in D(A)$ such that $\theta = \sigma$ on *I*; we denote the equivalence class of θ by $\hat{\theta}$ and write *Q* for the set of all such equivalence classes. The operations on F(A) are extended to *Q* in the obvious way: $\hat{\theta} + \hat{\sigma} = (\theta + \sigma)^{2}$, $(\theta \sigma)^{2} = \hat{\theta}\hat{\sigma}$. Finally, we embed *A* in *Q* by identifying each $a \in A$ with the equivalence class of left multiplication by *a*.

(2.1) LEMMA [10, pp. 2, 4]. (i) If $\theta \in F(A)$ and $x = \hat{\theta} \in Q$, then $xa = \theta(a)$. (ii) Let $B \ge A$. If σ is a ring endomorphism of B leaving A elementwise fixed, then σ is the identity on B.

It follows [10, p. 4]:

(2.2) THEOREM [UTUMI]. Q is a maximal right ring of quotients of A in the following sense: $Q \ge A$, and if $B \ge A$, then B can be embedded in Q over A.

Since Q is clearly unique up to isomorphism over A, we shall refer to it as the maximal right ring of quotients of A. Left rings of quotients and Q_{λ} , the maximal left ring of quotients of A, are defined similarly. A two-sided ring of quotients of A is a ring B which is both a left and a right ring of quotients of A with respect to the same embedding.

We write R(S) for the right annihilator of a subset S of A, i.e.,

 $R(S) = \{a \in A : sa = 0 \text{ for all } s \in S\},\$

and L(S) for the left annihilator of S.

 $Z(A) = \{a \in A : R(\{a\}) \text{ is large}\}$

is called the (right) singular ideal of A (a right ideal I is large if $I \cap J \neq 0$ for every nonzero right ideal J; if Z(A) = 0, then a right ideal I is large if and only if $I \in D(A)$; cf. [4, p. 58]). If Z(A) = 0, then Q is regular (i.e., for every $x \in Q$, there exists $y \in Q$ such that x = xyx) [5, p. 893].

We write \widetilde{A} for the set of projections in A, i.e.,

$$\widetilde{A} = \{e \in A \colon e^2 = e = e^*\}.$$

If, for some $x \in A$, there exists $e \in \widetilde{A}$ such that $R(\{x\}) = (1 - e)A$, then eis unique and is called the *right projection* of x; we write $e = \operatorname{RP}(x)$. RP(x) is the minimal projection in A such that $x\operatorname{RP}(x) = x$ (here $e \leq f$ means ef = e = fe). The *left projection* of x is defined similarly and is denoted (when it exists) by LP(x). A partial isometry in A is an element w such that w = ww * w. $e, f \in \widetilde{A}$ are equivalent, $e \sim f$, if there exists a partial isometry w such that w * w = e and ww * = f; e is then called the *initial* and f the *final projection* of w. $e, f \in \widetilde{A}$ are orthogonal if ef = 0. Partial isometries in A are said to be addable in A if, whenever (w_i) is a family of partial isometries in Awith orthogonal initial projections (e_i) and orthogonal final projections (f_i) , there exists a partial isometry w in A whose initial projection is $\sup e_i$ and whose final projection is $\sup f_i$, such that $we_i = w_i = fw_i$. A is finite if $e \sim 1$ implies e = 1; A is strongly finite if xy = 1 implies yx = 1. We say that A has an *n*-proper involution if $x_1x_1^* + \cdots + x_nx_n^* = 0$ implies $x_1 = \cdots = x_n = 0$.

We will consider the following axioms on *-rings (recall that the *commutant* of a subset S of A is the set $S' = \{a \in A : sa = as \text{ for all } s \in S\}$; the commutant of S' is denoted simply S"):

LP ~ RP. For every $x \in A$, LP(x) ~ RP(x).

(WEP)-AXIOM. For every nonzero $x \in A$, there exists $y \in \{x * x\}^{"}$ such that $0 \neq x * xy * y \in \widetilde{A}$.

(EP)-AXIOM. For every nonzero $x \in A$, there exists $y \in \{x * x\}^n$ such that $y = y^*$ and $0 \neq x * xy^2 \in \widetilde{A}$.

(SR)-AXIOM. For every $x \in A$, there exists $r \in \{x * x\}^n$ such that r = r * and $x * x = r^2$.

A Rickart *-ring is a *-ring A in which every element has both a left and a right projection. In such a ring, \widetilde{A} is a lattice; if it is complete, A is called a *Baer* *-ring. A Rickart *-ring has a unity element and a 1-proper involution [2,

p. 13]; furthermore, it is easy to see that its singular ideal is zero.

3. Extending the involution. We will utilize the following theorem, proved by Utumi [11, pp. 144-145]:

(3.1) THEOREM. Suppose Z(A) = 0 and $B \ge A$. Then (i) Q satisfies Utumi's condition; (ii) $Q \cong_A Q_\lambda$ if and only if A satisfies Utumi's condition; (iii) if A satisfies Utumi's condition, so does B; (iv) if B is a two-sided ring of quotients of A and B satisfies Utumi's condition, then A satisfies Utumi's condition.

(3.2) THEOREM. The involution of A can be extended to Q if and only if Q is a two-sided ring of quotients of A. If Z(A) = 0, this is equivalent to each of the following: (i) A satisfies Utumi's condition; (ii) $Q \cong_A Q_{\lambda}$. The extension (when it exists) is unique.

PROOF. If * and # are involutions on Q extending that of A, then the mapping $x \mapsto x^{*\#}$ is a ring endomorphism of Q leaving A elementwise fixed. Thus, $x = x^{*\#}$ by (2.1), and hence $x^{\#} = x^{*}$. Suppose now that Q is a two-sided ring of quotients of A, and for each $x \in Q$, set $I_x = \{a \in A : a^*x \in A\}$ and $\theta_x(a) = (a^*x)^*$, $a \in I_x$. Then $I_x \in D(A)$ and $\theta_x \in F(A)$; hence, we may define a mapping * on Q which extends the involution of A by putting $x^* = \hat{\theta}_x$. To show that this mapping is an involution for Q, fix $x, y \in Q$.

(i) If $a \in I_x \cap I_y = M_{\theta_x} \cap M_{\theta_y}$, then

$$\theta_{x+y}(a) = [a*(x+y)]^* = (a*x)^* + (a*y)^* = \theta_x(a) + \theta_y(a),$$

which proves $(x + y)^* = x^* + y^*$.

(ii) If $a \in I_{xy} \cap I_x$, then

$$\theta_{xy}(a) = [a^*(xy)]^* = [(a^*x)y]^* = \theta_y((a^*x)^*) = \theta_y(\theta_x(a)),$$

hence $(x y)^* = y^* x^*$.

(iii) If we write $x = \hat{\theta}$, $\theta \in F(A)$, the assertion $x = x^{**}$ is equivalent to $\theta_{x^*} \equiv \theta$. But for $a \in I_{x^*} \cap M_{\theta}$, we have $\theta_{x^*}(a)^* = a^*x^* = (xa)^* = \theta(a)^*$.

This proves one implication; the converse follows from the following more general (and obvious) fact: a ring of quotients of A having an involution extending that of A is a two-sided ring of quotients of A. The statements for rings with zero singular ideal are evident from (3.1).

The next result will enable us to apply (3.2) to Baer *-rings.

(3.3) THEOREM. If B is a two-sided ring of quotients of a Baer *-ring A, then for each $x \in B$, there exist e, $f \in \widetilde{A}$ such that $L(\{x\}) = B(1 - e)$ and $R(\{x\}) = (1 - f)B$.

PROOF. It is easy to see that the unity element for A is also a unity element for B, and for each $x \in B$, $I = \{a \in A : xa \in A\} \in D(A)$. Set $e = \sup\{LP(xa): a \in I\}$; we claim: (1) ex = x and (2) yx = 0 if and only if ye = 0. This will obviously prove the assertion for e; the corresponding assertion for f follows by symmetry. For each $a \in I$, exa = xa since $e \ge LP(xa)$; thus, (ex - x)a = 0, so ex - x = 0 results from $B \ge I$. If ye = 0, then yx = y(ex) = 0. Conversely, suppose yx = 0 and put $J = \{a \in A : ay \in A\}$. Since B is a left ring of quotients of A and A is a left ring of quotients of J, B is clearly a left ring of quotients of J. But for $a \in I$, $b \in J$, we have (by)(xa) = b(yx)a = 0; since by, $xa \in A$, this implies (by)LP(xa) = 0. Varying a over I, it follows that bye = 0, which implies ye = 0.

(3.4) COROLLARY. If $B \ge A$, where A is a Baer *-ring whose involution is extendible to B, then B is a Baer *-ring with no new projections (i.e., $\tilde{B} = \tilde{A}$).

PROOF. B is a Rickart *-ring by (3.3). Moreover, if $f \in \widetilde{B}$, there exists $e \in \widetilde{A}$ such that $B(1 - f) = L(\{f\}) = B(1 - e)$; thus, 1 - f = 1 - e, or $f = e \in \widetilde{A}$. Therefore, $\widetilde{A} = \widetilde{B}$; since \widetilde{B} is complete, B is a Baer *-ring.

(3.5) COROLLARY. If A is a Baer *-ring whose involution is extendible to Q (i.e., if A satisfies Utumi's condition), then Q is a regular Baer *-ring with no new projections; in particular, Q and A are strongly finite.

PROOF. A regular Baer *-ring is strongly finite [6, p. 532].

We now determine a large class of Baer *-rings which satisfy Utumi's condition:

(3.6) THEOREM. A Baer *-ring A satisfies Utumi's condition if

(i) \widetilde{A} is an upper continuous lattice (i.e., $e_{\alpha} \uparrow e$ implies $e_{\alpha} \cap f \uparrow e \cap f$),

(ii) the involution of A is 2-proper, and

(iii) for each $x \in A$, the principal right ideal xA contains an orthogonal family (e_{α}) of projections with $\sup e_{\alpha} = LP(x)$.

PROOF. Let I be a right ideal with L(I) = 0 and let J be any nonzero right ideal; we must show that $I \cap J \neq 0$. Since J contains a nonzero projection f, it suffices to find a projection $e \in I$ such that $e \cap f \neq 0$. Suppose, to the contrary, that $e \cap f = 0$ for every projection $e \in I$. Then it suffices to show

$$(*) LP(x) \cap f = 0, x \in I.$$

For, hypothesis (ii) and the fact that L(I) = 0 imply $(LP(x))_{x \in I} \uparrow 1$ [3, pp. 21, 225]; hence, $LP(x) \cap f \uparrow f$ by upper continuity, implying f = 0 by (*), a contradiction. To prove (*), we first obtain by (iii) an orthogonal family of

projections in $xA \subseteq I$ with sup LP(x); passing to the net (e_{α}) of finite sums, we have $e_{\alpha} \uparrow LP(x)$, with $e_{\alpha} \in I$. Then by upper continuity, $0 = e_{\alpha} \cap f \uparrow LP(x) \cap f$.

(3.7) COROLLARY. If A is a finite Baer *-ring with a 2-proper involution, either of the following hypotheses implies that A satisfies Utumi's condition (and hence that Q is a regular Baer *-ring with no new projections): (i) A satisfies the (WEP)-axiom and LP ~ RP; (ii) A satisfies the (EP)-axiom and the (SR)-axiom.

PROOF. (i) [3, p. 44, Exercise 7; p. 83, Exercise 13; p. 185]; (ii) [7, p. 99].

4. The ring of closed right operators. For the remainder of the paper, we assume that A is a finite Baer *-ring satisfying LP ~ RP. In this section, we extend A to a ring which may, under very mild hypotheses, be identified with the maximal ring of quotients of A. In the next section, we will show that if A also satisfies Utumi's condition, then this ring is the regular ring of A.

A family $(e_{\alpha})_{\alpha \in I}$ in \widetilde{A} , indexed by an increasingly directed set I, is called a strongly dense domain in A (briefly, an SDD). If $(e_{\alpha})_{\alpha \in I}$ and $(f_{\beta})_{\beta \in J}$ are SDD's, then so is $(e_{\alpha} \cap f_{\beta})_{(\alpha,\beta) \in I \times J}$ with the product ordering of indices: $(\alpha', \beta') \ge (\alpha, \beta)$ if $\alpha' \ge \alpha, \beta' \ge \beta$ [3, p. 185, Exercise 3]. (For simplicity, we omit the index set in the future.) A right operator (RO) for A is a family of pairs (x_{α}, e_{α}) , where (e_{α}) is an SDD and $\alpha' \ge \alpha$ implies $x_{\alpha'}e_{\alpha} = x_{\alpha}e_{\alpha}$. It follows that $x_{\alpha}(e_{\alpha} \cap e_{\beta}) = x_{\beta}(e_{\alpha} \cap e_{\beta})$ for all indices α, β . [Proof. Fix α , β and choose $\gamma \ge \alpha, \beta$. Since $e_{\gamma} \ge e_{\alpha}, e_{\beta}$,

$$\begin{aligned} x_{\alpha}(e_{\alpha} \cap e_{\beta}) &= x_{\alpha}e_{\alpha}(e_{\alpha} \cap e_{\beta}) = x_{\gamma}e_{\alpha}(e_{\alpha} \cap e_{\beta}) \\ &= x_{\gamma}(e_{\alpha} \cap e_{\beta}) = x_{\gamma}e_{\beta}(e_{\alpha} \cap e_{\beta}) = x_{\beta}e_{\beta}(e_{\alpha} \cap e_{\beta}) = x_{\beta}(e_{\alpha} \cap e_{\beta}). \end{aligned}$$

This argument illustrates the principle technique used in handling RO's.) Two RO's $(x_{\alpha}, e_{\alpha}), (y_{\beta}, f_{\beta})$ are equivalent, $(x_{\alpha}, e_{\alpha}) \equiv (y_{\beta}, f_{\beta})$, if $x_{\alpha}(e_{\alpha} \cap f_{\beta}) = y_{\beta}(e_{\alpha} \cap f_{\beta})$ for all α, β . It is not hard to see that this is equivalent to the existence of an auxiliary SDD (g_{γ}) such that $x_{\alpha}(e_{\alpha} \cap f_{\beta} \cap g_{\gamma}) = y_{\beta}(e_{\alpha} \cap f_{\beta} \cap g_{\gamma})$ for all α, β, γ . Equivalence is particularly simple when the index sets involved are the same (and, as we shall see, they may always be chosen this way): $(x_{\alpha}, e_{\alpha}) \equiv (y_{\beta}, f_{\beta})$ if and only if there exists an SDD (g_{α}) such that $x_{\alpha}g_{\alpha} = y_{\alpha}g_{\alpha}$ for all α . (Note that this implies the following: If $(x_{\alpha}, e_{\alpha}) \equiv (0, e_{\alpha})$, or $[x_{\alpha}, e_{\alpha}] = 0$ in the notation which follows.) The relation \equiv is an equivalence relation on the set of all RO's; we denote the equivalence class of (x_{α}, e_{α}) by $[x_{\alpha}, e_{\alpha}]$ and call it a closed right operator (CRO) for A. The set of all CRO's for A will be denoted by C_{α} .

Ring operations for C_{o} are defined essentially componentwise:

$$[x_{\alpha}, e_{\alpha}] + [y_{\beta}, f_{\beta}] = [x_{\alpha} + y_{\beta}, e_{\alpha} \cap f_{\beta}], \quad [x_{\alpha}, e_{\alpha}][y_{\beta}, f_{\beta}] = [x_{\alpha}y_{\beta}, f_{\beta} \cap y_{\beta}^{-1}(e_{\alpha})],$$

where, following Berberian, we write $x^{-1}(e) = 1 - \operatorname{RP}[(1 - e)x]$ (thus $x^{-1}(e)$ is the largest projection g such that exg = xg). The peculiar definition of multiplication is necessitated by the fact that $(x_{\alpha} y_{\beta}, e_{\alpha} \cap f_{\beta})$ is not in general an RO. It will require a considerable amount of work to legitimatize this definition; in contrast, things are quite simple for addition, and we omit further details.

(4.1) LEMMA. Let (x_{α}, e_{α}) be an RO, (f_{β}) an SDD, and put $x_{\alpha\beta} = x_{\alpha}$ for all α, β . Then $(x_{\alpha\beta}, e_{\alpha} \cap f_{\beta})$ is an RO equivalent to (x_{α}, e_{α}) .

Note how (4.1) simplifies things: since $[x_{\alpha}, e_{\alpha}] = [x_{\alpha\beta}, g_{\alpha\beta}]$ and $[y_{\beta}, f_{\beta}] = [y_{\alpha\beta}, g_{\alpha\beta}]$, where $x_{\alpha\beta} = x_{\alpha}, y_{\alpha\beta} = y_{\beta}$, and $g_{\alpha\beta} = e_{\alpha} \cap f_{\beta}$, we may assume, when dealing with a finite number of CRO's, that the index sets and SDD's are the same.

(4.2) LEMMA. If (x_{α}, e_{α}) is an RO, (f_{α}) an SDD, and $g_{\alpha} = e_{\alpha} \cap x_{\alpha}^{-1}(f_{\alpha})$, then (g_{α}) is an SDD; in particular, if (f_{α}) is an SDD, then $x_{\alpha}^{-1}(f_{\alpha})$ is an SDD for any $x \in A$.

PROOF. [3, p. 214, Lemma 5; p. 185, Exercise 4].

(4.3) LEMMA. Let (x_{α}, e_{α}) be an RO and let $(g_{\alpha\beta})$ be an SDD whose index set is the direct product of the index set for (x_{α}, e_{α}) with some increasingly directed set (indexed by β), having the property that $g_{\alpha\beta} \leq e_{\alpha}$ for all α , β . Then $(x_{\alpha\beta}, g_{\alpha\beta})$ is an RO equivalent to (x_{α}, e_{α}) , where $x_{\alpha\beta} = x_{\alpha}$ for all α .

PROOF. Straightforward calculation.

(4.4) LEMMA. If (e_{α}) is an SDD and (y_{β}, f_{β}) an RO, then $g_{\alpha\beta} = f_{\beta} \cap y_{\beta}^{-1}(e_{\alpha})$ defines an SDD $(g_{\alpha\beta})$ (with the product index set). Hence, if (x_{α}, e_{α}) is an RO, so is $(x_{\alpha}y_{\beta}, f_{\beta} \cap y_{\beta}^{-1}(e_{\alpha}))$.

PROOF. It is not hard to see that $g_{\alpha\beta} \uparrow$. {Note that if $\beta' \ge \beta$, then $f_{\beta'} \cap y_{\beta'}^{-1}(e_{\alpha}) \ge f_{\beta} \cap y_{\beta}^{-1}(e_{\alpha})$ follows from the fact that $e_{\alpha}y_{\beta'}[f_{\beta} \cap y_{\beta}^{-1}(e_{\alpha})] = y_{\beta'}[f_{\beta} \cap y_{\beta}^{-1}(e_{\alpha})]$ and the maximality property of $y_{\beta'}^{-1}(e_{\alpha})$.} By (4.3) and upper continuity [3, pp. 80, 185],

$$\sup_{\alpha,\beta} g_{\alpha\beta} = \sup_{\beta} \left\{ \sup_{\alpha} \left[f_{\beta} \cap y_{\beta}^{-1}(e_{\alpha}) \right] \right\}$$
$$= \sup_{\beta} \left\{ f_{\beta} \cap \sup_{\alpha} y_{\beta}^{-1}(e_{\alpha}) \right\} = \sup_{\beta} \left(f_{\beta} \cap 1 \right) = \sup_{\beta} f_{\beta} = 1$$

Finally, if $(\alpha', \beta') \ge (\alpha, \beta)$,

$$\begin{aligned} x_{\alpha'}y_{\beta'}g_{\alpha\beta} &= x_{\alpha'}y_{\beta'}f_{\beta}g_{\alpha\beta} = x_{\alpha'}y_{\beta}f_{\beta}g_{\alpha\beta} = x_{\alpha'}y_{\beta}y_{\beta}^{-1}(e_{\alpha})g_{\alpha\beta} \\ &= x_{\alpha'}e_{\alpha}y_{\beta}y_{\beta}^{-1}(e_{\alpha})g_{\alpha\beta} = x_{\alpha}e_{\alpha}y_{\beta}y_{\beta}^{-1}(e_{\alpha})g_{\alpha\beta} = x_{\alpha}y_{\beta}g_{\alpha\beta}. \end{aligned}$$

(4.5) LEMMA. If $(x_{\alpha}, e_{\alpha}) \equiv (r_{\gamma}, g_{\gamma})$ and $(y_{\beta}, f_{\beta}) \equiv (s_{\delta}, h_{\delta})$, then $(x_{\alpha}, e_{\alpha})(y_{\beta}, f_{\beta}) \equiv (r_{\gamma}, g_{\gamma})(s_{\delta}, h_{\delta})$.

PROOF. The formula

$$k_{\alpha\beta\gamma\delta} = [f_{\beta} \cap y_{\beta}^{-1}(e_{\alpha})] \cap [h_{\delta} \cap s_{\delta}^{-1}(g_{\gamma})] \cap s_{\delta}^{-1}(e_{\alpha} \cap g_{\gamma})$$

defines an SDD with the product ordering of indices. Indeed, for fixed β , δ , we have $e_{\alpha} \cap g_{\gamma} \uparrow 1$, $y_{\beta}^{-1}(e_{\alpha}) \uparrow 1$, $s_{\delta}^{-1}(g_{\gamma}) \uparrow 1$, and $s_{\delta}^{-1}(e_{\alpha} \cap g_{\gamma}) \uparrow 1$ as $(\alpha, \gamma) \uparrow$; therefore,

$$\sup_{\alpha,\beta,\gamma,\delta} k_{\alpha\beta\gamma\delta} = \sup_{\beta,\delta} \{ (f_{\beta} \cap 1) \cap (h_{\delta} \cap 1) \cap 1 \} = 1.$$

Now put $u_{\alpha\beta\gamma\delta} = x_{\alpha}y_{\beta}$ and $v_{\alpha\beta\gamma\delta} = r_{\gamma}s_{\delta}$. Then by (4.3), $(u_{\alpha\beta\gamma\delta}, k_{\alpha\beta\gamma\delta})$ is an RO equivalent to $(x_{\alpha}y_{\beta}, f_{\beta} \cap y_{\beta}^{-1}(e_{\alpha}))$ and $(v_{\alpha\beta\gamma\delta}, k_{\alpha\beta\gamma\delta})$ is an RO equivalent to $(r_{\gamma}s_{\delta}, h_{\delta} \cap s_{\delta}^{-1}(g_{\gamma}))$; thus, it suffices to show that $(u_{\alpha\beta\gamma\delta}, k_{\alpha\beta\gamma\delta})$ $\equiv (v_{\alpha\beta\gamma\delta}, k_{\alpha\beta\gamma\delta})$. But

$$u_{\alpha\beta\gamma\delta}k_{\alpha\beta\gamma\delta} = x_{\alpha}y_{\beta}(f_{\beta} \cap h_{\delta})k_{\alpha\beta\gamma\delta} = x_{\alpha}s_{\delta}(f_{\beta} \cap h_{\delta})k_{\alpha\beta\gamma\delta}$$
$$= x_{\alpha}s_{\delta}s_{\delta}^{-1}(e_{\alpha} \cap g_{\gamma})k_{\alpha\beta\gamma\delta} = x_{\alpha}(e_{\alpha} \cap g_{\gamma})s_{\delta}s_{\delta}^{-1}(e_{\alpha} \cap g_{\gamma})k_{\alpha\beta\gamma\delta}$$
$$= r_{\gamma}(e_{\alpha} \cap g_{\gamma})s_{\delta}s_{\delta}^{-1}(e_{\alpha} \cap g_{\delta})k_{\alpha\beta\gamma\delta} = r_{\gamma}s_{\delta}k_{\alpha\beta\gamma\delta} = v_{\alpha\beta\gamma\delta}k_{\alpha\beta\gamma\delta}.$$

As noted earlier, things are much simpler when the index sets are the same:

(4.6) LEMMA. $(x_{\alpha}, e_{\alpha}) + (y_{\alpha}, f_{\alpha}) \equiv (x_{\alpha} + y_{\alpha}, e_{\alpha} \cap f_{\alpha})$, and $(x_{\alpha}, e_{\alpha})(y_{\alpha}, f_{\alpha}) \equiv (x_{\alpha}y_{\alpha}, f_{\alpha} \cap y_{\alpha}^{-1}(e_{\alpha}))$.

PROOF. The formula

$$k_{\alpha\beta\gamma} = [f_{\beta} \cap y_{\beta}^{-1}(e_{\alpha})] \cap [f_{\gamma} \cap y_{\gamma}^{-1}(e_{\gamma})] \cap [(f_{\alpha} \cap f_{\gamma}) \cap y_{\gamma}^{-1}(e_{\alpha} \cap e_{\gamma})]$$

defines an SDD such that $x_{\alpha}y_{\beta}k_{\alpha\beta\gamma} = x_{\gamma}y_{\gamma}k_{\alpha\beta\gamma}$.
We embed A in C_{ρ} by identifying each $a \in A$ with the RO $(a, 1)$

obtained by taking $I = \{1\}$ as the index set and defining $x_1 = a, e_1 = 1$.

(4.7) THEOREM. If A is a finite Baer *-ring satisfying LP ~ RP, then C_{ρ} is a ring with unity and $C_{\rho} \ge A$.

PROOF. The first statement follows routinely from (4.6), while the second is an immediate consequence of the following lemma.

(4.8) LEMMA. If $x = [x_{\alpha}, e_{\alpha}]$, then $xe_{\beta} = x_{\beta}e_{\beta}$ for any fixed index β .

PROOF. Clearly, $e_{\beta} = [y_{\alpha}, e_{\alpha}]$ and $x_{\beta}e_{\beta} = [z_{\alpha}, e_{\alpha}]$, where $y_{\alpha} = e_{\beta}$ and $z_{\alpha} = x_{\beta}e_{\beta}$ for all α . By (4.6), $xe_{\beta} = [x_{\alpha}, e_{\alpha}][y_{\alpha}, e_{\alpha}] = [x_{\alpha}y_{\alpha}, g_{\alpha}]$ for a suitable SDD (g_{α}) , and it suffices to find an SDD (f_{α}) such that $x_{\alpha}y_{\alpha}f_{\alpha} = z_{\alpha}f_{\alpha}$, i.e., $x_{\alpha}e_{\beta}f_{\alpha} = x_{\beta}e_{\beta}f_{\alpha}$. This may be accomplished by setting $f_{\alpha} = 1$ if $\alpha \ge \beta$, and $f_{\alpha} = 0$ otherwise.

(4.9) THEOREM. Let A be a finite Baer *-ring satisfying LP ~ RP. If every $I \in D(A)$ contains an SDD, then $C_o \cong_A Q$; in particular, C_o is regular.

PROOF. Let $x \in Q$, say $x = \hat{\theta}$, and let (e_{α}) be an SDD in M_{θ} . Setting $x_{\alpha} = \theta(e_{\alpha})$, it follows that (x_{α}, e_{α}) is an RO. We want to define $\Psi: Q \to C_{\rho}$ by $\Psi(x) = [x_{\alpha}, e_{\alpha}]$. To see that this is possible, suppose that also $x = \hat{\phi}$ and (f_{β}) is an SDD in M_{ϕ} , and put $y_{\beta} = \phi(f_{\beta})$. Choose $I \in D(A)$ such that $\theta = \phi$ on I and let (g_{γ}) be an SDD in I. Then $k_{\alpha\beta\gamma} = e_{\alpha} \cap f_{\beta} \cap g_{\gamma}$ defines an SDD in I such that

$$\begin{aligned} x_{\alpha}k_{\alpha\beta\gamma} &= \theta(e_{\alpha})k_{\alpha\beta\gamma} = \theta(e_{\alpha}k_{\alpha\beta\gamma}) = \theta(k_{\alpha\beta\gamma}) \\ &= \phi(k_{\alpha\beta\gamma}) = \phi(f_{\beta}k_{\alpha\beta\gamma}) = \phi(f_{\beta})k_{\alpha\beta\gamma} = y_{\beta}k_{\alpha\beta\gamma}; \end{aligned}$$

hence $[x_{\alpha}, e_{\alpha}] = [y_{\beta}, f_{\beta}]$. It is easy to see that $\Psi(x + y) = \Psi(x) + \Psi(y)$ and $\Psi(a) = a$ for all $x, y \in Q, a \in A$. To show that $\Psi(xy) = \Psi(x)\Psi(y)$, write $x = \hat{\theta}, y = \hat{\phi}$, and $\Psi(x) = [x_{\alpha}, e_{\alpha}], \Psi(y) = [y_{\alpha}, e_{\alpha}]$, where (e_{α}) is an SDD in $M_{\theta} \cap M_{\phi}$. Let (f_{β}) be any SDD in $M_{\theta\phi}$ and put $g_{\alpha\beta} = f_{\beta} \cap$ $e_{\alpha} \cap y_{\alpha}^{-1}(e_{\alpha}), z_{\alpha\beta} = (\theta\phi)(g_{\alpha\beta})$; thus, $(g_{\alpha\beta})$ is an SDD in $M_{\theta\phi}$ and $\Psi(xy) = [z_{\alpha\beta}, g_{\alpha\beta}]$ by definition. Furthermore, by (4.3),

$$\Psi(x)\Psi(y) = [x_{\alpha}, e_{\alpha}] [y_{\alpha}, e_{\alpha}] = [x_{\alpha}y_{\alpha}, e_{\alpha} \cap y_{\alpha}^{-1}(e_{\alpha})] = [x_{\alpha}y_{\alpha}, g_{\alpha\beta}],$$

and it suffices to note that $z_{\alpha\beta}g_{\alpha\beta} = x_{\alpha}y_{\alpha}g_{\alpha\beta}$ for all α , β . It remains to show that Ψ is a bijection. By (2.2) and (4.7), there exists a monomorphism $\Phi: C \to Q$ such that $\Phi(a) = a$ for all $a \in A$. Since $\Phi \Psi$ is a ring endomorphism of Qwhose restriction to A is the identity, $\Phi \Psi$ is the identity map on Q by (2.1). Similarly, $\Psi \Phi$ is the identity map on C; in particular, Ψ is a bijection.

A *-ring is said to contain sufficiently many projections if each of its nonzero one-sided ideals contains a nonzero projection. (4.10) COROLLARY. If A is a finite Baer *-ring satisfying LP ~ RP and containing sufficiently many projections, then $C_{\rho} \cong_{A} Q$.

PROOF. Let $M \in D(A)$; it suffices to show that M contains an SDD. Let $(f_{\rho})_{\rho \in I}$ be a maximal family of nonzero orthogonal projections in M. If $\sup f_{\rho} \neq 1$, then $f = 1 - \sup f_{\rho} \neq 0$. Since $fA \neq 0$ and M is large, it follows that $fA \cap M \neq 0$; hence, there exists a nonzero projection $g \in fA \cap M$. Since $gf_{\rho} = 0$ for all ρ , this contradicts maximality and proves $\sup f_{\rho} = 1$. The required SDD is obtained by taking finite sums of the f_{ρ} .

It is clear how the preceding arguments may be modified to define a ring C_{λ} of closed left operators and an identification of C_{λ} with Q_{λ} . Thus, a left operator (LO) is a family of pairs (e_{α}, x_{α}) such that (e_{α}) is an SDD and $\alpha' \ge \alpha$ implies $e_{\alpha}x_{\alpha'} = e_{\alpha}x_{\alpha}$. Two LO's $(e_{\alpha}, x_{\alpha}), (f_{\beta}, y_{\beta})$ are equivalent if $(e_{\alpha} \cap f_{\beta})x_{\alpha} = (e_{\alpha} \cap f_{\beta})y_{\beta}$ for all α, β . The equivalence class $[e_{\alpha}, x_{\alpha}]$ is a closed left operator (CLO), and the set C_{λ} of all CLO's is made into a ring by defining

$$[e_{\alpha}, x_{\alpha}] + [f_{\beta}, y_{\beta}] = [e_{\alpha} \cap f_{\beta}, x_{\alpha} + y_{\beta}], \quad [e_{\alpha}, x_{\alpha}][f_{\beta}, y_{\beta}] = [e_{\alpha} \cap x_{\alpha}^{-1}(f_{\beta}), \quad x_{\alpha}y_{\beta}].$$

Finally, A is embedded in C_{λ} by identifying a with [1, a].

The final result of this section will be used in §5.

(4.11) PROPOSITION. If (e_{α}) is an SDD, then $M = \bigcup e_{\alpha}A \in D(A)$.

PROOF. Since $M \subseteq A \subseteq C_{\rho}$, it suffices to show that $C_{\rho} \ge M$. Let x, $y \in C_{\rho}$ with $x \ne 0$, say $x = [x_{\beta}, f_{\beta}]$, $y = [y_{\beta}, f_{\beta}]$. Now, $g_{\alpha\beta} = e_{\alpha} \cap f_{\beta}$ $\cap y_{\beta}^{-1}(e_{\alpha})$ defines an SDD such that $x = [x_{\alpha\beta}, g_{\alpha\beta}]$ and $y = [y_{\alpha\beta}, g_{\alpha\beta}]$, where $x_{\alpha\beta} = x_{\beta}$ and $y_{\alpha\beta} = y_{\beta}$ for all α, β (cf. (4.33)); moreover, since $x \ne 0$, there exist indices γ, δ such that $x_{\gamma\delta}g_{\gamma\delta} \ne 0$. It follows by (4.8) that $xg_{\gamma\delta} = x_{\gamma\delta}g_{\gamma\delta} \ne 0$, while $g_{\gamma\delta} \in e_{\gamma}A \subseteq M$ and

$$yg_{\gamma\delta} = y_{\gamma\delta}g_{\gamma\delta} = y_{\delta}g_{\gamma\delta} = y_{\delta}y_{\delta}^{-1}(e_{\gamma})g_{\gamma\delta} = e_{\gamma}(y_{\delta}y_{\delta}^{-1}(e_{\gamma})g_{\gamma\delta}) \in e_{\gamma}A \subseteq M.$$

5. The regular ring. The ring of closed right operators does not in general have an involution, a defect which may be remedied by slight modifications in the definitions of §4. We shall see that the ring obtained in this manner is equivalent to C_{ρ} (and Q) when A satisfies Utumi's condition and contains sufficiently man j projections. The details may be filled in by utilizing the results of §4. (Note that this construction is a direct generalization of Berberian's construction of the regular ring in [2].)

An operator for A is a family of pairs $\{x_{\alpha}, e_{\alpha}\}$ such that (e_{α}) is an SDD and $(x_{\alpha}, e_{\alpha}), (x_{\alpha}^{*}, e_{\alpha})$ are RO's. Two operators $\{x_{\alpha}, e_{\alpha}\}, \{y_{\beta}, f_{\beta}\}$ are equivalent, $\{x_{\alpha}, e_{\alpha}\} \equiv \{y_{\beta}, f_{\beta}\}$, if $(x_{\alpha}, e_{\alpha}) \equiv (y_{\beta}, f_{\beta})$ and $(x_{\alpha}^{*}, e_{\alpha}) \equiv (y_{\beta}^{*}, f_{\beta})$;

equivalently (cf. [3, p. 219]), if $(x_{\alpha}, e_{\alpha}) \equiv (y_{\beta}, f_{\beta})$ (thus, two operators which are equivalent as RO's are also equivalent as operators; we express this by saying that, in testing for equivalence, adjoints take care of themselves). The relation \equiv is, of course, an equivalence relation; we write $\langle x_{\alpha}, e_{\alpha} \rangle$ for the equivalence class of $\{x_{\alpha}, e_{\alpha}\}$ and call it a closed operator (CO) for A. The set of all CO's will be denoted by C, and we embed A in C by identifying a with the CO $\langle a, 1 \rangle$, indexed by a singleton. We define ring operations and an involution on C (extending that of A) as follows:

$$\langle x_{\alpha}, e_{\alpha} \rangle + \langle y_{\beta}, f_{\beta} \rangle = \langle x_{\alpha} + y_{\beta}, e_{\alpha} \cap f_{\beta} \rangle;$$

$$\langle x_{\alpha}, e_{\alpha} \rangle \langle y_{\beta}, f_{\beta} \rangle = \langle x_{\alpha} y_{\beta}, [f_{\beta} \cap y_{\beta}^{-1}(e_{\alpha})] \cap [e_{\alpha} \cap (x_{\alpha}^{*})^{-1}(f_{\beta})] \rangle;$$

$$\langle x_{\alpha}, e_{\alpha} \rangle^{*} = \langle x_{\alpha}^{*}, e_{\alpha} \rangle.$$

It follows (see (4.8) and [3, Proposition 1, p. 219]) that if $x = \langle x_{\alpha}, e_{\alpha} \rangle$, then $e_{\beta}x = e_{\beta}x_{\beta}$ and $xe_{\beta} = x_{\beta}e_{\beta}$ for any fixed index β . Thus:

(5.1) THEOREM. If A is a finite Baer *-ring satisfying LP ~ RP, then C is a *-ring with unity containing A as a *-subring; moreover, C is a two-sided ring of quotients of A and a Baer *-ring with no new projections.

PROOF. The last assertion follows from (3.4).

(5.2) THEOREM. Let A be a finite Baer *-ring containing sufficiently many projections and satisfying LP ~ RP and Utumi's condition; equip C with the unique involution extending that of A. Then the mapping $\Psi: \langle x_{\alpha}, e_{\alpha} \rangle \rightarrow$ $[x_{\alpha}, e_{\alpha}]$ is a *-isomorphism of C onto C_{α} ; in particular, C is a regular Baer *-ring with no new projections, and $C \stackrel{*}{\cong}_A C \stackrel{*}{\cong}_A Q \stackrel{*}{\cong}_A Q_{\lambda}$.

PROOF. Since adjoints take care of themselves, Ψ is injective. The only other nonobvious point is surjectivity. But, $C_{\rho} \cong_{A} Q \cong_{A} Q_{\lambda} \cong_{A} C_{\lambda}$ by (3.2) and (4.10); let Φ be an isomorphism of C_{ρ} onto C_{λ} over A. Suppose x = $[x_{\alpha}, e_{\alpha}] \in C_{\rho}$; we will define a CO z such that $\Psi(z) = x$. Writing $[f_{\beta}, y_{\beta}]$ for the LO $\Phi(x)$, we have by (4.8) and its dual,

$$(f_{\beta}y_{\beta})e_{\alpha} = [f_{\beta}\Phi(x)]e_{\alpha} = f_{\beta}\Phi(x)\Phi(e_{\alpha}) = f_{\beta}\Phi(xe_{\alpha}) = f_{\beta}(x_{\alpha}e_{\alpha});$$

we define $z_{\alpha\beta} = f_{\beta}y_{\beta}e_{\alpha} = f_{\beta}x_{\alpha}e_{\alpha}$. Now, $(e_{\alpha} \cap x_{\alpha}^{-1}(f_{\beta}))$ and $(f_{\beta} \cap (y_{\beta}^{*})^{-1}(e_{\alpha}))$ are SDD's by (4.4), so $g_{\alpha\beta} = [e_{\alpha} \cap x_{\alpha}^{-1}(f_{\beta})] \cap [f_{\beta} \cap (y_{\beta}^{*})^{-1}(e_{\alpha})]$ defines an SDD; we will show that $\{z_{\alpha\beta}, g_{\alpha\beta}\}\$ is an operator and $z = \langle z_{\alpha\beta}, g_{\alpha\beta} \rangle$ the required CO. If $(\alpha', \beta') \ge (\alpha, \beta)$, then

$$\begin{aligned} z_{\alpha'\beta'}g_{\alpha\beta} &= f_{\beta'}x_{\alpha'}e_{\alpha'}g_{\alpha\beta} = f_{\beta'}x_{\alpha'}e_{\alpha}g_{\alpha\beta} = f_{\beta'}x_{\alpha}g_{\alpha\beta} \\ &= f_{\beta'}x_{\alpha}x_{\alpha}^{-1}(f_{\beta})g_{\alpha\beta} = f_{\beta}x_{\alpha}x_{\alpha}^{-1}(f_{\beta})g_{\alpha\beta} = f_{\beta}x_{\alpha}g_{\alpha\beta} = f_{\beta}x_{\alpha}e_{\alpha}g_{\alpha\beta} = z_{\alpha\beta}g_{\alpha\beta}. \end{aligned}$$

Licen

Thus, $(z_{\alpha\beta}, g_{\alpha\beta})$ is an RO, and a similar calculation shows that $(z_{\alpha\beta}^*, g_{\alpha\beta})$ is an RO. Finally,

$$\begin{aligned} z_{\alpha\beta}(g_{\alpha\beta} \cap e_{\gamma}) &= f_{\beta}x_{\alpha}e_{\alpha}(g_{\alpha\beta} \cap e_{\gamma}) = f_{\beta}x_{\alpha}(g_{\alpha\beta} \cap e_{\gamma}) = f_{\beta}x_{\alpha}x_{\alpha}^{-1}(f_{\beta})(g_{\alpha\beta} \cap e_{\gamma}) \\ &= x_{\alpha}x_{\alpha}^{-1}(f_{\beta})(g_{\alpha\beta} \cap e_{\gamma}) = x_{\alpha}(g_{\alpha\beta} \cap e_{\gamma}) = x_{\alpha}(e_{\alpha} \cap e_{\gamma})(g_{\alpha\beta} \cap e_{\gamma}) \\ &= x_{\gamma}(e_{\alpha} \cap e_{\gamma})(g_{\alpha\beta} \cap e_{\gamma}) = x_{\gamma}(g_{\alpha\beta} \cap e_{\gamma}). \end{aligned}$$

We denote by A the class of all finite Baer *-rings A such that (i) A satisfies the (EP)-axiom and the (SR)-axiom, (ii) partial isometries are addable in A, (iii) 1 + a * a is invertible for all $a \in A$, (iv) A contains a central element ι such that $\iota^2 = -1$ and $\iota^* = -\iota$, and (v) if $u \in A$ is unitary (i.e., $u^*u = 1 = uu^*$) and RP(1 - u) = 1, then there exists a sequence of projections $e_{\kappa} \in \{u\}^n$ such that (e_{κ}) is an SDD and $(1 - u)e_{\kappa}$ is invertible in $e_{\kappa}Ae_{\kappa}$ for all κ . Berberian showed [3, p. 235] that if $A \in A$, then there exists a unique ring R, called the *regular ring* of A, such that (1) R is a regular Baer *-ring containing A and having no new unitary elements, (2) R has a 2-proper involution, and (3) the element ι of A is also central in R.

(5.3) THEOREM. If $A \in A$, then C is the regular ring of A; more precisely, $C \cong_A R$.

PROOF. By (5.2) and (3.7), C is a regular Baer *-ring with no new projections (cf. [3, p. 224] and [7, p. 99]). Since (2) and (3) above are straightforward, it will suffice to show that A contains no new unitaries. Suppose, then, that $u = \langle x_{\alpha}, e_{\alpha} \rangle$ is unitary. Since $u^*u = 1$, there exists an SDD (f_{α}) such that $\{x_{\alpha}^*x_{\alpha}, f_{\alpha}\} \equiv \{1, 1\}$; thus, $(x_{\alpha}^*x_{\alpha})(f_{\alpha} \cap 1) = 1(f_{\alpha} \cap 1)$ for all α ; changing notation (and noting that $u = \langle x_{\alpha}, e_{\alpha} \rangle = \langle x_{\alpha}, e_{\alpha} \cap f_{\alpha} \rangle$), we may assume that $x_{\alpha}^*x_{\alpha}e_{\alpha} = e_{\alpha}$ for all α .

By (4.11), $M = \bigcup e_{\alpha}A$ is a large right ideal in A; therefore (see the proof of (4.10)), M contains an orthogonal family (f_{ρ}) of projections with $\sup f_{\rho} = 1$. We define an SDD (h_{α}) by setting $h_{\alpha} = \sup \{f_{\rho} : f_{\rho} \le e_{\alpha}\}$. Now, for each ρ , put $v_{\rho} = x_{\alpha}f_{\rho}$, where α is *any* index such that $e_{\alpha} \ge f_{\rho}$. (Note that if also $e_{\beta} \ge f_{\rho}$, then

$$x_{\alpha}f_{\rho} = x_{\alpha}e_{\alpha}f_{\rho} = x_{\gamma}e_{\alpha}f_{\rho} = x_{\gamma}f_{\rho} = x_{\gamma}e_{\beta}f_{\rho} = x_{\beta}e_{\beta}f_{\rho} = x_{\beta}f_{\rho},$$

where $\gamma \ge \alpha$, β .) Since

$$v_{\rho}^*v_{\rho} = (f_{\rho}x_{\alpha}^*)(x_{\alpha}f_{\rho}) = f_{\rho}(x_{\alpha}^*x_{\alpha}e_{\alpha}f_{\rho}) = f_{\rho}e_{\alpha}f_{\rho} = f_{\rho},$$

 (v_{ρ}) is a family of partial isometries [3, p. 10] with initial projections (f_{ρ}) . If $\rho \neq \rho'$, then, choosing γ such that $f_{\rho}, f_{\rho'} \leq e_{\gamma}$, we have

$$\begin{aligned} (v_{\rho}v_{\rho}^{*})(v_{\rho},v_{\rho}^{*}) &= (x_{\gamma}f_{\rho}x_{\gamma}^{*})(x_{\gamma}f_{\rho},x_{\gamma}^{*}) = x_{\gamma}f_{\rho}(x_{\gamma}^{*}x_{\gamma}e_{\gamma})f_{\rho},x_{\gamma}^{*} \\ &= x_{\gamma}f_{\rho}e_{\gamma}f_{\rho},x_{\gamma}^{*} = x_{\gamma}f_{\rho}f_{\rho},x_{\gamma}^{*} = 0; \end{aligned}$$

hence, the final projections of the (v_p) are also orthogonal. If D denotes the dimension function for A (cf. [3, Chapter 6], then

$$D(\sup v_{\rho}v_{\rho}^{*}) = \Sigma D(v_{\rho}v_{\rho}^{*}) = \Sigma D(f_{\rho}) = D(\sup f_{\rho}) = 1;$$

thus, the partial isometries (v_{ρ}) may be added to obtain $v \in A$ such that $v^*v = 1$, $vv^* = 1$, and $vf_{\rho} = v_{\rho}$ for all ρ (note, in particular, that v is unitary). Furthermore, if $f_{\rho} \leq e_{\alpha}$, then $(v - x_{\alpha})f_{\rho} = vf_{\rho} - x_{\alpha}f_{\rho} = 0$; holding α fixed and taking sup over ρ , it follows that $(v - x_{\alpha})h_{\alpha} = 0$. Therefore, $u = \langle x_{\alpha}, e_{\alpha} \rangle = \langle v, 1 \rangle \in A$.

For further details, the reader is referred to [8], which also contains background source material in two appendices.

ADDED IN PROOF. In March, 1974, the author received a preprint of an article by Izidor Hafner, containing some of the same results as this paper.

REFERENCES

1. S. K. Berberian, The regular ring a finite A W*-algebra, Ph.D. Thesis, University of Chicago, Chicago, Ill., 1955.

2. _____, The regular ring of a finite Baer *-ring, J. Algebra 23 (1972), 35-65. MR 46 #7294.

3. -----, Baer *-rings, Springer-Verlag, New York, 1972.

4. C. Faith, Lectures on injective modules and quotient rings, Lecture Notes in Math., no. 49, Springer-Verlag, Berlin and New York, 1967. MR 37 #2791.

5. R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-895. MR 13, 618.

6. I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math. (2) 61 (1955), 524-541. MR 19, 524.

7. ----, Rings of operators, Benjamin, New York, 1968. MR 39 #6092.

8. E. S. Pyle, On maximal rings of quotients of finite Baer *-rings, Ph.D. Thesis, University of Texas, Austin, Tex., 1972.

9. J.-E. Roos, Sur l'anneau maximal de fractions des AW*-algbrees et des anneaux de Baer, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A120-A123. MR 39 #6093.

10. Y. Utumi, On quotient rings, Osaka Math. J. 8 (1956), 1-18. MR 18, 7.

11. _____, On rings of which any one-sided quotient rings are two-sided, Proc. Amer. Math. Soc. 14 (1963), 141-147. MR 26 #137.

DEPARTMENT OF MATHEMATICS AND PHYSICS, HOUSTON BAPTIST UNIVER-SITY, HOUSTON, TEXAS 77036