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THE REGULAR RING AND THE MAXIMAL RING
OF QUOTIENTS OF A FINITE BAER *-RING

BY

ERNEST S. PYLE(!)

ABSTRACT.   Necessary and sufficient conditions are obtained for extend-
ing the involution of a Baer »-ring to its maximal ring of quotients.   Berberian's
construction of the regular ring of a Baer «-ring is generalized and this ring is
identified (under suitable hypotheses) with the maximal ring of quotients.

1. Introduction.   J.-E. Roos has noted [9, pp. A122-A123]   that if A   is
a finite Baer *-ring satisfying the (EP)-axiom and the (SR)-axiom (this and other
terminology is explained in §2 below), then the involution of A   can be extended
to its maximal ring of quotients, and if A   is an A W *-algebra, its maximal ring
of quotients can then be identified with its regular ring. We are thus led to pose
the following problem: Determine conditions on a Baer *-ring which make its
involution extendible to its maximal ring of quotients in such a way that the maxi-
mal ring of quotients can be identified with the regular ring.

Our approach to this problem is as follows. We first obtain a necessary and
sufficient condition for the involution of a Baer »-ring to be extendible to its max-
imal (right) ring of quotients, viz. that it satisfy Utumi's condition: Every non-
zero right ideal whose left annihilator is zero is large.  We then obtain sufficient
conditions for a Baer *-ring to satisfy this condition-one formulation is that it
be finite, satisfy   LP ~ RP  (note that this much is required just to define the
regular ring) and the (WEP)-axiom, and have a 2-proper involution (this and a
great deal more was assumed by Berberian to establish regularity of the regular
ring).  Finally, we generalize the construction of the regular ring, obtaining regular-
ity through an identification with the maximal ring of quotients (all of which re-
quires only the above-mentioned hypotheses).

2. Preliminaries. Throughout this paper, A   will denote a *-ring with unity.
An extension B of A  is a right ring of quotients of A, written B > A, if for
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202 E. S. PYLE

each pair x, y G B with x + 0, there exists a G A   such that xa =£ 0 and
.ya G B.   (More precisely, 5 > .4   if there exists an embedding o: A —*■ B such
that, for each pair x, y G B with x + 0, there exists a G ^4   such that xo(a)
¥= 0  and vo(a)G;l.  We follow the usual practice of suppressing  o and  identi-
fying A  with o(j4). There should be no confusion, for the embedding intended
will always be clear from the context.)  If B2 > A  and Bx > A, we say that
Bx   can be embedded in B2  over A  if there exists a monomorphism o: Bx -*
J?2   such that o(a) = a for all a G A.  If a  is surjective, we say that Bx   is
isomorphic to 52  over .4  and write Bx =A B2 ; if, moreover, Bx   and B2
are *-rings and a  is a *-isomorphism, we write /?j =A  B2.

Let £)(/!) be the set of all right ideals I of A   such that A > I (via the
identity embedding) and let F(A) be the set of all right A -module homomorphisms
0: I —* A, where / varies over D(A). (Notation. If 0 G F(A), we write Me
for its domain.) Since D(4) is closed under finite intersections and  0_1(7) G
Z)(4) for any 0 G F(>1), / G £>(/!)   [10, p. 3], we may define operations on
F(A) as follows:

(0 + o)(x) = 6(x) + o(x),    xGMer\Ma;      (0o)(x) = 9(a(x)),    x G o'1 (Mg).

An equivalence relation is defined on F(A) by putting 0 = o whenever there
exists I G D(A) suchthat  0 = o on /; we denote the equivalence class of 0

A

by 0  and write Q for the set of all such equivalence classes. The operations on
F(A) are extended to  Q in the obvious way:  0 + à = (0 + a)*, (So)* = dô.
Finally, we embed A   in Q by identifying each a G A  with the equivalence
class of left multiplication by a.

(2.1) Lemma [10, pp. 2, 4]. (i) // 0 G F(A) and x = 6 G Q, then
xa = 0(a). (ii) Let B > A. If o is a ring endomorphism of B leaving A
elementwise fixed, then  o is the identity on B.

It follows [10, p. 4] :

(2.2) Theorem [Utumi]. Q is a maximal right ring of quotients of A  in
the following sense:  Q > A, and if B > A, then B can be embedded in Q
over A.

Since Q  is clearly unique up to isomorphism over A, we shall refer to it
as the maximal right ring of quotients of A.   Left rings of quotients and Qx,
the maximal left ring of quotients of A, are defined similarly. A two-sided ring
of quotients of A   is a ring B which is both a left and a right ring of quotients
of A   with respect to the same embedding.

We write R(S) for the right annihilator of a subset S of A, i.e.,
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A FINITE BAER »-RING 203

R(S) = {a G A: sa = 0 for all s G S},

and L(S) for the left annihilator of S.

Z(A) = {aGA: R({a}) is large}

is called the (right) singular ideal of A  (a right ideal  / is large if I Ci J ¥= 0
for every nonzero right ideal /; if Z(A) = 0, then a right ideal / is large if and
only if / G D(A); cf. [4, p. 58]).  If Z(A) = 0, then  Q is regular (i.e., for
every x G Q, there exists y G Q such that x = xyx) [5, p. 893].

We write .4   for the set of projections in A, i.e.,

A = {e G A: e2 = e = e*}.

If, for some x G A, there exists e G A   such that /?({*}) = (1 - e).4, then e
is unique and is called the right projection of x; we write e = RP(x). RP(jc)  is
the minimal projection in A  such that xRP(» = x (here  e < / means ef =
e = fe). The left projection of x is defined similarly and is denoted (when it
exists) by  LP(x). A partial isometry in A   is an element  w such that  w =
ww*w.  e, f G A   are equivalent, e ~ /, if there exists a partial isometry w such
that w*w = e and  ww* = f, e is then called the inifúz/ and / the final pro-
jection of w.  e, f G A   axe orthogonal if ef = 0. Partial isometries in A  are
said to be addable in A   if, whenever (wt) is a family of partial isometries in A
with orthogonal initial projections (et) and orthogonal final projections (fL),
there exists a partial isometry w in A  whose initial projection is sup et and
whose final projection is sup fL, such that  wet = wt = /wt. .4   is /wife if
e ~ 1 implies e = I; A  is strongly finite if xy = 1   implies .yx = 1. We say
that A  has an n-proper involution if xxx\* +• • • + x„x* = 0  implies xx =
•••-*„- 0.

We will consider the following axioms on *-rings (recall that the commutant
of a subset S of A   is the set S' = [a G A: sa = as for all s G 5}; the com-
mutant of S'  is denoted simply 5"):

LP ~ RP.  For every x G A, LP(x) ~ RP(x).
(WEP)-Axiom. For every nonzero x G A, there exists y G {x**}"  such

that  0 =£ x*jcy*.y G A.
(EP)-Axiom.   For every nonzero x G A, there exists y G {x*x}"  such

that y = y* and 0 =£ x*xy2 G A.
(SR)-Axiom. For every xGA, there exists r G {x *x}"  such that r = r *

and x*x = r2.
A Rickart *-ring is a *-ring A in which every element has both a left and

a right projection. In such a ring, A is a lattice; if it is complete, A is called a
Baer *-ring.   A Rickart *-ring has a unity element and a 1-proper involution [2,
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204 E. S. PYLE

p. 13] ; furthermore, it is easy to see that its singular ideal is zero.

3. Extending the involution. We will utilize the following theorem, proved
by Utumi [11, pp. 144-145]:

(3.1) Theorem. Suppose Z(A) =0 and B > A.  Then (i) Q satisfies
UtumVs condition; (ii) Q =A  ß\  if and only if A  satisfies UtumV s condition;
(iii) if A  satisfies UtumVs condition, so does B;(i\) ifB is a two-sided ring of
quotients of A and B satisfies Utumïs condition, then A  satisfies UtumVs
condition.

(3.2) Theorem. The involution of A can be extended to Q if and only
if Q isa two-sided ring of quotients of A. If Z(A) = 0, this is equivalent to each
of the following: (i) A satisfies UtumV s condition; (ii) Q =A Qx. The exten-
sion (when it exists) is unique.

Proof. If * and  * are involutions on Q extending that of A, then
the mapping x t—>■ x**  is a ring endomorphism of Q  leaving A   elementwise
fixed. Thus, x = x*# by (2.1), and hence x# = x*.  Suppose now that Q isa
two-sided ring of quotients of A, and for each x G Q, set Ix = {a G A : a*x G A}
and 6x(a) = (a*x)*, a G Ix. Then Ix G D(A) and 6X G F(A); hence, we may
define a mapping  * on Q which extends the involution of A   by putting x* =
A

8X. To show that this mapping is an involution for Q, fix x, y G Q.
(i) If a G Ix n /   = Mg   n Mg , then

x y

6x+y(a) = [a*(x +y)]*= (a*x)* + (a*y)* - 0» + 0/«),

which proves  (x + y)* = x* + y*.
(ii) If a GIxy n/x,then

6xy(a) - [a*(pcy)]* = [(a*x)y]* = 6y((a*x)*) = 0,(0»),

hence (xy)* = y*x*.
(iii) If we write x = 0, 0 G F(A), the assertion x = x**  is equivalent

to dx. = 0.  But for a G Ix,  n Me, we have   0x.(a)* = a*x* = (xa)* = 0(a)*.
This proves one implication; the converse follows from the following more

general (and obvious) fact:  a ring of quotients of A having an involution extend-
ing that of A   is a two-sided ring of quotients of A.   The statements for rings
with zero singular ideal are evident from (3.1).

The next result will enable us to apply (3.2) to Baer *-rings.

(3.3) Theorem. If B is a two-sided ring of quotients of a Baer *-ring A,
then for each x G B, there exist e, f G A   such that L({x}) = B(l - e) and
R({x}) = (1 - f)B.
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A FINITE BAER *-RING 205

Proof. It is easy to see that the unity element for A   is also a unity ele-
ment for B, and for each x G B, I = {a G A: xa G A} G D(A). Set e =
sup{LP(xa): a G /}; we claim: (1) ex = x  and (2) yx = 0  if and only if
ye = 0. This will obviously prove the assertion for  e; the corresponding assertion
for / follows by symmetry.  For each a G I, exa = xa  since e > LP(xa);
thus, (ex - x)a = 0, so ex - x = 0  results from B > I.   If ye = 0, then
yx = y(ex) = 0.  Conversely, suppose yx = 0  and put / = {a £4: ay G A}.
Since 5  is a left ring of quotients of A   and A   is a left ring of quotients of J,
B is clearly a left ring of quotients of /.   But for a G /, b G /, we have
(by)(xa) = £>(yx)a = 0; since by, xa G A, this implies (by)LP(xa) = 0. Vary-
ing a over /, it follows that bye = 0, which implies ye = 0.

(3.4) Corollary. If B > A, where A  is a Baer *-ring whose involution
is extendible to B, then B is a Baer *-ring with no new projections (Le.,B =A).

Proof. B is a Rickart *-ring by (3.3). Moreover, if f G B, there exists
e G A   such that B(\ ~ f) = L([f}) = B(l - e); thus, 1 - / = 1 - e, or / =
eG.4. Therefore, 4 = B; since B   is complete, B is a Baer *-ring.

(3.5) Corollary. // A  is a Baer *-ring whose involution is extendible to
Q (Le., if A  satisfies UtumVs condition), then Q isa regular Baer *-ringwith
no new projections; in particular, Q and A  are strongly finite.

Proof. A regular Baer *-ring is strongly finite [6, p. 532].
We now determine a large class of Baer *-rings which satisfy Utumi's condi-

tion:

(3.6) Theorem. A Baer *-ring A  satisfies UtumVs condition if
(i) A   is an upper continuous lattice (i.e., ea t e implies ea n/teD/),

(ii) the involution of A   is 2-proper, and
(hi) for each x G A, the principal right ideal xA contains an orthogonal

family (ea) of projections with  sup ea = LP(x).

Proof. Let  / be a right ideal with /,(/) = 0 and let / be any nonzero
right ideal; we must show that / n / # 0.  Since / contains a nonzero projec-
tion /, it suffices to find a projection e G / such that  efl/#0.  Suppose, to
the contrary, that  e D / = 0  for every projection  e G /.   Then it suffices to
show

(*) LP(x)Pi/ = 0,      xGL

For, hypothesis (ii) and the fact that L(I) = 0 imply  (LPix))^^ t 1   [3, pp.
21,225]; hence, LP(x) n / t/ by upper continuity, implying / = 0 by (*), a
contradiction. To prove  (*), we first obtain by (iii) an orthogonal family of
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206 E. S. PYLE

projections in xA Ç / with  sup LP(x); passing to the net  (ea) of finite sums,
we have ea t LP(x), with ea G I.  Then by upper continuity, 0 = ea n /t
LP(x) n f.

(3.7) Corollary. If A  is a finite Baer *-ring with a 2-proper involution,
either of the following hypotheses implies that A  satisfies UtumVs condition
(and hence that Q is a regular Baer *-ring with no new projections):  (i) A
satisfies the (WEP)-axiom and LP ~ RP; (ii) A  satisfies the (EP)-axiom and
the (SR)-axiom.

Proof, (i)   [3, p. 44, Exercise 7; p. 83, Exercise 13; p. 185] ; (ii)   [7,
p. 99].

4. The ring of closed right operators. For the remainder of the paper, we
assume that A  is a finite Baer *-ring satisfying LP ~ RP.  In this section, we
extend A  to a ring which may, under very mild hypotheses, be identified with
the maximal ring of quotients of A.   In the next section, we will show that if A
also satisfies Utumi's condition, then this ring is the regular ring of A.

A family (ea)ae/ in A, indexed by an increasingly directed set /, is called
a strongly dense domain in A  (briefly, an  SDD).   If (ea)aeI and (fß)ß^j are
SDD's, then so is (ea n fß)(a<ß)&iy.j with the product ordering of indices:  (a',
ß') > (a, ß) if a' > a, ß' > ß  [3, p. 185, Exercise 3]. (For simplicity, we
omit the index set in the future.) A right operator  (RO)  for A   is a family of
pairs (xa, ea), where  (ea) is an  SDD and  a' > a implies xa>ea ='xaea. It
follows that xa(ea Pi e^) = Xß(ea n e0) for all indices a, ß. [Proof  Fix a,
ß and choose  y > a, ß. Since ey > ea, e0,

xa(ea D ep) = xaea(ea n eß) = x7ea(ea n eß)

= xy(ea n eß) = xyeß(ea n eß) = xße0(ea n e0) = x^ n eß).

This argument illustrates the principle technique used in handling RO's.} Two
RO's (xa, ea), (yß, fß) ate equivalent, (xa, ea) = (yß, fß), if xa(ea O fß) =
y0(ea n fß) for all  a, ß.  It is not hard to see that this is equivalent to the exis-
tence of an auxiliary   SDD (gy)  such that xa(ea r\fßn gy) = yß(ea C\fßn gy)
for all a, ß, y.  Equivalence is particularly simple when the index sets involved
are the same (and, as we shall see, they may always be chosen this way):  (xa, ea)
- (7/3- fß) if and only if there exists an SDD (ga) such that xaga = yaga
for all a.  (Note that this implies the following:   If (xa, ea)  is an RO  and
(fa)  an SDD   suchthat xafa =0  for all a, then  (xa, ea) = (0, ea), or [xa,
ea] =0  in the notation which follows.) The relation =  is an equivalence rela-
tion on the set of all  RO's; we denote the equivalence class of (xa, ea) by
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A FINITE BAER  »-RING 207

[xa, ea]   and call it a closed right operator (CRO)  for A. The set of all CRO's
for A  will be denoted by Cp.

Ring operations for  Cp  are defined essentially componentwise:

[*«. «J + Lv/3, fß] - [*« +yß> ea nfßl   [*«. cjbp./pl = [-w^/p ^^(««1.

where, following Berberian, we write x-1(e) = 1 -RP[(1 - e)x]   (thus x_1(e)
is the largest projection g such that  exg = xg). The peculiar definition of mul-
tiplication is necessitated by the fact that  (xayß, ea D fß)  is not in general an
RO.  It will require a considerable amount of work to legitimatize this definition;
in contrast, things are quite simple for addition, and we omit further details.

(4.1) Lemma. Let (xa, ea) bean RO, (f&) an SDD, and put xaß = xa
for all a, ß. Then  (xaß, ea n fß) is an RO equivalent to (xa, ea).

Note how (4.1) simplifies things:   since   [xa, ea] = [xaß, gaß]   and   [yß,
fß] = [yaß> Saß\. where *aß " *c- y*ß = yß' and Sa& = ea n /p, we may
assume, when dealing with a finite number of CRO's, that the index sets and
SDD's are the same.

(4.2) Lemma. // (xa, ea) is an RO, (fa) an SDD, and ga = ea n
x~1(fa),then  (ga) is an SDD; in particular, if (fa) is an SDD, then x~1(fa)
is an SDD for any x GA.

Proof.  [3, p. 214, Lemma 5; p. 185, Exercise 4].

(4.3) Lemma. Let (xa, ea) be an RO and let (gaß) be an SDD whose
index set is the direct product of the index set for (xa, ea) with some increas-
ingly directed set (indexed by ß), having the property that gaß < ea for all a,
ß   Then (xaß, gaß) is an RO equivalent to  (xa, ea), where xaß = xa for
all a.

Proof.  Straightforward calculation.

(4.4) Lemma. // (ea) is an SDD and (yß, fß) an RO, then gaß =
fß n yßl(ea) defines an SDD (gaß) (with the product index set). Hence, if
(xa, ea) is an RO, so is (xayß, fß n yß1(ea)).

Proof. It is not hard to see that gaß t. {Note that if ß' > ß, then fß> n
y^K) > fß n yjl(ea) follows from the fact that  eayßl[fß n y^(ea)] =
yß'lfß n y~ß~l(ea)]   and the maximality property of y~ß~}(ea))  By (4.3) and
upper continuity [3, pp. 80, 185],
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208 E. S. PYLE

sup gaß = sup/sup [f0 n y^(ea)]\
a,ß ß    [ a )

= supifß n sup yßHeA = sup(/„ n 1) = sup fg = 1.
ß    \ a ) ß ß

Finally, if (a', ß') > (a, ß),

xa'yß'gaß = xa-yß'fßgaß = xa>yßfßgaß = xa-yßyß1(ea)gaß

= xa,eayßyß-1(ea)gaß = xaeayßy-ß-1(ea)gaß = xayßgaß.

(4.5) Lemma. // (xa, ea) = (ry, gy) and (yß, fß) = (s6, hs), then
(xa, ea)(yß, fß) = (ry, gy)(s¡¡, hs).

Proof. The formula

Kßys - [fß n y~ß\ea)] n [K n se1 M n s-61(ea n gy)

defines an SDD with the product ordering of indices.  Indeed, for fixed ß, 5,
we have ea n gy t 1, y~ßx(ea) t 1, s^x(gy) 11, and s^(ea n g7) t 1  as
(a, 7) t; therefore,

SUP Kßys =sup{(/p n i) n (nô n i) n 1} = i.
a.0,7,6 ß,6

Now put uaßy5 = xayß and vaßyS = rys6. Then by (4.3), (uaßyS,kaßy6)
is an RO equivalent to (xayß, fß n yß*(ea)) and (üaf?7s> *<*/37fi) is an R0
equivalent to  (rys6, hs n Sg*(¿?7)); thus, it suffices to show that  (uaßy8,kaßyS)
- (Paßy6>k*ßy8)-   But

"aßyS^aßyS  = xayß(fß H h&)kaßy6  = XaS5(/^ H h6)kaßyS

= ^a5«5«1^ n ^7)*aß76  = *a(ea ° #7)s6 «ê'i6« ° Zy)k<*ßy&

= r7(ea n£7)s6s6   (ea n £s)*a/378  = rysSkaßyS  =vaßySkaßyS-

As noted earlier, things are much simpler when the index sets are the same:

(4.6) Lemma. (xa, ea) + (ya, fa) = (xa + ya, ea n fa), and
(xa, ea)(ya, fa) = (xaya, fa n y'HeJ).

Proof. The formula

*aßy =  [fß n y? ('au  n [fy n JÇ'C«,)]   n  K/« ° A> ° JÇ'C«« ° «y)-
defines an SDD suchthat xayßkaßy = xyyykaßy.

We embed A   in Cp  by identifying each a G .4  with the  RO  (a, 1)
obtained by taking / = {1} as the index set and defining xx = a, ex =1.
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A FINITE BAER  »-RING 209

(4.7) Theorem. // A   is a finite Baer *-ring satisfying LP ~ RP, then
Cp  is a ring with unity and Cp> A.

Proof. The first statement follows routinely from (4.6), while the second
is an immediate consequence of the following lemma.

(4.8) Lemma. If x = [xa, ea], then xeß = xßeß for any fixed index ß.

Proof. Clearly, eß = [ya, ea]  and xßeß = [za, ea], where ya = eß
and za = xßeß  for all a.  By (4.6), xe^ = [xa, ea] [ya, ej = [xaya, ga]
for a suitable  SDD (ga), and it suffices to find an  SDD (/a) such that
xayafa = zafa> Le-> xaeßfa = x&epfa. This may be accomplished by setting
fa = 1   if a> ß, and fa = 0  otherwise.

(4.9) Theorem. Let A  be a finite Baer *-ring satisfying  LP ~ RP. //
every I G D(A) contains an SDD, then Cp =A Q; in particular, Cp  is regular.

Proof. Let x G Q, say x = 0, and let (ea) be an SDD  in Me.  Set-
ting xa = 0(ea), it follows that  (xa, ea) is an RO. We want to define
ty:  Q -*■ Cp  by  ^(x) = [xa, ea]. To see that this is possible, suppose that
also x = 4>  and (fß) is an  SDD  in M^, and put y^ = <j>(fß). Choose / G
D(A) such that 0 = 0  on / and let  (gy) be an  SDD in /.  Then kaßy =
ea n fß n gy  defines an  SDD  in / such that

*cA<?7 = 9(ea)kaßy = 9(eakaßy) = e(.Kßy)

= <P(kaßy) = <P(fßkQßy) ~ <&fß)Kßy = yßkaßy''

hence   [xa, ea] = [yß, fß]. It is easy to see that  *(x + y) = *(x) + *(y)
and  ^(a) = a for all x, y G Q, a G A.   To show that  *(xy) = *(x)*(y),
write x = 0, y = $, and  #(x) = [xa,ea], *(y) - [ya, ea], where (ea) is
an SDD in Me r\ M^.  Let  (fß) be any  SDD in M90  and put gaß = fß n
ec nyliißa),zaß = (d<p)(gaß);\hus,(gaß) is an SDD  in Me<t> and  *(xy) =
[zaß, £a|3]   by definition.  Furthermore, by (4.3),

*0O*O0 "   [*a» ̂ cJ ba> eJ   "   tVa- ea n ^'(Ol  =   tWa' Saß]'

and it suffices to note that zaßgaß = xaya^a(3  for all a, ß.  It remains to show
that  V is a bijection. By (2.2) and (4.7), there exists a monomorphism $: C—»-Q
such that 4>(a) = a for all a€4.  Since Qty is a ring endomorphism of Q
whose restriction to A   is the identity, «Êty  is the identity map on Q by (2.1).
Similarly, ty<ï> is the identity map on C; in particular, ^  is a bijection.

A *-ring is said to contain sufficiently many projections if each of its non-
zero one-sided ideals contains a nonzero projection.
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(4.10) Corollary. // A   is a finite Baer *-ring satisfying  LP ~ RP  and
containing sufficiently many projections, then Cp =A Q.

Proof. Let M G D(A); it suffices to show that M contains an  SDD.  Let
(fp)p^j be a maximal family of nonzero orthogonal projections in M.  If
sup fp i= 1, then / = 1 - sup fp =£ 0.  Since fA¥=0 and M is large, it follows
that fA n M i= 0; hence, there exists a nonzero projection g G fA n M.   Since
gfp = 0  for all p, this contradicts maximality and proves sup /  = 1. The
required  SDD is obtained by taking finite sums of the / .

It is clear how the preceding arguments may be modified to define a ring Cx
of closed ¡eft operators and an identification of Cx with Qx. Thus, a left opera-
tor (LO)  is a family of pairs (ea, xa) suchthat  (ea) is an SDD and a'> a
implies eaxa, = eaxa. Two  LO's (ea, xa), (fß, yß) are equivalent if
(ea n fß)xa = (ea n fß)yß for all a, ß. The equivalence class   [ea, xa]   is a
closed left operator  (CLO), and the set  Cx of all CLO's is'made into a ring by
defining

K,xa] + \fß,yß] = [ea nfß,xa +yß],    [ea,xa][fß,yß] = [ea Dx'1^),   xayß].

Finally, A  is embedded in Cx  by identifying a with   [l,a].
The final result of this section will be used in §5.

(4.11) Proposition. // (ea) is an SDD, then M = (J eaA G D(A).

Proof. Since M ÇA C Cp, it suffices to show that Cp > M. Let x,
y G Cp with x # 0, say x = [xß, fß],y= [yß, fß]. Now, gaß = ea n fß
n yji1^) defines an  SDD suchthat x= [xaß, gaß]   and y= [yaß, gaß],
where xaß = xß and yaß = yß for all a, ß (cf. (4.33)); moreover, since
x ¥= 0, there exist indices y, 5  such that x7S£75 =£ 0.  It follows by (4.8) that
X£7S = x75^75 # 0, while gy6 GeyA CM and

ygyô  " ^76^75  ■ yegyS  " ^6 ^6 1 (ey)gyS  " «7^« ^6*(«7)^) G M  S Ä

5. The regular ring. The ring of closed right operators does not in general
have an involution, a defect which may be remedied by slight modifications in the
definitions of §4. We shall see that the ring obtained in this manner is equivalent
to  Cp  (and Q) when A   satisfies Utumi's condition and contains sufficiently
many projections. The details may be filled in by utilizing the results of §4.
(Note that this construction is a direct generalization of Berberian's construction
of the regular ring in [2].)

An operator for A  is a family of pairs {xQ, ea}  suchthat  (ea) is an
SDD and (xa, ea), (x*, ea) ate RO's. Two operators {xa, ea}, {yß, fß} are
equivalent,  {xa, ea} = {yß, fß}, if (xa, ea) = (yß, fß) and (x*, ea) = (y^,fß);
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equivalently (cf. [3, p. 219]), if (xa, ea) = (yß, fß) (thus, two operators which are
equivalent as RO's are also equivalent as operators; we express this by saying that,
in testing for equivalence, adjoints take care of themselves).  The relation = is,
of course, an equivalence relation; we write <xa, ea) for the equivalence class of
{xa, ea} and call it a closed operator (CO)   for A. The set of all  CO's will be
denoted by C, and we embed A   in C by identifying a with the  CO <a, 1>,
indexed by a singleton. We define ring operations and an involution on C (ex-
tending that of A) as follows:

Of«. ea> + <yß, fß) = (xa + yß, ea n fß);

<xa, eaXyß, fß) = <xayß, [fß n y"-(ea)] n [ea n fx*)"1 (/„)]>;

(xa> ea>* = <x*, ««>•

It follows (see (4.8) and [3, Proposition 1, p. 219]) that if x = <xa, ea), then
e^x = eßXß and xe^ = x^e^ for any fixed index ß. Thus:

(5.1) Theorem. // A  is a finite Baer *-ring satisfying  LP ~ RP, then C
is a *-ring with unity containing A as a *-subring; moreover, C is a two-sided
ring of quotients of A  and a Baer *-ring with no new projections.

Proof. The last assertion follows from(3.4).

(5.2) Theorem. Let A  be a finite Baer *-ring containing sufficiently many
projections and satisfying  LP ~ RP and UtumVs condition; equip C with the
unique involution extending that of A.   Then the mapping ^: (xa, ea) —»
[xa, ea]   isa *- isomorphism of C onto  Cp; in particular, C is a regular Baer
*-ring with no new projections, and C =A C =A Q sA Qx.

Proof. Since adjoints take care of themselves, ^f is injective. The only
other nonobvious point is surjectivity. But, C   =A Q =A Qx =A Cx by (3.2)
and (4.10); let  4> be an isomorphism of C    onto  Cx over A. Suppose x =
[xa, ej G Cp; we will define a CO z  such that  ^(z) = x.  Writing   [fß, yß]
for the  LO <i>(x), we have by (4.8) and its dual,

(fßyß)ea = [fßHx)] ea = fßHx)Hea) = fß$(xea) - fß(xaea);

we define zaß = fßyßea = fßxaea. Now, (ea n x~l(fß))and (fß n (yf)~l(ea))
ate SDD's by (4.4), so gaß = [ea n x^fß)] ^ [fß n (y$Tl(ea)]   defines
an SDD; we will show that  [zaß, gaß}  is an operator and z = (zaß, gaß) the
required  CO.  If (a', ß') > (a, ß), then

za,ß'S0lß = fß'X^^a'Saß = fß'xa'ea£aß = fß'xaSaß

= fß,xax-x(fß)gaß - fßxax-l(fß)gaß = fßXagaß = fßXaeagaß = zaßgaß-
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Thus, (zaß, gaß) is an RO, and a similar calculation shows that  (z*ß, gaß) is
an RO.  Finally,

zaß(gaß n ey) " fßXaea(gaß n e7) = fßxa(gaß n e7) = //3xax-1(//3)(6'a(3 ne7)

= Jf«««1 (//»)(«•«fl n e7) = *«U-0 n ey)=xa(eaney)(gaßney)

= xy(ea n «yX^aß n e7) = *7(£*P n ey)-

We denote by  A  the class of all finite Baer *-rings A  such that (i) A
satisfies the (EP)-axiom and the (SR)-axiom, (ii) partial isometries are addable
in A, (iii)  1 + a*a is invertible for all a G A, (iv) A  contains a central ele-
ment  i such that  i2 = - 1   and i* = -i, and (v)  if u G A   is unitary (i.e.,
u*u = 1 = uu*) and  RP(1 - u) = 1, then there exists a sequence of projec-
tions eK G {u}"  such that  (eK) is an  SDD  and  (1 - u)eK  is invertible in
eKAeK  for all  k.  Berberian showed [3, p. 235] that if A G A, then there exists
a unique ring R, called the regular ring of A, such that (1) R   is a regular Baer
*-ring containing A   and having no new unitary elements, (2) R   has a 2-proper
involution, and (3) the element t of A   is also central in R.

(5.3) Theorem. If A G A, then  C is the regular ring of A; more pre-*
cisely,  C =A R.

Proof.  By (5.2) and (3.7), C is a regular Baer *-ring with no new pro-
jections (cf. [3, p. 224] and [7, p. 99]).  Since (2) and (3) above are straight-
forward, it will suffice to show that A   contains no new unitaries.   Suppose,
then, that  u = <xa, ea) is unitary.  Since u*u - 1, there exists an  SDD (fa)
such that  {x*xa, /a} s {1, 1}; thus, (x*xa)(fa n 1) = l(fa n 1)  for all a;
changing notation (and noting that ti = <xa, ea) = <xa, ea f"l /a>), we may
assume that x*xaea = ea  for all a.

By (4.11), M = U eaA   is a large right ideal in A; therefore (see the proof
of (4.10)), M contains an orthogonal family  (fp) of projections with  supj£ = l.
We define an SDD (ha) by setting ha = sup {fp: f <ea}. Now, for each p, put
vp = xafp, where a is any index such that ea >/p. (Note that if also ea>/p,then

xaJp  ~ xaea.Jp ~ xyeaJp ~ xyJp  ~ Xyeß'p ~ xßeßJp ~ xßJp''

where y > a, ß.)  Since

v*vp = (/px*)(xa/p) - /p(x*xaea/p) = /pea/p = fp,

(vp)  is a family of partial isometries [3, p. 10] with initial projections  (fp).  If
p # p', then, choosing y such that fp, fp, < e7, we have
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(VpV*)(vp,v*,) = (xyfpx*)(xyfp,x*) = xyfp(x*xyey)fp,x*

= xyfpeyfp,x* = xyfpfp,x* = 0;

hence, the final projections of the  (up) are also orthogonal.  If D  denotes the
dimension function for A   (cf. [3, Chapter 6], then

D(sup vpv*) = 2 D(vpv*) = 2 D(fp) = D(sup fp) = 1;

thus, the partial isometries  (vp)  may be added to obtain  vGA   suchthat  v*v
— 1, vv* = 1, and vfp = vp  for all p  (note, in particular, that  u is unitary).
Furthermore, if fp < ea, then  (v - xa)fp = vfp - xafp = 0; holding a fixed
and taking sup over p, it follows that  (u - xa)ha = 0. Therefore, u = <xa, ea)
= (v,l)GA.

For further details, the reader is referred to [8], which also contains back-
ground source material in two appendices.

Added in proof. In March, 1974, the author received a preprint of an
article by Izidor Hafner, containing some of the same results as this paper.
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