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Introduction 

The problem of studying the regularity of the free boundary that  arises when con- 

sidering the energy minimizing function over the set of those functions bigger than a given 

"obstacle" has been the subject of intensive research in the last decade. Let me mention 

H. Lewy and G. Stampacchia [14], D. Kinderlehrer [11], J. C. Nitsche [15] and N. M. 

Riviere and the author [5] among others. In  two dimensions, by the use of analytic reflec- 

tion techniques due mainly to H. Lewy [13], much was achieved. 

Recently, the author was able to prove, in a three dimensional filtration problem [4], 

that  the resulting free surface is of class C 1 and all the second derivatives of the variational 

solution are continuous up to the free boundary, on the non-coincidence set. This fact has 

not only the virtue of proving that the variational solution is a classical one, but also veri- 

fies the hypothesis necessary to apply a recent result due to D. Kinderlehrer and L. Niren- 

berg, [12] to conclude that  the free boundary is as smooth as the obstacle. Nevertheless, 

in that paper ([4]), strong use was made of the geometry of the problem: this implied that  

the free boundary was Lipschitz. Also it was apparently essential that  the Laplacian of 

the obstacle was constant. 

In the first part of this paper we plan to treat the general non-linear free boundary 

problem as presented in H. Brezis-D. Kinderlehrer [2]. Our main purpose is to prove that  

if X 0 is a point of density for the coincidence set, in a neighborhood of X 0 the free boundary 

is a C 1 surface and all the second derivatives of the solution are continuous up to it. In 

the second part we will s tudy the parabolic case (one phase Stefan problem) as presented 

by G. Duvaut [7] or A. Friedman and D. Kinderlehrer [9]. There we prove that  if for a 

fixed time, to, the point X 0 is a density point for the coincidence set (the ice) then in a 
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neighborhood in space and t ime of (X0, to) the free boundary  is a surface of class C 1 in 

space and t ime and all the second derivatives (in space and time) of the  solution are con- 

t inuous up to the free boundary.  The solution is hence, a classical one in t ha t  neighborhood.  

The appendix contains some Harnack  type  inequalities and some geometrical lemmas. 

I would like to thank  D. Kinderlehrer for helping me clarify the presentat ion of this work. 

1. The elliptic case 

1.1. The case considered by  H. Brezis and D. Kinderlehrer in [2] is the following: given are 

f~, a bounded,  open, connected subset of R n, a locally coercive C2-vector field a~(P); (P = 

(Pl .. . . .  p~)) and a funct ion yJ (the obstacle) satisfying, ~p E C~(f~), v 2 ~<0 on ~ .  

I t  is proven there tha t  a solution, u, to  the problem 

uEK; faaj(Du)Dj(v-u)dX>~O for all v E K  

with K = { v :  v is Lipschitz, v>~cf, v l o n = 0 }  is of class CI'I(M) for any  M c O ,  compact .  On 

f~ one distinguishes the subsets D = (X:  u =of} and f ~ D .  On (~D) f) f2, u =of and Vu = VCf 

and on f 2 ~ D  = W, A (u) = -~(a~(Vu))  = - ~  aij(Vu)u~j = 0 where A is elliptic. 

I f  cf is assumed to be of class C4(f~) and ACf, V(ACf ) do not  vanish simultaneously, it 

was observed in [5], t ha t  if XoE(~D ) ~ f~, then A(Cf)<0 in a neighborhood of X 0. Hence 

locally we have the following situation: Given are an open set W, a ball Bo(Xo) and two 

functions: 

CfEC4(Bo(X0)), A(Cf) "<).o < 0  on Bq(Xo), 

ueCl"l(Bo(Xo)), u[ %(x,)~w = of, 

u ~ c f  on Bq(Xo) , A u = O  on W D Bq(Xo). 

(In part icular  Vu=VCf on (~W) fl Bq(Xo). ) 

Finally, if we subtract  cf from u, v =u-o f  satisfies, in a new subneighborhood B~.(Xo), 

a~j(Vcf ) D~j(u-cf) = / > 0 on W N Bo.(Xo). 

As observed in [5], / can be extended by  -atj(Vcf ) D~t(Cf) to be a C1/2(Bo,(Xo) ) function,  

since near (~W) ~ B o, 

a~j(Vcf) Dtj(u) = a~j(Vu)D~j(u)+O(d(X, ~W)) =O(d(X, ~W)) 

and in the interior the growth of the HSlder norm of D~j(u) is controlled by the Sehauder 

estimates. 
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Therefore, if we assume a,j(P) to  be C a functions, the general problem reduces to the 

one treated next. 

1.2. We are given an open set W, a linear elliptic operator  A u = ~  a~j(X)O~Oju with coeffi- 

cients a~jE C a in a neighborhood of W and a funct ion v E CLI(W) and satisfying: 

(H1) v >/0, A (v) = / where / has a C 1/~ extension/*,  to a neighborhood of W,/*  > ;t o > 0. 

(/*EC~ is all we will use.) 

(H2) The boundary  of W, OW, m a y  be decomposed into ~1 W and OW~.O 1 W, where 

~1 W is an open set of ~ W, and v [ e, w = 0, Vv ] 0, w = 0. 

The investigation of the regulari ty properties of 0~ W are the purpose of this work for 

which it suffices to restrict ourselves to an open subset F of a x W satisfying d(F,  0 W ~ a  I W) > 

/~o>0. The dependence of the estimates obtained for F ,  on ~u0, [[V]]c~a, [[/*]]c~/2 and ;to is 

not  going to be taken into account.  The letter C will denote a constant.  When  different 

constants appear  at  different steps in a proof we will keep the same letter C unless we 

want  to stress the dependence of tha t  constant  on some new variable appearing in the 

context.  

1.3. We begin with the following observation, necessary in the proof of Theorem 1: 

LEMMA 1. Let u be a non-negative CX'l(/~0(X0) ) /unct ion with norm 

Ilull  ,  = sup (u) + sup (I Vu l) + sup (I u , , I )  = ;t 

and assume that/or some point Yo E OBo(Xo), u(Yo) = 0 and Vu(Yo) = 0. 

Then given dt, 0 <5  < 1/2, and a pure second derivative u .  there i8 a point Ye such that 

I Y~--Xo] <(1 -5 /2 )0  and 

u , (  Ys) >~ - C;t51/2. 

Pro@ I f  Y I = ( 1 - 5 ) ( Y o - X o )  + X  o then u(Y1) ~<�89 and [Vu(G) l <;t(~e). Now, in 

the i th or - i  th direction the segment I =  [Y1, Y2], with origin Yx and length �89 is con- 

tained in BQ(1 ~/2)(X0) (the worst case of all takes place when I is perpendicular to the 

radius [YI, Xo]). Then 

f f  ;t 312 ~ ~2 O<.u(Y~)=u(Yx)+_u~(Y~)([Y2 - Y I [ )+  u,~�89 Q + ( s u p u , ) ~ .  

That  is, 

sup u , />  - C;t~ 1/2. [I 
I 

The next  theorem is perhaps the most  fruitful observat ion of the work. 
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THEOREM 1. Let v, W and F be as in (H1), (H2) o/paragraph 1.2, and v ,  apure second 

derivative o/v .  Then there exist positive constants C and e depending only on/o, the smooth- 

ness o/ the data, and ellipticity o/the operator A, such that/or any X E W, v ~( X ) > - C I (log e) 1-8 

where Q =d(X, F). 

Remark. In  the proof of this theorem the fact that  / >  0 is not used, only its C~ char- 

acter. 

Proo/. Let  0 <Q, [ log Q [ -1 < M < 1. We will prove, by means of the Harnack inequality 

that,  if v , ( X ) > - M  for any X such that  d(X, F)<Q, v ~ ( X ) > - M + C M  2n-x whenever 

d(X, F) <~/2. A simple iteration then shows that  if for d(X, F) <~0, v~(X) > - 1, then for 

d(X, F) <2-~Q0, v , (X)  > -Ck-V(2n-2k Assume, therefore, that  d(Xo, F) <~/2 and let us 

consider the biggest ball Bo.(Xo)c W, (Q'< ~/2). To this bali, Lemma 1 applies and therefore, 

given 0, there is a Ye, as in Lemma 1, such that  v~(Ys) >~ - C]/~ and d( Y$, aBo. ) ~> �89 

We now apply the Harnack estimate in Lemma A 1, choosing ~ = CM (C small enough) 

and we get 

v~(Xo) + M >~ CM2tn-i)(M --C~) 1/2) - C~ 1/2. 

Since we are willing to assume M > ] log r I -x, choosing initially Q0 small enough, 

v,(Xo) + M >i CM2"-k 

1.4. We will now study the geometric implications of Theorem 1. In order to do so, let us 

introduce some notation. 

Notation 1. We will systematically make use of half balls with inner normal 

HBQ(Y, n) = B.(Y) n {X: ( x  - Y, n) > o}. 

If ~ is of no interest for us, we will delete it. 

Notation 2. We will also consider the angle between two vectors Y and Z, which we 

will denote by a( Y, Z). 

Notation 3. We will use functions (e > 0) 

7~(e) = co I log Q I ~, 

7-e(~) = CQ ]log Q I -e. 

The constant C may vary from step to step. Obviously 7~(7_~(~)),,~ ~. The first geometric 

consequence of Theorem 1 is 
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C O R O L L A R Y  1. Le t  X ~ W  a n d  a s s u m e  that  

(a) v(X)=q~ 

(b) d(X, F)~<q~', (0<e').  

Then, i /we  choose the constant C = C(e, e') in ? sufficiently small 

HB~,I~(q~ , Vv)c W. 

Proo/. Let us consider a ray, I = [X, X*] of HB,  and see how far it may be traversed 

before v becomes negative. Since v~(X), the directional derivative in the I direction is 

positive (because <i, ~> > 0), 

f f / , ,  0 0- �89 log<l l + 0a')l 

From this inequality, it is easy to see that  1 I1 is at least of size y~2(9o)- II 

A further consequence of Theorem 1 is obtained by using the following lemma. 

LEMMA 2. Let X 6  W, d(X, F)<Q2/2, and 0 <r <Q0/2 be given. Then 

sup v /> CQ ~. 
W fl @Bq(X) 

Proo/. If X s F, this fact was proven in [5], Lemma 1.1; if ~ > 2d(X, F), BQ(X)~ Bq/2(X' ) 

for some X '6  F and this case follows from the preceeding one. Finally, if Q <2d(X,  ~ ) ,  

using that  for an appropriate selection of 0, A(v( Y ) -  0(] Y -  X Is))t> 0 and the maximum 

principle, we get 
sup ( v -  o(q/2)*) o. II 

@BQI2(X) 

We are now ready to prove the next corollary, suggesting that  the set of coincidence C W 

is "almost convex". 

COROLLARY 2. Let S c  C W  have diameter ~o and let P(S) denote its convex envelope. I] 

d(X, C(F(S)) >7-~/,(qo), then X E CW. 

Proo]. Assume that  X E W. By Lemma 2, there exists a Y EBr_,I,c~~ ) verifying 

v(Y) > C[?_e/,(O0)] *. Therefore, by Corollary 1 there is a direction ~/for which 

HB~, lCv_,/,(q~ y ) c  W. 

Since )'~/~(Y-~/a(Qo))>Qo, and YEF(S), H B  n F ( 8 ) # 0  and therefore H B  ~ S # 0 ,  a contra- 

diction, li 
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1.5. Let us introduce the following notation for the "spherical" disk 

D(X, ~o, e, rl) = ~Bq(X) N {Y: ~(Y - X ,  ~) < e0}. 

The next two lemmas are designed to prove the following fact. Consider for an X E F 

and an eo (small enough) the disks D(X, co, e, ~1). The fact is tha t  once e 0 has been fixed, if 

for some ~/, D(X, Co, ~, ~) happens to be contained in CW for a small enough e, then for 

any ek =2-ke we are going to be able to find again a disk D(X, to, ek, ~]k) contained in CW. 

That  is, if CW "thins"  when approaching X, it must  do so in a uniform way. (Of course 

for smaller e0's the initial values of e(e0) will be smaller.) 

The first lemma asserts tha t  if that  were not the case, the set CW would have a special 

geometric configuration. 

Notation 4. The symbol a(9 ) as used below will denote an increasing function of the 

positive real variable e verifying lime_,0 a(e ) =0. For instance, in the case below, a(e) is 

in fact some small power of I log e 1-1. 

L~MMA 3. Fix  an angle 0<:r  and an eo <.C~ o (C small enough). Then i / X o E F  , 

there exists a e0 = e(e0) > 0 such that, i / / o r  some e < eo and some ~, D(Xo, to, e, ~?) ~ C W and 

D(X o, e 0, e/2~') r CW /or any ~', then (CW) N Bq is contained in the acute angle between two 

planes, ~1 and ze2, veri/ying 

(a) d(~: 1 N ~2, X0) <o'(e)e 

(b) g(7~l, 7~2) < g0. 

Proo/. In  order to understand better the idea of the lemma, let us first present the 

proof in the two-dimensional case, for which the geometry involved is much simpler: 

Since D 1 = D(Xo, to, e, ~ ) c C W  and XoE~W, by Corollary 2 

D~ = D(X o, e o - C  Ilog el-~/', 0/2, v)c CW. 

By hypothesis, if ~, (i =1, 2) denote the two directions such tha t  

~(~,, ~) = c' I log el - ~ ,  

there exists points X~ verifying 

X t e W  fl D(X o, e0, Q/2, ~?~)c D(Xo, co, e/2, ~ ) ~ D 2 ,  

which is for i = 1 or 2 an arc of circle of apperture smaller than C I log e l -~/s tangent to D~ 

at  each one of its endpoints. Therefore, again by  Corollary 2 we can associate to each X~ 
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a line L,, tangent to F(CW N Bo(Xo) ) and such tha t  d(L,, X,)  <7-E/4(~). The L~'s are the 

required ~ .  

In  the n-dimensional case, employing the same notations as before, we conclude 

again tha t  Dz= CW, hut there are now infinitely many  directions z]', for which a(~, ~') = 

C [log ~ [ -~/s and for each one of them we may  find an 

X,I'e D(Xo, eo, ~/2, ~t') fl W = D~, N W ~ D , r~D 2. 

The set D,.~D~ is no longer an arc, but  it  is located "on the same side of ~] as ~ ' "  in the 

sense that ,  if ~ denotes projection onto the normal plane to 

~(qJ(x,.  - x . ) ,  q~(v' - ~ )  ) < ~/2  + c [log e [-~/8 

(See Lemma A5, (a)). In  turn, by  Corollary 2 to each X~, we can associate a plane of 

support for F(CW N Bo(Xo)), ~,, with d(X,., ~,,)<7~/~(Q). Therefore, by  a small motion 

of the ~,,, we can find planes ~ , ,  satisfying the conditions of Lemma A5 (b). But  any point 

X, of C W  N BQ(Xo) verifyes d(X, Z) < C I log ~[-e/s, and therefore a further translation of 

the planes H 1 and H~ determined in Lemma A5 (b) by  C I log Q I -~/s gives us the required 

planes. I[ 

I t  is interesting to notice tha t  in the preceeding lemma we only made use of the 

"almost  convexity" of our coincidence set. To rule out the possibility of the situation 

considered in it, we have to make use again of the properties of the free boundary. 

LEMMA 4. Given co, there exists a Co(co) such that, i /~  <~o(~o) and D(Xo, co, ~, ~)= C W, 

then D(Xo, co, ~)/2, ~ ' ) c  C W / o r  some ~'. 

Note. eo is chosen to be smaller than a fixed multiple of 7e/2 depending on the ellipticity 

of A. 

Proo/. Mter  an affine transformation we may  assume tha t  A(Xo) = A  (that is a,j(Xo) = 

8,j). Assume for contradiction that  the conclusion is false and tha t  CW N Bo(X), according 

to the preceeding lemma, is contained between two perpendicular planes 7q, ~2 and also 

that  d(Xo, XI) < C~ I log Q I "  for some X 1 E~ 1 N g2- 

The function V=(x ix , ) / IX[  ~+~ is harmonic outside the origin, and after a rotation 

we may  assume that  V ( X - X 1 )  is positive in the angle between ~1 and g ,  enclosing CW. 

Let us apply the Green formula to the domain D o N W, where 

D o = BoI~(XI)~Br_~IscQ)(X O. 
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From the formula 

f. {v(x-xi)Sv-vaV(x-xi)}dx= fo {V(X-Xi)av-v  V(X-X,)}da, 
Q f~ W (DQ G W) 

which is easy to verify (cf. [5], Lemma 3), we deduce that  

and hence 

Iil=lf 0ocw v(x - x,)!<c. 
But, the application of Corollary 2 to D(X0, Co, Q, ~])U {Xo} implies that  the truncated 

cone of inner radius Y-~/s(~), outer radius ~ -Y-~/8(Q) and aperture eo - [log ~ [-e/s is contained 

in Da fl C(W). Therefore: 

}I] ~ Ce~ -1 Ilog (]logo])l  

which contradicts that  ] I I < C. 

1.6. Let  us reevaluate the situation in geometric terms. To do that,  let us introduce the 

Definition 1. Given a set S c  R n, the minimum diameter of S is the infimum among 

the distances between pairs of parallel planes enclosing S. 

Obviously, min diam (S)=min diam F(S) and it is proven in the appendix in the 

last part of Lemma A5, (b) that,  if S is convex min diam (S) is proportional to the radius 

of the largest ball that  we can inscribe in S. Therefore, in our particular case of "almost 

convexity" we may prove that  

L~MMA 5. Let ~ be the min diam. (CW fl Bq(Xo)), (XoE(C-CW)), and assume that ~> 

Y,/s(Q). Then we can inscribe a ball in CW fl BQ(X o) o/radius proportional to 2. 

Proo/. Since we can inscribe in F(CW ;) BQ(X0) ) a ball B of radius proportional to ~t, 

by diminishing the radius of B by ~'-e/s(~) we obtain, according to Corollary 2, the required 

ball. Hence the two preceding lemmas say that  

COROLLARY 3. There exists a modulus o/ continuity al(Q) (as in Notation 4), such 

that, given a point XoeF either mindiam(CWflB~(Xo)<al(~)  ~ or i/ /or some ~o, 

rain diam (CW fl BQo(X0)) >(~l(e0)~0, /or any ~ <~0, then 

rain diam (CW f~ .BQ(Xo) ) > Cal(Oo)O. 
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Furthermore, in the second instance, tha t  is, if rain diam (CW N Bo(Xo) ) >a1(00)0, 

then for any point X 1 verifying d(X1, Xo) <~, 

since 

But  for a small enough 0, 

From which we conclude the 

rain diam (CW n Be+,(X1) ) > al(Oo)O, 

Bo(Xo) C Bo+,(X1) 

Ca1(0o)01 > 2a1(201)01 

COROLL~.RY 4. For any X1EBo,(Xo) N F 

min diam (CW • B~.(XI)) > al(201)20x 

and hence 

min diam (CW N Bo(Xl) ) > al(20x)0, V 0 < 201. 

In  particular, i ] ] A  [ denotes Lebesgue measure o] A,  the~ 

I(C~V N BQ(X1)[ > 00,1(201 ) > 0 
Is,(Xlll 

V 0 < 201 and VX  1E BQ,(Xo) N F. (See Lemma 5.) 

A particular consequence is tha t  whenever X 0 E F has positive Lebesgue density 

with respect to CW, there is a neighborhood of X0 for which each point X E F  has density 

C5 with respect to C W, uniformly on Bq. (That is, ]C W N Bo(X) I / [ Bq(X) I > C~ u < Co(X0) .) 

1.7. The scope of this section is to prove that,  if a point, X 0, of F, has positive Lebesgue 

density for CW, then F admits a representation as a Lipschitz function in a neighborhood 

of X0. 

In  order to prove this, our first step will be to improve the "almost  convexity" of 

CW near Xo, by obtaining new estimates for the vii. I f  v .  were harmonic, well known 

theorems would say tha t  v . (X)  > -C0",  u  E W fl B~o(Xo~(Xo), where 0 =d(X, F). 

I t  is not difficult to adapt  those theorems to our situation, as it is shown in the lemma 

below. 

L E M M A 6. I/ there exists a 0o and a K > 0 such that 

ICWnBQ(X)I>K>O v0<e0 
fBQ(X)] 

then, v,,( Y) > - C0~ /or any Y such that [ Y - X I = 0 < 0o for some e > 0 depending only on K 

and the operator A.  
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Proof. We assume that  for I Y -  X l < 3 % ,  v,, > - ~ ,  and we show that  for I r -  X l < 

3-(~+1)50, v .  > 2 M  (2 < l) (provided tha t  we also assume M > C(3-k+150)1/2 ). 

To do so, we first notice tha t  

B3-(k § I)Q.(X) = B~.3-(k § I)Q.( :Y) C B3-(~§176 

then we add a correcting factor  u: 

Au = Av . ,  u I O B $ . z _ ( k + l ) q  ~ = 0. 

A(v . )  can be prolonged as the second derivative of a C 1/2 funct ion to the whole ball, see 

also Lemma A 1 

sup I~ I < c5  "~, (e = a-~§ 

We therefore have 

(1) A ( v ~ - u ) = 0 ,  and v ~ l - u >  - M - C 5 1 / ~  on W f~ B2q(Y). 

(2) v~ t -u>  -C51/2 on F N B2o( Y ). 

Hence, if we consider 

h = rain ( v . - u ,  - 2 C 5  lz~) 

Lemma A2 applies and we obtain  

h(Y) > - a(M + C51/2) - (1 - a)(C51/2) > - 2 M ,  

since we are willing to assume M ) . 5  ~/2. That  is 

v . - u >  - 2 M  

or v~t> - 2 ' M  (since u<Cs1/~). 

Now, a s tandard  iterative a rgument  completes the proof. I[ 

From now on we restrict ourselves to the subball BQ.(X0) , where the hypothesis  of 

Lemma 6 hold. 

There, we immediately  obtain an improvement  of Corollary 2, 

COROLLARY 5. I] S is a subset o/ CW with diameter, diam (S) <5, and X 1 veri/ies 

d(X 1, C(F(S)) > C51+~/~ 

then X1E CW. (e /rom Lemma 6.) 

Notation 5. Similar to our previous nota t ion )'~(5), we use now the nota t ion }~(5) for 

C51+ % where the constant  C m a y  assume different values. 

The new estimate for CW gives us an interesting asymptot ic  behavior  for CW along 

lines, tha t  says 
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LEMMA 7. Assume that XoE CW and XI=(Xo+tou)EW then,/or any t>2 t0>0  , 

W N D(X o, K~ ~/4, ~, U) 4= 0 /or a suitable K. 

Proo/. Suppose the contrary. Applying Corollary 5, inductively on k, if 

D(X0, K(2-k~)~/~, 2-k~), ~/)c CW 

then 

D(Xo, K(2-kQ) ~/4 -C(2-~Q) ~/2, 2-k+10, U)c C W, 

If we choose K such that  

K - C  > K 2  -~/2 

we obtain 

D(Xo, K(2-(k+l~) ~/4, 2-(k+1~), ~) c C W. 

But then, Corollary 5, gives us a contradiction if we choose k verifying 

2-(k+2~ ~< t o ~< 2-(k+a). 

Now we are in conditions to prove the desired theorem. 

THEOREM 2. I /  X o is a point o/positive Lebesgue density/or CW, then in a neighbor- 

hood o/ X0, F can be represented as the graph o/a Lipschitz /unction. 

Proo/. We are going to prove that  there exist constants ~ and Q2 such that  in an appro- 

priate system of coordinates, for all X E F fl Br the truncated cones 

F, = { r :  a ( r - X , e , )  <y, l Y - X /  <e,}  

F2 = {r:  ~ ( Y - X ,  e,) >z~-~,, I r - x  I <e~} 

verify Fxc  CW, F ~  W. (en=(0, 0 ..... 1)). 

For any ~ <~1, CW N B0(X0) contains a ball of radius proportional to Q, B00(XQ), 

according to Lemma 5 and Corollary 3. 

Let us choose a ~ small enough as to make K ~  ~ ~/4~0~2 and a Q3~)2. 

In an appropriate system of coordinates, where X~, -  X 0 is parallel to en assume that  

the points X and Y = X + t u ,  t>0 ,  verify 

(a) X, Y e BQ.(Xo) 

(b) ~(U, e,)<O 

(c) xe(C--W), YeW. 

Then, according to Lemma 7, 

D ft W = D(X, K[XQ,-Xo] ~t', [Z~ , -Zo[  , ~) fi W 4 ~ ,  



166 L . A .  C A F F A R E L L I  

but ,  because of (a), (b) and  the way  we choose Q, and  Qa, D c  Boq,(XQ,) ~ CW. This is a con- 

t radic t ion and completes  the  proof. 

1.8. Our nex t  s tep is to prove  t ha t  if the  free bounda ry  is Lipschitz,  it is real ly a C ~ surface 

and  the second der ivat ives  of v are cont inuous up to it. More precisely, let us fix a sys tem 

of coordinates (x I . . . . .  x~_l, y). We will, f rom now on, denote  by  X a poin t  in R n-1 and  

(X, y) a po in t  in R ~. The techniques here employed  were used b y  the  au thor  in [4]. 

THEOREM 3. Assume that on a cylinder C(Qo, (~0)={X, y: IX]  <Q0, lyl <~0}, the / ree  

boundary, may be expressed F fl C(r ~o)=(X, y: y=g(X)}  where g is a Lipechitz /unction, 

and W = {X, y: y < 9(X)}. Without loss o/generality, assume also g(O)= O, [9(X) l < ~0/2. Then, 

/or any subcylinder C(Q1, 3o), g is a/unction o/class C 1, its modulus o~ continuity being in- 

dependent o / X  o and any second derivative o/v ,  v~j is continuous up to F fl C(Q1, 50). 

Proo/. The proof of the  theorem is basically d iv ided in two steps: Firs t  we bound g 

below and then  above:  

L EMMA 8. At any point X E BqdO), y(X) has a convex cone o~ tangent rays, C(X), which 

g approaches by below/aster than QI+~. (/or some e'). 

Proo[. Our candidate  for a t angen t  r ay  is the lim sup over  all possible chords in a given 

direction. I n  order  to show t h a t  such a ray  is tangent ,  and  t ha t  the  es t imate  f rom below 

holds, we notice t h a t  if X t = t~  (~ a uni t  vector  in Rn-1), whenever  0 K t  1 <tJ2, 

g(Xt,) - g(O) < g(Xt~) - g(O) + Ct~/2 (1.8.1) 
tl t2 

(we are replacing X by  0 for simplicity).  I n  fact ,  consider the ball 

! 1+~' B = Bc.t~+,'(Xt,, g(Xt,) + C t.~ ). 

Since g is Lipschitz,  for C'/C ~ big enough, B c  CW. On the  other  hand,  if 

g(Xt,) - g(0) 

tl 

does not  satisfies the inequal i ty  for a big enough C, the  set of points  XQ of L e m m a  7 applied 

to (0, g(0)) and  (Xt,, g(Xt,)) would hi t  B or pass over  it. I n  any  case a contradict ion.  A 

similar a rgumen t  shows t h a t  such a cone is convex (see [4], lemma) .  II 

Proo/ o/ Theorem 3. The  proof of the  theorem follows now f rom an a rgumen t  similar to 

t h a t  of L e m m a  4. Let  us present  the  proof for the  poin t  (0, g(0)) = (0, 0) supposing t h a t  
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A(O) u =Au. If z is a plane of support for the convex cone G at (0,0), with normal v and V,~ 

is the second derivative of g = 1~IX] n-2, it is easily seen from the properties of v that  

' fc ~ 

where C~ = C(01, 60)-  C(e0, 60) or also 

(Since [Av(X)-Av(O)[ <~ [Av(X)-Av(X)[ + IAv(X)-Av(O)] <CIX[). Then ]Sc, ncw V~] 
< K  and if C',=Ce f3 {(X, y) below ~}, since 

c:ncw < K' 

(because of the uniform approximation by below to the convex cone proved in Lemma 8) 

we obtain 

[ f(c_c.)owV.~ <K. 

Integrating in y, since V. vanishes on ~ - (0, O) we obtain 

d((X, g(X)), zt) < C. 

Let us show that  for 0 small enough we must have d(X, g(X), ~)<C] X [ [ l o g ] X [ [ - ~ .  In 

fact, if it wasn't so, and we wrote d(X, g(X)) in polar coordinates 6(0 , g) we would obtain 

[ I [=  ft .  f,<,<006(0~ ' a )  On-2d~d~r[ <C" 

If  6(0,, a) > C0, I log 01 [ -e, using that  g is Lipschitz 6(0,, a) > CQ1 ]log 01 ] -~ for a in a solid 

angle of apperture C[log QI[ -8, and applying (1.8.1) of Lemma 8, once again for any ray 

in that  solid angle, any e>2el ,  6(O,a')>C'ollog~[-'-CQ ~+'. But if 01 is taken small 

enough, the integral I will surpass any constant C, a contradiction. 

This proves that  g is C I. To show that  v~j is continuous up to G we will prove that  if 

(X0, Y0) e F and v is the inner normal to F at (X0, yo) v~j converges to 

(Av) (X0, Y0) (i, v) (J, v) 

altm ~'l Ytm 

Since this last function is continuous on ~ ,  our result will follow. To prove this, on the 

other hand, it is enough to prove that  if (i, v> =0, v~j~0. This we prove by means of the 

Harnack inequality. Assume that  we have been able to prove that  ]v~j[ < M for any (X, y) 
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such that  d((X,  y), (Xo, g(X0))) <Q and assume that  for any  (X, g(X)), such that  d((X, g(X)), 

(X o, g(Xo))) <Q, otO'x.~(x), v o) <e. Take (X, y) verifying 

I(X, y) - (X0, g(X0))] < r 

and Bq(X, y) the biggest ball contained in W. Chose X 1 such that  (X1, g(Xl)) EOBQ (X, y) N F. 

Then zc((X1, g(X1) - (X,  y)), vo) < s. We integrate v~j along a segment I ,  in the/-direction, with 

length ~1/.zr and such that,  d(I,  (X1, g(X~)))<C(3Q' and d(I,  OBQ.)>C'~' .  (If e ~ 5  this is 

possible) and if ~1/2=CM we obtain as in Theorem 1, Iw~s(X, y)] < M - C M  2m. (Note tha t  

IL w,,I < Iwj(X~)l + Iw,(X.)l <cae if s is much smaller than ~.) II 

Remark. To this situation, (free boundary of class C 1 and continuous second deriva- 

tives), applies the result of David Kinderlehrer and Louis Nirenberg [12] asserting tha t  the 

free boundary is as smooth as the data in a neighborhood of the point under consideration 

(linear or nonlinear case), and analytic if the data are analytic. 

Comment. I t  is our opinion tha t  a much more accurate description of the exceptional set 

should be possible. For instance, improvements can be done when some topological in- 

formation is available, as in the work by Friedman [8], or the elasto plasticity problem as 

treated by Brezis-Stampacchia in [3] (see also [6]). 

2. The parabolic case 

In  the parabolic case, we will limit ourselves to a localized version of the one phase 

Stefan problem, as treated by G. Duvaut  [7] and A. Friedman and D. Kinderlehrer [9]. 

They found, by tim methods of variational inequalities a solution to the problem in different 

geometric settings. The local properties of interest to us possessed by the solution in ques- 

tion, in a neighborhood of the free boundary could be summarized as follows: 

2.1. Given are: 

(PH1) A domain W ~ R n • [t o, tl], W is known to be increasing in time (that is i / ( X ,  t) E W, 

then X ,  t' E W, Vt <t '  <tl). 

(PH2) A /unction v, with bounded second spatial derivatives (vECL1( W)) and bounded 

time derivative (v E A~ ( W) ), v~ >~ 0 on W, satis/ying Hv  = Av - vt = 1. 

Remark. The C L1 character of v was pointed out to me by D. Kinderlehrer. The proof 

follows the lines of the work by H. Brezis and D. Kinderlehrer [2]. A penalization function 

as in [9] is used. 
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(PH3) On an open portion ~1W o / a W ,  v and Vx  v vanish and i / w e  prolong vt to C W  

by zero, across ~1 W, Hvt = A v t - v t t  >10 in the sense o/ distributions. (Although this is not 

explicit in [9], vt is proven, there, to be the limit of a sequence of functions v, t with that  

property.) 

As in the elliptic case, we will restrict ourselves to a portion F of ~1 W that  stays far 

from ~ W ~ I  W. This part of the work can clearly be divided into two parts: First we prove 

spatial regularity by using the elliptic techniques. For temporal regularity a further effort 

is required. 

2.2. The equivalent of Lemma 1, would be 

LEMMA 9. Let u be a non-negative ]unction on the cylinder 

r0={lxl re, 0<t<ee~}, 

ueC}'(p0) n At(P0), and assume that /or some X0, IX01 ~<e, u(Xo, 0)=0,  V x u ( X  o, 0 )=0  

then given a pure second spatial derivative u ,  and a (~<1/2, 3X1, with IX1[ <~(1--~/2), 

such that 

u.(X. (3e) 2) > - C ~  1/~. 

Proo/. We first go inside the ball a distance 5~ (if necessary), where u satisfies u(X1, O) 4 

C(Q(~) ~, then we go up a distance ((~o) 2 and there u still satisfies 

u ( X .  (~q)~) < C~(e~) 2 

Finally, we observe that, since u remains positive in a ball (in space) of radius (~)  around 

(X1, (Se)~), [Vul (::((~e). The proof follows now that of Lemma 1. 

THEOREM 4. 1] vii denotes a pure second spatial derivative o/v,  v , (X ,  t) > C I log 01 -~, 

where ~ denotes the parabolic distance to F. 

Proo/. The proof is the same as that  of Theorem 1, using now the Harnack inequality 

of Lemma A3. 

2.3. Let us denote by Wto the restriction of W to a fixed time to; since on Wt~ Av = 1 +vt > 1, 

Lemma 2 is still valid (replacing W by Wt,, and F by Ft.) (see also the last section of [5]): 

LEMMA 10. Let (X, t) be given and assume that d((X, t), Ft) <~0/2. Consider a ~ such 

that 0 <~ <Qo/2. Then 

sup v >1 cQ ~. l[ 
w t n  ~ e (  x) 
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I t  follows then tha t  Corollaries 1 and 2 can also be transplanted to Wto and Fro, since they 

depended only on the conclusions of Theorem 1 and Lemma 2. 

We restate them for completeness. 

COROLLARY 6. Let X E We, and assume that 

(a) v ( X ,  to)=O~ 

(b) d(X, Fto)<~e[', (0<e') .  

Then i[ we choose the constant C(e, e') in ~, su]]iciently small (e now as in Theorem 4). 

HBr~I2(X, Vv) ~ Wto. 

COROLLARr 7. Let S c  ( CW)to have diameter ~o and let F(S) denote its convex envelope. 

I1 d(X, CF(S)) >9'-~/4(qo), then X e (C W)t~ 

2.4. Of course, we could also reproduce Lemma 3, but  since in Lemma 4 we must  now 

replace V by  a parabolic singular integral and to infer tha t  this integral diverges we must  

go backwards in time, we need not only to force We, to stay between gl  and z~ but we also 

need, in an appropriate system of coordinates 

( C W)t  c { t  - t o <<. Ax, ,  - B~  ~, 0 < t o - t < co}. 

To accomplish this we employ these basic ideas: recalling the geometric configuration 

from Lemma 3 (with Wt, instead of W), the disc D 1 = D(X o, co, Q, ~1) as well as the point X o 

are contained in (C(W))t for t < t  o due to the increasing nature of W. Therefore, to show 

that  (CW)t does not grow too much as t decreases from the time t o it would suffice to assess 

its behavior half way between D~ and X o, in particular, near X~ (of. Lemma 3). 

For that  we first need an estimate in %. 

LEI~r~A 11. Assume that 

D(Xo, Co, ~, ~1) ~ (CW)t. 

and (Xo, to) EF. Then, there exists a ~ such that i~ (X, t)~ W ( t< t  0) and 

d(X, D(X0, e0, ~/2, ~/)) < vQ 

(with C ]log ~)]-~/s < v < l ) .  

Then O <~ vt(X, t)<Cv ~. 

Pro@ For any X as above 

]B4,Q(X) N CW]>,~o> 0 

IB4,0(X) l 

because of the "almost  convexity" of CW in Corollary 7. 
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Hence Lemma A4 can be applied inductively to v t for those v of tho form v =8 -~ 

and the conclusion follows. ]] 

COROLLARY 8. Assume that XE  Wto and 

d(X, D(X0, ~0, 0/2, V)) < @l  log el -"~*. 

Then 

B,o(X ) fl Wt ~=0 

/or any 0 < t o -- t < C(v~)2/v ~. 

Pro@ There exists a YEB~o(X ) N Wt. such that  v(Y, to) >C(v0) 2. Since vt(Y, t) <v ~ 

for t < t o the corollary follows. [[ 

Now we reformulate Lemma 3. 

LEYIMA 12. Let A, B, ~o be positive numbers, 1/2> B/A~.so, and assume that XoE.F~,, 

D(Xo, ~0, ~), 7) C (CW)t~ and that/or any 7' 

D(Xo, co, ~/2, 7')/3 Wt~ ~.  

Then, there exists a 0o =0o(e0, A, B) such that /or any 0 <00, in an appropriate system o[ 

coordinates 

(a) JiG[ <Ollogr 

(b) For 0 < to - t  <Ko ~, K = K(e o, B, A).<I a constant 

(CW)t fl Bo(O ) = { t - t  o < Axe-Bx~_a}. 

Proo]. Let us begin the proof of this lemma, for (CW)u at the point of Lemma 3 

where we construct the points Xr and let us consider a t such that  I t o - t l  <re-~ with v 

to be choosen. According to Corollary 8, there is a Yr such that  (Yr t)E Wt and Y r  

Xr I < [~~ - t)] "~" 

* for F((CW)t), verifying d(zt*,,iXn,)< Therefore there is a plane of support ~r s. 

C[v~(to - t)] 1/~ < v0. 
, 

Since D(Xo, Co, Q, 7) and X o must stay on the same side of r~,., 

B(Xo, ~) N z~. c {X: d(X, :is. ) < C[ve(to - T)] 1/2} 

where C = C(eo). 

Therefore 

BQ(Xo) fl (CW)t c {X: d(X, F(H/~ U H~)) < C[vO(to-t)]~/a}. 

(where H + denotes the half plane bounding the acute angle of Lemma 3). If v is taken 

small enough the proof is complete. [[ 

1 2 -  772905 Acta Mathematica 139. Irnprim6 lc 30 D6cembre 1977 
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2.6. We  are now in condit ions to  prove  

LEMMA 13. Hypothezls as in Lemma 12, e 0 < z / 2  then there exists a Oo =~)o(eo) such that 

i/Q <Q0, then/or some ~' 

D(Xo, Co, e/2, 7') = [C(W)]u. 

Proo/. As in L e m m a  4 we argue by  contradic t ion abou t  the convergence of a certain 

integral.  We consider a second der iva ture  of the  fundamen ta l  solution 

H = F~2 - 2 F  n -- [ 4A~(x~ - 2~ )  + 2At 1 1 eAiXl, u 

~ J ~ �9 

I n  the  sys tem of coordinates of L e m m a  13, af ter  an eventual  rota t ion,  we obta in  t h a t  

for any  - K~ 2 < t < 0 

c l X l  ~ -~,x,.i.. o 
H(X, tO--t)[<cw>,n%~o>\B~_.lCQ>~O> >~ ( t 0 - - - -  t ) . / 2 +  2 e ' ' - , 

(because of L e m m a  12), and  also (CW)t contains a t runca ted  cone of exter ior  radius  ~, 

interior  radius  Y-,/s(~) and  aper ture  e o -  I log ~l -~/s 

Hence  as, in L e m m a  4, we obta in  on one hand,  t h a t  

I fzo '~j  w'n B~176 B~-~,ac~ H(X, to_t )dXdt l<C II[----l j0 

because of Green 's  formula  applied to H and v and on the other  hand  t h a t  [ I ]  surpasses 

any  cons tant  when Q is t aken  small enough. II 

F rom L e m m a s  12 and 13 we are able to obta in  the same conclusions t h a t  we discussed 

in Corollary 3 and 4 for the  elliptic case, i.e., t h a t  if XoE F u ei ther  

rain d iam ((CW)~o N B0(X0) } < a(@) 

for any  ~ or, in case X o is a poin t  of posit ive Lebesgue dens i ty  for Ft0, any  o ther  poin t  in 

Ft0 N B0,(X0) also has t h a t  p roper ty .  Bu t  a simple observat ion  will allow us to  ex tend  this 

p rope r ty  to a neighborhood in t ime  of (X 0, to). 

Remark. I f  Be(Xo)c [C(W)]to then  for an  appropr ia te  cons tant  C 

Be-c~ c [C(W)]t0+h,. 

Proo[. Assume t h a t  Yoe (B~-ch(Xo)) n (Wh,§ then  

~r v( Y,  to + h ~) > Oh ~ 

(by L e m m a  10). 
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Since vt is bounded, 

if the constants are properly chosen. 

sup v( Y, to) > 0 
BO(Xo) 

COROLLARY 9 (see Corollary 3). There exists a modulus o/ continuity at(e) (as in 

Notation 4) such that given a point XoEFt  o either rain diam (CW)t~ fi Bo(Xo) <al(Q) ~ or, i/ 

/or some ~e, rain diam ( CW)t~ N Bq~ >al(~0)q~ then there exist constants Ct =Ct(~0) such 

that/or any t >~to, /or any (~<Q0/2 

min diam ((C W)t fi Bo~ >~ Cl[al(eo) - C~(t - to) 1/2] e" 

2.7. In particular, Corollary 9 tells us that  

COROLLARY 10. 1 / X  0 is a point o/positive Lebesgue density/or ( C W )t, then there exist 

constants l ,  ~2 and a neighborhood 

Q = B~,(Xo) • [to-~, to+e/ 

such that/or any (X, t) EQ N F , /or  any ~ <Q3 

I C(Wh fl Bo(X) I 
IB.(X)I >A>o. II 

This corollary allows us to easily reduce the problem of space regularity for F, fl Q to the 

elliptic theory as soon as we make the following remark. 

Remark. (a) There exists a ~t, 0 < 6 < 1 ,  such that  for any (X,t)EQ, O<.vt(X,t)<<. 

[d(X, Ft)] e. 

(b) In particular, Av] w~ is of class C e/4. 

Proo/ o/ remark. To prove (a) we apply iteratively Lemma A4 to the points (X, t) 

verifying 

d(X, Ft) < 2 ~ r  

To show (b) we use Schauder's estimates to prove that  vt is HSlder continuous. 

Furthermore, Theorem 2 and 3, which, according to the remark, hold now for each 

F t N Bo,(Xo) (~2~1,  Q1 as defined in Corollary 10, ] t - t0I  <e) can be done uniform in 

time. 



1 7 4  L . A .  CAFFARELLI 

THEORI~M 5. Assume that X o is a point o/ Ft, o/posi t ive Lebesgue dens i ty /or  ( C W)t, 

then, there exist constants ~, Q~, lc, and a system o/coordinates X = (x 1 . . . . .  Xn) on which 

F ~ d P = F f ] ( X :  I(x~ . . . . .  x,-~)l  <e2, ]x~l < k ,  l t - t o l  <~} 

can be represented as the graph o/ a /unction 

x~ = g(x~ . . . . .  X~_l, t) 

where g is (uni/ormly in t) o/ class C 1 on the space variables xl, ..., x~_ 1 and C 1/2 on the t- 

variable and W N (I:) = {x,~ <g(X 1 . . . . .  Xn_l, t)} ['1 (~. 

Proo]. The only  new asser t ion in th is  theorem is the  fact  t h a t  the  sys tem of coordina tes  

can be chosen to  be the  same for a whole in te rva l  of t ' s  a round  t o and  the  t - regular i ty .  To 

ver i fy  tha t ,  we mus t  s imply  go back  to the  proof  of  Theorem 2 and  not ice  t h a t  the  bal l  

Boq~(Xo) can be t a k e n  to be the  same for those  values  of t close enough to t o because  of 

the  r emark  af te r  L e m m a  13. The HSlder  con t inu i ty  in t follows also f rom the  r e m a r k  af te r  

L e m m a  13. I[ 

2.8. F r o m  now on we res t r ic t  ourselves to a subne ighborhood of (I) (as de t e rmined  in 

Theorem 5). W e  denote  a po in t  in R n b y  (X, y) where X = ( x ,  . . . . .  xn-1) and  y=xn .  

W e  w a n t  now to ob ta in  fu r the r  r egu la r i ty  in t ime.  

The  idea  is to use v~ as a bar r ie r  for vt and  ob ta in  the  boundedness  of vt~ (i a d i rec t ion  

in R n) from t h a t  of v~ and  then,  t h a t  of vtt f rom t h a t  of v~t. 

F i r s t  we make  the  following observat ion .  

LEMMA 14. There exists a neighborhood o/ 

(x, ~(x, t), t) 

on which vy~ >20 > 0. I n  particular, - v ~ ( X ,  g(X, t) - 5 ,  t )>200.  

Proo/. On Ft ,  according to Theorem 3, vy~ = (y, r) ~ > 2 > 0 where  r is the  no rma l  vec tor  

to  the  surface Ft.  11 

Notation 6. Fq.~(X 0, to) will deno te  the  cy l inder  

{(Y, 8): IY-XoI <e,  t0-e < s  <t0}. 

We are now in the  posi t ion to  p rove  

LEMraA 15. There exist constants C t such that in a neighborhood o / F  

vt(X, y, t) < - C l v ~ ( X ,  y, t )+C2d( (X ,  y), Ft) 2. 
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Proo/.  Fix (Xo, Yo)E Ft, and for t 0 - e  < t  <to, [(X, y ) - ( X 0 ,  y0)] <Q, compare  the  two 

solutions of the hea t  equation,  vt and w = - A v u + [(2n + 1)-a ( I X - X o 12 + (y _ Yo) ~ + (to - t) - v] 

in the bounda ry  of the set 

[W Iq FQ.~((X0, Yo), to)]. 

Clearly vt is bounded in (aFo.~) fl W and vanishes in 2' fl FQ.~, and  w is non-negat ive  in 

F fl FQ.~, and  str ict ly posit ive in (~Fq.~) fl W if A is chosen big enough. Therefore,  mult i -  

plying w b y  a suitable cons tant  we obta in  the  desired result. II 

The preceeding l emma  shows t h a t  when considered in the  appropr ia te  domain  of 

definit ion Dh, the  space h-incremental  quot ients  Ahv t of v~ remain  bounded  b y  those of 

w in t h a t  pa r t  of ~Dn tha t  arises f rom F.  A localization a rgumen t  will give us the following 

theorem. 

THEOREM 6. The  derivatives vt.t and vu are all bounded. 

Proo]. Let  ~ be a C~ funct ion with suppor t  

S c FQ.e+I(Xo, Y0, to + l) 

and ~ ~ 1 in a neighborhood of (X0, Yo, to} EF.  Then  

H(q~vt) = vt(H~) + (V~) Vv~. 

Since vt E C e, we can construct ,  just  by  convolving with the fundamen ta l  solution, a func- 
1.6 �9 

t ion wEC(x.~) m [FQ.~+I(X0, Y0, to+ 1)] and satisfying 

H w  = H(qJvt). 

Hence the  incremental  quot ients  (in space), Aa(w-qgvt) are uni formly  bounded  a t  the  

boundary  of Fe,~(X0, Y0, to) and  in par t icular  Vvt is bounded  in a neighborhood of (X0, Yo, to). 

Now we look back a t  H(~0vt), with a r having  smaller suppor t ,  and notice t h a t  it is 

bounded  in a neighborhood,  F '  of (X o, Yo, to). Hence  

which tells us t h a t  vt E C~(W fl F ') ,  since the  incrementa l  quot ients  in t, Ahv t are uni formly  

bounded  on F N F x b y  Aav~. 

Therefore,  for any  e > 0, they  grow a t  mos t  like 

C, 

[d((X, y), rx)] ~ 



176 L. A. C A F F A R E L L I  

on (@rl) when approaching F because of Schauder's inequality. If  we represent Ahv t by their 

boundary values on W N F 1 we obtain tha t  in a subneighborhood of (X 0, Y0, to), %.t is 

bounded. [[ 

COROLLARY 11. I / B q ( X ,  y ) c  (CW), then for a suitable C, BQ_chC (CW)t+h. Inpart i .  

cular g 6 A~ (is Lipschitz in time). 

Proof. See the proof of the remark after Lemma 13. 

2.9. We need now to use the a.e. existence of non-tangential limits to prove the next  lemma. 

For that,  we refer to J.  Kemper  [10]. 

Lv.•MA 16. Let v jj denote any pure second directional derivative in space and time (that 

is ] is a unit vector in Rn+l). Then vtjIX, y, t )>  -CQ 8 /or some e>0 ,  where Q =d((X, y, t), F). 

Proof. Since v z is bounded, and Hvjj = O, it would be enough to show tha t  if fjj denote 

the Lr176 boundary values of vj~ on F (/~ = caloric measure ) , / z  ~> 0 a.e., (see [10]). 

In  order to do that ,  let - M  be the essential infimum of / j j  on F, and K any compact 

subset of F. Let  

Dn={(X,  y,t): (X, y, t )+216W, V0 < ~  <h}  

and on Dh, consider the two functions 

F~ = v,( ( X,  y, t) + ri) dr ds 

F:=29. f ~  f ; v , ( X , y , t ) + r ] )  drds. 

Clearly HF~ =0,  and F~ converges to vjj on W when h ~ 0 .  Since 

(where ~K =d((X, y, t), K). 

But  if we call 

v~j(X, y, t) > - M - C K o ~  

F~h > - M - C , o ~  ( i = 0 , 1 ) .  

0 ,D h = {(X, y, t)6OD h, (X, y, t) + ; t ]EK for some ,~, 0 ~<t ~< h}, 

and for i = 0 or 1, F'a > - ~ M -  C~h', because, if, for instance, 2 ~< h/2 in the definition of 

Ox D~, 

f v,,t(X,y,t)+ri)drds=vt(X,y,t) hi)> O. + 
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Therefore 

that  is, 

F~ § F~ >~ - ~ M - C K ( Q ~  § h ~) 

But F~ + F~ converges to 2vjj, and hence, 

ess inf v# > / -  ]M,  
K 

a contradiction. II 

COROLLARY. At any point X,  t, g(X, t) has a convex cone o/tangents C(X, t), which 

g approaches by below/aster than QI+~. 

Since g is Clx, C(X, t) is composed o/two hyperplanes. 

Proof. That of Lemma 8 (see also Lemma 7). [[ 

We have now all the necessary tools to prove 

THEOREM 7. 

Cx. $ (a) g(X,  t) i8 Of cla88 1 

(b) all second derivatives o / v  are continuous up to F 

(c) ((Vx.~Vt). Vx.~(y-g(X,  t)) = - D t ( y - g ( X ,  t)) on F. 

Remark. Part (c) asserts that  the solution is a classical one near F. 

Proof. We begin by proving that  the tangent cone C(X 0, to) is really a tangent plane 

z~ = {y  = g (Xo ,  to) + < A .  X - X o )  + C(t - to)}. 

Let us suppose that  for t ~-t o the X-tangent plane to g(Xo, to) is horizontal and hence the 

two tangent half planes are given by 

{ y  = a ( t  - to) + g(Xo, to), t >t to} 

{y = b(t-to) +g(Xo,  to), t < to}, (b < a) 

and let ~r be the (uniform in t) modulus of continuity of Vx g as a function of X and of all 

second spatial derivatives v~j as functions of X, y. That is, for any I t - te l  <~, [(X~, y~)- 

(X0, g(X0, to))] <~t, these inequalities hold: 

(i) IVg(Xx, t ) -Vg(X~,  t)[ < a ( l X x - X , [  ) 

(ii) [v,j(X x, Yl, t) - v,j(X~, y~, t)[ ~a([  (X 1, Yl) - (X~, Y2) [). 
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We look now at three points  in a vertical segment 

A = (X o, g(Xo, to) -~,  to) 

B = (Xo, g(X o, to)-~,  to+fl) 

C = (Xo, g(Xo, to)-  ~, t o - f ) .  

We are going to select f =aS/2(oW 2) ~. Then we have 

iv(A )_�89 < ~(~)~2. 

Also, let us decompose 

g(Xo, t o -4-f) = g(.Xo, to) ~ -a f  ~-~1(~) 

g(Xo, t o - f )  = g(Xo, to) -b f l  + e~.(fl) (t,(fl) > -Cfll+Q. 

We want  to show t h a t  a =b and  tha t  e~ are uniformly bounded above by  some a(fl). 

We do it as follows: First  we notice t h a t  

Iv(B) - 1/2(af +el(fl) + ~)21 < C[a( ia )  +a~(a 1/~) + a(a 1/2) a] a s 

(M an absolute constant).  

To obtain this est imate we notice tha t  

v~(Xo, g(Xo, to +fl), to + f )  = (cos 0) 3 

where 0 is the angle between the  y-axis and the spatial  norm to g at  (Xo, to+f)  and we 

est imate 0. Since g is increasing in t, we obtain  for 0 the  est imate (D any  real number,  

-(~o < D < ~0, for some d} o depending on (~ in the definition of a) 

(tgO)D-a(lD[) IDI + a ~ + ~ ( f l )  >~ a ( I D I ) I D I .  

I n  particular,  if we make  D = - f l / 2 ,  we obtain  

[sin 0[ < a ( f  1/2) + a f  + 81(f) 
i l/2 

Using tha t  a f  +~x(fl)<KaX/2(~1/2) a by  the Lipschitz character  of g, we get  

v~(Xo, g(Xo, to + f ) ,  to + f ) / >  1 - e[~( /~  1/2) + ~(/~1/2)~1 

and the desired est imate  on v(B). 

A similar estimate m a y  be obtained for v(C). Hence, if we consider the second differ- 

ence 

v(C) + v(B) - 2v(A) i> (a - b )  a2alt~(zW 2) + (tl +e~) a - C[a(al/2)] a ~. 
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On the other  hand,  

v(B) - v(A) - [v(A) - v(C)] ~< [sup vt - inf v~] a112(a 1/2) ~ ~< Ca(~ 1/2) az 
I1 /2 

(Vtt being bounded).  This is possible only if a = b  and 

~ < C a ( ~ / ~ )  ~ = o(fl) .  

T h a t  completes  the  proof of pa r t  (a). P a r t  (b) and  (c) follow f rom the faet  t ha t  if v~s is a 

second der iva t ive  in X, y and  t, and i or } is tangent ia l  to g at (Xo, to) , v~j converges to zero 

a t  (X0, g(X0, to), to). This can be done by  approx imat ing  v~j by  

1 
Fh = ]~ [vj((X, y, t) + hi) - vj((X, y, t)) 

as in L e m m a  15 and tha t ,  if r is the  spat ial  normal  to g, v ,  converges to one. 11 

Appendix 

I n  this append ix  we collect several  l emmas  related to the t t a rnack  inequalities. Al though 

p robab ly  some of t hem can be found in the  l i terature,  perhaps  in more  general  form, we 

have  been unable  to find them.  

LEMMA A1. Let A(u)=~a~j(X)OtO~u be a second order uni/ormly elliptic operator, 

with atflCa(BQ(X)) (~ < l) and [ a C1/2(Bo(X)) /unction, then, there is a CU2(Bo(X)) /unction 

v such that 

A(v) = I ,  = D~I  on Bo(X ) 

(in the sense o/distributions) and 

Furthermore 

v I ~Bq(X) ----- O. 

Clllllo,,  

where C depends only on the eUipticity and smoothnes~ o / A .  

I n  particular, the /ollowin!l Harnack inequality holds. I /  w is a non-negative solu- 

tion o/ A(w) =],~ on Bo(X ) and Y q Bo(X), w(X)  + CX]l/llcl/~el/2 >1 { w ( f )  - Clllll[6/~ 01/2} X 

(d( Y, aB)/e) "-1. 

Proo]. We first solve 

Such a u ~ is of class Cl'l/2(/~): 

A u  ~ =/ ,  u~ = 0 .  
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(See S. Agmon,  A. Douglis, L. Nirenberg [1].) Formally,  Au~ ~t(am)u~kt-- 

~t(a~k)u% We now solve 

Au 1 = 2  ~ ~t(ajk)u~k, ulJ~B = 0 .  

Formal ly  again 

Au~ = 2 7. ~(ajk)u % - ~ ~,amu~ 

and u 1 E C ~'1/2 

Ilu'll~,.,,, ~< olltll~,,,. 
Finally we solve 

A (u s) = 5 ~.(aj~) (u[~ + u~) 

and again 

i lu%,., , ,  ~< Clllllo,,~. 

To obtain the correct boundary  value we solve 

Aw = 0  

w I~BQ(x~ = u, ~ + u; + uS 

and u ~ + u~ + u s - w is our solution. 

About  the Harnack  inequality,  given w, we consider 

h =w+v+CQ 112 

t ha t  satisfies A(h) =0, h >10. 

The necessary estimates of the Poisson kernel to obtain the usual Harnack  inequal i ty  

can be found in Serrin [15], section 2 (The Parametr ix) .  [[ 

The next  lemma asserts some super-mean value properties: 

LEMMA A2. Let A be as in Lemma A 1, and assume that uEC(BQ(X)) satis/ies A(u) ~0 

(in the sense o~ distribntions), then, there exists a continuous/unction P x( Y), with 

(a) 0 < a  <Px(Y)  <fl, 

f,Q(x)Px(r) = lB.(x) I (b) 

such that 

'L u ( X ) ) ~ B  ~ o(x)U(Y)Px(Y) dY" 

In particular, i / u  >1 - M on Bo(X ) and 

I {u>  - M I 2  n Bo(X)}I > a >  0, 

IB~(X)I 
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34 =2(:0 < 1 such that 

u(x) >1 -2M.  

Proo/. Px(Y) ,  for I X -  Y[ =0' ,  is of course, the normalized Poisson kernel on aBo,(X), 

the estimate (a) can be found in Serrin [15], and the estimate (b) is standard. 

The next  two lemmas are dedicated to the parabolic case and they are, as Lemmas 

A1 and A2, a Harnaek inequality and a mean value property.  

LEMMA A3. Let u be a positive solution el the equation Hu = A u -  ut = 0  in the cylinder 

F = { I X  I <1 0 < t < C }  (C depending on the dimension) and let ( Y, t) veri/y I y I  = 1 - ( ~  

t =~2 with ~l < min (C/2, 1/2). Then u(O, C) > ClOn+2u( Y, t). 

Remark. Estimates for t close to C can also be obtained. 

Proo/. Let Gx.t( Y, s) denote the Green function of the cylinder {IYI < 1 } with pole at  

X, t. As usual, we must  simply estimate 8~G0. 0 by below and 8~Gr. c-t by above on the sides 

of F and Go. o by below and Gr. c-t by above on the top of P. 

In  order to simplify the proof we will avoid normalization factors and assume tha t  

the fundamental  solution takes the form 

Then, for I X I = 1 

w(IxI ,  t )= ! e-,x~',, tn/2 

- n / 2 ( t  + 1) e_la 
Wt(1, t) = t~m+ 2 

and if we choose C < 2In, W is increasing on t along the sides of F. Therefore the function 

w ( I x I ,  t ) -  w(1, to) < G0.o(IXl, t) 

for any I X I < 1, t ~< t o and hence 

1 
(a) ~ Go.o(1, to)> I~ W(1, to) [ = t ~  e-'/t'" 

(b) C "ml (e_,~,,= _ e_ ,c  ) < ao. o( Ixl .  c).  

To bound Gr, t, we use the Green function of the half space Y,, tangent to F along the 

line {X =(1, O, 0 ...)=ex} 

* X l [ e x p [  ] X - y [ 2 ~  

{ Y*, the reflection of Y respect to ~ . )  
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Since Gr.t ~< W* r.t we have 

(a) On the side of 1", for s>~t 

2yI e x p [  [ e l -  y[2] 
( s -  t) ~'~+~ \ ( s -  t) ]" 

Since ]e 1 -  Y[ >3 and ( s - t )<52  we get 

C e_C. 

(b) On the top, if ynX~ are coordinates respect to F~ 

1 C y~x~ C 
O,.t(X, C)< ~ [ e x p ( - ~ ) - e x p ( - 2 Y ~ ) ]  < ~ ~ ~ < ~ ( 1 - , X , )  

and the proof is complete. 

LEMMA A4. Let u be a bounded semicontinuous subcaloric /unction on 

r = { x , t : l X l < l ,  0 < t < l } .  

That is, assume that/or any subeylinder F x = F, and any Y, s E (F1), 

u ( Y , s ) <  fo, r, a ~ ( Y -  X , s - t ) u ( X , t ) d a x d t  + f~,r, a ( Y -  X ' s - t ~  

Then, i / u  ~ M on F and 

3y =7(2o) < 1 such that 

IF N {u < M/2} 1>2o>0, 
Irl 

u(0, 1) < 7M. 

Proo/. The proof is an application of Green formula over an appropriate subcylinder 

of r. II 

L~MMA A5. (a) Assume that :r ~') =~. Then i] X ED(O, co, 1, r]')~.D(0, eo-S 2, 1, ~), 

the/ollowing inequality holds 

a@(X), ~(,]')) < n/2 + C(eo)e (So < n/20, e small). 

(b) Let F(eo) ~< {X: a(x, ~) <Co} and assume that,/or each ~" we have a plane ~ . ,  tangent 

to F(eo), with normal v veri/ying g(~0(r/'), ~0(v))<g/2, then, i /H(g~,) denotes the hal/ space 

containing F and Z = N H7%,, Y, is contained between two hal/planes H1, H~ /orming an angle 

a(H1, H~) < Cs o where C depends only on the dimension. 
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Proo/. (a) The  c r i t i ca l  case  w o u l d  t a k e  p lace  w h e n  X E [OD(0, Co, 1, ~ ' )]  N [OD(0, e 0 - e 2 ,  

1, ~)]. 

I n  t h a t  case,  in  a s u i t a b l e  s y s t e m  of c o o r d i n a t e s  

= ( 1 , 0  . . . . .  0), 

~ '  = (cos e, s in e, 0 . . . . .  0), 

X = (cos (e o - e~) ,  s in  (e 0 - e ~ )  cos a,  s in  ( % - e  ~) s in  a),  

b ec a u se  X E ~ D ( 0 ,  Co-e2,  1, ~/), a n d  also,  s ince  XE~D(O, So, 1, ~ ') ,  

T h a t  is 

d(X, lff) = [cos (~'0 -E:2) - cos 8]2 _~_ [sin (So - s  2) cos a - s i n  s] 2 

+ s i n  (s 0 - s  2) s in  a = (2 s in  �89 2. 

2 - 2  cos s cos (~o -~  2) 2 s in  (~0 - e 2 )  cos a s in  ~ = 2 - 2  cos e0. 

H e n c e  cos a > - Ce/sin (Co _~2) > _ C(eo)e" 

(b) L e t  us  f i r s t  no t i ce  t h a t  F(e0) is t he  cone  of l a rges t  a p e r t u r e  c o n t a i n e d  b y  Z.  

F o r  c o n t r a d i c t i o n  a s s u m e  t h e r e  is a cone F(~ ' ,  a ) c  Z ,  w i t h  a > e  o. F i x  

=(1 ,  o . . . .  ,o)  

~'=(cosO, sinO . . . . .  0) (0 < 0  <7~) 

a n d  le t  8 = ( - - s i n e o ,  (cose0)v)  be t he  e x t e r i o r  n o r m a l  to  n~. (v a u n i t  v e c t o r  in  Rn-1), 

v = (v 1, v 2, 0 . . . . .  0). T h e n  ~)1 ~ 0 a n d  s ince  t he  v e c t o r  

T h a t  is 

o r  

y =~]'+(sina)SEF(~]',a)cZ, t h e n  ( ~ , 5 >  < 0 .  

- (cos 0) s in  eo + [sin 0 cos co] vl + s in  a < 0 

s in  a < s in  %, 

wh ich  p r o v e s  ou r  o b s e r v a t i o n .  

Therefore ,  if we slice ~ w i th  a p l a n e  ~ p a s s i n g  t h r o u g h  ~ a n d  p e r p e n d i c u l a r  to  i t  we a re  

l e f t  w i th  a c o n v e x  se t  F~* = Z  N ~ such  t h a t  t he  m a x i m u m  ba l l  t h a t  i t  inscr ibes ,  F(~,  a) N 

has  r a d i u s  ao = t g  a.  W e  wil l  p r o v e  u n d e r  these  c i r c u m s t a n c e s ,  Z* is c o n t a i n e d  b e t w e e n  

t w o  pa ra l l e l  p l anes  ~1 a n d  7e 2 w i th  d(~l ,  z2) < C(n) ~o. 

F o r  n = 1, t he  sphe re  a n d  t h e  c o n v e x  se t  a re  b o t h  a s e g m e n t  a n d  hence  C ( 1 ) =  2. F o r  

a gene ra l  n,  a s s u m e  t h a t  Z* is b o u n d e d ,  a n d  s u p p o s e  i t s  d i a m e t e r  D is r ea l i zed  b y  ( - D/2, 
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0, ..., 0) and  (D/2, 0 . . . . .  0). Le t  E 1 be the  coord ina te  p lane  E I = { X = x l = O }  and  suppose  

t h a t  the  closest p lanes  on E1 t h a t  con ta in  E 1 N Z* have  the  form 

{ X : x ~ = a } N E  1 a n d { X : x  2 = b }  ( b < 0 < a , a - b = h ) .  

Then,  one one h a n d  ~'.*c {X: - 2 h  <x~ <2h}  and  on the  other ,  b y  induc t ive  hypothes is ,  

Z* N E 1 conta ins  a sphere of r ad ius  h / C ( n -  1) which means  t h a t  E* conta ins  a sphere  of 

r ad ius  K(h/C(n  + 1)), (0 < K < 1) and  t h a t  completes  the  proof.  
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