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THE REGULARITY OF MAPPINGS WITH A CONVEX POTENTIAL 

LUIS A. CAFFARELLI 

In this work, we apply the techniques developed in [Cl] to the problem of 
mappings with a convex potential between domains. 

That is, given two bounded domains Q" Q2 of Rn and two nonnegative 
real functions 1; defined in 0i that are bounded away from zero and infinity, 
we want to study the map v = V'll for a Lipschitz convex'll, such that V'll 
maps a, onto Q2 in the a.e. sense and in some (weak) sense. 
(1) 

In recent work Y. Brenier showed existence and uniqueness of such a map 
(provided that laOil = 0) under the obvious compatibility condition 

(~={J;,. 10.1 10.2 

The map V'll is into O2 in the sense that 'II = sup La with La linear functions 
and V La E O2 , The Monge-Ampere equation (1) is satisfied in the weak sense. 

( q(Y)J;,(Y) dy = ( q(V'II)~ (X) dX 10.2 10.1 

for any continuous function q, (here V'll is understood in the Loo-sense). 
As can be seen by an elementary example, this definition is strictly weaker 

than the classical definition of weak solution by Pogorelov, since it is unable to 
see the singular part of detDij'll . 

On the other hand, if both Q i are convex, Pogorelov [P] constructed a weak 
solution in the Alexandrov sense. 

The purpose of this note is to show 
Theorem. If O2 is convex and 1;, 1/1; are bounded, then Brenier's solution is 
a weak solution in the sense of Alexandrov. 

Further, 'II is strictly convex and C' ,p for some p. 
If 1; are continuous, 'II E ~~P for every p. 
If 1; are Ca , 'IIEC2 ,a for any O<a<a. 
Further regularity follows from classical standard estimates. 
The main difficulty in the proof of the theorem consists in showing that 

Brenier's solution is indeed a solution in the sense of Alexandrov, i.e., that 
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detDjjlfl has no singular part and that IfI is strictly convex (in the sense of 
[CI]). 

After this, the results in [CI, C2, C3] provide the complete regularity theory. 
To see that the condition needed on 02 is of geometrical nature, and neither 

a topological or differentiability one, consider the following examples. 
(i) Let, on R2 , 

1 2 2 
lfIo = Ix,1 + 2(x, + x2)· 

Then Vlflo = (x, + sign x, ,x2) is the (unique) map from the unit disc onto the 
two shifted halfdiscs, Dt + (1, 0) and D; - (1,0). In the Alexandrov sense, 
though, detDijlfl has a singular measure along {x, = O} and the image VIfI, 
as a multivalued map, fills the strip Ix,1 ::; 1 . 

(ii) Bridge now the two shifted halfdiscs of the previous example with an e-
horizontal strip {IX21 < e, Ix,,::; I} , make an e-smoothing of the new domain 
to make it COO with total area 

10 2 1 = n = ID,I, 

and consider the Brenier map Vlfle: D, - 0e (with f == 1). It follows from 
Brenier's theorem that lfIe converges uniformly to lfIo' and hence in the sense 
of Alexandrov that 

lim I detDijlfle(D,)1 ~ I detDijlflo(D,)1 

(I I denotes total mass). 
But since IdetDijlflo(D,)1 = ID,I + 1{lx" < I}I (the added strip due to the 

singular part of detDijlflo) ' it follows that detDijlfle must also have a singular 
part for e small enough. 

The difficulty posed by this counterexample is easily solved by the following 
remark. 

Lemma 1. If IfI is locally Lipschitz and convex then 
(a) a point of Lebesgue differentiability of V IfI (as an L 00 function) is a point 

of continuity for V IfI ; 
(b) if V 1fI, in the a.e. sense, is contained in 0, then, in the multivalued map 

sense, VIfI is contained in reO), the closed convex envelope of O. 
Proof. (a) If 0 is not a point of continuity for VIfI we have at zero at least 
two supporting planes that can be normalized to be Z = ±ax, (a > 0) by 
subtracting an appropriate linear function. 

Let r; be the cone 

r; = {X: (X, e,) ~ (I-e)IXI}. 

Along this cone a supporting plane at a point Xo = (xo, l), (xo a scalar), 

Z = (6, X) +a 

must satisfy 

Z(O) = a < 0 and Z(Xo) = v,xo + (62 , l) +a ~ axo. 
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In particular, 

o ( __ o) ° 1 (__ ) vlx + v2 ,y ~ax or VI ~a-o v2 ,yo . 
x 

In particular, since along r, III < Cexo and 11121 ::; C because", is Lipschitz, 
VI + Ce ~ a. 

For e small enough, VI ~ a12. Conversely in the opposite cone, r; , VI ::; 
-a12 and 0 is not a point of Lebesgue differentiability. 

This proves part (a). 
In order to prove part (b), since values of Lebesque differentiability of V", 

are, after (a), mapped in 0, we need to prove the following: 
Let 0 be a point of discontinuity for V", and 1: the convex, (nontrivial) set 

of supporting planes to '" at O. 
We will say that i1 is a strongly extremal point of 1: if 1: is tangent from 

inside to some sphere at i1. 
For bounded convex sets, strongly extremal points are dense in the set of ex-

tremal points, and therefore, it is enough to show that strongly extremal points, 
i1, are limits of points of continuity for V", . 

By subtracting a linear function and a rotation we may assume that i1 = 0 
and 1: c BR(Rel) (the ball of radius R and center Rei .) 

We then show that along any cuspidal domain around the ray -Ae l , all 
possible supporting vectors converge to zero. 

Indeed, any sequence v(k) must converge to a point in 1:, and hence their 
first component satisfy 

limv~k) ~ O. 
On the other, i1 = 0 being a supporting plane, '" ~ 0 and from the argument 
in part (a). 

lim(V"" -e l } ~ -Ce 
along any re cone around the -el axis. 

Hence lim v~ = 0 and vk must converge to zero along any cuspidal do-
main. 0 

We now study solutions '" when 02 is already convex. 
More precisely 

Lemma 2. Consider a convex function rp such that 
(a) rp = supL" , L" linear, VL" E °2 ; 
(b) 1r(02)\021 = 0 (I I Lebesgue measure, r(02) the convex envelope of 

°2) ; 
(c) for any continuous " 

CI j"evrp)(X)dX::; r ,,(Y)dY::; C2 r "eVrp(X))dX 1n2 1nl 
(Vrp as an L oo function). 

Then, in the sense of Alexandrov rp satisfies (in all of Rn) 

CIXn ::; detDi,orp ::; C2Xn . 
I I 
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Proof. It is clear that 
CIXn, ~ detDijrp· 

Indeed, for any compact set KI c n l ' K2 = "Vrp(KI ) in the multivalued sense 
is compact. If Y/ is any continuous majorant of XK 

2 

! y/(Y)dx ~ CI ! Y/C'Vrp)dX ~ CIIKII. 

In particular if "V rp(S) for S C n l has measure zero, also S must have 
measure zero. 

To prove the second part of the inequality, we recall that given K compact 
in the X space, the set D, in the "V space of those u such that 

('Vrp)-I(U) n K '10 and ("Vrp)-I(U) n ~ K '10 

has measure zero. (See [el], the proof of the remark in p. 137.) 
Hence 1("Vrp)-I("Vrp(KI))\KII = o. 
But now for any KI and any continuous majorant Y/ of "Vrp(KI ) , we have 

l"Vrp(KI)1 ~ r y/(Y) dY = r Y/(Y) dY ~ C2 r y/("Vrp) dX. i rtn2 ) in2 in2 
If now 0 ~ Y/ ~ I and Y/ converges uniformly to zero on compact sets out-
side "Vrp(KI ) , y/("Vrp) converges uniformly to zero on compact subsets of n l \ 

("Vrp)-I("Vrp(KI )) . 
Therefore J y/("Vrp(X)) dX is controlled by IXvtp-'(Vtp(K) = IXK,I and the 

proof is complete. 0 

At this point we have been able to show that detDijrp has no singular mea-
sure. 

To complete our argument; let us show that rpln is strictly convex (in the , 
sense of [el], i.e., that every tangent plane has only one contact point with 
graph of rp) . 

We first point out that if rp is a globally Lipschitz convex nonnegative func-
tion and rp == 0 on a line (say in the e I direction) then rp e == 0 and hence , 
det Dijrp == O. 

Therefore it is enough to prove. 

Lemma 3. Let rp be a globally Lipschitz convex nonnegative function, that sat-
isfies, in the Alexandrov sense 

CIXn ~ detDijrp ~ C2Xn . , , 
Then, if the (convex) set S = {rp == O} intersects n l in more than a point, then 
S has no extremal points (and contains therefore a line). 
Proof. rp being convex and globally Lipschitz, it has an asymptotic cone at 
infinity and "V rp (Rn) is a bounded convex set with non empty interior r. 

We recall from [el] that S cannot have extremal points in n l , and since 
detDijrp == 0 on ~nl' it follows that S can only have extremal points on 
an!. 
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As it was observed before Lemma 3, S cannot contain a line (if not detDijqJ 
== 0). Hence it must have a supporting plane, let us say x, = 0, that has only 
one contact point, say 0, with S. 

Then 0 must belong to ao, ' and since S has also a point in the interior of 
0, ' we have the following geometric situation: 

(i) S c {x, :::; O}, Sn{x, = OJ = 0, and hence Sn{x, ;::: -M} is compact 
for any M. 

(ii) 0 also belongs to ao, and hence 0, C BR for some Ro. 
o 

(iii) S has a point Xo in (the interior of) 0,. 
In particular some ball BJ(Xo) cO, . As in [Cll we will study the renormal-

ization of the functions qJe = -e(x, + 2Ro) + qJ on the set {qJe < O} = Se· 
That is, Se has nonempty interior since 0 and Xo E Se and, therefore, 

by an affine transformation we may obtain sets S; and graphs qJ; such that 
B, c S; c Bn. 

C,Xo* :::; detDij,qJ; :::; C2Xo* and qJ* == 0 on aD; . 
1 1 

Since Se converges uniformly to S n {x, > -2Ro} , a compact set, Se is 
uniformly bounded for e small and therefore the affine transformation Te that 
sends Se in S; is an expansion, i.e., II Te(X) - Te(Y)1I ;::: qx - YI , indepen-
dentlyof e. 

In particular 0; = Te(O) ::) Te(BJ(XO)) ::) Be J(X;). 
o 

As in [Cll we now will get a contradiction by showing that both qJ; stays 
close to its infimum near as; , and cannot do so. 

On one hand, from Alexandrov estimate, 

IqJ;(X)11i :::; dist(X, as:) Total mass (detDijqJ;) :::; Cd(X, as:) 

since detDijqJ* is bounded. 
On the other hand, consider S;,J/2 = {X E S;ld(X, as;) ;::: Co6/2}. 
There, lV'qJl :::; fl infs' qJl. But , 

Hence 

Volume{V'qJ(S:,J/2)} = 1. detDijqJ dX ;::: C6n . 
s, ,J/2 

Hence suPs' lV'qJl;::: C6 and 
" J/2 

Finally, we look at Te(O). 

I inf qJ: I ;::: C 62 . s· • 
£ 

On one side Te(O) converges to as; when e goes to zero since the opposite 
supporting planes of Se' {x, = -Ae}{x, = Be}' remain uniformly separate 
(since they enclose Xo and 0) and Be tends to zero since Se converges to S. 
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On the other, the ratio 

converges to one since 

I inf qJel :::; sup e(xi + 2Ro), 
S, XI ES, 

qJe(O) = - 2eRo 

and sUPx l ES, Xl goes to zero when Se converges to S. 
The proof of the theorem is now complete. 0 
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