
J Algebr Comb (2015) 41:303–321
DOI 10.1007/s10801-014-0537-2

The regularity of powers of edge ideals

Arindam Banerjee

Received: 3 September 2013 / Accepted: 30 May 2014 / Published online: 25 June 2014
© Springer Science+Business Media New York 2014

Abstract In this paper, we prove the existence of a special order on the set of minimal
monomial generators of powers of edge ideals of arbitrary graphs. Using this order,
we find new upper bounds on the regularity of powers of edge ideals of graphs whose
complement does not have any induced four cycles.
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1 Introduction

In this work, we find new upper bounds for the regularity of some classes of monomial
ideals associated to graphs. Our original motivation is the following question, which
is the base case of the Open Problem 1.11(2) in [13]:

Question 1.1 Let I (G) be the edge ideal of a graph G which does not have any
induced four cycle in its complement. If reg(I (G)) ≤ 3, then is it true that for all
s ≥ 2, I (G)s has linear minimal free resolution?

Bounds on the regularity of edge ideals have been studied by a number of researchers
[1–9,11–13]. For example, Fröberg [3] has shown that if when I (G) is the edge ideal
of a graph whose complement does not have any induced cycle of size greater than or
equal to 4, then I (G) has linear minimal free resolution.

We are interested in finding upper bounds on the regularities of the higher powers of
I (G). Herzog et al. have shown in [6] that if I (G) is the edge ideal of a graph G which
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has no induced cycle of length ≥ 4 in its complement (that is I (G) has linear minimal
free resolution), then for all s ≥ 2, I (G)s has linear minimal free resolution. Fransisco,
Hà, and Van-Tuyl have further shown that if I (G)s has linear minimal free resolution
for some s, then G has no induced four cycle in its complement [13, Proposition 1.8].
These two results lead us to study bounds on the regularity of powers of I (G) when G
has no induced four cycle in its complement. Our main result is Theorem 6.17 where
we prove that all higher powers of edge ideals of a gap-free (equivalently, no induced
four cycle in complement, as observed in Sect. 2) and cricket-free (defined in Sect. 2)
graph have linear minimal free resolution. More precisely:

Theorem 1.2 For every gap-free and cricket-free graph G and for all s ≥ 2,
reg(I (G)s) = 2s. As a consequence, I (G)s has a linear minimal free resolution.

This partially answers Question 1.1, as we prove in Sect. 3 that edge ideals of
gap-free and cricket-free graphs have regularity less than or equal to 3 (Theorem 3.4).
As claw free graphs (defined in Sect. 2) are automatically cricket free, our results
generalize a previous result by Nevo [12, Theorem 1.2] which states that the edge
ideals of gap-free and claw-free graphs have regularity less than or equal to 3, and
their squares have linear minimal free resolutions.

In order to prove Theorem 6.17, we first show that the minimal monomial generators
of powers of the edge ideal I (G) of any finite simple graph G have a specific order
with a nice property (Lemma 4.11, Theorem 4.12). More precisely:

Theorem 1.3 For each n ≥ 1, there exists an ordered list L(n) of minimal monomial
generators of I (G)n which has the following property:
For all k ≥ 1 and for all j ≤ k, if (L(n)

j : L(n)
k+1) is not contained in (I (G)n+1 : L(n)

k+1);

then there exists i ≤ k such that (L(n)
i : L(n)

k+1) is generated by a variable and (L(n)
j :

L(n)
k+1) ⊆ (L(n)

i : L(n)
k+1). For monomials m and n, (m : n) stands for ((m) : (n)).

Using this ordering, we shall prove that reg(I (G)n) is bounded above by the max-
imum of reg(I (G)n : e1 . . . en−1) + 2n − 2 for all possible (n − 1)-fold products of
edges e1 . . . en−1 and reg(I (G)n−1) (see Theorem 5.2). Next, we prove that the ideals
(I (G)n : e1 . . . en−1) are quadratic monomial ideals with generators satisfying certain
conditions (see Theorems 6.1, 6.5, 6.7). Finally, using polarization, we get edge ideals
corresponding to these quadratic monomial ideals with some regularity (see [8], Sect.
3.2 and Exercise 3.15 of [10] for details) and using Fröberg’s theorem (see Theorem
1 of [3] and Theorem 1.1 of [13]) we get bounds on them. As a consequence, we also
get a different proof of the Herzog et al.’s result mentioned above (Theorem 6.16).

2 Preliminaries

Throughout this paper, we let G be a finite simple graph with vertex set V (G). For
u, v ∈ V (G), we let d(u, v) denote the distance between u and v, the fewest number
of edges that must be traversed to travel from u to v.

A subgraph G ′ ⊆ G is called induced if uv is an edge of G ′ whenever u and v are
vertices of G ′, and uv is an edge of G.
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The complement of a graph G, for which we write Gc, is the graph on the same
vertex set in which uv is an edge of Gc if and only if it is not an edge of G.

Finally, we denote by Ck the cycle on k vertices and by Km,n the complete bipartite
graph with m vertices on one side, and n on the other.

Definition 2.1 Let G be a graph. We say that two disjoint edges uv and xy form a gap
in G if G does not have an edge with one endpoint in {u, v} and the other in {x, y}.
A graph without gaps is called gap free. Equivalently, G is gap free if and only if Gc

contains no induced C4.

Thus, G is gap free if and only if it does not contain two vertex-disjoint edges as
an induced subgraph.

Definition 2.2 Any graph isomorphic to K1,3 is called a claw. Any graph isomorphic
to K1,n is called an n-claw. If n > 1, then the vertex with degree n is called the root in
K1,n . A graph without an induced claw is called claw free. A graph without an induced
n-claw is called n-claw free.

Definition 2.3 Any graph isomorphic to the graph with set of vertices {w1, w2, w3,

w4, w5} and set of edges {w1w3, w2w3, w3w4, w3w5, w4w5} is called a cricket. A
graph without an induced cricket is called cricket free.

Definition 2.4 An edge in a graph is called a whisker if each of its vertices has degree
one.

Definition 2.5 A graph is called an anticycle if its complement is a cycle.

Observation 2.6 A claw free graph is cricket free.

If G is a graph without isolated vertices then let S denote the polynomial ring on
the vertices of G over some fixed field K . Recall that the edge ideal of G is

I (G) = (xy : xy is an edge of G).

Definition 2.7 Let S be a standard graded polynomial ring over a field K . The
Castelnuovo–Mumford regularity of a finitely generated graded S module M , written
reg(M), is given by

reg(M) := max{ j − i | Tori (M, K ) j �= 0}.

Definition 2.8 We say that I (G)s is k-steps linear whenever the minimal free resolu-
tion of I (G)s over the polynomial ring is linear for k steps, i.e., TorS

i (I (G)s, K ) j = 0
for all 1 ≤ i ≤ k and all j �= i + 2s. We say that I (G) has linear minimal free
resolution if the minimal free resolution is k-steps linear for all k ≥ 1.

We end this section by recalling a few well-known results; see [1] and [13].

Observation 2.9 Let I (G) be the edge ideal of a graph G. Then, I (G)s has linear
minimal free resolution if and only if reg(I (G)s) = 2s.
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Lemma 2.10 Let I ⊆ S be a monomial ideal. Then, for any variable x, reg(I, x) ≤
reg(I ). In particular, if v is a vertex in a graph G, then reg(I (G − v)) ≤ reg((I (G)).

The next statement follows from Lemma 2.10 of [1]:

Lemma 2.11 Let I ⊆ S be a monomial ideal, and let m be a monomial of degree d.
Then

reg(I ) ≤ max{reg(I : m) + d, reg(I, m)}.

Moreover, if m is a variable x appearing in I, then reg(I ) is equal to one of these
terms.

Finally, the following theorem due to Fröberg (see Theorem 1 of [3] and Theorem
1.1 of [13]) is used repeatedly throughout this paper:

Theorem 2.12 The minimal free resolution of I (G) is linear if and only if the com-
plement graph Gc is chordal, that is, no induced cycle in Gc has length greater than
three.

3 Gap-free graphs

In this section we observe some basic results concerning gap-free graphs and their
regularity. We prove that a cricket free and gap free graph has regularity at most 3,
generalizing Nevo’s result [1, Theorem 3.3] that a gap-free and claw-free graph has
regularity at most 3. We generalize Nevo’s result in another direction by proving that
n-claw free and gap free graphs have regularity at most n.

Definition 3.1 For any graph G, we write reg(G) as a shorthand for reg(I (G)).

Recall that the star of a vertex x of G, which we denote by st x , is defined as

st x = {y ∈ V (G) : xy is an edge of G} ∪ {x}.

The following lemma, which is Lemma 3.1 of [1], will be used repeatedly in this
work.

Lemma 3.2 Let x be a vertex of G with neighbors y1, y2, . . . , ym. Then

(I (G) : x) = (I (G − st x), y1, . . . , ym) and (I (G), x) = (I (G − x), x).

Thus, reg(G) ≤ max{reg(G − st x) + 1, reg(G − x)}. Moreover, reg(G) is equal
to one of these terms.

The next proposition is Proposition 3.2 of [1].

Proposition 3.3 Let G be gap free, and let x be a vertex of G of highest degree. Then,
d(x, y) ≤ 2 for all vertices y of G.
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We prove the next two theorems using Proposition 3.3. Our proof is motivated by
the proof of Theorem 3.3 of [1].

Theorem 3.4 Suppose G is both cricket free and gap free. Then, reg(G) ≤ 3.

Proof Let x be a vertex of maximum degree. As G is gap free and cricket free, so is
G − x . By induction, G − x has regularity less than or equal to 3. Because of Lemma
3.2 and Theorem 2.12, it is enough to show that (G − st x)c has no induced cycle of
length greater than or equal to 4. As G is gap free, so is (G − st x); hence, (G − st x)c

has no induced 4−cycle. So, it is enough to show that it does not have an induced
cycle of length ≥ 5.

Let {y1, y2, y3, y4, . . . , yn} be an induced cycle (n ≥ 5) in (G − st x)c; because of
Proposition 3.3, there is a w such that xw and wy1 are edges in G. As y2 yn is an edge
in G, and neither y1 y2 nor y1 yn is an edge in G, at least one of wy2 and wyn is an
edge in G. If both are edges, then {x, w, y1, y2, yn} forms an induced cricket.

Suppose only one of them is an edge. Without loss of generality, we may assume
that wy2 is an edge. As y3 yn is an edge in G, and G is gap free, wy3 is an edge in G;
otherwise {x, w, y3, yn} forms a gap in G. This makes {x, w, y1, y2, y3} an induced
cricket. 	

Theorem 3.5 The edge ideal of a graph, which is gap free and n-claw free, has
regularity less than or equal to n.

Proof For n = 3, this was proved by Nevo and this is Theorem 3.3 of [1]. So we may
assume n ≥ 4. Let x be a vertex with maximum degree. Because of Lemma 3.2, it
is enough to show that G − st x has regularity less than or equal to n − 1; as G − x
has regularity less than or equal to n by induction on number of vertices. Hence, it is
enough to show that G − st x is (n − 1)-claw free.

If a1, a2, a3, . . . , an is a (n − 1)-claw with root a1 in G − st x , then any w in the
neighborhood of x is either connected to a1 or all of a2, a3, . . . , an ; otherwise, if w

is not connected to a1 and ai , then xw and a1ai will form a gap. If a1 is connected to
all neighbors of x , then it has degree larger than that of x , a fact which contradicts the
assumption x is a vertex with maximum degree. Hence, there is a neighbor w which is
not connected to a1 but is connected to all of a2, a3, . . . , an . As x is not connected to
any of the ai s, {x, w, a2, a3, . . . , an} forms an n-claw with root w, which contradicts
the hypothesis. 	


4 Ordering the minimal monomial generators of powers of edge ideals

Discussion 4.1 We will denote by Mingens(J) the set of minimal monomial gener-
ators of an ideal J ⊂ S. Let I be an arbitrary edge ideal and set Mingens(I ) =
{L1, L2, . . . , Lk}. We consider the order L1 > L2 > · · · > Lk on Mingens(I) and for
every integer n ≥ 2 we endow the set Mingens(I n) with the following order: we set
M > N for M, N ∈ Mingens(I n) if there exists an expression La1

1 La2
2 . . . Lak

k = M

such that for all expressions Lb1
1 . . . Lbk

k = N, we have (a1, . . . , ak) >lex (b1, . . . , bk).
If (a1, . . . , ak) ≥lex (c1, . . . , ck) for all (c1, . . . , ck) such that Lc1

1 . . . Lck
k = M, then
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La1
1 La2

2 . . . Lak
k is called a maximal expression of M. Let L(n) be the totally ordered

set of minimal monomial generators of I n, ordered in the way discussed above.

Definition 4.2 If m1 is a minimal monomial generator of I k and m2 is a minimal
monomial generator of I n where n > k, then we say m1 divides m2 as an edge and
use the notation m1|edgem2; if there exists m3, a minimal monomial generator of I n−k

with m2 = m1m3.

Example 4.3 If I = (ab, bc, ad, bd), then ab|edgeab2d as bd = ab2d
ab is a minimal

monomial generator of I but ab �edge abcd as cd = abcd
ab is not a minimal monomial

generator of I .

Discussion 4.4 We have the following for the list L(n) created above:

1. L(1) = L := {L1 > · · · > Lk}
2. For any minimal monomial generator m of I n, n ≥ 2, the maximal expression of m

is an expression of m as a product of n elements of L, m = Li1 Li2 . . . Lin , where:
a. i1 is the minimum integer such that Li1 |edgem
b. For all l ≥ 1, il+1 is the minimal integer such that Lil+1 |edge m

Li1 ...Lil
. For any

edge cd, we say that cd is a part of the maximal expression of m if cd = Lik

for some k.
This expression is unique by the construction.

3. For two minimal monomial generators m1, m2 with maximal expressions m1 =
Li1 . . . Lin and m2 = L j1 . . . L jn , we have m1 >lex m2 if for the minimum integer
l such that il �= jl , il < jl .

4. If Li and L j are two generators of I with i < j , then we say “L j comes after Li ”
or “Li comes before L j .”

Example 4.5 Let I = (ab, bc, ad, bd). Let L(1) = {ab > bc > ad > bd}. Then
L(2) = {a2b2 > ab2c > a2bd > ab2d > b2c2 > abcd > b2cd > a2d2 > abd2 >

b2d2}.
Definition 4.6 If Li = ab is an edge, that is a minimal monomial generator of I , and
m is a minimal monomial generator of I n , n ≥ 2, then we say that m belongs to ab,
or m belongs to Li , if i is the least integer such that Li |edgem.

Example 4.7 Let I = (ab, bc, ad, bd) with L = L(1) = {ab > bc > ad > bd}.
Then, abcd belongs to L2 = bc as ab �edge abcd and bc|edgeabcd and ab2d belongs
to L1 = ab as ab|edgeab2d.

We record several easy observations that we need in the sequel.

Observation 4.8 For two minimal monomial generators m1, m2, if m1 belongs to an
edge Li and m2 belongs to another edge L j with i < j , then m1 >lex m2.

Observation 4.9 For two minimal monomial generators m1, m2 of I n which both
belong to an edge Li , we see that m1 >lex m2 if and only if m1

Li
>lex

m2
Li

.
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Observation 4.10 Suppose m is a minimal monomial generator of I n, n ≥ 2, and gh
is an edge which is a part of the maximal expression of m. Write m = ghm′. For any
minimal monomial generator m ′′ of I n−1 such that m′′ >lex m′, then ghm′′ >lex m.

Proof Let L = {L1 > L2 > · · · > Lk}. Let gh = L j for some j . Let m′′ =
La1

1 La2
2 . . . Lak

k be the maximal expression of m′′ and m′ = Lb1
1 Lb2

2 . . . Lbk
k be the

maximal expression of m′. As gh is a part of the maximal expression of m, the maximal

expression of m is Lb1
1 . . . L

b j +1
j . . . Lbk

k . As by assumption (a1, . . . , a j , . . . , ak) >lex
(b1, . . . , b j , . . . , bk), we have (a1, . . . , a j +1, . . . , ak) >lex (b1, . . . , b j +1, . . . , bk).

Now La1
1 . . . L

a j +1
j . . . Lak

k is an expression for ghm′′. Hence, ghm′′ >lex ghm′ = m.
	


The next lemma is the most important technical result of this paper as it allows
us to build the framework of Sect. 5. Using the framework of Sect. 5, we obtain our
bounds in Sect. 6.

Lemma 4.11 For all k ≥ 1 and for all j ≤ k, if (L(n)
j : L(n)

k+1) is not contained

in (I n+1 : L(n)
k+1) and L(n)

j belongs to an edge that comes before the edge L(n)
k+1

belongs to, then there exists i ≤ k, such that (L(n)
i : L(n)

k+1) is generated by a variable,

(L(n)
j : L(n)

k+1) ⊆ (L(n)
i : L(n)

k+1) and L(n)
i belongs to an edge that comes before or

equal to the edge L(n)
j belongs to.

Proof We proceed by induction on n. We recall that for two monomials m1 and m2,
(m1 : m2) = ( m1

gcd(m1,m2)
). This is going to be used in several places.

If n = 1, (L j : Lk+1) is either (L j ), in which case (L j : Lk+1) ⊆ (I 2 : Lk+1) or
it is generated by a variable in which case we take Li = L j . Hence, the lemma is true
for n = 1.

Suppose the result is true for n − 1. Let L(n)
j belong to ab, so that L(n)

j = abM1

where M1 ∈ L(n−1). By assumption, L(n)
k+1 belongs to an edge which comes after ab

in L . If neither a nor b divide L(n)
k+1, then (L(n)

j : L(n)
k+1) ⊆ (ab) ⊆ (I n+1 : L(n)

k+1)

which is contrary to our assumption.
Without loss of generality, we assume a|L(n)

k+1. As L(n)
k+1 is a product of edges, there

exists an edge ac with ac|edgeLk+1, where ac is a part of the maximal expression of
L(n)

k+1. So, L(n)
k+1 = acM2 for some M2 ∈ L(n−1) which is the remaining part of the

maximal expression. Now ab �edge L(n)
k+1 as L(n)

k+1 belongs to an edge that comes after
ab. Hence, b �= c.

If (L(n)
j : L(n)

k+1) ⊆ (b), then we take L(n)
i = abM2. Clearly, L(n)

i belongs to ab

or some edge that comes before ab. Also, (L(n)
i : L(n)

k+1) = (abM2 : acM2) = (b).

Hence, L(n)
i has all the required properties.

If (L(n)
j : L(n)

k+1) is not contained in (b), then there is a variable d such that bd is

an edge and bd|edge M2 and bd is a part of maximal expression of M2. Let (L(n)
j :

L(n)
k+1) ⊆ ( f ) where f is a variable. If (L(n)

j : L(n)
k+1) = ( f ), then we take L(n)

i = L(n)
j .

This has all the required properties.
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So let us assume (L(n)
j : L(n)

k+1) = (M1b : M2c) � ( f ). Let (L(n)
j : L(n)

k+1) = ( f m)

where m is a monomial which is not 1. So there is an edge f g such that f g|edge M1

and f g is part of the maximal expression of M1. If g � M2c, then (L(n)
j : L(n)

k+1) ⊆
( f g) ⊆ (I n+1 : L(n)

k+1) which contradicts our assumption. So g|M2c.
If g = c, then either f = d, that is f cab = bdac or ( f cab : bdac) = ( f ). In the

first case, Lk+1 = acM2 = acbd M2
bd = f cab M2

bd . Now bd|edge M2, so ab|edgeL(n)
k+1

which is a contradiction. In the second case, we take L(n)
i = ( f c)(ab)

L(n)
k+1

bdac . Clearly,

L(n)
i belongs to ab or a some edge that comes before ab and (L(n)

i : L(n)
k+1) = ( f ),

which contains (L(n)
j : L(n)

k+1). Hence, L(n)
i has the required properties.

Now let us assume g �= c. So, there is an edge gh such that gh|edge M2, such
that gh is a part of the maximal expression of M2. Let M1

f g = N1 and M2
gh = N2.

As (L(n)
j : L(n)

k+1) = ( f m), f gabN1| f mghacN2. So abN1|hmacN2. So (hm) ⊂
(abN1 : acN2). We observe that (abN1 : acN2) is either (m) or (hm). For if m′|m,
then abN1|hm′acN2 implies f gabN1| f m′ghacN2 implies f m| f m′ implies m = m′.

If (N1ab : N2ac) = (m), then (L(n)
j : L(n)

k+1) ⊆ (m) = (abN1 : acN2). Now both

abN1 and acN2 are in L(n−1). As abN1 belongs to ab and acN2 belongs to some edge
which comes after ab, abN1 >lex acN2. By induction, either (abN1 : acN2) ⊆ (I n :
acN2) or there exists M0 in L(n−1), M0 >lex acN2, (abN1 : acN2) ⊆ (M0 : acN2),
(M0 : acN2) is generated by a variable, and M0 belongs to an edge that comes before
or equal to ab. In the first case, (L(n)

j : L(n)
k+1) ⊆ (abN1 : acN2) ⊆ (I n : acN2) ⊂

(I n+1 : ghacN2) = (I n+1 : L(n)
k+1), which is a contradiction. In the second case, write

L(n)
i = ghM0. We know that L(n)

i >lex L(n)
k+1 as M0 belongs to an edge that comes

before or equal to ab. Also, (L(n)
i : L(n)

k+1) = (M0 : acN2), (L(n)
j : L(n)

k+1) ⊆ (m) =
(abN1 : acN2) ⊆ (M0 : acN2) and (M0 : acN2) is generated by a variable.

Now let us assume (abN1 : acN2) = (hm). As abN1 >lex acN2 , by induction
either (abN1 : acN2) ⊆ (I n : acN2) or there exists M ′

0 in L(n−1), M ′
0 >lex acN2,

with (abN1 : acN2) ⊆ (M ′
0 : acN2), (M ′

0 : acN2) is generated by a variable, and M ′
0

belongs to an edge that comes before or equal to ab. In the first case hmacN2 ∈ I n ,
so f mghacN2 = f gmhacN2 ∈ I n+1. So (L(n)

j : L(n)
k+1) ⊆ (I n+1 : L(n)

k+1), which is a

contradiction. In the second case, if (M ′
0 : acN2) �= (h), then let L(n)

i = ghM ′
0. As

M ′
0 belongs to an edge that comes before or equal to ab, L(n)

i >lex L(n)
k+1. Also (L(n)

i :
L(n)

k+1) = (M ′
0 : acN2) which contains (L(n)

j : L(n)
k+1) and is generated by a variable. If

(M ′
0 : acN2) = (h) we take L(n)

i = f gM ′
0. By same reasoning, L(n)

i >lex L(n)
k+1. As

L(n)
i cannot be same as L(n)

k+1, we observe (L(n)
i : L(n)

k+1) = ( f ). So, this L(n)
i has all

the required properties. This completes the proof. 	

Theorem 4.12 For all k ≥ 1 and for all j ≤ k, if (L(n)

j : L(n)
k+1) is not contained

in (I n+1 : L(n)
k+1), then there exists i ≤ k, such that (L(n)

i : L(n)
k+1) is generated by a

variable and (L(n)
j : L(n)

k+1) ⊆ (L(n)
i : L(n)

k+1).
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Proof We have L(n)
j = mm1 and L(n)

k+1 = mm2 where m ∈ Mingens(I k) and m1, m2 ∈
Mingens(I n−k) with m1 belong to an edge that comes strictly before the edge m2

belongs. We observe (L(n)
j : L(n)

k+1) = (m1 : m2) and (I n−k+1 : m2) ⊆ (I n+1 : mm2).
With these two observations, the theorem follows from Lemma 4.11. This finishes the
proof. 	


5 Bounding the regularity: the framework

In this section, we create the framework from which we shall prove our bounds. The
framework is created by repeated use of Lemma 2.11. Let I and J be two homogeneous
square-free monomial ideals in S generated in degrees n1 and n2 respectively. Assume
J ⊂ I and that n2 > n1. If the unique set of minimal monomial generators of I is
{m1, m2, . . . , mk}, then repeated use of Lemma 2.11 gives us the following lemma:

Lemma 5.1 Let

A = max{reg(J : m1) + n1}
B = max{reg((J, m1, . . . , ml) : ml+1) + n1|1 ≤ l ≤ k − 1}
C = reg(I ).

Then, reg J ≤ max{A, B, C}.
Proof We consider the follwing short exact sequence:

0 −→ S

(J : m1)
(−n1)

.m1−→ S

J
−→ S

(J, m1)
−→ 0

This gives us reg(J ) ≤ max{reg(J : m1) + n1 = A, reg(J, m1)}. Let Jl :=
((J, m1, . . . , ml−1) : ml) for all l ≥ 2. For all 1 ≤ l ≤ k − 1, we can consider the
exact sequence

0 −→ S

(Jl+1)
(−n1)

.ml+1−→ S

(J, m1, . . . , ml)
−→ S

(J, m1, . . . , ml+1)
−→ 0,

This gives us

reg(J, m1, . . . , ml) ≤ max{reg(Jl+1) + n1, reg(J, m1, . . . , ml+1)}

from which reg(J ) ≤ max{A, B, C} follows. 	

This lemma together with Theorem 4.12 gives the next theorem which is the main

result we use for finding bounds on regularity of higher powers of edge ideals.

Theorem 5.2 For any finite simple graph G and any s ≥ 1, let the set of minimal
monomial generators of I (G)s be {m1, . . . , mk}. Then

reg(I (G)s+1) ≤ max{reg(I (G)s+1 : ml) + 2s, 1 ≤ l ≤ k, reg(I (G)s)}.
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Proof Minimal monomial generators of I (G)s forms the ordered list L(s) from Sect. 4.
So, by Lemma 5.1,

reg(I (G)s+1) ≤ max{A, B, C},

where

A = max{reg(I (G)s+1 : L(s)
1 ) + 2s}

B = max{reg(((I (G)s+1, L(s)
1 , . . . , L(s)

l ) : L(s)
l+1) + 2s|1 ≤ l ≤ k − 1}

C = reg(I (G)s).

But in light of Theorem 4.12, ((I (G)s+1, L(s)
1 , . . . , L(s)

l ) : L(s)
l+1) is the same as

((I (G)s+1 : L(s)
l+1), some variables). So, by Lemma 2.10

reg((I (G)s+1, L(s)
1 , . . . , L(s)

l ) : L(s)
l+1) ≤ reg((I (G)s+1 : L(s)

l+1),

and the theorem follows. 	

As a corollary to the above theorem, we get the following important result:

Corollary 5.3 If for all s ≥ 1 and for all minimal monomial generators m of I (G)s ,
reg(I (G)s+1 : m) ≤ 2 and reg(I (G)) ≤ 4, then for all s ≥ 1, reg(I (G)s+1) = 2s+2;
as a consequence, I (G)s+1 has a linear minimal free resolution.

Proof We observe that under the condition if reg(I (G)s) ≤ 2s + 2, then
reg(I (G)s+1) ≤ 2s + 2 too. Now reg(I (G)) ≤ 4 implies reg(I (G)2) ≤ 4. By
induction, assume reg I (G)k ≤ 2k. As 2k < 2k + 2, reg I (G)k ≤ 2k + 2. Hence,
reg I (G)k+1 ≤ 2k + 2. This proves the corollary. 	


6 Bounding the regularity: the results

In this section, we give some new bounds on reg(I (G)s) for certain classes of gap-free
graphs G. The main idea is to carefully analyze the ideal (I (G)s+1 : e1 . . . es) for an
arbitrary s-fold product of edges, i.e., for i �= j , ei = e j is a possibility. Now, any
s-fold product can be written as product of s edges in various ways. In this section,
we fix a presentation and work with respect to that. We first prove that these ideals are
generated in degree two for any graph G.

Theorem 6.1 For any graph G and for any s-fold product e1 . . . es of edges in G
(with the possibility of ei being same as e j as an edge for i �= j ), the ideal (I (G)s+1 :
e1 . . . es) is generated by monomials of degree two.

Proof We prove this using induction on s. For s = 0, the result is clear as (I (G) :
(1)) = I (G), which is generated by monomials of degree two. Now, let us assume
that the theorem is true till s − 1.
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Let m be a minimal monomial generator of (I (G)s+1 : e1 . . . es). Then, e1 . . . esm
is divisible by an (s + 1)-fold product of edges. By degree consideration, m cannot
have degree 1. If m has degree greater than or equal to 3, then again by a degree
consideration for some i , ei = pq such that e1 . . . ei−1qei+1 . . . esm is divisible by
an (s + 1)-fold product of edges. Without loss of generality, we may assume e1 = pq
and there is an (s + 1)-fold product f1 . . . fs+1 such that f1 . . . fs+1|qe2 . . . esm.

If q| f1 . . . fs+1, without loss of generality, we may assume f1 = p′q. So,
p′q f2 . . . fs+1|qe2 . . . esm. Hence, f2 . . . fs+1|e2 . . . esm. If q does not divide f1 . . .

fs+1, then f1 . . . fs+1|e2 . . . esm, and hence f2 . . . fs+1|e2 . . . esm. In both cases, m ∈
(I (G)s : e2 . . . es).

Now (I (G)s : e2 . . . es) ⊂ (I (G)s+1 : e1 . . . es) and m is a minimal monomial
generator of (I (G)s+1 : e1 . . . es). So m has to be a minimal monomial generator of
(I (G)s : e2 . . . es). Hence, by induction, m has degree two, which is a contradiction
to the assumption that m has degree greater than or equal to three. Hence, m has to
have degree two. 	


To analyze the generators of (I (G)s+1 : e1 . . . es), we introduce the notion of
even-connectedness with respect to s-fold products.

Definition 6.2 Two vertices u andv (u may be equal tov) are said to be even-connected
with respect to an s-fold product e1 . . . es if there is a path p0 p1 . . . p2k+1, k ≥ 1 in
G such that

1. p0 = u, p2k+1 = v.

2. For all 0 ≤ l ≤ k − 1, p2l+1 p2l+2 = ei for some i .
3. For all i ,

|{l ≥ 0|p2l+1 p2l+2 = ei }| ≤ |{ j |e j = ei }|

4. For all 0 ≤ r ≤ 2k, pr pr+1 is an edge in G.

If these properties are satisfied, then p0, . . . , p2k+1 is said to be an even-connection
between u and v with respect to e1 . . . es .

Example 6.3 Let I (G) = (xy, xu, yv, yw,wz, zv) and e1 = xy, e2 = wz, then
u, x, y, w, z, v is an even-connection between u and v with respect to e1e2.

The following observation is an immediate consequence of the definition:

Observation 6.4 If u = p0, . . . , p2k+1 = v is an even-connection with respect to
some s-fold product e1 . . . es , then for any j ′ ≥ j ≥ 0, any neighbor x of p2 j+1 and
any neighbor y of p2 j ′+2 are even-connected with respect to e1 . . . es .

The next theorem also easily follows from the definition.

Theorem 6.5 If u = p0, . . . , p2k+1 = v is an even-connection with respect to some
s-fold product e1 . . . es , then uv ∈ (I (G)s+1 : e1 . . . es).
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Proof By conditions 2 and 3 of the definition, e1 . . . es = p1 . . . p2k · e j1 . . . e js−k ,
for some { j1, j2, . . . , js−k} ⊂ {1, . . . , s} and by conditions 1 and 4, up1 . . . p2kv is a
(k + 1)-fold product of edges in G. Hence, uve1 . . . es is an (s + 1)-fold product of
edges in G and the result follows. 	


Although we fix a representation for all s-fold product and work with respect to
that representation, it is worth noting that our definition of even-connectedness is
independent of the representation we choose in the following sense:

Theorem 6.6 If f1 . . . fs = e1 . . . es are two different representations of same s-fold
product as product of edges and u and v are even-connected with respect to e1 . . . es ,
then u and v are even-connected with respect to f1 . . . fs .

Proof Let u = p0, . . . , p2k+1 = v be an even-connection between u and v with
respect to e1 . . . es . We shall construct an even-connection q0, . . . , q2r+1 between u
and v with respect to f1 . . . fs .

Let i be minimal such that p2i+1 p2i+2 is not equal to any edge f1, . . . , fs . Let q0 =
p0, . . . , q2i+1 = p2i+1. We have (up1)(p2 p3) . . . (p2kv)et1 . . . ets−k = (uv) f1 . . . fs .
Then p2i+1(p2i+2 p2i+3) . . . (p2kv)et1 . . . ets−k = v f j1 . . . f js−i . If v = p2i+1, then we
are done. Otherwise, p2i+1 divides one of the f s; without loss of generality let f j1 =
p2i+1q2i+2. If vq2i+2 is an edge in G, then we are done by taking q2i+3 = v. Otherwise,
we have vq2i+2 f j2 . . . fs−i is an (s − i)-fold product of edges g1 . . . gs−i , where
without loss of generality g1 = q2i+2q2i+3 and f j2 = q2i+3q2i+4. After selecting
(without loss of generality) gl = q2i+2lq2i+2l+1 and f jl+1 = q2i+2l+1q2i+2l+2, we
select q2i+2l+3 inductively. If vq2i+2l+2 is an edge in G, then we are done by choosing
q2i+2l+3 = v. Otherwise, gl+1 . . . gs−i = vq2i+2l+2 f jl+2 . . . f js−i . If v is connected
to q2i+2l+2k for some k in G then we are done by choosing q2i+2l+2k+1 = v. If not,
then g1 . . . gs−i = vg1g2 . . . gs−i−1q2i+2s−2; but this will force gs−i = q2i+2s−2v,
contradicting the fact that v is not connected to q2i+2l+2k for any k.

The conditions 1, 2, 4 of the definition are automatically satisfied by our construc-
tion. Condition 3 is satisfied because each q2i+1q2i+2 is fri for some integer ri and
q2i+3q2i+4 is some fri+1 where ri+1 /∈ {r1, . . . , ri }. 	


We now observe that all edges of G belong to (I (G)s+1 : e1 . . . es). If uv (u may
be equal to v) belongs to (I (G)s+1 : e1 . . . es) and uv is not an edge, then we prove
that u and v have to be even-connected with respect to the s-fold product e1 . . . es .
The conditions 1, 2, 3, 4 are satisfied by the way of construction.

Theorem 6.7 Every generator uv (u may be equal to v) of (I (G)s+1 : e1 . . . es) is
either an edge of G or even-connected with respect to e1 . . . es , for s ≥ 1.

Proof Suppose uv is not an edge, and u and v are not even-connected. Now
uve1 . . . es = f0 . . . fs is an (s + 1)-fold product of edges, where f0 = up0 such
that there is an edge ei0 = p0q1, 1 ≤ i0 ≤ s. After selecting f j = q j p j and
ei j = p j q j+1, 1 ≤ i j ≤ s and all i j are different, we select f j+1 and ei j+1 induc-
tively. q j+1 is part of an edge q j+1 p j+1 in the (s + 1)-fold product f0 . . . fs . We
choose f j+1 = q j+1 p j+1. Now as u and v are not even-connected, p j+1 is not v. So
it is part of an edge amongst the remaining ei s. So, there exists ei j+1 = p j+1q j+2,
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i j+1 ∈ {1, . . . , s} \ {i1 . . . i j }. Now, as u and v are not even-connected, v �= pk

for any k. We observe f0 . . . fs = u(p0q1)(p1q2) . . . (ps−1qs)ps = uve1 . . . es . By
construction, (p0q1)(p1q2) . . . (ps−1qs) = e1 . . . es . This forces ps = v, which is a
contradiction. 	


Example 6.8 Let I (G) = (xy, xu, xv, xz, yz, yw). Then (I (G)2 : xy) = I (G) +
(z2, uz, vz, wz, uw, vw). Here, z is even-connected to itself and u, v, w with respect
to xy; also u, w and v,w are even-connected with respect to xy.

We observe that (I (G)s+1 : e1 . . . es) need not be square free as there is a possibility
that some vertex u is even-connected to itself with respect to e1 . . . es . So we polarize
(I (G)s+1 : e1 . . . es) to get a square-free quadratic monomial ideal (i.e., an edge ideal)
(I (G)s+1 : e1 . . . es)

pol . For details of polarization, we refer to [8], Sect. 3.2 of [10]
and exercise 3.15 of [10]. Here, we just recall the definition and one theorem which
states a quadratic monomial ideal and its polarization have same regularity.

Definition 6.9 For any quadratic monomial ideal I in K [x1, . . . , xn], I pol is a
square-free quadratic monomial ideal in K [x1, . . . , xn, x ′

1, . . . , x ′
n] where I pol =

〈xi x j , xk x ′
k |xi x j ∈ I, x2

k ∈ I 〉.

The following theorem, which we state without proof, is a special case of Proposi-
tion 1.3.4 of [8], we also refer to Sect. 3.2 and Exercise 3.15 of [10].

Theorem 6.10 reg(I pol ) = reg(I ).

Clearly by Theorems 6.1, 6.5, and 6.7, (I (G)s+1 : e1 . . . es)
pol is an edge ideal

with the same regularity as reg(I (G)s+1 : e1 . . . es). We describe the graph associated
to this edge ideal in the following Lemma:

Lemma 6.11 (I (G)s+1 : e1 . . . es)
pol is the edge ideal of a new graph G ′ which has

1. All vertices and edges of G.
2. Any two vertices u, v, u �= v of G that are even-connected with respect to e1 . . . es

are connected by an edge in G ′.
3. For every vertex u which is even-connected to itself with respect to e1 . . . es , there

is a new vertex u′ which is connected to u by an edge and not connected to any
other vertex (so uu′ is a whisker).

Proof By Theorem 6.7, every generator uv (u may be equal to v) of (I (G)s+1 :
e1 . . . es) is either an edge of G or even-connected with respect to e1 . . . es , for s ≥ 1.
If it is an edge in G, then it satisfies condition 1; if it is an even-connection with u �= v,
then it satisfies condition 2; if it is an even-connection with u = v, then by definition
of polarization, there will be a whisker u′ on u in G ′, and hence it will satisfy condition
3. Conversely, edges described by the conditions 1,2 and 3 belong to G ′ by Theorems
6.5 and 6.7.
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Example 6.12 Let G be the following graph:

G: w

zy

x

t s

Then, the graph G ′ associated to (I (G)2 : xw)pol is the following:

G : w

zy

x

t s
y

Next, we prove several lemmas that will be useful to get our main results.

Lemma 6.13 Suppose u = p0, . . . , p2k+1 = v is an even-connection between u and
v and z = q0, . . . , q2l+1 = w is an even-connection between z and w, both with
respect to e1 . . . es . If for some i and j , p2i+1 p2i+2 and q2 j+1q2 j+2 has a common
vertex in G, then u is even-connected to either z or w with respect to e1 . . . es , and v

is even-connected to either z or w with respect to e1 . . . es .

Proof We prove it for u, and the proof for v follows by symmetry. Let i be the
smallest integer such that there is j with the required property. If p2i+1 = q2 j+1, then
u = p0, . . . , p2i+1 = q2 j+1, q2 j+2, q2 j+3, . . . , q2l+1 = w gives an even-connection
between u and w with respect to e1 . . . es (conditions 1,2, and 4 are automatically
satisfied, and condition 3 is satisfied as i is the smallest integer such that there is a j).
Similarly, if p2i+1 = q2 j+2, then u = p0, . . . , p2i+1 = q2 j+2, q2 j+1, q2 j , . . . , q0 =
z gives an even-connection between u and z with respect to e1 . . . es ; if p2i+1 is not
equal to either q2 j+1 or q2 j+2 and p2 j+2 = q2 j+1, then u = p0, . . . , p2i+1, p2 j+2 =
q2 j+1, q2 j+2, q2 j+1, q2 j , . . . , q0 = z gives an even-connection between u and z with
respect to e1 . . . es ; if p2i+1 is not equal to either q2 j+1 or q2 j+2 and p2 j+2 = q2 j+2,
then u = p0, . . . , p2i+1, p2 j+2 = q2 j+2, q2 j+1, q2 j+2, , . . . , q2l+1 = w gives an
even-connection between u and w with respect to e1 . . . es ; in each of these cases,
conditions 1,2, and 4 are satisfied automatically, and condition 3 is satisfied as i is the
smallest integer with the property. This covers all the cases. 	


The next two lemmas are results about gap-free graphs:

Lemma 6.14 If G is gap free, then so is the graph G ′ associated to (I (G)s+1 :
e1 . . . es)

pol , for every s-fold product e1 . . . es .
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Proof There are three possibilities of gap formation in G ′ :
1. Between two edges from G.
2. Between two edges that are not edges in G.
3. Between two edges where one of them is an edge in G another is not.

No two edges in G can form a gap in G as G is gap free. So they cannot form an
edge in G ′ as in G ′, no edge of G is being deleted.

For the second case, suppose uv and zw are even-connected with respect to
e1 . . . es , and neither uv nor zw is an edge in G. Without loss of generality, we may
assume gcd(uv, zw) = 1 as there is no question of gap formation otherwise. Let
u = p0, . . . , p2k+1 = v be an even-connection between u, v with respect to e1 . . . es ,
and let z = q0, . . . , q2l+1 = w be an even-connection between z, w with respect to
e1 . . . es . In light of Lemma 6.13, we may assume for no i, j , pi = q j . If u = q1, then
zu = zq1 is an edge in G and if z = p1, then uz = up1 is an edge in G, so there is
nothing to prove. Otherwise, as up1 and zq1 are edges in G and G is gap free, there
are four possibilities:

a. u is connected to z in G, in which case uv (or uu′ in case u = v) and zw (or zz′
in case z = w) cannot form a gap, as in that case, uz is an edge in G ′ too.

b. p1 is connected to z, in which case z, p1, . . . , p2k+1 = v is an even-connection
between z and v in G so zv is an edge in G ′; hence, uv (or uu′ if u = v) and zw
(or zz′ if z = w) cannot form a gap.

c. p1 is connected to q1, in which case v = p2k+1, p2k, . . . , p1, q1, q2, . . . , q2l+1 =
w gives an even-connection between v and w, and vw is an edge in G ′.

d. q1 is connected to u, in which case u, q1, . . . , q2l+1 = w is an even-connection
between u and w in G so uw is an edge in G ′; hence, uv (or uu′ if u = v) and zw
(or zz′ if z = w) cannot form a gap.

In the third case, u and v are even-connected with respect to e1 . . . es , and zw is an
edge in G, whereas uv is not an edge in G. Like before, we may assume gcd(uv, zw) =
1. Let u = p0, . . . , p2k+1 = v be an even-connection between u, v with respect to
e1 . . . es . If z = p1, then uz = up1 is an edge in G and if w = p1, then uw = up1 is
an edge in G, so there is nothing to prove in these cases. Otherwise, as up1 and zw
are edges in G and G is gap free, there are four choices:

a. u is connected to z, in which case uv (or uu′ in case u = v) and zw cannot form
a gap as in that case, uz is an edge G ′ too.

b. p1 is connected to z, in which case z, p1, . . . , p2k+1 = v is an even-connection
between z and v in G, so zv is an edge in G ′; hence, uv (or uu′ if u = v) and zw
cannot form a gap.

c. p1 is connected to w, in which case v = p2k+1, p2k, . . . , p1, w is an even-
connection; hence, uv and zw can not form a gap.

d. w is connected to u, in which case uw is an edge in G, and hence in G ′.
This finishes the proof. 	


Lemma 6.15 Suppose G is gap free. If w1, . . . , wn is an anticycle in the graph G ′
defined by (I (G)s+1 : e1 . . . es) for some s ≥ 1 and for n ≥ 5, then w1, . . . , wn is an
anticycle in G.
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Proof First of all, whiskers on any vertex cannot be part of any anticycle of length ≥ 5
as they only have degree 1. Observe that it is enough to prove that for all i and j , wi

and wi+ j are never even-connected with respect to e1 . . . es . Suppose on the contrary
such i, j exists. Without loss of generality, we may choose j to be minimal such that
for some i , wi and wi+ j are even-connected with respect to e1 . . . es . Observe that
j ≥ 2 as wiwi+1 cannot be connected in an anticycle. Without loss of generality, we
may further assume that w1 and w1+ j are even-connected with respect to e1 . . . es via
w1 = p0, p1, . . . , p2k+1 = w1+ j . Now, observe that w2+ j is not connected to p1 by
an edge in G as that will force w1+ j and w2+ j to be connected in G ′ by Observation
6.4 leading to a contradiction. So, there exists a smallest l ≥ 0, 2+ j ≤ n − l ≤ n such
that wn−l is not connected to p1 by an edge in G. If l = 0, then wn is not connected
to p1 by an edge in G and if l > 0, then wn−l is not connected to p1 by an edge to p1
in G, and wn, wn−1, . . . , wn−l+1 are connected to p1 by an edge in G.

Next, we look at the edge w2wn−l in G ′. If w2 is connected to p1 in G, then
w2, p1, . . . , p2k+1 = w1+ j will be an even-connection that will violate the minimality
of j . If w2 is connected to p2 in G, then by Observation 6.4, w1w2 has to be an edge
in G ′, which will contradict the fact that w1 . . . wn is an anticycle. We observe wn−l

cannot be connected to p1 by selection. If wn−l is connected to p2 and l = 0, then
by Observation 6.4, w1 and wn have to be connected to each other in G ′. If wn−l is
connected to p2 and l > 0, then by Observation 6.4, wn−l+1 and wn−l have to be
connected to each other in G ′. Both cases lead to a contradiction as w1 . . . wn is an
anticycle, so w2 and wn−l are not connected to each other in G, and neither of them is
connected to p1 or p2 (and hence w2, wn−l , p1, p2 are four distinct vertices). As p1 p2
is an edge in G, w2wn−l cannot be an edge in G; otherwise, they will form a gap. So w2
and wn−l are even-connected with respect to e1 . . . es . Let w2 = q0, . . . , q2r+1 = wn−l

be an even-connection between w2 and wn−l with respect to e1 . . . es .
If for some t1, t2 ≥ 0, p2t1+1 p2t1+2 and q2t2+1q2t2+2 are the same edges of G,

then by Lemma 6.13, w2 has to be even-connected to either w1 or w1+ j . The first
case is not possible as w1 . . . wn is an anticycle and the second case is not possible by
the minimality of j . So for no t1, t2 ≥ 0, p2t1+1 p2t1+2 and q2t2+1q2t2+2 are the same
edges of G. So we look at wn−lq2r and p1 p2. Observe that p1 is not connected to wn−l

because of the selection. If wn−l is connected to p2 and l = 0, then by Observation
6.4, w1 and wn have to be connected to each other in G ′. If wn−l is connected to p2
and l > 0, then by Observation 6.4, wn−l+1 and wn−l have to be connected to each
other in G ′. Both cases lead to a contradiction as w1 . . . wn is an anticycle. So p2 is
not connected to wn−l in G. If p1 is connected to q2r , then w2 and w1+ j will be even-
connected with respect to e1 . . . es violating the minimality of j . If p2 is connected to
q2r , then w1 and w2 will be even-connected and, hence, connected in G ′.

Hence, for no i, j are wi and wi+ j even-connected with respect to e1 . . . es . So
w1 . . . wn is an anticycle in G. 	


Using this lemma, we get the following theorem of Herzog et al. [13, Theorem 1.2]
as a corollary:

Theorem 6.16 If I (G) has linear resolution, then for all s ≥ 2, I (G)s has regularity
2s. In other words, I (G)s has a linear minimal free resolution.
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Proof As I (G) has a linear resolution, it is gap free, and hence the polarizations of
all (I (G)s+1 : e1 . . . es) are gap free by Lemma 6.14, and any anticycle of length
≥ 5 in the polarization of (I (G)s+1 : e1 . . . es) is an anticycle of G by Lemma 6.15.
But as I (G) has linear resolution, G does not have any anticycle. By Theorem 2.12,
reg(I (G)s+1 : e1 . . . es)

pol = 2 for all e1 . . . es . Hence, reg(I (G)s+1) = 2s + 2 by
Theorems 1.2 and 6.10. 	


Next, we prove that for any gap free and cricket free graph G, and for all s ≥ 2,
reg(I (G)s) = 2s. This result is our main new result in this paper. This answers
Question 1.1 partially. This also generalizes Nevo’s result (Theorem 1.2 of [12]) that
for any gap-free and claw-free graph G, reg I (G)2 = 4.

Theorem 6.17 For any gap free and cricket free graph G and for all s ≥ 2,
reg(I (G)s) = 2s.

Proof In light of Theorem 2.12, Theorem 3.4, Corollary 5.3, Theorem 6.10, and
Lemma 6.14, it is enough to show that the polarization of (I (G)s+1 : e1 . . . es) does
not have any anticycle w1 . . . wn for n ≥ 5, s ≥ 1, for every s-fold product e1 . . . es .

Suppose w1 . . . wn , n ≥ 5, is an anticycle in the polarization of (I s+1 : e1 . . . es)

and e1 = xy. By Lemma 6.15, w1 . . . wn is also an anticycle of G. Either w1 or w3 is
a neighbor of x or neighbor of y else w1w3 and e1 forms a gap in G, a contradiction.
Without loss of generality, we may assume that w1 is a neighbor of x . Now neither
w2 nor wn can be x as they are not connected to w1; also, neither of them is y as if
say y = w2, then wn xyw1 is an even-connection; hence, w1wn is an edge in G ′, a
contradiction to the assumption on anticycle; similar thing happens if y = wn . By
Observation 6.4 every neighbor of y is connected to every neighbor of x in G ′. As
neither w1wn , nor w1w2 is an edge in G ′, neither of w2 and wn are neighbors of y
in G. So, one of them has to be neighbor of x , as G is gap free. Again, without loss
of generality, we may assume that w2 is a neighbor of x . Next, we consider w3wn .
As w1 and w2 are neighbors of x and neither w1wn nor w2w3 are edges in G ′, by
Observation 6.4, neither w3 nor wn can be neighbor of y. Neither w3 nor wn can be
x as they are w2w3 and w1wn are not edges in G ′. If w3 = y, as w1w3 is an edge in
G, then w1, being a neighbor of y, has to be connected to w2, which is a neighbor
of x in G ′ by Observation 6.4. That will force w1w2 to be an edge in G ′, which is a
contradiction. Similarly, if wn = y, w3 being a neighbor of y has to be connected to
w2 in G ′ leading to a contradiction. Then, either w3 or wn has to be a neighbor of x .
Without loss of generality, we may assume that w3 is a neighbor of x . Notice that y is
not connected to w1 in G as that will force w2, a neighbor of x to be connected to w1
in G ′ leading to a contradiction. Hence, {y, w2, x, w1, w3} forms a cricket. 	


Next, we prove that for any gap-free graph G with reg(I (G)) = r , the reg(I (G)s)

is bounded above by 2s + r − 1. But to do that, we need a lemma about “longest”
connections. Observe that if G ′ is the graph associated to the polarization of (I (G)s+1 :
e1 . . . es), for some s-fold product, and u and v are even-connected with respect to
u = p0, . . . , p2k+1 = v, then uv is not only an edge in G ′ but also an edge in the graph
(G ′ − {y1, . . . , yl}) for any set of points y1, . . . , yl as long as u, v /∈ {y1, . . . , yl}. We
further emphasize that some of the pi s can also belong to {y1, . . . , yl} as long as they
are not same as u or v.
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Lemma 6.18 Let G ′ be the graph associated to the polarization of (I (G)s+1 :
e1 . . . es) for some s-fold product. Let us assume that u and v are even-connected with
respect to u = p0, . . . , p2k+1 = v. Suppose for some set of vertices {y1, . . . , yl},
we have u, v /∈ {y1, . . . , yl}. Let us also assume for any other even-connection
u′ = p′

0, . . . , p′
2k′+1 = v′ such that u′, v′ /∈ {y1, . . . , yl}, we have k′ ≤ k. Then,

(G ′ −{y1, . . . , yl}−st u) is G ′′ ∪{isolated whisker vertices}, where G ′′ is a subgraph
of G obtained by deleting vertices.

Proof For the set of points {y1, . . . , yl}, uv is an edge in (G ′ − {y1, . . . , yl}) such
that u, v /∈ {y1, . . . , yl} are even-connected with respect to e1 . . . es via u =
p0, p1, p2, . . . , p2k+1 = v. We also have that k is maximum over all such even-
connected edges in (G ′ − {y1, . . . , yl}). Let u′v′ be any edge in (G ′ − {y1, . . . , yl})
such that u′, v′ /∈ {y1, . . . , yl} and they are even-connected with respect to e1 . . . es

via u′ = x0, x1, x2, . . . , x2k′+1 = v′. If for any j, j ′, p2 j+1 p2 j+2 and x2 j ′+1x2 j ′+2
form the same edge in G then by Lemma 6.13, either u′ or v′ will be not a vertex in
(G ′−{y1, . . . , yl}−st u). Now observe, if for any j, j ′, p2 j+1 p2 j+2 and x2 j ′+1x2 j ′+2
do not form same edge in G then either x1 or x2 has to be connected to p1 or p2 to
avoid x1x2 and p1 p2 forming a gap. If any of them (for example x1) is connected to
p1 in G that will make {v′ = x2k′+1, x2k′ , . . . , x1, p1, . . . , p2k+1} a longer connection
violating the maximality of k. A similar thing happens if x2 is connected to p1 in G.
So either of them has to be connected to p2. If x1 is connected to p2 in G, then u is
connected to v′ in G ′ as u, p1, p2, x1, . . . , x2k′+1 = v′ will be an even-connection.
Similarly, if x2 is connected to p2, then u is connected to u′ in G ′ as u, p1, p2, x2, x1, u′
will be an even-connection. In both the cases, either u′ or v′ will not be a vertex in
(G ′ − {y1, . . . , yl} − st u). This proves that any edge in (G ′ − {y1, . . . , yl} − st u) is
an edge in G. Hence, the Lemma follows. 	


Using Lemma 6.18, we prove the next theorem which guarantees that the gap
between the regularity of powers of edge ideals of gap-free graphs and the regularity
of monomial ideals generated in the same degree and having a linear resolution cannot
be arbitrarily large.

Theorem 6.19 For any gap-free graph G with reg(I (G)) = r and any s ≥ 2, the
reg(I (G)s) is bounded above by 2s + r − 1.

Proof Let G ′ be the graph associated to the polarization of (I (G)s+1 : e1 . . . es). We
have reg(G ′) ≤ max{reg(G ′ − st x) + 1, reg(G ′ − x)} by Lemma 3.2 for each vertex
x . We choose u1 and v1 even-connected by u1 = p0, . . . , p2k1+1 = v1 such that k1
is maximum. By Lemma 6.18, (G ′ − st u1) is a subgraph of G obtained by vertex
deletion along with some isolated whisker vertices. As isolated vertices do not affect
the regularity of edge ideal, reg((G ′ − st u1) ≤ r by Lemma 2.10.

Next, we apply Lemma 3.2 on (G ′ −u1), from which we delete a vertex u2 which is
even-connected to another vertex v2 via u2 = q0, . . . , q2k2+1 = v2 with k2 maximum.
Again, by Lemma 6.18, (G ′−u1−st u2) is a subgraph obtained from G−u1 by deletion
of vertices along with some whisker vertices. Hence, reg(G ′ − u1 − st u2) ≤ r . We
keep selecting u1, u2, . . . and apply Lemmas 3.2 and 6.18. As we are in a finite setup,
for some l, (G ′ − u1, . . . , ul) itself is a subgraph of G obtained by repeated vertex
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deletion along with some isolated whisker vertices and reg(G ′) ≤ r + 1. Therefore,
by Theorem 1.2 and induction, the result follows. 	
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