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MAD Method for Change Detection

in Multi- and Hyperspectral Data
Allan Aasbjerg Nielsen

Abstract—This paper describes new extensions to the previously
published multivariate alteration detection (MAD) method for
change detection in bi-temporal, multi- and hypervariate data
such as remote sensing imagery. Much like boosting methods
often applied in data mining work, the iteratively reweighted
(IR) MAD method in a series of iterations places increasing
focus on “difficult” observations, here observations whose change
status over time is uncertain. The MAD method is based on the
established technique of canonical correlation analysis: for the
multivariate data acquired at two points in time and covering
the same geographical region, we calculate the canonical variates
and subtract them from each other. These orthogonal differences
contain maximum information on joint change in all variables
(spectral bands). The change detected in this fashion is invariant to
separate linear (affine) transformations in the originally measured
variables at the two points in time, such as 1) changes in gain and
offset in the measuring device used to acquire the data, 2) data
normalization or calibration schemes that are linear (affine) in
the gray values of the original variables, or 3) orthogonal or
other affine transformations, such as principal component (PC)
or maximum autocorrelation factor (MAF) transformations. The
IR-MAD method first calculates ordinary canonical and original
MAD variates. In the following iterations we apply different
weights to the observations, large weights being assigned to
observations that show little change, i.e., for which the sum of
squared, standardized MAD variates is small, and small weights
being assigned to observations for which the sum is large. Like the
original MAD method, the iterative extension is invariant to linear
(affine) transformations of the original variables. To stabilize
solutions to the (IR-)MAD problem, some form of regularization
may be needed. This is especially useful for work on hyperspectral
data. This paper describes ordinary two-set canonical correlation
analysis, the MAD transformation, the iterative extension, and
three regularization schemes. A simple case with real Landsat
Thematic Mapper (TM) data at one point in time and (partly)
constructed data at the other point in time that demonstrates the
superiority of the iterative scheme over the original MAD method
is shown. Also, examples with SPOT High Resolution Visible data
from an agricultural region in Kenya, and hyperspectral airborne
HyMap data from a small rural area in southeastern Germany are
given. The latter case demonstrates the need for regularization.

Index Terms—Canonical correlation analysis (CCA), iteratively
reweighted multivariate alteration detection (IR-MAD), MAD
transformation, regularization or penalization, remote sensing.
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I. INTRODUCTION

T
HIS paper deals with detection of nontrivial change

in multi- and hypervariate, bi-temporal data. The term

“nontrivial” here means nonaffine change between two points

in time. This means that changes—due to, for instance, 1) an

additive shift in mean level (offset) or a multiplicative shift in

calibration of a measuring device (gain), 2) data normaliza-

tion or calibration schemes that are linear (affine) in the gray

values of the original variables, or 3) orthogonal or other affine

transformations such as principal component (PC) or max-

imum autocorrelation factor (MAF) transformations—are not

detected. This invariance is an enormous advantage over most

other multivariate change detection schemes published, see [1]

for an early survey and [2] for a more recent one. For more

recent work on temporal dynamics in remote sensing image

data including change detection, see, for example, [3]–[5].

The method described here which is called iteratively

reweighted multivariate alteration detection (IR-MAD) is a new

extension to the previously published multivariate alteration

detection (MAD) method [6]–[9] which, in turn, is based on

the established multivariate statistical technique canonical

correlation analysis (CCA), first described by Hotelling in 1936

[10]. Inspired by boosting methods often applied in data mining

work [11] and by [12], iteratively reweighted MAD in a series

of iterations places increasing focus on “difficult” observations;

in a change detection setting, “difficult” observations are the

ones whose change status over time is uncertain. This is done

by calculating a measure of no change based on the sum of

squared, standardized MAD variates in each iteration. This

measure is then used as a weighting function for the calculation

of the statistics used to calculate the MAD transformation in the

next iteration. The idea in using such a scheme is to establish

an increasingly better no-change background against which

to detect change. Other types of robustification of the change

detection method are briefly mentioned.

To prevent a change detection method from detecting unin-

teresting change due to noise or arbitrary spurious differences,

this paper also describes the application of regularization

(also known as penalization). Regularization in the form of

smoothing of the (IR) CCA/MAD solution is described in some

detail. The paper also mentions the exploitation of the affine

transformation invariance of the MAD method as a regularizing

measure, and a combination of the two types of regularization.

Regularization may be important especially when change

detection is applied to hyperspectral data.
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Geometrical and other corrections required in order to carry

out change studies are not dealt with here. For special prob-

lems with high spatial resolution, oblique viewing data, see, e.g.,

[13] and [14] on change detection in IKONOS data and [15] on

change detection in QuickBird data.

Methods such as the ones described in this paper are well

suited for inclusion in image processing packages and in geo-

graphical information systems (GIS).

Section II introduces multivariate change detection, Sec-

tion III very briefly describes canonical correlation analysis,

and Section IV defines the MAD transformation with sub-

sections on both the suggested iterative re-weighting and

regularization schemes. Section V gives three data examples

with Landsat Thematic Mapper data (partly constructed data),

SPOT High Resolution Visible data, and hyperspectral HyMap

data. Section VI gives conclusion and dicusses future work. An

Appendix gives more detail on selected aspects of canonical

correlation analysis including regularization.

II. MULTIVARIATE CHANGE DETECTION

When we analyze changes in panchromatic image data with

additive noise taken at different points in time, it is customary

to calculate the difference between two images. The idea is, of

course, that areas which exhibit no or small changes have zero

or low absolute values and areas with large changes have large

absolute values in the difference image. If we have two mul-

tivariate images with variables at a given location written as

vectors (without loss of generality we assume that the expec-

tation values ), and

, where is the number of spectral bands, then

a simple spectral change detection transformation is the vector

of band-wise differences also known as the change vector

(1)

In general, simple differences make sense only if the data are

normalized to a common zero and scale or calibrated over time.

If our image data have (many) more than three spectral bands,

it is difficult to visualize change in all bands simultaneously.

To overcome this problem and to concentrate information on

change, linear transformations of the image data that optimize

some measure of change (also termed a design criterion) can be

considered. A linear transformation that will maximize a mea-

sure of change in the simple multispectral difference image is

one that maximizes deviations from no change, for instance the

variance

(2)

Areas in the image data with high absolute values of

are maximum change areas. A multiplication of vector by a

constant will multiply the variance by . Therefore, we must

make a choice concerning . A natural choice is to request that

is a unit vector, . Maximizing the variance in (2)

under the constraint amounts to finding principal components

of the simple difference images. Principal components analysis

was developed by Hotelling in 1933 [16] based on a technique

described by Pearson in 1901.

A more parameter rich measure of change that allows dif-

ferent coefficients for and and different numbers of spec-

tral bands in the two sets, and , respectively, , are

linear combinations

(3)

(4)

and the difference between them . This measure in

principle also accounts for situations where the spectral bands

are not the same but cover different spectral regions, for in-

stance if one set of data comes from the Landsat MultiSpectral

Scanner (MSS) and the other set comes from the Landsat The-

matic Mapper (TM) or from the SPOT High Resolution Visible

(HRV) which may be valuable in historical change studies. In

this case, one must be more cautious when interpreting the mul-

tivariate difference as multivariate change.

To find and , [17] uses principal components (PC) anal-

ysis on and considered as one concatenated vector vari-

able; [18] applies PC analysis to simple difference images as de-

scribed above. This approach requires normalized or calibrated

data and results depend on the scale at which the individual vari-

ables are measured (for instance it depends on gain settings of

a measuring device). Also, it forces the two sets of variables to

have the same coefficients (with opposite signs), and it does not

allow for the case where the two sets of images have different

numbers of spectral bands.

Other change detection schemes based on simple difference

images include factor analysis and maximum autocorrelation

factor (MAF) analysis [19]–[21].

[12] deals with (iterated) PC analysis of the same variable

at the two points in time and consider the second PC as a (mar-

ginal) change detector for that variable. [12] also introduces spa-

tial measures such as inverse local variance weighting in statis-

tics calculation and Markov random field modelling of the prob-

ability of change (versus no change).

Another approach is to define a set of and simultaneously

in the fashion described below. Again, let us maximize the vari-

ance, this time . A multiplication of and

by a constant will multiply the variance by . Therefore, we

must make choices concerning and , and natural choices in

this case are requesting unit variance of and , see

Section III and the Appendix. The criterion then is maximize

with . With this

choice, we have

(5)

We request that and are positively correlated, see

the next section on canonical correlation analysis. Therefore,

determining the difference between linear combinations with

maximum variance corresponds to determining linear combi-

nations with minimum (non-negative) correlation. Determina-

tion of linear combinations with extreme correlations brings the

theory of canonical correlation analysis to mind.
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III. CANONICAL CORRELATION ANALYSIS

Canonical correlation analysis investigates the relationship

between two groups of several variables. It finds two sets of

linear combinations of the original variables, one for each group.

The first two linear combinations are the ones with the largest

correlation. This correlation is called the first canonical correla-

tion and the two linear combinations are called the first canon-

ical variates. The second two linear combinations are the ones

with the largest correlation subject to the condition that they

are orthogonal to the first canonical variates. This correlation is

called the second canonical correlation and the two linear com-

binations are called the second canonical variates. Higher order

canonical correlations and canonical variates are defined simi-

larly.

Since we are looking for canonical variates that are as sim-

ilar as possible as measured by correlation, we request positive

canonical correlations.

If we denote the variance-covariance matrix, also known as

the dispersion (matrix), of the one set of variables ,

the dispersion of the other set of variables , the co-

variance between them , and the canonical correlation

, we get (see the Appendix)

(6)

(7)

or in terms of Rayleigh quotients

(8)

i.e., we find the desired projections for by considering the

mutually orthogonal (also known as conjugate) eigenvectors

corresponding to the eigenvalues

of with respect to . Similarly, we find the

desired projections for by considering the conjugate

eigenvectors of with respect to

corresponding to the same eigenvalues .

This technique was first described in [10] and a treatment is

given in most textbooks on multivariate statistics (good refer-

ences are [22] and [23]).

Multiset canonical correlation analysis where we investigate

the relationship between more than two groups of several vari-

ables first introduced in [24], [25] is described and applied to

remote sensing data in [6] and [26]. Nonlinear (two- and mul-

tiset) canonical correlation analysis is dealt with in [27]–[30].

IV. MAD TRANSFORMATION

Inspired by Sections II and III, we define the multivariate al-

teration detection (MAD) transformation as

... (9)

where and are the defining coefficients from a standard

canonical correlation analysis. To maximize variance in (5),

we must minimize ; therefore, we have reversed the order of

the differences between the canonical variates in (9) so MAD

variate 1 is the difference between the highest order canonical

variates, MAD variate 2 is the difference between the second

highest order canonical variates, etc.

The dispersion matrix of the MAD variates is

(10)

where is the unit matrix and is a matrix containing

the ascendingly sorted canonical correlations on the diagonal

and zeros off the diagonal so the MAD variates are orthogonal

with variance

(11)

The MAD transformation has the very important property

that if we consider linear combinations of two sets (of vari-

ables) and (of variables, ) that are positively correlated

then the th difference shows maximum variance among such

variables. The th difference shows maximum variance

subject to the constraint that this difference is uncorrelated with

the previous ones. In this way, we sequentially extract uncorre-

lated difference images where each new image shows maximum

difference (change) under the constraint of being uncorrelated

with the previous ones. If , then the projection of on

the eigenvectors corresponding to the eigenvalues 0 will be in-

dependent of . That part may be considered the extreme case

of multivariate change detection.

As opposed to the principal components of simple differ-

ences, the MAD variates are invariant to affine transformations

(including linear scaling), which means that they are sensitive

to neither, for example, changes in gain settings and offset in a

measuring device, nor to linear (affine) radiometric and atmo-

spheric correction schemes.

Because the MAD variates are linear combinations of the

measured variables, they will have approximately a Gaussian

distribution because of the Central Limit Theorem, see, e.g.,

[31]. In addition, if there is no change at pixel , then the th

MAD value, MAD , has mean 0. Assuming also independence

of the orthogonal MAD variates we may expect that the sum

of the squared MAD variates for pixel after standardization

to unit variance approximately follows a distribution with

degrees of freedom, i.e., approximately

(12)

The standardization should ideally be done by means of the stan-

dard deviation of the no-change observations. This standard de-

viation can be estimated by means of expectation–maximiza-

tion (EM) based methods for determining thresholds for differ-

entiating between change and no change in the difference im-

ages, and for estimating the variance-covariance structure of the

no-change observations [32]–[37]. Below, we use the standard

deviation for all observations for simplicity. Provided that the

proportion of changed pixels is small, this will have minimal

effect.

Equation (12) can be used to assign labels “change” or

“no-change” to each observation by means of percentiles in the
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distribution. We may choose to assign the label “change”

to observations with values greater than, say, the 99% per-

centile and similarly the label “no-change” to observations with

values smaller than, say, the 1% percentile. Since the MAD

transformation is invariant to linear (affine) transformations

these no-change observations are suitable for carrying out an

automated normalization between the two points in time. This

is described in detail in [38].

The spatial aspect introduced in change detection in [20] can

be applied here also by postprocessing the MAD variates with

the (change strength weighted) MAF transformation, see [8].

The spatial aspect is dealt with elegantly in a Markov random

field setting in [33] and [34].

The main feature of the MAD method is the transformation

from a space where the originally measured variables are or-

dered by wavelength into a feature space where the transformed,

orthogonal variables are ordered by similarity (as measured

by linear correlation). This latter ordering is considered to

be more relevant for change detection purposes. Differences

between corresponding pairs of variables in this latter space,

i.e., differences between the canonical variates, give us the or-

thogonal MAD variates which can be considered as generalized

difference images well suited for change detection.

A. Iteratively Reweighted MAD, IR-MAD

Inspired by boosting methods often used in data mining [11]

and by [12], the idea in iteratively reweighted (IR) MAD is

simply in an iterative scheme to put high weights on observa-

tions that exhibit little change over time. This can be done in

several ways. We start with the original MAD transformation,

i.e., we assign the same weight (= 1) to all pixels. A natural

choice is to weight pixel in the next iteration by , which

is a measure of no change, namely the probability of finding a

greater value of the value in (12)

(13)

This weight enters into the calculation of mean values, variances

and covariances ( is the number of pixels)

(14)

for the mean value of , and

(15)

for the covariance between and (if , we get the

variance of ).

Iterations are performed until the largest absolute change in

the canonical correlations becomes smaller than some preset

small value , e.g., . This weighting scheme maps the

weights applied to the interval and avoids very high

weights. Unlike boosting methods, weights from the early

iterations are not used in this scheme, only the weights from the

final iteration are used so the “committee” and voting scheme

often involved in boosting are not used here.

Of course, other reweighting schemes for example leading to

robust estimation [39], [40] of the variance–covariance structure

of the data could be used. A limited number of tests indicates

that the iterated scheme suggested in this section performs better

than robust estimation; see also [41].

B. Regularized IR-MAD

If we have many (correlated) variables, the solutions to the

coupled generalized eigenvalue problems in (6) and (7) may be-

come unstable due to (near) singular variance–covariance ma-

trices causing small changes in the data to lead to dramatically

different solutions. A possible solution to such (near) singularity

problems in hyperspectral data change detection may be regu-

larization (also known as penalization) where, inspired by ridge

regression described in [42], we add to and

to in (6) and (7). are (small) non-negative numbers that

can be chosen subjectively or estimated from the data, see the

Appendix. This was first described in the CCA context with

as the identity matrix in [43]. [44] penalizes high local variation

using a second order derivative-type . To obtain a continuous

and differentiable second order derivative, [45] in a functional

setting suggests a fourth order derivative-type .

Since and here are the same type of data, we choose

and . We choose in

to penalize curvature of the elements in and considered as

functions of wavelength. Choosing the usual discrete approxi-

mation to the second order derivative we penalize and

where is with (typically )

...
...

...
. . .

...
...

(16)

leading to

...
. . .

...

(17)

(which is penta-diagonal and rank ); see also [36],

[46]–[50], and the Appendix.

Alternatively, the invariance of the MAD variates to linear

(affine) transformations of the original variables can be ex-

ploited. Possible (near) singularities may also be remedied

by means of principal component analysis (PCA), maximum

autocorrelation factor (MAF), projection pursuit (PP) analysis

or other dimensionality reducing projections applied to the

variables at the two points in time separately before doing

canonical correlation and MAD analysis. This approach is used

in [49] and [51].
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Fig. 1. Landsat TM data from June 6, 1986, covering a forested region in
Northern Sweden, spectral bands 1, 2, 3, 4, 5, and 7 row-wise.

If regularization is needed or desired, one may use either the

former, the latter or a combined scheme. The ordering of the

projection variates in the dimensionality reducing regulariza-

tion scheme is by some projection index (such as variance, au-

tocorrelation, deviation from normality or other) rather than by

wavelength. This ordering makes penalizing for example curva-

ture un-natural. So the two regularization schemes do not readily

combine.

Inspired by [52], we apply the dimensionality or feature re-

duction scheme above to adjacent, nonoverlapping groups of

spectral bands. For example, we may replace bands 1, 2, and

3 with one projection, 4, 5, and 6 with another, etc. In this way,

we reduce the dimensionality of the data (in the example by

a factor of three) while retaining the main spectral features of

the original data and their order. This preservation of order fa-

cilitates the application of further regularization by penalizing

for example curvature as described in the former regularization

scheme above.

If we use this combined regularization scheme, the general

transformation invariance may be lost depending on the choice

of dimensionality reduction scheme. If we choose the MAF

transformation, we retain the invariance to any transformations

that are linear (or affine) in the individual original variables.

V. EXAMPLES

The examples include a partly constructed case with Landsat

Thematic Mapper (TM) data from a forested region in Northern

Fig. 2. Constructed Landsat TM data covering a forested region in Northern
Sweden: the 512� 128 leftmost part of the image consists of data from June
27, 1988, padded into the Landsat TM data from June 6, 1986, spectral bands
1, 2, 3, 4, 5, and 7 row-wise.

Sweden, a case with SPOT High Resolution Visible (HRV) data

covering an agricultural region in tropical Kenya, as well as a

case with hyperspectral HyMap data from a small rural area in

southeastern Germany.

All images in this paper are stretched linearly between mean

and three standard deviations unless otherwise stated.

A. Partly Constructed Landsat TM Data, Northern Sweden

This case compares results from the original MAD method

with those from the new iterated scheme where data at one point

in time are constructed so that we know where change did not

occur. Data at the first point in time are 512 512 25 m 25

m Landsat Thematic Mapper (TM) spectral bands 1, 2, 3, 4, 5,

and 7 from June 6, 1986, covering a forested region in Northern

Sweden. Data at the second point in time are 512 128 Landsat

TM (same bands) from June 27, 1988, covering the same re-

gion padded into the leftmost part of the 1986 image. Hence,

by construction there is no change in the rightmost 512 384

part of the image. In this simple case, band-wise differences

will give the desired zero change but as mentioned in general

simple differences make sense only if the data are normalized

to a common zero and scale or calibrated over time. Fig. 1 shows

the measured 1986 data and Fig. 2 shows the partly constructed

1988 data.

Fig. 3 shows the original MAD variates and Fig. 4 shows the

IR-MAD variates after 30 iterations (and convergence). Visual
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Fig. 3. Original MAD variates 1–6 row-wise. Very dark or very bright regions
exhibit change, gray regions exhibit no change.

inspection shows that the iterated scheme does a much better

job of finding no change in the rightmost 512 384 part of the

image. Also, visual inspection indicates a less noisy appearance

of the IR-MAD variates than of the original MAD variates in

the leftmost 512 128 region of the image. This is supported

by Table I which lists autocorrelations in that region between

neighbouring pixels in the E-W, N-S, SW-NE, and SE-NW di-

rections and their mean values, for both the original MAD and

the IR-MAD variates.

Fig. 5 shows the development of the canonical correlations

over the iterations. We see that the first iteration is most im-

portant and that most of the action takes place in the first 5–7

iterations.

Fig. 6 shows the (13) measure of no change for the orig-

inal MAD variates (left) and for the IR-MAD variates (right)

stretched linearly between 0 and 1. We see that after 30 iterations

the weights assigned to the rightmost 512 384 no-change part

of the image all remain close to one unlike the weights in the

leftmost 512 128 potential change part. So the iterated scheme

here provides a healthier background against which to detect

change [Fig. 4 indicates that since practically only IR-MAD

variate 1 has values different from zero in this case the sum in

(13) should start with rather than to obtain a better

no-change measure].

The mean, standard deviation, minimum, and maximum

values for the original MAD variates for the rightmost

512 384 no-change region of the image are shown in

Fig. 4. IR-MAD variates 1–6 after 30 iterations row-wise. Very dark or very
bright regions exhibit change, gray regions exhibit no change.

TABLE I
AUTOCORRELATIONS BETWEEN NEIGHBOURING PIXELS IN THE E-W, N-S,
SW-NE, AND SE-NW DIRECTIONS AND THEIR MEAN VALUES, FOR BOTH

THE ORIGINAL MAD AND THE IR-MAD VARIATES IN THE LEFTMOST

512� 128 POTENTIAL CHANGE REGION OF FIGS. 3 AND 4

Table II. The same quantities for the IR-MAD variates after

30 iterations for the rightmost 512 384 no-change region

of the image are shown in Table III. All of these quantities

(apart from the maximum of MAD variate 1) are closer to zero

for the IR-MAD variates than for the original MAD variates

indicating less change detected by the iterated MAD variates

in the no-change region.
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Fig. 5. Canonical correlations over 30 iterations.

Fig. 6. Measure of no change for the original MAD variates (left) and for the
IR-MAD variates after 30 iterations (right) both stretched linearly between 0
and 1. Bright areas are no change.

TABLE II
MEAN, STANDARD DEVIATION, MINIMUM, AND MAXIMUM VALUES

FOR THE ORIGINAL MAD VARIATES FOR THE RIGHTMOST 512� 384
NO-CHANGE REGION OF THE IMAGE IN FIG. 3

Table IV shows mean, standard deviation, minimum, and

maximum values for the sum of squared, standardized variates

for the original and the IR-MAD transformations. For the entire

image, we see that both the original MAD and IR-MAD method

give the mean value we expect, namely six which is the number

of degrees of freedom. Also, the greater standard deviation

and range for the IR-MAD indicates a better discrimination

between change and no change. For the no-change part of the

image, Table IV shows that the IR-MAD method outperforms

the original MAD method in this partly constructed no-change

case.

Similar, but increasingly less pronounced, results (not shown)

are obtained when the data at the second point in time are a

512 256 or a 512 384 (rather than a 512 128) 1988 scene

padded into the 1986 scene so that the potential change region

is two or three times larger.

To further illustrate the difference between the original and

the iterated MAD variates, Fig. 7 shows the eigenvectors, i.e.,

the s for the 1986 data and the s for the 1988 data for the orig-

inal MAD transformation. Fig. 8 shows these eigenvectors for

TABLE III
MEAN, STANDARD DEVIATION, MINIMUM, AND MAXIMUM VALUES

FOR THE IR-MAD VARIATES FOR THE RIGHTMOST 512� 384
NO-CHANGE REGION OF THE IMAGES IN FIG. 4

TABLE IV
MEAN, STANDARD DEVIATION, MINIMUM, AND MAXIMUM VALUES FOR THE

SUM OF SQUARED, STANDARDIZED ORIGINAL AND IR-MAD VARIATES FOR

THE ENTIRE IMAGE AND THE RIGHTMOST 512� 384 NO-CHANGE

REGION OF THE IMAGES IN FIGS. 3 AND 4

the IR-MAD transformation. Except for MAD6 corresponding

to the leading or first canonical correlation we see that the eigen-

vectors are quite similar, IR-MAD4 plays the role of MAD5, and

IR-MAD5 that of—MAD4. We also see that the eigenvectors for

the iterated scheme are more symmetric than those of the orig-

inal scheme, i.e., they are closer to the situation .

In [36], a study of bi-temporal Landsat TM data covering

a semi-arid agricultural area in Hindustan, India, that uses the

standard deviations for the no-change pixels only in the (13)

no-change measure, shows that the IR-MAD variates clearly

outperform the MAD variates in their ability to discriminate be-

tween change and no change. Also, the higher order IR-MAD

variates are much less noisy than the higher order MAD variates

(judged by visual inspection and measured again by the average

spatial autocorrelations in the four main directions).

B. SPOT HRV Data, Kiambu District, Kenya

This case compares results from the original MAD method

with those from the new iterated scheme where data at the first

point in time are 512 512 20 m 20 m SPOT High Resolu-

tion Visible (HRV) spectral bands 1, 2, and 3 from February

5, 1987 covering an agricultural region in Kenya. Data at the

second point in time are 512 512 SPOT HRV (same bands)

from February 12, 1989, covering the same geographical area.

Fig. 9 shows the 1987 data and Fig. 10 shows the 1989 data.

Fig. 11 shows the original MAD variates and Fig. 12 shows

the IR-MAD variates after 12 iterations (and convergence). Vi-

sual inspection shows that MAD variate 3 and to a lesser de-

gree MAD variate 2 change substantially. It also indicates a

less noisy appearance of IR-MAD variate 3 than of the orig-

inal MAD variate 3. This is supported by Table V which lists

autocorrelations between neighbouring pixels in the E-W, N-S,

SW-NE, and SE-NW directions and their mean values, for both

the original MAD and the IR-MAD variates.
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Fig. 7. Eigenvectors for the 1986 data (o) and the 1988 data (+) for the original
MAD transformation.

Fig. 8. Eigenvectors for the 1986 data (o) and the 1988 data (+) for the IR-MAD
transformation.

Fig. 13 shows the development of the canonical correlations

over the iterations. We see that the first iteration is most im-

portant and that most of the action takes place in the first 3–4

iterations.

Fig. 14 shows the (13) measure of no change for the original

MAD variates (left) and for the IR-MAD variates (right). We

see that after 12 iterations, the image of the measure seems less

noisy (the mean autocorrelation between neighbouring pixels is

0.67 for original MAD and 0.73 for IR-MAD).

C. Hymap Data, Lake Waging-Taching, Germany

Two geometrically and atmospherically corrected HyMap

[53] scenes with 126 spectral bands covering most of the wave-

length region from 0.438 to 2.483 m with 15–20 nm spacing

acquired on June 30, 2003, at 8:43 UTC and August 4, 2003,

at 10:23 UTC from a small area near Lake Waging-Taching,

Bavaria, Germany, near the city of Salzburg, Austria, are used

Fig. 9. SPOT HRV data from 5 February 1987 covering an agricultural region
in Kenya, spectral bands 1, 2, and 3 row-wise.

Fig. 10. SPOT HRV data from February 12, 1989, covering an agricultural
region in Kenya, spectral bands 1, 2, and 3 row-wise.

to illustrate both the original MAD and the IR-MAD method

including regularization with hyperspectral data. The image

size is 400 by 270 (5 m 5 m pixels). Fig. 15 shows HyMap

bands 62, 40, and 19 on June 30, 2003, 8:43 UTC, and August

4, 2003, 10:23 UTC as RGB images.

Without some form of regularization the CCA and MAD

processing, in this case, give IEEE standard “NaN” estimates

of the lower order squared canonical correlations, which are

clear signs of numerical (singularity) problems, i.e., the original

MAD method does not work here.

The analyses carried out in [49] and [51] suggested a true

dimensionality of around 40 for these data. Accordingly,

in a regularization scheme which combines dimensionality

reduction and curvature penalization, we choose 43 groups
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Fig. 11. Original MAD variates 1–3 row-wise. Very dark or very bright regions
exhibit change, gray regions exhibit no change.

Fig. 12. IR-MAD variates 1–3 after 12 iterations row-wise. Very dark or very
bright regions exhibit change, gray regions exhibit no change.

TABLE V
AUTOCORRELATIONS BETWEEN NEIGHBOURING PIXELS IN THE E-W, N-S,
SW-NE, AND SE-NW DIRECTIONS AND THEIR MEAN VALUES, FOR BOTH

THE ORIGINAL MAD AND THE IR-MAD VARIATES IN FIGS. 11 AND 12

with spectral bands and

for the dimensionality reducing projections (to

Fig. 13. Canonical correlations over 12 iterations.

Fig. 14. Measure of no change for the original MAD variates (left) and for the
IR-MAD variates after 12 iterations (right) both stretched linearly between 0
and 1. Bright areas exhibit no change.

avoid overlap between bands from HyMap’s four detectors we

use the following three two-bands-only groups: spectral bands

and ). Here, we use maximum

spatial autocorrelation as the projection index. The obtained

projection indices for all three (or two) obtainable projections

are shown in Fig. 16 (the wavelength for a projection is chosen

as the middle wavelength for the group if possible, if not the

first wavelength is chosen). Only the projection corresponding

to the highest projection index for each group (the top curve)

is retained for further analysis.

Estimating for regularization of the projection variates

simply by (see the Appendix) gives a

value in the order of . Tentative work on estimating

from the leading pair of canonical variates by subsampling with

fivefold cross validation [11] indicates values in the order

of to . Using gives quite wiggly weight

functions indicating that even heavier regularization may be

desirable. For illustration, we choose here.

Fig. 17(a) shows the canonical correlations for the IR-MAD

method with no curvature regularization over 100 iterations (this

stabilizes the correlations to within less than 0.005). Fig. 17(b)

shows the canonical correlations for the IR-MAD method with

over the 22 iterations it takes to stabilize the corre-

lations to within 0.001. On a Pentium III 1-GHz laptop with

1 Gbyte of memory this takes around 360 s corresponding to a

little less than 16.5 s per iteration.

We see that without curvature regularization more iterations

are needed compared to the situation with curvature regulariza-

tion. In the latter case practical convergence seems to be ob-

tained after maybe ten iterations here. Other runs (on 62 bands

without the dimensionality reducing projection; not shown) in-

dicate that with no or little regularization, large changes in some
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Fig. 15. HyMap bands 62, 40, and 19 as RGB. (a) June 30, 2003, 8:43 UTC.
(b) August 4, 2003, 10:23 UTC.

Fig. 16. Projection indices (spatial autocorrelations) for dimensionality
reducing projections as functions of wavelength. (a) June 30, 2003. (b) August
4, 2003.

of the higher order canonical correlations occur up until around

150 iterations. With no or little regularization some precaution

concerning convergence seems wise.

Fig. 18 shows the IR-MAD variates of the projections with

no curvature regularization. Fig. 19 shows the IR-MAD variates

of the projections with . Fig. 20(a) and (b) shows the

(12) measure of change for no curvature regularization and

for , respectively, both stretched linearly between the

5% and 95% percentiles for the distribution with 43 degrees

of freedom, 28.96 and 59.30, respectively. Based on the visual

inspection of Fig. 15 in which we see only three of the 126

original spectral bands, we see that several of the areas that seem

Fig. 17. Canonical correlations over iterations.

to change are more likely to be characterized as change regions

in the regularized analysis. Also, the regularized versions of the

change images appear less noisy.

ized IR-MAD variates 43, 42, and 41 as RGB. This plot

shows several of the changes in the area between the two acqui-

sition time points. Gray regions exhibit no change, regions with

saturated colors (including black and white) exhibit change.

Different colors represent different types of change. IR-MAD

variates 43 and 42 (see Fig. 19 top left) are dominated by

edge effects caused primarily by buildings, individual trees

and groves combined with the difference in solar angles and

possible geometric misregistrations between the acquisitions.

To avoid these pronounced edge effects Fig. 21(b) shows the

regularized IR-MAD variates 41, 40, and 39 as RGB. Again,

gray regions exhibit no change, regions with saturated colors

(including black and white) exhibit change.

Fig. 22(a) and (b) shows the eigenvectors (or weights) for the

two leading canonical variates for no curvature regularization

and for , respectively. For the regularized situation,

these curves are still somewhat wiggly which may hint that even

stronger regularization could be applied.

In general, to interpret results from this and other types of

change detection schemes it is recommended to perform simul-

taneous inspection and analysis of:

• the change images, here the MAD variates and the

change/no-change measures;

• weight plots;

• spectra for selected pixels;

• results from clustering or classification of changes;

• mean spectra for selected groups or clusters of pixels;

• (per cluster) plots of correlations between original data and

change variates.
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Fig. 18. IR-MAD variates 43-1 after 100 iterations row-wise, no curvature regularization. Very dark or very bright regions exhibit change, gray regions exhibit
no change.

See also [37]. For space limitation reasons, only some of these

recommendations are followed here.

VI. CONCLUSION AND FUTURE WORK

The iterated scheme described and applied to the partly con-

structed case with Landsat TM data clearly outperforms the

original MAD scheme in terms of showing no change where

no change should be. Also, in the region with potential change,

higher autocorrelation, and, therefore, less noise in the change

components are obtained with the iterated scheme.

For the SPOT HRV data, the autocorrelation for the last

change component is improved drastically in the IR-MAD

scheme with much less change between the MAD and IR-MAD

schemes for the first two components.

In the example with hypervariate data, estimation of the MAD

variates based on all 126 bands was not possible without some

form of regularization.

For all three cases, we obtain a higher first order (also known

as the leading) canonical correlation with the iterated scheme,

indicating that a canonical correlation transformation to more

similar variates is obtained. This shows that we do obtain a better

background of no change against which to detect change.
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Fig. 19. IR-MAD variates 43-1 after 22 iterations row-wise, curvature regularization, � = 0:1. Very dark or very bright regions exhibit change, gray regions
exhibit no change.

In all three cases given, including the case with hypervariate

data, the autocorrelation is higher and, hence, the noise lower in

the no-change measure given in (13) for the IR-MAD scheme.

Since the methods described here are based on differences

between canonical variates from a two-set canonical corre-

lation analysis (CCA), they do not readily extend to a truly

multitemporal setting where we have data from more than two

time points. If such data were available, differences between

canonical variates from a multiset CCA could be used as

change variables. However, using the scheme suggested in

this paper to pairs of bi-temporal data seems more viable

to this author.

Multiset CCA could be applied to introduce a spatial element

into the analysis by including spatially shifted versions of the

bi-temporal data as new sets of variables.

Limited experience on the regularization scheme with hy-

perspectral data shows that more work could be done both on

determining which and how many groups of spectral bands to

choose in the dimensionality reducing projections, which pro-

jection index to choose, and on determining the regularization

parameter and the matrix .

A possible alternative to linear correlation as a measure of

similarity between the transformed variables is mutual informa-

tion, see, e.g., [54].
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Fig. 20. � measure of change stretched linearly between 5% and 95% per-
centiles. Dark areas exhibit no change. (a) No curvature regularization. (b) Cur-
vature regularization, � = 0:1.

Fig. 21. IR-MAD variates as RGB, curvature regularization, � = 0:1. Gray
regions exhibit no change, regions with saturated colors (including black and
white) exhibit change. (a) IR-MAD variates 43, 42, and 41. (b) IR-MAD variates
41, 40, and 39.

Another interesting future development of the MAD method

lies in the functional setting described in [45].

Matlab code to carry out some of the analysis described is

available from the author’s homepage.

APPENDIX

CANONICAL CORRELATION ANALYSIS

Although canonical correlation analysis is described in most

textbooks on multivariate statistics, see, e.g., [22] and [23], we

give here a short derivation of some of the most important results

including a regression analysis type interpretation and some reg-

ularization aspects.

A. Canonical Correlation

We are looking for linear combinations and of two

sets of multivariate observations ( -dimensional with

positive definite dispersion ) and ( -dimensional with

Fig. 22. Eigenvectors for the two leading canonical variates. (a) No curvature
regularization. (b) Curvature regularization, � = 0:1.

positive definite dispersion , for convenience) with

maximal correlation

(18)

Without loss of generality, we assume that and are

zero mean, i.e., and . Since

, where is the covari-

ance between and , and the variances

and , we get

(19)

We request .

To maximize this correlation as a function of the coefficients

in the linear combinations we find the partial derivatives of

with respect to and

(20)

(21)
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Setting and , we obtain

(22)

(23)

Due to the symmetry of the two sets of variables, there is no

reason not to choose , i.e.,

. With this choice, we obtain from (22) and (23)

(24)

(25)

or

(26)

or

(27)

where

. If is an eigenvector

with eigenvalue is an eigenvector with eigenvalue

. We choose the positive eigenvalue.

We can choose the (equal) variances of and freely.

A natural choice is setting . In this case,

.

Alternatively, we could derive this generalized eigenvalue

problem by requesting to begin with

and introduce these constraints into the optimization by means

of Lagrange multipliers, see, e.g., [8] and [23].

With , we get for (20) and (21)

(28)

(29)

In this case, we get for the second order partial derivatives (also

known as the Hessian)

(30)

(31)

With , both Hessians are negative definite since both

and are positive definite. This means that setting

and do, indeed, lead to a maximum

for (as opposed to a minimum or a saddle point).

Another way of writing (26) is obtained by inserting from

(24) into (25), and by inserting from (25) into (24). This gives

the (more well-known) coupled eigenvalue problems for canon-

ical correlation analysis

(32)

(33)

B. Interpretation of Canonical Variates

Consider a regression of based on and

a regression of based on respectively. This gives

(34)

(35)

(In the univariate case, this latter equation reduces to the well

known OLS regression expression ). For the

dispersions, we get

(36)

(37)

and for the ratios of variances of linear combinations and

with linear combinations and , we get

(38)

(39)

We see that the canonical variates can be interpreted as new

variables that maximize the ratio of the variances between linear

combinations of predicted values of one set of variables from

the other set of variables and the same linear combinations of

the actual values of the one set of variables.

We also see that unlike ordinary least squares regression anal-

ysis, canonical correlation analysis can be considered as a type

of regression with several responses as well as several regres-

sors with no distinction between responses and regressors.

C. Regularized Canonical Correlation

To remedy possible (near) singularity problems in which

may occur in hyperspectral data, or to prevent the solutions

and to the CCA/MAD problem to depend on noise or arbitrary

spurious differences or simply to smooth the solutions (to facili-

tate interpretation), we may apply regularization (also known as

penalization). This can be done by maximizing in (18) subject

to . This leads to

(40)

Here, the matrices penalize some characteristic

and of the solutions and the determine the de-

gree of penalization. Often, is chosen to minimize the length

(by setting and , the and identity, re-

spectively), slope or curvature of the solutions and (here con-

sidered as functions of wavelength) but also more complicated

expressions that force the solutions to obey some ordinary dif-

ferential equation can be used. To ensure the same influence of

the regularization on all variables, it is customary to normalize

them to (zero mean and) unit variance. Since all variables in our
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case are digital numbers measured on the same scale, the nor-

malization to unit variance is not performed here.

can be chosen subjectively or determined by a number of

methods ranging from simply setting

to get the order of magnitude right, to subsampling with cross-

validation [11] or L-curve estimation [47]. A fuller description

of this subject is out of scope here. Other useful references are

[42]–[46], [49], and [50].
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