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I. Introduction

INTEGRINS are a family of more than 20 different trans-
membrane receptors composed of noncovalently associ-

ated a- and j3-subunit heterodimers (1). Twelve different
a-subunits, each approximately 1000 residues in length, and
eight different j3-subunits, each approximately 750 residues,
have been identified. The receptor consists of a very large
extracellular domain, a transmembrane region, and a rela-
tively short cytoplasmic region. The extracellular domain
binds to various ligands including extracellular matrix
(ECM) proteins, such as fibronectin (FN), vitronectin (VN),
and collagen (Col), and to other cell surface receptors such
as ICAM-1 (intercellular adhesion molecule) and VCAM-1
(vascular cell adhesion molecule). The receptor cytoplasmic
domains interact with cytoskeletal proteins.

In addition to their role as adhesion receptors, integrins
also function as signaling receptors and have been shown to
regulate reorganization of the cytoskeleton, intracellular ion
transport, lipid metabolism, kinase activation, and gene ex-
pression. In this review we will discuss the diverse integrin-
mediated signals presently known, with emphasis on the
integrin-mediated signals that regulate cell growth and sur-
vival. For a discussion of integrin-mediated regulation of cell
migration, differentiation, and integrin-ligand binding, the
reader is referred to other integrin reviews (2-6).

Address reprint requests to: Martin A. Schwartz, Ph.D., Department
of Vascular Biology, Scripps Research Institute, 10666 North Torrey
Pines Road, La Jolla, California 92037.

II. Integrins, Cell Growth, and Cell Survival

The requirement of cell adhesion for growth in normal
cells was first described by Stoker et al. (7), who found that
normal cells were blocked in the Gl phase of the cell cycle
when cultured in suspension. They termed this phenomenon
"anchorage-dependence." With the discovery of the integrin
family of receptors as the major ECM receptors, integrins
were implicated as regulators of cell growth.

Some of the first work directly linking integrins to growth
regulation came from studies of T cell activation. T cells are
induced to proliferate by activation of the T cell receptor com-
plex (TCR) (8). Using antibodies against LFA-1 (integrin aL/32),
van Noesel et al. (8) showed that different antibodies could
either enhance or inhibit TCR-induced proliferation. Subse-
quent work demonstrated that costimulation of both integrins
and the TCR could induce T cell proliferation under conditions
in which stimulation of either receptor alone was not sufficient
(9-14). These results indicate that integrin signals can regulate
T cell proliferation and also suggest that integrins synergize
with other signaling receptors. In addition to regulating T cell
proliferation, integrins have been found to control proliferation
in nonlymphoid cells such as endothelial cells (15, 16), hepa-
tocytes (17), and fibroblasts (18, 19).

Although integrin-dependent signals are required for cell
growth, accumulating evidence indicates that under certain
conditions integrins also suppress growth. Giancotti and
Ruoslahti (20) were the first to report that transformed cells
that overexpress integrin a5^ fail to grow when suspended
in soft agar, in contrast to wild type cells, but grow normally
when adherent. This growth inhibition correlated with re-
duced tumorigenicity in vivo. A similar effect of integrin
overexpression was reported in studies using K562 erythro-
leukemia cells and HT29 colon carcinoma cells (21, 22). An-
other example of growth suppression by integrins was re-
ported by Meredith et al. who found that the alternatively
spliced integrin j3 ic inhibited cell cycle progression when
transiently expressed in fibroblasts (23). j3 lc had a similar
effect when expressed in Chinese hamster ovary (CHO) cells
(24). In addition, expression of the integrin j34 subunit in
rectal carcinoma cells will induce a partial Gl arrest (25).

In addition to regulating cell growth, integrins are also in-
volved in the regulation of cell survival or programmed cell
death (PCD). PCD, or apoptosis, is the process whereby cells are
induced to activate their own death. PCD occurs in a wide
variety of cell types and is required for the development of
many tissues (26). Recent evidence indicates that maintaining
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cells in suspension, in the absence of adhesion to the ECM, will
induce PCD (27-29). This effect is dependent on integrin liga-
tion. Human umbilical vein endothelial cells (HUVECs), when
cultured in suspension, rapidly die and display all of the char-
acteristics of PCD (27, 29). Ligation of the fa integrins, but not
other cell surface receptors, is sufficient to rescue these cells
from PCD, suggesting that integrins provide a survival signal
(27). Similar results have been obtained in other systems. For
example, endothelial cells are dependent on 0^3 signaling for
survival in vivo (30), CID-9 mammary epithelial cells require fa
integrin ligation (31), and LIM 1863 colon carcinoma cells are
dependent on av integrin ligation (32). These results establish
the importance of integrin ligation for cell survival and indicate
that different integrin receptors have the capacity to function as
survival receptors.

The mechanisms whereby integrins regulate cell growth
and PCD are not clear; different integrin-mediated signals
may be involved. In the following sections, we will discuss
the various integrin-mediated signals and how they can reg-
ulate cell growth and cell survival.

III. Integrin Signaling

A. Effects on the cytoskeleton

Integrins are transmembrane proteins that attach the cell
to the ECM and anchor the cytoskeleton to the plasma mem-
brane (1, 33). This dual role confers to integrins the unique
ability to transduce information about the cell's external en-
vironment into structural changes within the cell. The bind-
ing of integrins to the ECM initiates both the localization of
cytoskeletal proteins into structures known as focal adhe-
sions and the assembly of actin microfilaments (33). This
integrin-mediated reorganization of cytoskeletal proteins
and actin is the basis for cell spreading and migration.

1. Integrin fi-cytoplasmic domain. Although both the a- and
|8-integrin subunits contain cytoplasmic domains, it is pri-
marily the integrin /3-cytoplasmic domain that appears to be
required for cytoskeletal interactions. In vitro, the jSj-cyto-
plasmic domain has been shown to bind directly to the cy-
toskeletal proteins a-actinin and talin (34, 35). A peptide
containing residues 780-789 of fa can bind to talin (36).
Peptides containing either residues 768-777 or 785-794 bind

directly to a-actinin (35, 37) (summarized in Fig. 1). Whether
all of these interactions occur in vivo is not known.

Studies in vivo have tested the ability of transfected inte-
grin mutants and chimeras to colocalize with endogenous
integrins and cytoskeletal proteins in focal adhesions. Focal
adhesions are regions of tight association between the
plasma membrane and the ECM (10-15 ran) and contain high
concentrations of many proteins including components of
the cytoskeleton, actin microfilaments, signaling molecules,
and integrins (33). Focal adhesions are formed in part by
integrin-mediated signals (see below) and are thought to
play a key role in triggering signal transduction pathways
and in regulating the cytoskeleton.

All of the information necessary for integrin localization to
focal adhesions is present in the ^-cytoplasmic domain. Both
chimeras containing the /^-cytoplasmic domain and receptors
expressing a-subunit cytoplasmic domain truncations are lo-
calized to focal adhesions (38—41). Results from deletion studies
indicate that sequences near the C terminus of fa are required
(42,43) (see Fig. 1). By screening different point mutants, Reszka
et al. (44) identified three clusters of amino acids which, when
mutated, impair fa localization (Fig. 1). Two of these clusters
share the amino acid motif "NPXY." Interestingly, one of these
NPXY motifs is required for j33-mediated melanoma cell mi-
gration (45), a process dependent on integrin-mediated regu-
lation of the cytoskeleton.

Other studies in vivo have investigated the effect of
clustering integrins with microbeads coated with antiin-
tegrin antibodies or ECM substrates. Clustering integrins
with these coated microbeads will induce the colocaliza-
tion of many focal adhesion proteins (46-50). This effect
is probably very similar to the colocalization that occurs
during focal adhesion formation. Lewis and Schwartz (46)
found that clustering integrins induced the colocalization
of the focal adhesion proteins talin, a-actinin, the focal
adhesion kinase (FAK), and F actin. By screening jSj-cy-
toplasmic domain deletion mutants, they found that co-
localization of talin, FAK, and F-actin was dependent on
residues 791-799 of the ^-cytoplasmic domain (Fig. 1)
(46). As mentioned above, Tapley et al. (36) found that
residues 780-789 were required for binding of /^-cyto-
plasmic peptides to talin in vitro. Taken together, these
results suggest that both regions contain information nec-

a-actinin talin
a-actinin

785-794 I
I 768-777 I I 780-789 '

LLLIWKLLMIIHDRREFAKFEKEKMNAKWDTGENPIYKSAVTTWNPKYEGK
I 776-790 | | 791-799 | ^

-in vitro

in vivo
a-actinin FAK, actin, talin

focal adhesion
localization

(1)

(1)

(1)1

(799)

(790)

(775)

FIG. 1. Functional domains in the jSi-cytoplasmic tail. In vitro, peptides comprising amino acids 768-777 and 785-794 of the ^-tail bind to
a-actinin while a peptide composed of amino acids 780-789 can bind talin. In vivo, the residues important for colocalization of a-actinin, FAK,
actin, and talin with the/?! cytoplasmic tail were determined using microbeads coated with ant i-^ antibody and cells expressing either wild
type or mutated |31-cytoplasmic tails. Deletions of residues 791-803 and 776-803 reduce focal adhesion localization of the /Sx-integrin. (1)
indicates the N terminus of fa. The two NPXY sequences involved in /Si-focal adhesion localization are highlighted in bold.
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essary for talin binding. Colocalization of a-actinin re-
quired residues 776-790 of the ^-cytoplasmic domain,
generally consistent with the in vitro data mentioned above
(see Fig. 1) (46). Interestingly, colocalization of a-actinin,
in the absence of talin and FAK, was not sufficient to
promote localization of actin. This result is surprising
given that a-actinin can bind to actin (51). One possible
explanation is that the binding of a-actinin to actin may be
regulated and require signals normally generated by the
integrin sequences deleted. This regulation may be im-
portant for the formation and maintenance of focal adhe-
sions as discussed below.

The importance of the structure of the /3-subunit cytoplas-
mic domain is also demonstrated by the high conservation
observed between species for each subtype (52, 53) and the
conservation of sequence motifs found between the different
/3-subtypes (52). These motifs include the NPXY clusters
discussed above. In contrast, integrin j3-subtypes with di-
vergent sequences, such as (5^ /35, and j3lc or j31B, do not
normally participate in the formation of focal adhesions (23,
54, 55). The /35-subunit contains a variant region within its
cytoplasmic domain and does not readily localize to focal
adhesions (56, 57). jS1B and j3lc are splice variants of J8a that
diverge in the 21 COOH-terminal residues of the cytoplasmic
domain and also do not localize to focal contacts (23, 58),
consistent with the results of studies using the jBj-deletion
mutants. The j84-cytoplasmic domain is completely unrelated
to other j3-subunits and appears to be linked to intermediate
filaments rather than the actin cytoskeleton (54, 59-61).

2. Cell spreading and the formation of focal adhesions. Integrins
regulate adhesion and spreading of cells on ECM substrates.
Integrin-mediated cell spreading is dependent on the /3-cy-
toplasmic domain. By using mouse fibroblasts expressing
transfected chicken j3rsubunits, Guan et al. (62) found that
deletion of C-terminal residues from the ^-cytoplasmic do-
main was sufficient to block spreading of transfectants on
antibodies against the extracellular domain of chicken j3j
(62). Deletion of the j3rcytoplasmic domain also blocked cell
spreading on ECM substrates (42). In contrast, the a-cyto-
plasmic domain does not appear to be required for spread-
ing. Using cells that express mutants of the integrin a^,^
(fibrinogen receptor), Ylanne et al (41) found that deletion of
the /33-cytoplasmic domain blocked cell spreading on fibrin-
ogen, while deletion of the anb-cytoplasmic domain had no
effect. In addition, truncation of the a5-subunit cytoplasmic
domain had little or no effect on spreading of CHO cells
expressing a5fa on FN (40).

Miyamoto et al. (47,48) have studied the effects of integrin-
ligand binding on the ability of the jS^cytoplasmic domain
to induce colocalization of various proteins. They found that
the integrin a5^ clustered with inhibitory antibodies in-
duced colocalization of actin, talin, vinculin, a-actinin, FAK,
and tensin. Similar results were obtained when a5^ was
clustered using FN-coated beads. In contrast, when a5px was
clustered with noninhibitory antibodies, only FAK and ten-
sin were colocalized. However, clustering a5^ with nonin-
hibitory antibodies in the presence of the monomeric ligand
RGD (arginine-glycine-aspartic acid) restored colocalization
of all the proteins. RGD peptides have also been shown to

induce the recruitment of one integrin ( a ^ ) to focal adhe-
sions formed by another integrin (a2P\) (39). These results,
together with the fact that the /3-cytoplasmic domain is re-
quired for focal adhesion localization and cytoskeletal pro-
tein binding, suggest a model in which ligand binding leads
to unmasking of the /3-cytoplasmic domain. Unmasking of
the j3-cytoplasmic domain would then generate the signals
necessary for cell spreading and focal adhesion formation.
This model also suggests that the a-cy toplasmic domain may
function to block j3-cytoplasmic domain signals in the ab-
sence of ligand binding.

In addition to cytoskeletal protein interactions, other in-
tegrin-mediated signals are also required for cell spreading
and focal adhesion formation. As will be discussed in detail
below, integrins induce many signaling events including
activation of proteins such as the small GTPase Rho (63),
phospholipase A2 (PLA2) (64, 65), protein tyrosine kinases
(62, 66-69), and protein kinase C (PKC) (65, 70). Inhibition
of PLA2 or PKC prevents cell spreading (64, 65, 70), and
inhibition of Rho or tyrosine kinases blocks formation of
stress fibers and focal adhesions (71-73). In addition, the
interaction between a-actinin and actin is sensitive to the
lipid phosphatidylinositol bisphosphate (PIP2) (74), whose
levels have been found to depend upon integrin-mediated
cell adhesion (see below) (63, 75).

Integrins associate with actin via a potentially complex
array of indirect linkages (see Fig. 2). As mentioned above,
integrins have been shown to bind to both a-actinin and talin.
Each of these proteins can bind actin. In addition, talin can
bind to actin indirectly through a vinculin-a-actinin link (51,
76) or through a vinculin-tensin link (77). These alternative
linkages may play a role in the regulation of focal adhesions.
Indeed, microinjection studies have suggested that talin par-
ticipates in the initial formation of focal adhesions, whereas
a-actinin is more important for their maintenance (78, 79).
These indirect linkages may provide many opportunities for
regulatory fine-tuning.

3. Cell spreading, growth, and survival. Accumulating evidence
indicates that integrin-mediated cell spreading is linked to
growth control in normal cells. By accurately controlling the
extent of cell spreading, Folkman and Moscona (15) found
that cell spreading was directly proportional to cell growth.
This effect of spreading appeared to be due to the regulation
of cellular sensitivity to growth factors, implying synergy
between integrin-mediated spreading and growth factor re-
ceptor signaling (80). Integrin clustering alone was not suf-
ficient to promote growth; however, integrin clustering in the
absence of spreading was sufficient to induce expression of
early genes (junB and Ras) involved in the G0/G1 transition
(17). These results, together with the observation that cells in
suspension are arrested just before Gl/S (81), suggest that
integrins may act at two points in the cell cycle: regulation
of the G0/G1 transition by ligand binding and regulation of
Gl/S by cell spreading.

Plopper et al. (50) have isolated focal adhesions and found
that, in addition to integrins and cytoskeletal proteins, focal
adhesions also contain many proteins implicated in growth
control. These include growth factor receptors and signaling
molecules such as c-src, FAK, phosphoinositol 3-kinase (PI
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A. B. C.

a-actinin

actin

actin

FIG. 2. Schematic representation of three potential linkages from the integrin /3-subunit cytoplasmic domain to actin microfilaments. In vitro
studies suggest the existence of different protein connections within focal adhesions. In panel A, talin binds directly to both the /3-subunit and
to F actin (polymerized actin). In panel B, talin again binds directly to the /3-subunit but also binds to vinculin. Vinculin binds to either tensin
or to a-actinin, which in turn binds to F actin. In panel C, a-actinin binds directly to both the /3-subunit and to F actin; talin is not involved.
Each of these three cases may exist within cells simultaneously, sequentially, or not at all. Circles containing "a" and "/3" represent integrin
a- and /3-subunits, respectively.

3-kinase), and phospholipase Cy (PLCy). Substrates for
growth factor-regulated pathways have also been found in
focal adhesions including tensin, paxillin, and pl30cas (82-
84). Miyamoto et al. (48) found that 20 signal transduction
molecules, including RhoA, Racl, Ras, Raf, the mitogen-
activated protein kinase (MAP kinase), MAP kinase kinase
(MEK), and the jun kinase (JNK) were colocalized with clus-
tered integrins, suggesting that they might also be localized
in focal adhesions, although this has not been demonstrated.
These observations imply that integrins may regulate cell
proliferation by inducing the colocalization of signaling mol-
ecules into a signaling complex, thereby facilitating the in-
teractions of these proteins.

Integrins can also physically interact with growth factor re-
ceptor substrates. One example is the insulin receptor substrate.
The insulin receptor substrate 1 (IRS-1) is a 180-kDa protein that
is tyrosine phosphorylated by the insulin receptor in response
to insulin stimulation and is required for insulin receptor sig-
naling (85). Vuori and Ruoslahti (86) found that insulin triggers
the association of IRS-1 with the integrin 0^3 (the VN receptor).
This association correlated with a 2.5-fold increase in prolifer-
ation of insulin-treated cells when they were plated on VN
relative to other substrates (86).

In addition to effects on growth, integrin-mediated cell
spreading may also be linked to the regulation of cell sur-
vival. Re et al. (29) found that the extent of cell survival in
endothelial cells was directly proportional to the extent of cell
spreading on either FN or VN. They suggest that a critical
threshold of spreading is required to suppress PCD. Clus-

tering integrins, in the absence of spreading, was not suffi-
cient to rescue cells in suspension (29). However, cell spread-
ing does not appear to be critical in all cell types. Blocking
^-integrins of CHO cells and CID-9 mammary epithelials is
sufficient to trigger PCD in the absence of any changes in cell
spreading (31, 87). Perhaps in these cases integrin-ligand
binding and/or clustering alone is required for survival.

B. Generation of second messengers

1. Intracellular ions. In addition to providing a direct link
between the ECM and the cytoskeleton, integrins have also
been shown to regulate the production of second messengers
within the cell. For example, integrins have been shown to
regulate intracellular H+ concentrations (pH) via activation
of the Na+ /H+ antiporter (88-90). Integrins have also been
shown to trigger a rise in intracellular free calcium ion con-
centration ([Ca2+]j). [Ca2+]j functions as a second messenger
by regulating a variety of protein kinases, phosphatases, and
other enzymes (91). In endothelial cells the integrin-medi-
ated elevation in [Ca2+]j is dependent on ligation of av-
integrins but not other integrins (92). This [C^+]j transient
is also dependent on a 50-kDa integrin-associated protein,
which may function as a calcium channel (93). av/33 also
induces [Ca2+]i transients in osteoclasts (94). /32-Integrins can
induce an increase in [Ca2+]j by both influx and mobilization
of intracellular calcium stores (95-97).

While regulation of the antiporter appears to be a general
property of integrin signaling, not all integrin receptors have the
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capacity to regulate [Ca2+]i. For example, whereas the integrins
a
2fiv «5/3i, and 0^3 all activate the antiporter in endothelial

cells, only a ^ can trigger a [Ca2+]j transient (92, 98). These
observations demonstrate that the regulation of intracellular
pH and [Ca2+]; depend on two separate signaling pathways.
Moreover, these observations suggest that different receptors
within the same cell can generate unique signals.

Integrins also regulate K+ influxes in neuronal cells. Ar-
cangeli et al. (99) found that a potassium channel in neuro-
blastoma cells is required for hyperpolarization and neurite
outgrowth in response to integrin signaling (99). Integrin-
mediated regulation of the potassium channel is dependent
on a pertussis toxin-sensitive G protein.

2. Lipids. Integrins regulate the metabolism of inositol phos-
pholipids. The first clue to this came from results demon-
strating the synergy between growth factors and cell adhe-
sion. In fibroblasts, the platelet-derived growth factor
(PDGF) can stimulate the N a + / H + antiporter in cells at-
tached to FN, but not in unattached cells (100). This stimu-
lation was found to be PKC-dependent. Calcium mobiliza-
tion triggered by PDGF was also found to be adhesion-
dependent (101). Both PDGF-mediated PKC activation and
Ca mobilization depend on the PIP2 breakdown products
inositol triphosphate (IP3) and diacylglycerol (DAG), respec-
tively (102). Hydrolysis of PIP2 is induced by the PDGF-
mediated activation of PLC (103-105). McNamee et al. (75)
found that cell adhesion stimulated a quick increase in the
rate of synthesis and the absolute level of PIP2. In contrast,
detaching cells caused a dramatic decrease in PIP2 levels (75).
Together, these data indicate that integrins regulate the levels
of substrate available for hydrolysis by growth factor recep-
tor-activated PLC.

Integrins appear to regulate the levels of PIP2 by activation
of a phosphatidylinositol 4-phosphate 5-kinase (PIP 5-ki-
nase) (75). Recently, Chong et al. (63) reported that the small
GTPase Rho activates a PIP 5-kinase. The Rho family of small
GTPases, Rho, Rac, and Cdc42, have been implicated in the
regulation of actin filament organization and focal contact
formation (106). Rho alone regulates the assembly of actin
stress fibers and focal adhesions induced by serum (107). The
mechanism of integrin-induced PIP 5-kinase activation is
unclear; however, several lines of evidence suggest that Rho
may be involved. First, when Rho is inactivated in adherent
cells, PIP2 levels decrease (63); second, PDGF can induce
Ca2+ mobilization in round cells microinjected with an ac-
tivated variant of Rho (63). Integrins might regulate Rho by
activating a Rho-specific exchange factor or GTPase-activat-
ing protein. Interestingly, another Rho family member,
Cdc42, is implicated in integrin aIIbj33 signaling in platelets.
Clustering a]Ibj33 enhanced translocation of Cdc42 to the
cytoskeleton, accompanied by protein tyrosine phosphory-
lation and actin polymerization (108). Whether Cdc42 reg-
ulates PIP 5-kinase activity is not clear.

In addition to PIP 5-kinase, phosphoinositol 3-kinase (PI 3-ki-
nase), which phosphorylates PI, 4-PIP, and 4,5-PIP2 to generate
3-PIP, ̂ - P I P ^ and 3,4,5-Pn°3, respectively, is also implicated in
integrin signal transduction. In osteodasts, osteopontin binding
to the integrin a ^ stimulated PI 3-kinase activity, and PI
3-kinase was found to coimmunoprecipitate with 0^3 (109). In

addition, PI 3-kinase was found to coimmunoprecipitate with
tyrosine-phosphorylated FAK in response to cell adhesion (110,
111). PI 3-kinase was also tyrosine phosphorylated upon cell
adhesion and found to be phosphorylated by FAK in vitro (110,
111). These results suggest that FAK may mediate integrin-
induced PI 3-kinase activation.

In addition to phosphoinositides, arachidonic acid metab-
olism is also regulated by integrin-mediated signals. Plating
HeLa cells onto Col or immobilized RGD peptide triggered
the sequential activation of PLA2, release of arachidonic acid,
formation of lipoxygenase metabolite(s), production of DAG,
activation of PKC, and the induction of cell spreading (64,
65). These effects depend on the integrin j3j (112). In addition,
integrins can also regulate PLC7. Adhesion of rat epithelial
cells to Col stimulated production of DAG, which also re-
quired /3rintegrins (113). In T cells, clustering j32-integrins
induced tyrosine phosphorylation of PLC7 and correlated
with integrin-mediated Ca2+ mobilization (114). Therefore,
integrins are capable of activating both lipid kinases (PI
3-kinase and PI 5-kinase) and phospholipases (PLA2 and
PLC), suggesting that lipids may function as key mediators
of integrin-induced signals.

C. Activation of protein kinases

1. FAK. Protein tyrosine kinases play an important role in the
control of numerous cellular functions such as cell growth
and differentiation (115). A potential role of tyrosine phos-
phorylation in integrin-mediated signaling was originally
suggested from studies showing that phosphotyrosine-con-
taining proteins are greatly enriched in focal adhesions (68,
116, 117). Recent evidence indicates that upon integrin-li-
gand binding a number of proteins are tyrosine phosphor-
ylated (67, 68, 118), including the focal adhesion proteins
paxillin (68), tensin (119), and FAK (68, 69, 119, 120).

FAK represents a new family of nonmyristylated, tyrosine
kinases (molecular radius of 125 kDa). FAK was first iden-
tified as a phosphotyrosine protein in chicken embryo fibro-
blasts transformed with v-src (33, 69, 82,121). FAK is highly
conserved among amphibians (122,123), birds (69), rodents
(82), and man (124-126). FAK-deficient mice, generated by
targeted gene disruption, are embryonic lethal and display
a general defect in mesoderm development (127) (see below).

FAK is structurally distinct from other known tyrosine
kinases. Its central catalytic domain is flanked by large N-
terminal and C-terminal domains that lack any significant
homology with other protein tyrosine kinases (69, 82). FAK
does not possess any known determinants for membrane
association, src homology 2 (SH2), or src homology 3 (SH3)
domains but does contain SH3-binding sequences and po-
tential SH2-binding sequences. The N terminus of FAK binds
in vitro to peptides from the membrane-proximal region of
the j3rintegrin cytoplasmic domain (128). Whether this in-
teraction occurs in vivo is not known. Targeting of FAK to
focal adhesions is dependent on a focal adhesion targeting
sequence located in the distal part of the C terminus of FAK
(AA 904-1040). This focal adhesion targeting sequence is
required for FAK localization and will induce focal adhesion
targeting when linked to other, unrelated proteins (129,130).

FAK phosphorylation is induced by attachment of various
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cell lines (NIH3T3, BALB/c 3T3, KB carcinoma cells) to FN and
to other ECM proteins such as laminin (Lam), Col, and VN but
not to nonspecific ligands such as poly-L-lysine (68,82,118,120).
Soluble FN has no effect (120). Clustering of jSj- and j33-integrins
also induced FAK phosphorylation (62, 67). Studies using cy-
tochalasin D, which selectively disrupts the network of actin
filaments, show that the integrity of the actin cytoskeleton is
required for increased phosphorylation of FAK (68).

In platelets, thrombin or Col increased tyrosine phosphor-
ylation of FAK, and this phosphorylation required platelet
aggregation mediated by the binding of fibrinogen to GpIIb /
Ilia (integrin allbb3) (131). FAK was not activated after
thrombin stimulation of Glanzmann's thrombasthenic plate-
lets (platelets deficient in the fibrinogen receptor, the integrin
aIIbj33), suggesting that FAK is indeed functionally linked to
integrins and that, in the case of platelets, it might also play
a role in platelet activation and/or aggregation (131).

Mutational analyses of the integrin /Sj-subunit showed
that FAK phosphorylation depends on the cytoplasmic do-
main (62, 132). These findings are further supported by ex-
periments using a series of chimeric human integrin-inter-
leukin 2 receptors transiently expressed in fibroblasts (132).
Expression and clustering of the cytoplasmic domains of the
/V> /V/ a n d j35- integrins, in the absence of their transmem-
brane and extracellular domains, were sufficient to induce
FAK phosphorylation.

Recently Calalb et al. (133) demonstrated that FAK is tyrosine
phosphorylated on at least four identified sites in an adhesion-
dependent manner: Tyr 397, Tyr 407, Tyr 576, and Tyr 577. A
fifth site, Tyr 925, was identified by Schlaepfer et al. (134). Of
these residues, Tyr 397 is the major site of autophosphorylation
(135, 136). In addition to a possible regulatory function, phos-
phorylation of Tyr 397 also creates a high affinity binding site
for the SH2-domain containing proteins Src, Fyn (137), and PI
3-kinase (110). c-src Phosphorylates FAK on Tyr 925, which can
then function as a binding site for the SH2-domain of the Grb2
adapter protein (134). Since Grb2 is constitutively associated
with the Ras GDP/ GTP exchange factor Sos, integrin-mediated
FAK activation may therefore be linked to activation of the Ras
pathway (134).

In both platelets and fibroblasts, integrin-stimulated FAK
tyrosine phosphorylation correlates with an increase in the
intrinsic kinase activity of FAK (118, 131). Some potential
FAK substrates have been identified. The cytoskeletal pro-
tein paxillin has been shown to be phosphorylated by FAK
both in vitro (138) and in vivo (139). Interestingly, phosphor-
ylation of paxillin on tyrosine creates SH2-domain-binding
sites for the adapter protein Crk, the Src-regulatory kinase
Csk, and the Src kinase (139). As mentioned above, PI 3-ki-
nase is phosphorylated by FAK in vitro (110), though the
consequences of this tyrosine phosphorylation are unknown.

Recent data indicate that FAK plays a role in cell motility.
Embryonic mesodermal cells isolated from mouse embryos
in which FAK was deleted by homologous recombination
were less well spread than FAK-positive control cells but
were able to form stress fibers terminating in apparently
normal focal adhesions (127). In fact, the FAK-deficient cells
exhibited even more focal adhesions than FAK-positive cells
as well as an increased number of microspikes. Surprisingly,
many focal adhesion proteins, including paxillin, were phos-

phorylated. The FAK-deficient mesodermal cells had re-
duced mobility in vitro. It was proposed that absence of FAK
resulted in tighter contact formation of cells with the sub-
strate, possibly because of reduced turnover of focal adhe-
sions. The requirement of FAK for cell motility may also
explain the abnormal development of the head mesenchyme,
lateral mesoderm, extraembryonic mesoderm, heart, and
vasculature in the homozygous null mutant embryo (140).
These abnormalities were not due to any defects in cell pro-
liferation and/or differentiation (141).

While deletion of FAK inhibits motility, overexpression of
FAK appears to correlate with increased motility. Highly
motile melanoma cells exhibit higher expression of FAK in
cell culture (142). Increased levels of FAK expression have
also been correlated with the invasive and metastatic phe-
notype in solid tumors (142-144). These data indicate that
overexpression or perhaps activation of FAK plays a role in
cell locomotion and invasiveness. Such an effect would be
consistent with the ability of FAK to modulate assembly/
disassembly of focal contacts and actin filaments. These find-
ings are also consistent with earlier observations, in which a
role for FAK in cellular transformation events was suggested
by the finding that FAK phosphorylation is increased in
v-src-transformed cells (118, 121).

In addition to its activation by integrins, FAK is also ac-
tivated by several growth factors. FAK phosphorylation has
been shown to be stimulated by the mitogenic neuropeptides
bombesin, vasopressin, and endothelin (145,146). And more
recently, FAK phosphorylation was shown to be modulated
by PDGF and lysophosphatidic acid, a phospholipid that
elicits a wide variety of cellular responses (147). The obser-
vation that FAK can be activated by both integrins and
growth factor receptors indicates that FAK may be a point of
convergence of these two signaling pathways in the regula-
tion of cell migration.

2. MAP kinase. Growth factor receptors induce changes in
gene expression and modulate cell growth by activating
complex signal transduction cascades. Early events in these
pathways include autophosphorylation of the growth factor
receptor, stimulation of phospholipid turnover, and activa-
tion of ser/thr protein kinases such as PKC and the MAP
kinase family (115, 148-150). MAP kinases, also known as
ERKs (extracellular-regulated kinases), are activated by
phosphorylation on both tyrosine (Tyr 185) and threonine
(Thr 183) residues (151-153). Two forms of MAP kinase have
been isolated from fibroblasts, referred to as either p42 or p44
MAP kinase (154), both of which become highly phosphor-
ylated upon mitogenic stimulation (155). MAP kinases are
phosphorylated by a single tyr/thr kinase MEK (156). MEK,
in turn, is activated by phosphorylation on ser/thr residues
by either Raf, MEK kinase (MEKK), or Mos (157-159). Ac-
tivation of MEK by Raf kinase links MAP kinase to the Ras
signal transduction cascade.

One of the striking features of MAP kinase is that its
activation leads to its translocation from the cytoplasm to the
nucleus (160, 161). As a result of this translocation, many
substrates of MAP kinase include transcription factors, such
as TCF, junjos, myc NF-IL6, TALI, and ATF2 (149,162). Thus,
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MAP kinase may be a key molecule in the transmission of
extracellular signals into the nucleus.

Recently, integrins have been shown to activate MAP ki-
nases (48,163-165). Integrin-mediated cell adhesion has been
associated with activation of both the p42 and p44 MAP
kinases (163-165), as well as their translocation into the nu-
cleus (163). Activation of MAP kinase was observed when
cells adhered to either FN, Lam, Col, or RGD-containing
peptides but not when cells adhered to poly-L-lysine. These
results suggest that multiple integrins can activate the ki-
nases. Clustering of ^-integrins is sufficient to induce MAP
kinase activation and has also been shown to activate another
MAP kinase family member, JNK (48, 164).

The pathway by which integrins mediate activation of
MAP kinases remains unknown, but there are several pos-
sibilities. For example, components of the Ras pathway may
be involved. Adhesion of 3T3 cells to FN promotes associ-
ation of the adapter protein Grb2 with FAK, and cytochalasin
D blocks both integrin-mediated FAK phosphorylation and
MAP kinase activation (131). PI 3-kinase, which has been
linked to integrin-dependent FAK activation, can also me-
diate MAP kinase activation. Another possibility is through
the interaction of IRS-1 with the cytoplasmic domain of the
integrin avj33 (86, 166). Vuori and Ruoslahti (86) found that
insulin promotes the association of av/33 with IRS-1 and with
Grb2 and Sos. One report suggests that the binding of certain
antibodies against a-^\ can activate p21 Ras (167). PKC might
also be involved since it can directly phosphorylate Raf (150)
and is activated upon cell adhesion to FN (65, 70). Which of
these pathways is required for the activation of MAP kinases
remains to be determined.

The activation of MAP kinases by growth factors and
integrins appears to be quantitatively different. Integrin-me-
diated activation is slower yet persists longer than growth
factor receptor-mediated activation (165). This dual mode of
activation may be required for stimulation of cell growth.
Like FAK, as discussed above, MAP kinases may also act as

a point of convergence between integrin-mediated signaling
and growth factor receptor signaling.

Recently, a novel 59-kDa ser / thr kinase was isolated using
a yeast two-hybrid screen to identify proteins that interact
with the ^-cytoplasmic domain (168). This integrin-linked
kinase (ILK) coimmunoprecipitated with integrin j3a and was
found to phosphorylate a /^-cytoplasmic domain peptide in
vitro. Interestingly, ILK kinase was reduced in response to
FN, and overexpression of ILK inhibited integrin-mediated
adhesion. These results suggest that ILK may be a proximal
player in the regulation of integrin-controlled signals.

D. Induction of gene expression

Induction of gene expression by integrins has been studied
in several cell types using a variety of integrin ligands (see
Table 1) (2,6). Integrins stimulate gene expression to regulate
proliferation, differentiation, and matrix remodeling (2, 6,
169). Fibroblasts, epithelial cells, and monocytes have all
been used as model systems by which to study gene expres-
sion (2, 6, 17, 169-174).

The control of gene expression by integrins depends on the
cell type and the specific ECM proteins to which integrins
bind. In fibroblasts, Col and FN induce the expression of
metalloproteinases (MMPs) (2, 6). FN suppresses and en-
hances collagenase and gelatinase expression through a4^
and a5fiv respectively (175). Plating-suspended fibroblasts
on FN will also induce c-fos and c-myc expression (176). By
using osteosarcoma cell lines expressing one of two Col re-
ceptor subtypes ( a ^ or a23-,), Riikonen et al. (177) found that
a2fi\ induces MMP-1 (interstitial collagenase) expression,
and a^ j attenuates collagen al(I) gene expression. In mono-
cytes, several monocyte adherence derived (MAD) inflam-
matory genes have been identified by screening cDNA li-
braries derived from adherent monocytes (171). Further-
more, antibody cross-linking of jSt-integrins but not /32-
integrins results in the transcription of inflammatory

TABLE 1. Genes induced by extracellular matrix proteins and integrins

ECM substrate or integrin
Regulated gene

(Up-regulated) | (Down-regulated)
Reference

Fibronectin

120-kDa fragment of fibronectin

Collagen
Laminin"

Serum6

| c-fos, | c-myc
TTNFa, fCSF-1
fjunB, fras
JMAD-2, TMAD-5, tMAD-6, t MAD-9
t NF-KB
f Gelatinase B, f stromelysin
f Collagenase, f c-fos, f c-jun
tMAD-2, tMAD-5, tMAD-6, | MAD-9
f /3-Casein, t j3-Lactoglobulin
f Collagenase
I Collagen a 1(1)
tgas-1, fBcl-2
I ICE
j Tissue factor
tIL-1, t lL-lra, | MAD-6
f Cyclin A

176
185
17
171
199
198
180
171
173, 172
177
177
22,87
31
183
169
191

CSF-1, Colony-stimulating factor 1; ICE, interleukin-1/3 converting enzyme.
° Requires lactogenic hormones.
6 Vitronectin and fibronectin are constituents of serum. Nonadherent cells do not induce cyclin A; only cells adhered to plastic in the presence

of serum will induce cyclin A.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
d
rv

/a
rtic

le
/1

7
/3

/2
0
7
/2

5
4
8
5
8
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



214 MEREDITH ETAL. Vol. 17, No. 3

mediator genes (interleukin 1/3, interleukin 1 receptor an-
tagonist, and MAD-6) (169). Although the j32-integrins in
monocytes do not induce gene expression, engaging the /32-
integrins in monocytes before ^-activation suppresses
MAD-6 expression (169).

Regulation of gene expression by FN is complex, owing to
its many binding sites for cell surface receptors and other
matrix molecules. For example, only basal levels of collage-
nase and gelatinase are expressed when fibroblasts are plated
on FN, but when these cells are plated on the 120-kDa RGD-
containing fragment of FN, expression of these two genes is
enhanced (175). The induction of collagenase and gelatinase
by the 120-kDa fragment is mediated by a5^v Suppression
of collagenase and gelatinase expression occurs when the
CS-1 fragment of FN (CS-1 fragment does not contain the
120-kDa fragment) stimulates the o^-receptor. Thus, intact
FN will generate at least two signals emanating from the
120-kDa fragment and the Cs-1 region, with the a4^ -signal
dominating. Additionally, in vivo, proteinases like collage-
nase are found in wound fluid at sites of inflammation where
FN fragments have also been found, suggesting that these
fragments may be similar in activity to the 120-kDa fragment
(178). Gene expression induced by FN is also influenced by
the presence of tenascin (179). Tenascin is a glycoprotein in
the ECM that binds to cell surface proteoglycans and also to
FN. When cells are plated on a mixture of tenascin and FN,
the cells behave as though they were plated on the 120-kDa
fragment of FN; MMPs and c-fos levels are increased (179).
This effect is specific for FN as tenascin has no effect either
alone or in combination with either VN or Col (179). The
mechanism responsible for tenascin's effects is unknown.

The transcription factor-binding sites in the promoters of
integrin-induced genes have also been examined. Tremble et al.
(180) have recently demonstrated that the collagenase promoter
contains API and PEA3 sites, which are both required for col-
lagenase expression induced by the 120-kDa fragment of FN.
API sites bind c-fos and c-jun, whose expression precedes the
induction of collagenase when fibroblasts are plated on the
120-kDa fragment of FN (180). AP-1 sites are also found in
promoters of other MMPs like gelatinase B and stromelysin-1,
which are induced by the FN 120-kDa fragment (181, 182).
Whether the AP-1 sites or other binding sites in the promoters
of gelatinase B and stromelysin-1 are required for integrin-
induced gene expression is not dear. Two AP-1 sites and a
KB-like binding site are part of an integrin-responsive element
in the promoter for tissue factor (TF) gene in monocytes (183).
The integrin-reponsive element is required for full expression
of TF by either a4- or jSj-integrins (183). Finally, a 160-bp tran-
scriptional enhancer (BCE1) regulates ECM and PRL induction
of j3-casein expression (184).

Promoters of many genes induced by adherence of mono-
cytes to plastic contain NF-kB binding sites (2, 6, 169, 185).
Although plastic does not mimic any specific ECM protein,
many genes that are induced by monocyte adherence to
plastic have been found to be induced by FN or other ECM
proteins (2,6,169,185). Monocytes also induce expression of
IkB upon adherence, and the binding of IKB to NF-KB in the
cytoplasm is thought to inhibit NF-KB'S activity. Thus, ex-
pression of IKB induced by integrins may negatively regulate
or limit integrin-mediated gene expression by NF-KB (170).

Genes down-regulated by monocyte adherence contain c-
myb and helix-loop-helix binding sequences in their promot-
ers and not NF-kB sites (6).

The signal transduction pathways responsible for in-
ducing gene expression by integrins have not been com-
pletely defined. In monocytes, a tyrosine kinase(s) inhib-
ited by genistein or herbomycin appears to regulate
expression of interleukin-1/3 (186). FAK does not play a
role in regulating gene expression in these cells since
monocytes do not express FAK (169, 186). In epithelial
cells, signals generated by cytokines and laminin-1 are
required for expression of j3-lactoglobulin. The transcrip-
tion factor Stat5 can only bind to its recognition site in the
/3-lactoglobulin promoter if both PRL and laminin-1 in-
teract with the cells (172). Both c-jun and c-fos, which are
required for the AP-1-dependent transcription of some
integrin-induced genes, can be activated by MAP kinase
family members, c-jun Is also activated by the Rho family
of GTPases while c-fos transcription can be induced by
Rho, in a MAP kinase-independent manner (162,180,187,
188). Integrins may regulate AP-1-dependent transcription
through the activation of MAP kinases and/or Rho. The
regulation of gene expression in vivo probably relies on the
integration of signals from both growth factor receptors
and integrins. Elucidation of signaling pathways stimu-
lated by both of these receptors will enhance our under-
standing of how cells regulate gene expression.

An important function of integrin-controlled gene expres-
sion may be the regulation of cell growth and cell survival.
In addition to c-fos and c-myc (as discussed above), integrins
have also been shown to regulate the expression of other
growth-related genes such as Ras, c-jun, junB, cyclin A, and
gas-1 (22,176,189-191). Dike and Farmer (176) found that the
expression of c-fos and c-myc did not depend on the presence
of growth factors, suggesting that integrins can regulate the
G0/G1 transition. Integrins have also been shown to induce
cyclin A expression and regulate cyclin A-dependent kinase
activity (189-191). Cyclin A is required for cell cycle pro-
gression into S phase (192). Symington (189,190) found that
ligand binding by a5^ was sufficient to stimulate cyclin
A-associated kinase activity. Guadagno et al. (191) observed
that the expression of cyclin A, but not cyclin Dl, cyclin E,
cdc2, or cdk2, depended on cell adhesion in NRK cells and
NIH3T3 fibroblasts. Moreover, unregulated expression of
cyclin A enabled the NRK cells to proliferate in suspension.
These results link cyclin A expression to integrin-mediated
growth control.

As discussed earlier, overexpression of integrins in tu-
mor cells can suppress anchorage-independent growth in
some systems. Varner et al. (22) report that this effect is due
to the integrin-mediated expression of the growth arrest
gene, Gas-1, which is known to block cell cycle progression
(193). Gas-1 is a growth arrest-specific gene that functions
to block cell cycle progression. In addition to Gas-1 in-
duction, overexpression of a^ inhibited the expression of
the growth-associated genes c-fos, c-jun, and junB (22).
Based on these findings, it appears that integrin expression
alone, in the absence of ligand binding and receptor clus-
tering, is sufficient to modulate gene expression under
certain conditions.
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FIG. 3. Integrin-mediated signaling. In
addition to their role as adhesion recep-
tors, integrins also induce many signal-
ing events. Integrins have been shown
to regulate the levels of the intracellu-
lar ions H+ , Ca2+, and K+, reorganiza-
tion of the cytoskeleton through inter-
actions with a-actinin and talin, lipid
metabolism including lipid hydrolysis
via activation of the phospholipases
PLC and PLA2 and lipid synthesis via
activation of the lipid kinases PIP 5-ki-
nase and PI 3-kinase, protein phosphor-
ylation through activation of FAK, ILK,
and MAP kinase, and finally gene ex-
pression. Many of these integrin-medi-
ated signaling events may be interde-
pendent. The regulation of gene
expression may require multiple com-
ponents leading from the plasma mem-
brane to the nucleus.

Cytoskeleton

PLC

Intracellular

Ions

Lipid I P I P 5-Kinase

Kinases I pi 3-Kinase

ILK

MAP Kinase

Phospholipases

Protein

Kinases

Gene Expression

FIG. 4. Proposed signaling pathway for
integrin-mediated gene expression.
One possible signaling pathway leading
from the plasma membrane to the cell
nucleus is shown. In this pathway, in-
tegrin-mediated activation of the phos-
pholipase PLA2 leads to PLC activation
via production of arachidonic acid and
the subsequent generation of a lipoxy-
genase (LOX) metabolite. Activated
PLC then induces an increase in DAG,
which in turn stimulates PKC. PKC
then activates FAK, although not
through direct phosphorylation of FAK.
Tyrosine-phosphorylated FAK then
binds to the Grb2-Sos complex, which
leads to the subsequent activation of
Ras. Activated Ras then stimulates Raf
kinase, which then phosphorylates and
activates MEK, which in turn phospho-
rylates and activates MAP kinase. Ac-
tivated MAP kinase then translocates
to the nucleus where it phosphorylates
and activates different transcription
factors.

Integrin-mediated gene expression is also required for the
regulation of cell survival. The induction of PCD depends on
the balance of inhibitors, such as Bcl-2, and activators, such
as interleukin 1/3-converting enzyme proteases (194-196).
Zhang et al. (87) found that ligation of OL5PX in CHO cells
induced the expression Bcl-2, which correlated with cell sur-
vival. In mammary epithelial cells, disruption of contact with
the ECM induced expression of interleukin 1/3-converting
enzyme and activated PCD in these cells (31). These results
indicate that integrins both activate and suppress expression
of death-associated genes, depending upon the cell type and
the cellular environment.

IV. Conclusion

Integrin-ligand binding and subsequent activation lead to
the induction of many diverse signaling events (Fig. 3). In
general, these integrin-mediated signaling events can be
grouped as either proximal, near the plasma membrane (e.g.
reorganization of the cytoskeleton), or distal, within the nu-
cleus (e.g. changes in gene expression). Although both prox-
imal and distal events have been studied in some detail (as
discussed above), the signals that bridge these events are
largely unknown. A potential pathway from integrin acti-
vation to gene expression might involve PLA2, PLC, PKC,
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Integrin Growth Factor Receptor

Rho

i
PIP 5-Kinase PIP2 PLCy

DAG

I
Ca2+ PKC

FIG. 5. Synergism between growth factor receptor and integrin re-
ceptor pathways. The synergy between integrins and growth factor
receptors may depend on the ability of integrins to regulate the
amount of substrate available for growth factor receptor-activated
pathways. In this example, integrins regulate the levels of the lipid
PIP2 by the Rho-dependent activation of PIP 5-kinase. Activated
growth factor receptors, such as the PDGF receptor, phosphorylate
and activate PLCy which then catalyzes the hydrolysis of PIP2 to IP3

and DAG. The synthesis of PIP2 catalyzed by PIP 5-kinase may be the
critical rate-limiting step for the IP3-dependent regulation of intra-
cellular Ca2+ and the DAG-dependent activation of PKC.

FAK, components of the Ras/Raf pathway, MAP kinase, and
fos/jun activation (Fig. 4). Further dissection of these path-
ways will ultimately provide insight into integrin-mediated
growth control and cell survival.

In vivo a cell receives information from both the ECM and
growth factors, molecules that activate integrins and growth
factor receptors, respectively. Accumulating evidence suggests
that these signaling pathways are not independent but interact
within the cell. Throughout the preceding text many examples
of this "synergy" between integrins and growth factor receptors
were discussed. These examples support a general model in
which integrins modulate the relative levels of substrate avail-
able for growth factor receptor-activated pathways.

One example of this is the ability of integrins to induce the
formation of focal adhesions. Focal adhesions contain many
growth factor receptor substrates (e.g. src, PLCy, PI 3-kinase,
FAK) in addition to some growth factor receptors. Integrin-
induced formation of these focal adhesion "signaling com-
plexes" would function to increase the local concentration of
these molecules, thereby facilitating their interactions after
growth factor stimulation. This might explain the observa-
tion that in many cases both integrins and growth factor
receptors can activate the same effector molecule (e.g. Rho,
FAK, PI 3-Kinase), observations that are somewhat disturb-
ing given that normal cells require both types of signals to
proliferate. Possibly, formation of these signaling complexes,
in the absence of growth factors, may be sufficient to activate
some of these effector molecules. One prediction of this
model would be that in the absence of integrin signaling,
growth factors would still be active but not as effective.

A second mechanism that illustrates the ability of integrins
to regulate the relative levels of substrate involved in growth
factor-activated pathways is shown in Fig. 5. In this example,
integrins regulate the amount of the phospholipid PIP2 avail-

able to the growth factor receptor-activated PLCy. Hydro-
lysis of PIP2, by PLCy, then activates downstream events that
are part of the growth-factor receptor signal transduction
pathway. One prediction of this model is that regulation of
PIP2 levels, independent of integrin signaling, would induce
anchorage-independent growth. The ability of integrins to
regulate the metabolism of other lipids may also be related
to this mechanism.

Knowledge of the integrin-mediated regulation of cell
growth and cell survival may facilitate our understanding of
many key aspects of development and physiology. Indeed,
integrin-mediated cell survival appears to play a major role
in the coordination of events during organ regression (31)
and may be involved in tube morphogenesis during devel-
opment (197). In addition, integrin-mediated cell prolifera-
tion in lymphocytes may regulate inflammatory responses.
The elucidation of integrin-mediated signal transduction
pathways should provide insights into the regulation of
these phenomena.
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