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Inflammation plays an essential role in the control of pathogens and in shaping the ensuing adaptive immune responses.
Traditionally, innate immunity has been described as a rapid response triggered through generic and nonspecific means that by
definition lacks the ability to remember. Recently, it has become clear that some innate immune cells are epigenetically
reprogrammed or “imprinted” by past experiences. These “trained” innate immune cells display altered inflammatory responses
upon subsequent pathogen encounter. Remembrance of past pathogen encounters has classically been attributed to cohorts of
antigen-specific memory T and B cells following the resolution of infection. During recall responses, memory T and B cells
quickly respond by proliferating, producing effector cytokines, and performing various effector functions. An often-overlooked
effector function of memory CD4 and CD8 T cells is the promotion of an inflammatory milieu at the initial site of infection that
mirrors the primary encounter. This memory-conditioned inflammatory response, in conjunction with other secondary effector
T cell functions, results in better control and more rapid resolution of both infection and the associated tissue pathology. Recent
advancements in our understanding of inflammatory triggers, imprinting of the innate immune responses, and the role of T cell
memory in regulating inflammation are discussed.

1. Introduction

Advances on several research fronts have significantly
broadened our understanding of the triggers and modulators
of inflammation. Of importance to this review, we now
appreciate that at sites of infection, adaptive immune
memory cells regulate innate inflammatory responses that
contribute to the control of pathogens. Herein, potential
means to modulate inflammation for the optimal generation
of protective immunity through vaccination are discussed.

The ultimate goal of vaccination is to stimulate the gener-
ation of long-lived protective immunity without causing
adverse clinical symptoms. Traditional vaccination strategies
employing inactivated or attenuated pathogens or pathogen-
derived protein antigens primarily target the generation of
neutralizing antibody responses from B cells that act to
prevent infection upon pathogen reencounter [1]. These

regimes have been remarkably effective at mitigating the
morbidity and mortality of a number of infectious diseases
in vaccinated populations and most notably have led to the
complete eradication of smallpox [2]. However, intracellular
pathogens like influenza viruses (IAV) [3], human immuno-
deficiency virus (HIV) [4], and Mycobacterium tuberculosis
[5, 6] have yet to be effectively controlled by neutralizing
antibody-based vaccine approaches. Such pathogens either
rapidly mutate external proteins that are targets for antibody
or are not likely seen by antibody and are more effectively
controlled by cell-mediated immune responses. The genera-
tion of protective T cell-mediated immunity through vacci-
nation is appealing for pathogens like IAV that undergo
antigenic shifts to evade neutralizing antibody given that T
cells can recognize antigenic targets that are more conserved
between strains. T cell-based vaccines against IAV may thus
have the benefit of mediating universal protection against
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unforeseen and emergent pandemic strains of the virus [7],
and they may potentially also eliminate the need for annual
IAV vaccine reformulation. Inflammatory enhancing adju-
vants have the potential to boost the efficacy of novel neu-
tralizing antibody-based and T cell-based vaccines [8–11].
In order for such adjuvanated T cell-based vaccines to be effi-
cacious and safe, they will need to target the induction of
both pathogen-specific inflammation and adaptive immunity
at relevant sites of infection.

2. There: The Regulation of Innate
Inflammatory Responses by Pathogen

When a pathogen breaches the initial barriers of the skin or a
mucosal surface, both soluble and cellular innate defense
mechanisms are encountered and an inflammatory response
is rapidly initiated. Some of the most potent soluble antimi-
crobial factors encountered include complement, lysozymes,
defensins, mucins, lectins, cathelicidins, and lipocalins [12–
15]. Several of these soluble antimicrobial mediators, such
as activated complement components and lipocalin-2, are
pluripotent, and in addition to performing antimicrobial
functions, they amplify the inflammatory response triggered
in resident sentinel immune cells upon pathogen sensing
[13, 16, 17]. Within minutes to hours of detection of alarm
signals, a “heightened alert” inflammatory transcriptional
program ensues in sentinel innate immune cells, which
include tissue-resident macrophages and dendritic cells.
The result of this program is the generation of an antipatho-
gen state and the production of a myriad of inflammatory
cytokines, chemokines, biogenic amines, and eicosanoids
[18] that induce a similar state in neighboring tissue cells.

Soluble inflammatory chemokines [19] and activated com-
plement [20, 21] produced in response to pathogen sensing
contribute to the attraction of additional innate immune cells
such as neutrophils, NK cells, and monocytes to the site of
infection [19, 22]. The recruited inflammatory cells encircle
the damaged or infected cells and release more proinflamma-
tory cytokines including tumor necrosis factor (TNF), IL-6,
IL-12, and type I and II interferons (IFNs). Neutrophils also
release DNA nets to trap free extracellular pathogens [23, 24],
and NK cells attempt to lyse infected host cells through cyto-
toxic means [25, 26]. The innate inflammatory cytokine and
cellular swarm attempts to contain the pathogen until highly
specific, activated cells of the adaptive immune response are
recruited to ultimately clear the infection [27]. If coordinated
recruitment of innate and adaptive immunity fails to effectively
control the pathogen, clinical disease will ensue. A major chal-
lenge for vaccine design is tomimic this inflammatory environ-
ment, which is needed to stimulate the generation of effective
and robust immunity, without causing the immunopathology
and tissue damage associated with clinical infection.

2.1. Pathogen Sensing. In order for the inflammatory events
discussed above to occur, pathogens must be detected in
compromised tissues. Many different subsets of classic den-
dritic cells, plasmacytoid dendritic cells, and macrophages
[28, 29] are distributed throughout tissues in a network that
facilitates immediate detection of both invading pathogens

and the associated tissue damage [30, 31]. These sentinel
innate cells sense pathogens and pathogen-associated tissue
damage in a generic way through multiple distinct pathways
[32]. They employ germ-line encoded pattern recognition
receptors (PRRs) that recognize pathogen-associated molec-
ular pattern (PAMPs) [32] and damage-associated molecular
pathogens (DAMP) [33, 34] to detect changes in their
environment [35, 36]. Recognition of pathogen-derived
products such as lipopolysaccharide (LPS) by Toll-like recep-
tors (TLR) 1, 2, and 4; flaggelin by TLR5; single stranded (ss)
by TLRs 7 and 8; double-stranded (ds) RNA by TLR 3; and
CpG DNA by TLR9 occurs either at the surface of the cell
or within endoplasmic vesicles [37]. Host cell-derived danger
signals or alarmins such as heat shock proteins, uric acid
crystals, high-mobility group box 1, S100 proteins, serum
amyloid A, and products of purine metabolism released from
damaged or stressed cells are sensed by DAMP receptors
such as RAGE, TLRs, and purinergic receptors [38, 39].
Recognition of PAMPs and DAMPs triggers the activation
of signaling pathways that ultimately leads to the expression
of the transcription factors NF-κb, AP-1, and interferon
regulatory factors (IRFs) [32, 40, 41]. These transcription
factors control the expression of hundreds of immune
defense response genes [18, 40, 42]. An attractive means to
both tailor and enhance the generation of vaccine-induced
immunity is through the use of adjuvants that selectively
trigger PRR and DAMP receptors. Such adjuvants are cur-
rently being explored to improve the generation of adaptive
immune responses to inactivated pathogen and protein-
based vaccines [8–11].

Advancements in our knowledge of intracellular sensors
of pathogens and host-derived stress products have revealed
novel targets to modulate and improve vaccine efficacy
[43, 44]. A number of intracellular sensors, including the
nucleotide-binding-domain and leucine-rich-repeat- (NLR-)
containing proteins [45, 46] and the AIM-like-receptor
(ALR) proteins [47], trigger the inflammasome pathway.
The activation of the inflammasome complex and the
activation of caspase-1 enzymatic activity are best known
for triggering maturation of the proforms of the cytokines
IL-1 and IL-18 [48]. However, alternative outcomes such
as phagosome maturation, autophagy, glycolysis, lipid
metabolism, and oxidation of arachidonic acid to generate
eicosanoid signaling molecules, as well as inflammatory
pyroptotic cell death, can also be triggered [44]. IL-1 and
IL-18, in their mature forms, are potent proinflammatory
cytokines [49]. The importance of the inflammasome-
sensing pathway and the production of IL-1 and IL-18 to
effective pathogen defense is highlighted by the fact that
many infectious organisms, such as viruses, that gain access
to the cytosol encode proteins that attempt to evade detection
by intracellular sensors [50].

Intracellular sensors interact with adaptor proteins
such as apoptosis-associated speck-like protein containing
a C-terminal caspase activation and recruitment domain
(ASC) [51] to trigger the activation of the proteolytic func-
tions of the caspase-1 enzyme. Triggers of caspase enzymatic
activity are extensively reviewed elsewhere [44, 46, 52]. The
discovery of noncanonical activation pathways involving
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caspases other than caspase-1 [44, 53], as well as the ability
of the type I IFN, a pro- and anti-inflammatory cytokine
[54], to both prime cells for cytosolic sensing [44] and
inhibit NLR signaling [55] emphasizes the need to more
fully understand the workings of the inflammasome com-
plex before targeted modulators [56] can be employed to
enhance the generation of vaccine-induced memory CD4
and CD8 T cell immune responses.

2.2. Inflammatory “Rheostats.” Under normal circumstances,
inhibitory “innate immune rheostats” act to prevent unnec-
essary inflammation at barrier surfaces [57, 58]. Inflamma-
tory responses in tissues are tempered in many ways via
recognition of soluble as well as cell surface ligands. This
includes the blockade of activating DAMP receptor signaling
by tissue-derived factors such as surfactant proteins and
mucins [59–62]. Inhibitory DAMP receptor and inhibitory
cytosolic receptor triggering by host-derived ligands such
as DNA is an additional example of how inflammatory
responses are kept in check [63–65]. Ligation of cell sur-
face receptors on monocytes and dendritic cells, such as
CD200R by CD200 ligand, that trigger dampening signals
[66] is yet an additional means by which inflammation is
regulated. Lastly, suppression of NF-κb activation by the
release of mitochondrial H2O2 in lung APC [67] and the
production of the anti-inflammatory cytokines IL-10 and
TGF-beta by both regulatory T cells and tissue cells [68–70]
mitigate inflammatory responses. The potent efficiency of
IL-10 and TGB-beta in counterregulating inflammatory
cytokine production as well as in inhibiting both costimula-
tory and major histocompatibility complex (MHC) molecule
expression on antigen-presenting cells (APCs) likely explains
why many pathogenic viruses encode homologues of inhibi-
tory cytokines and inhibitory ligands to evade the innate
immune response. Expression of IL-10 by Epstein-Barr virus
(EBV) [71] and expression of the inhibitory ligand CD200 by
cytomegalovirus (CVM) [72] are prime examples.

Safely overcoming these “rheostats” by targeted blockade
of inhibitory molecules or by employing novel adjuvant
formulations that facilitate the generation of protective local
immunity through vaccination without causing damaging
adverse effects is of paramount importance [73–75]. Indeed,
the generation of overzealous inflammatory responses fol-
lowing pathogen or adjuvant stimulation has the potential
to cause severe inflammatory disease [34, 76]. Individuals
who possess well-characterized genetic polymorphisms in
numerous inflammatory mediators and signaling molecules,
such as those associated with chronic inflammatory diseases
like psoriasis, ulcerative colitis, and Crohn’s disease [77],
are at increased risk for developing undesired inflamma-
tory complications following vaccination. In addition to
genetic predispositions, environmental factors, such as
the microbiome, may also play a role in setting the inflamma-
tory “rheostat” at mucosal surfaces [78–82]. Interestingly,
individual-specific microbiota signatures have been shown
to impact both disease susceptibility and severity via either
innate or adaptive immune pathways [83].

The control of immune response gene expression by long
noncoding (lnc) RNAs [84] is another recently described

homeostatic mechanism that could be targeted to improve
vaccine efficacy as well as for therapeutic control of inflam-
mation. Depending on the cell type involved, binding of
specific lnc RNAs to regulatory regions of immune response
genes and the subsequent control of nucleosome positioning
can either promote or actively repress inflammatory gene
expression [85]. A number of long noncoding RNAs are
dysregulated during viral infection [86, 87], and changes in
their expression are being assessed for use as biomarkers of
disease severity [88]. The control of inflammatory responses
by noncoding RNAs could have an exciting future in tailor-
ing host inflammatory responses.

In addition to the homeostatic mechanisms and negative
feedback loops discussed above, which preserve vital functions
of organs such as the lung and intestine, the timing of vaccina-
tion administration may also need to be taken into account.
Patterns of expression of proteins such as IL-6, inflammatory
monocyte chemokine ligand (CCL2), as well as Toll-like recep-
tor (TLR) 9, which are regulated by circadian clock proteins
[89], may explainwhymorning vaccine administration appears
more effective than afternoon administration at inducing spe-
cific antibody in older adults [90]. Differences in the magnitude
of inflammatory responses across seasons may also influence
the efficacy of vaccination. A recent study found that the mag-
nitude of the inflammatory cytokine response detected follow-
ing stimulation of monocytes with different pathogen-derived
products, including those from influenza A virus, differs in dif-
ferent seasons [91]. In the individuals studied, inflammatory
cytokine responses were maximal during the summer months
of June and July and weakest in winter months [91]. The
authors speculate that the tendency to produce reduced levels
of inflammatory cytokines such as IL-1, TNF, and IL-6 during
the winter may impact an individual’s susceptibility to
pathogens such as influenza A during the flu season. How the
efficiency of vaccination is affected by the seasonal changes
warrants further investigation.

3. Inflammation and the Generation of
Adaptive Immune Responses

To successfully generate protective immunity through vacci-
nation, antigen-specific T cells must interact with activated
APC displaying cognate antigen in the context of MHC. Such
interactions result in the receipt of signal 1, the specific anti-
gen, and signal 2, the costimulatory molecule-dependent sig-
nals, required for full T cell activation. Recognition of
inflammatory cytokines by their corresponding cytokine
receptors constitutes signal 3 that can amplify proliferation
as well as effector functions in activated cells.

Foreign antigens introduced by vaccination must reach
the secondary lymphoid organs in order for T cell activation
to occur. Antigen is delivered to draining lymph nodes via
the lymph in particulate form or within migrating tissue-
resident antigen-presenting cells that have egressed from
the inflammatory site [92]. Particulate antigens in the lymph
are captured by specialized APCs that are strategically poised
in the draining lymph nodes [93]. Larger-sized antigens are
captured by lymph node dendritic cells that reside within
the lymphatic sinus endothelium [93] or by subcapsular
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sinus macrophages [94, 95]. Smaller-sized antigens are trans-
ferred to lymph node follicle dendritic cells and B cells via a
conduit system [96]. Once engulfed and processed, anti-
gens are presented by antigen-presenting macrophages,
dendritic cells, and/or B cells to naïve CD4 and CD8 T
cells on MHC class II and class I molecules, respectively.
Antigens that gain access to the circulation are delivered
to the spleen via the blood and are detected in a similar
fashion by the APCs that reside there.

Exposure to and engulfment of pathogen-derived prod-
ucts at the site of vaccination or infection activates APCs
and triggers their production of inflammatory cytokines.
Cohorts of APC, once activated, will begin to migrate
towards lymphoid organ chemokines CCL19 and CCL21
in a CCR7-dependent fashion [97, 98]. Egress of tissue-
resident APC from sites of infection is a rapid event, and
migratory subsets can be detected in lymphoid organs within
14 to 24 hrs of antigen administration [99, 100]. Both tissue-
resident dendritic cells and macrophages display migratory
behavior upon activation [29, 101–103]. Interestingly,
following infection with respiratory viruses such as influenza
A virus, one APC subset, alveolar macrophages, becomes
undetectable in the infected lung tissue until recruited mono-
cytes are able reestablish the population [104]. It remains
unclear, however, whether the inability to detect alveolar
macrophages following influenza is the result of their com-
plete egress out of the tissue, a switch in their surface marker
phenotype in response to the inflammatory milieu, or
because of their elimination by the viral infection [29, 102].

The lifespan of activated tissue-migratory APCs within
draining lymph nodes, especially the dendritic cell subset, is
relatively short [105], and optimal antigen presentation by
such cells occurs within 24hrs of tissue egress [99, 100]. In
addition to functioning as APCs within the T cell zones [101,
106], migratory dendritic cells can also act as “cargo carriers”
that deliver engulfed antigen to APC resident in lymphoid
organs [107, 108].Whether migratory or lymph node resident,
APCs once activated express increased levels of MHC I and II
molecules, as well as increased expression of costimulatory
molecules, such as CD40, CD70, CD80, and CD86 [28]. Acti-
vated APCs also produce numerous proinflammatory cyto-
kines including IL-12, IL-6, and type I IFN for the
plasmacytoid dendritic cell subset [28]. The inflammatory
mediators that these highly activated APCs produce and the
surface costimulatory molecules that they express play a key
role in shaping the ensuing adaptive immune response [109,
110]. Vaccine strategies that specifically target pathogen-
derived antigens to APCs in vivo [111], that employ antigen-
loaded dendritic cells themselves as the vaccine vehicles
[112], or that additionally trigger specific PRR receptors to
direct T cell polarization are actively being explored as means
to amplify the generation of effective T cell responses [8–10].
Such strategies are of particular interest for vaccination
regimes for the elderly and cancer patients where the genera-
tion of effective immunity is challenging because of their com-
promised or suppressed immune states [112, 113].

3.1. And Back Again: The Regulation of Early Innate
Inflammatory Responses by Memory T Cells. Following an

acute infection or vaccination, the activation and expansion
of naïve pathogen-specific T cells and the generation of effec-
tor cells generally occur within 7 days. Under normal circum-
stances, the majority of expanded effector cells that migrate
to sites of infection or antigen administration undergo con-
traction following subsequent pathogen or antigen clearance.
A small cohort of the expanded effectors will, however,
survive to memory [114]. These antigen-specific memory
cells, which exist at a frequency higher than that found in
the naïve state [115], mediate potent immunological pro-
tection upon secondary pathogen encounter.

Some antigen-specific memory T cells possess the ability
to migrate throughout the body and are readily detected
within tissues [116, 117]. This migration pattern is mark-
edly different from that of naïve T cells, which only cir-
culate through the blood and secondary lymphoid tissues
[118, 119]. When compared to naïve T cells, memory T cells
also have increased cytokine-producing potential [120, 121].
One subset of memory T cells, the tissue-resident memory T
cell subset that does not circulate, is found exclusively within
the tissues and may be strategically poised and specialized
to perform sentinel functions [122–125]. Targeting the
generation of tissue-resident memory T cells, especially
for pathogens that infect mucosal tissues, is thus an attrac-
tive means to improve the efficacy of vaccines against
pathogens that are not effectively controlled by traditional
antibody-based approaches.

In addition to rapidly producing cytokines upon recogni-
tion of cognate antigen, memory T cells perform many other
effector functions to protect the host against infection [126].
These functions are, for the most part, recalled independently
of most costimulatory molecules [127]. This is one major way
in which memory cells are distinct from naïve T cells that are
dependent upon costimulatory signals for their full activa-
tion. For CD4 T cells, the best-known effector role is the
provision of help for antigen-specific B [128] and cytotoxic
CD8 T cell responses as reviewed elsewhere [126, 129, 130].
A novel effector role of memory T cells that is becoming
more appreciated is the regulation of innate immune
responses at sites of infection [126]. Of importance to this
discussion, memory T cells mediate rapid production of
effector cytokines akin to the responses elicited from
innate immune cells upon cognate encounter with specific
pathogen-derived antigen. Memory T cells thus have the
potential to act as powerful antigen-specific sentinels that
are able to initiate rapid inflammatory responses against
pathogens [122, 131–133]. In fact, our studies in an influenza
model showed that memory T cell-mediated inflammatory
responses are induced faster, are bigger, and are better at
containing virus than innate responses in naïve IAV-
infected animals that are triggered through PRR-dependent
mechanisms [133] (Figure 1).

Both memory CD4 [132, 133] and CD8 [131, 134, 135]
T cells have the capacity to regulate and enhance the gener-
ation of early innate inflammatory responses within tissues
upon cognate recognition of antigen. The antigen-specific
regulation of inflammatory responses provides an addi-
tional means by which the immune response can generate
alarm signals during infections with pathogens that possess
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means to evade detection by the innate immune-sensing
mechanisms discussed earlier [136]. It also provides a
means whereby experienced memory cells can modulate
the effector functions of the ensuing adaptive response of
expanded secondary effector T cells that arise from resting
memory T cell precursors during recall [137].

For memory CD4 T cells, enhanced inflammatory
responses are initiated in the lung following IAV infection
independently of the classic PRR signaling molecules
MYD88 and TRIF [133]. Memory CD4 T cell-regulated
enhanced inflammatory responses can also be initiated in
the absence of infection. Indeed, the intranasal administra-
tion of cognate peptide antigen in the absence of any
adjuvants or the administration of endotoxin-free protein
that contains the epitope for which the cells are specific leads
to the generation of potent early innate inflammatory
responses [133]. This suggests that even though CD4 T cells
themselves can express PRRs and produce inflammatory
cytokines following PAMP recognition [138, 139], such
PRR triggering is not required for the mediation of memory
CD4 T cell sentinel functions [133].

The ability of memory CD4 T cells to induce inflamma-
tory responses upon pathogen detection is also independent
of their production of the classic proinflammatory cytokines
TNF and IFN-γ and does not require the receipt of CD80,
CD86, and CD40 costimulatory molecule signals [133]. That
memory cells do not depend on signal 2 to perform sentinel
functions within the lung is in fitting with the observation
that the activation and early recall of memory CD4 T cells

in vivo are not affected by blockade of the CD28 costimula-
tory pathway [140]. The sentinel capacity of memory CD4
T cells thus appears to be very different from the sentinel
functions of CD8 T cells, which are dependent upon TNF
[141], IFN-γ [142–144], GM-CSF [145], and potentially also
the receipt of costimulatory signals in vivo [146]. Similarities
and inherent differences in the priming and function of
memory CD4 and CD8 T cell responses are additional factors
that must be considered in the design of innovative vacci-
nation strategies that target the generation of protective
antigen-specific T cells.

Following secondary IAV infection, the earlier and more
robust inflammatory response induced by memory CD4 T
cells correlates with improved control of the virus in the lung
[133]. Our recent findings show that one innate inflamma-
tory cytokine involved in this response, IL-6, plays a central
role in maximizing the multicytokine-producing potential
of secondary CD4+ T effector cells that accumulate in the
lung at the peak of the recall response [137] (Figure 2).
In murine and human systems, multicytokine-producing
potential, or the ability to coproduce TNF, IL-2, and IFN-γ,
is associated with the ability of memory T cell responses to
protect against numerous viral, bacterial, and parasitic path-
ogens [120]. Multicytokine potential, as well as the ability to
mediate effector functions such as help and cytotoxicity,
correlates with superior protective capacity when secondary
effector cells (derived from memory precursors) are com-
pared on a per cell basis to primary effectors derived from
naïve T cells [121, 147, 148]. Innovative vaccines thus not
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only should target the induction of large numbers of memory
T cells but also should strive to generate cells that possess
optimal functional potential. Current research employing
high-dimensional mass cytometry that simultaneously mea-
sures over 40 parameters, including cell surface markers
and intracellular proteins, as well as RNA expression at
single-cell resolution [149], will further advance our under-
standing of strong correlates of protection in specific models
of infection. Such correlates will, in turn, help facilitate the
development of optimal vaccination strategies.

4. Training of the Innate Immune System

Another significant advance in our understanding of innate
immunity is the knowledge that cells of the innate immune sys-
tem are altered or “trained” by past experiences [150]. For the
majority of innate immune cells, such imprinting results in a
generic and nonspecific heightened inflammatory response that
increases host antimicrobial defenses upon secondary infection.
Responses by NK cells may be an exception to this as they have
been shown to display some elements of antigen-dependent
memory [151–153]. It should be noted, however, that trained
innate immune responses are functionally distinct from the
highly specific recall responses characteristic of adaptive
immune memory mediated by specialized subsets of CD4 and
CD8 T cells and of antibody-producing B cells.

It has been long been appreciated that organs such as the
lung remain in an altered state for an extended period of time

following infection or insult [154, 155]. The heightened
inflammatory state that exists following the resolution of
pathogen infection lasts for days, weeks, or even months
and can provide a degree of nonspecific protection to
unrelated pathogens. Examples of heightened protective
immunity induced by infection or vaccination are many
and are discussed in detail elsewhere [150, 156, 157]. A prime
example is the ability of BCG vaccination, in mice as well as
in humans, to increase resistance against a number of
different pathogens [157–160]. Priming of innate immune
cells resulting in increased nonspecific pathogen protection
can also be caused by viral pathogens [161, 162] and even
exposure to pathogen-derived molecular patterns [163–166].

The protection afforded by “imprinted” innate immunity
is associated with the presence of increased numbers of
activated macrophages [150, 156], dendritic cells [167], and
other innate immune cells within the tissues that are
characterized as being in a heightened antimicrobial state
[150, 156]. In animal models, this nonspecific protection is
transferrable to naïve hosts by the adoptive transfer of
“trained” macrophages, and, notably, the transfer of protec-
tion does not require the presence of T cells [165, 168].
Recent studies have shown that this “imprinted” state is
maintained by long-term translational and epigenetic
changes within the “trained” monocytes and macrophages
[165, 169, 170]. Signals generated through recognition of
the microbiota that ultimately lead to the production
of the inflammatory cytokine GM-CSF, which also has
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colony-stimulating functions, is just one example of how
heightened inflammatory “rheostats” can be established
within mucosal tissues [171]. How conditioning of innate
immune cells by the microbiota and infectious pathogens in
human tissues influences the ability to generate protective
immune responses following vaccination remains to be
determined. However, some groups have begun to establish
models using primary human monocytes to shed preclinical
insight on the ability of pathogen-derived products to
“imprint” human APC in vitro [172].

Pathogen-associated encounters may not be the only
events capable of training innate immune cells. The engulf-
ment of apoptotic host cells in the absence of infection has
traditionally been considered an immunologically neutral
event that fails to generate DAMP signals [33]. Recent
observations, however, show that even this steady-state
process can imprint macrophages for heightened inflamma-
tory responses that mediate nonspecific resistance to micro-
bial infection [173]. These and other findings in a murine
model [174] suggest that most if not all tissue-resident
macrophages become experienced during development by
normal cellular turnover processes that educate them for
future pathogen encounter.

The altered inflammatory state that exists following the
resolution of infection can also have alternative and unde-
sired outcomes. For example, conditioning of innate immune
cells by prior infection can result in increased susceptibility to
secondary infection [175]. Increased susceptibility to second-
ary bacterial infection occurs following many respiratory
virus infections [176] and contributes markedly to the
morbidity and mortality of disease [177]. Mechanisms
underlying increased susceptibility to secondary infection
are many and include deficiencies in bacterial scavenging
receptors such as MARCO on macrophages [178], as well
as the depletion of tissue-resident APC populations during
primary infection [104]. Increased production of inflamma-
tory dampening cytokines IL-10 and TGF-beta [179, 180]
and attenuation of protective host defenses through dimin-
ished production of IL-1b [181], IL-27 [182], and antimi-
crobial peptides [181] can also contribute to increased
susceptibility. Increased expression of inflammatory damp-
ening receptors such as CD200R [66, 155] and differences
in the chemotaxis, survival, phagocytic, and respiratory burst
functions of neutrophils [183–185] may also lead to an
inability of the innate immune system to contain and control
secondary microbial threats following respiratory viral infec-
tion. In addition to regulating early inflammatory responses
that facilitate pathogen control, vaccine-induced T cell
immunity may also be able to prevent these deficiencies in
innate immunity as experimental evidence suggests that
susceptibility to secondary bacterial infections is mitigated
in primed animals in models of IAV infection [186].

4.1. And Back Yet Again: Heterologous Infection, Memory T
Cells, and Inflammation. While highly specific in nature,
the adaptive immune response can also alter the outcome
of infections with seemingly unrelated pathogens. This
phenomenon, which has been termed heterologous immu-
nity [187], is mediated by cross-reactive T cells with T cell

receptors that have the potential to recognize more than one
peptide-MHC complex. Heterologous immunity is long-
lasting and much like “innate imprinting” it can be either ben-
eficial or detrimental. For instance, in animal models of lym-
phocytic choriomeningitis virus (LCMV), cytomegalovirus
(CMV), or IAV infection, prior virus-specific immunity has
a beneficial impact on the outcome of subsequent vaccinia
virus infection and results in improved viral clearance [188].
However, in the reverse scenario, prior IAV-specific immunity
can increase the immunopathology of respiratory LCMV and
murine CMV infection. Preexisting, heterologous immunity
has been shown to alter protective T cell immunodominance
hierarchies induced by primary infection. It is argued that
the presence of cross-reactive T cells narrows the virus-
specific T cell repertoire and drives the selection of viruses able
to escape adaptive immunity. Conversely, the recall of cross-
reactive memory T cells can also result in protective immune
responses. Given the capacity of memory T cells to regulate
inflammation [133, 135], beneficial heterologous immunity
in the latter scenario likely also involves well-guided innate
inflammatory responses that contribute to the initial control
of pathogens. One can thus infer from these studies that the
severity of disease is impacted not only by the past history of
infections but also by the sequence of such infections. These
observations have important implications for the design and
timing of the delivery of vaccines [189].

5. Summary

Understanding of the impact of prior pathogen encounter on
both innate and adaptive immunity is imperative for the
design of innovative vaccination regimes. Exciting develop-
ments in the field of macrophage and monocyte biology are
changing the way memory is typically perceived in innate
immune cells. The “training” of innate immunity must be
further investigated in order to effectively implement these
insights into improved vaccines that are better able to
promote durable memory states. In addition, traditional par-
adigms of innate instruction of adaptive immunity must now
appreciate that memory T cells regulate both the nature and
shape of innate inflammatory responses through antigen-
specific means. Furthermore, memory-regulated inflamma-
tory responses can impact the development and functional
potential of secondary effector T cells. Every infection, com-
mensal interaction, and immunogenic vaccine thus has the
potential to change the host tissue microenvironment as well
as the adaptive immune T cell repertoire. Such changes can
impart lasting immunological consequences that are able to
influence subsequent responses to infection both positively
and negatively.
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