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Abstract

The immediate molecular mechanisms behind invasive melanoma are poorly understood. Recent studies implicate
microRNAs (miRNAs) as important agents in melanoma and other cancers. To investigate the role of miRNAs in melanoma,
we subjected human melanoma cell lines to miRNA expression profiling, and report a range of variations in several miRNAs.
Specifically, compared with expression levels in melanocytes, levels of miR-211 were consistently reduced in all eight non-
pigmented melanoma cell lines we examined; they were also reduced in 21 out of 30 distinct melanoma samples from
patients, classified as primary in situ, regional metastatic, distant metastatic, and nodal metastatic. The levels of several
predicted target mRNAs of miR-211 were reduced in melanoma cell lines that ectopically expressed miR-211. In vivo target
cleavage assays confirmed one such target mRNA encoded by KCNMA1. Mutating the miR-211 binding site seed sequences
at the KCNMA1 39-UTR abolished target cleavage. KCNMA1 mRNA and protein expression levels varied inversely with miR-
211 levels. Two different melanoma cell lines ectopically expressing miR-211 exhibited significant growth inhibition and
reduced invasiveness compared with the respective parental melanoma cell lines. An shRNA against KCNMA1 mRNA also
demonstrated similar effects on melanoma cells. miR-211 is encoded within the sixth intron of TRPM1, a candidate
suppressor of melanoma metastasis. The transcription factor MITF, important for melanocyte development and function, is
needed for high TRPM1 expression. MITF is also needed for miR-211 expression, suggesting that the tumor-suppressor
activities of MITF and/or TRPM1 may at least partially be due to miR-211’s negative post transcriptional effects on the
KCNMA1 transcript. Given previous reports of high KCNMA1 levels in metastasizing melanoma, prostate cancer and glioma,
our findings that miR-211 is a direct posttranscriptional regulator of KCNMA1 expression as well as the dependence of this
miRNA’s expression on MITF activity, establishes miR-211 as an important regulatory agent in human melanoma.
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Introduction

Melanoma, a cancer of the pigment-producing cells in the skin

epidermis, can be highly metastatic, and malignant melanomas are

relatively resistant to standard chemotherapy [1]. A major cause for

melanoma initiation is extensive or intermittent exposure to the sun’s

radiation over a period of time, and the extent of melanin

pigmentation is an important risk factor [2]. The exact molecular

mechanisms that lead to melanoma are complex and poorly

understood [3–6], and may involve both mutagenic DNA lesions

and epigenetic misregulation [7–11]. The complexity is added by the

involvement of several different signal transduction pathways, such

as the Hedgehog pathway, which controls BCL2-mediated apoptosis;

mutations in the Patched gene, the endpoint of the Hedgehog pathway,

have been correlated with skin cancers [3,12–15]. A frequent

causative mechanism for an inherited form of predisposition to

melanoma is thought to be a chromosomal deletion over 9p21. The

9p21 site harbors the tumor suppressor gene INK4a and

accompanies additional inactivating mutations that lead to the

constitutive activation of genes such as BRAF [16,17]. INK4a

encodes one of several cyclin-dependent protein kinase inhibitors,

which is located adjacent to an alternate reading frame of the human

p14ARF. P14ARF binds to the Mdm2 protein in several cell lines

(though remains untested in melanoma cell lines, to our knowledge)

and thereby abrogates Mdm2’s binding to p53, causing p53 to be

stabilized and nuclear localized. The loss of INK4a therefore may

lead to interference of two separate pathways of cell cycle control:

CDK signaling and suppression of p53 activity by Mdm2-induced

acceleration of p53 degradation. Methylation near the 59 upstream

region of INK4a has been shown in some 10% of melanomas [7],

suggesting that epigenetic down-regulation of this gene may be

important for melanoma development. The activation of BRAF

alone may be insufficient to cause metastatic melanoma, but

additional mutagenic or epigenetic events such as the inactivation

of tumor suppressor genes, e.g., Pten [18], may be important. There

is evidence that the NOTCH signalling pathway is important for

distinguishing normal melanocytes from melanoma cells [19,20].

Measurement of genome-wide DNA copy number variations,
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together with analysis of somatic mutations in specific marker genes,

can be used to distinguish among different melanoma subtypes with

reasonable accuracy [21]. Particularly noteworthy is the recent

demonstration of abnormally high oncogenic potentials of single

melanoma cells [22], emphasizing the need for better understanding

the molecular mechanisms of melanoma progression.

Attention has recently focused on the role of small non-coding

RNA molecules in cancer development [23–27] and in melanoma

in particular [28–32]. miRNAs influence cancer development by

serving either as tumor suppressors or oncogenes [33–39] by their

negative regulatory effects on mRNA encoded by oncogenes or

tumor suppressor genes, respectively. With the goal of defining the

genes with major contributions to melanoma, several genome-

wide expression level studies have identified a number of protein-

coding [40] and microRNA (miRNA) genes as important players

[32,41–43]. Several of these genes and their expression signatures

exhibit distinct patterns among malignant metastatic melanomas

and their benign forms, but their significance with respect to

melanoma initiation and progression is poorly understood. For

example, miR-221/222 were found to down-regulate p27Kip1/

CDKN1B and the c-KIT receptor, which controls the progression

of neoplasia leading to enhanced proliferation and reduced

differentiation in melanoma cells [42]. Similarly, high miR-137

expression in melanoma cell lines down-regulates microphthalma

associated transcription factor (MITF), a transcription factor

important for melanocyte cell growth, maturation, apoptosis,

and pigmentation [32]. The depletion of miR-182 reduces

invasiveness and induces melanoma cell death by suppressing

the expression of transcription factors FOXO3 and MITF [43],

suggesting that its increased expression may be associated with

certain aspects of melanoma biology. Relatively less is known

about the downstream genes that are regulated by MITF and

FOXO3, which are evidently important for melanoma progres-

sion and metastasis.

In contrast to miRNAs that are over-expressed in melanoma,

and their respective target genes that are thus under-expressed,

relatively little is known about miRNA species that are

systematically depleted in melanomas. Consequently, their respec-

tive target genes, expected to be up-regulated, which might explain

some of the oncogenic potentials of invasive melanomas, are

largely unrecognized. Realizing this gap in knowledge, we

examined the expression levels of human miRNAs in defined

melanoma cell lines and clinical melanoma samples. We report

here the reduced expression of miR-211 in these cell lines and

clinical isolates of human melanomas, and present evidence that a

principal effect of the reduced expression of miR-211 is the

increased expression of its target transcript KCNMA1. The

expression of KCNMA1, encoding a calcium ion-regulated

potassium channel protein, appears to at least partially account

for the high cell proliferation rate and invasiveness of melanoma

cell lines. We also demonstrate that MITF expression is important

for the coordinate expression of miR-211, and TRPM1. TRPM1

gene is a suppressor of melanoma metastasis, which encodes a

transient receptor potential family member calcium channel

protein, and encodes miR-211 gene in its sixth intron. Here, we

propose a model for the role of miR-211 and its regulation in

melanoma cells.

Results

miR-211 is expressed at a low level in non-pigmented
melanoma cell lines
As the first step in identifying down-regulated miRNAs in

human melanoma, we identified significantly differentially ex-

pressed miRNA species in the melanoma cell line WM1552C

(originally established from a stage 3 skin melanoma of a 72-year-

old patient) compared to those in the normal melanocyte cell line

HEM-l by hybridization of total RNA samples to miRNA probe

arrays (see Methods). Figure 1 lists 24 statistically significant

differentially expressed miRNAs, classified into three groups

according to their significance levels (P,0.01, 0.02, and 0.05,

respectively). To address whether the differential miRNA

expression levels observed with WM1552C varied among other

established melanoma cell lines, we performed quantitative reverse

transcriptase mediated polymerase chain reaction (qRT-PCR)

analysis on RNA isolated from WM1552C and seven additional

non-pigmented melanoma cell lines (see Methods) (Figure 2A),

addressing the expression levels of three separate microRNAs:

miR-let7a, miR-let7g, which were over-expressed, and miR-211

was down-regulated. Northern blot analysis further confirmed

these results (Figure 2B). This consistency provided the opportu-

nity to address the significance of the reduced level of miR-211 in

melanoma. In the following sections we focus on miR-211 and its

target genes as a model of the role of miRNAs that are down-

regulated in melanoma, with the aim of determining the role of

their target genes that are thus up-regulated in melanoma. miR-

211 showed the most robust and consistent changes in expression

levels between melanocytes and non-pigmented melanoma cell

lines. Results reported in Figures 1 and 2 implicate several

additional miRNAs in melanoma; specific studies related to these

miRNAs are beyond the scope of this communication, and will be

reported elsewhere.

miR-211 levels in clinical melanoma samples
We assayed miR-211 transcript levels by qRT-PCR in 30

clinical melanoma samples (six primary, six regional, 12 nodal and

six distal metastatic, respectively; described in Table S1). miR-211

expression levels were reduced in 21 of these clinical samples

compared to that observed in melanocytes (Figure 3, Table S2). In

the remaining nine melanomas, six (one primary, one regional,

two distant, and two nodal metastatic melanomas) showed

statistically significant increases in miR-211 expression, whereas

expression was not significantly different in the remaining samples.

These samples were obtained from different patients; therefore,

the observed differences may reflect different processes in

melanoma development and progression, individual genetic

differences, different proportions of non-melanoma (including

non-pigmented) cells in the tumor samples, or a combination of

these factors. Since the exact proportions of cancer cells in the

frozen melanoma biopsy samples are not known, we are unable to

eliminate the ratio of melanoma to non-melanoma cells as a source

of the variation. Consequently, the determination of specificity and

accuracy of melanoma typing by miR-211 expression were not

addressed in this study. However, miR-211 levels were low in the

majority (21/30) of the tested melanoma clinical samples, a

statistically significant trend (P=0.029, for random distribution by

Fisher’s exact test) that is consistent with the uniformly low

expression levels in all eight melanoma-derived cell lines we

studied. Note that miR-211 expression levels were also observed to

be low in normal skin samples, which is expected given that

melanocytes constitute a minor fraction of skin cells. Additional

miRNAs that were over-expressed in melanoma cell lines relative

to those in melanocytes were also over-expressed in the clinical

melanoma samples but not in the normal skin samples (data not

shown), confirming that normal skin samples are not the ideal

background controls. Although there is no perfect ‘‘normal’’

counterpart tissue for melanoma in clinical skin samples, we have

tested miR-211 expression levels in additional melanocyte cell lines

miRNA-211 in Melanoma
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and in five independent isolates of normal skin samples. Results

show that miR-211 is elevated in both melanocyte cell lines

compared to normal human skin (Figure S1). miR-211 expression

levels in pooled samples of nevi also agree with previously

published results, supporting the observation that miR-211 is

highly expressed in nevi compared to melanoma [44]. These

observations are consistent with the understanding that nevi are

composed of melanocytes. Together, these results suggest that the

development of most melanomas is specifically associated with the

depletion of miR-211 transcript levels. An alternative formal

interpretation, which is unlikely considering the absence of

supporting literature, is that the low miR-211 level in melanoma

reflects a cellular origin of melanoma which is distinct from that of

melanocytes.

Stable ectopic expression of miR-211 in melanoma cell
lines depletes select target transcripts
Differential expression of miRNAs in melanoma may be

mechanistically related to melanoma development, or it may be

coincidental. If indeed the depleted miRNAs are biologically

relevant, melanoma cells should be enriched for their target

transcripts levels relative to their corresponding levels in

melanocytes. As the first step to identify such mRNA transcripts,

we hybridized cDNAs made from total RNA isolated from the

melanoma cell line WM1552C and the melanocyte line HEM-l to

Affymetrix expression arrays. We then filtered the hybridization

intensity data for differential expression of computationally

predicted target transcripts of miR-211 (Figure 4) (see Methods).

These experiments revealed 26 putative target transcripts whose

expression levels were elevated relative to those in HEM-l.

If the set of 26 genes indeed contains valid targets of miR-211,

their levels should be depleted if miR-211 levels were to increase in

any melanoma cell line. To directly examine this possibility, we

constructed three independent melanoma cell lines that stably

express miR-211. For that purpose, we transfected the pre-miR-

211 sequence (plasmid pcDNA4/miR-211) into WM1552C and

A375 cells, followed by selection for stable expression of miR-211

and confirmation of expression by qRT-PCR analysis (see

Methods). The melanoma cell line clones that ectopically

expressed miR-211 were named: WM1552C/211(400),

WM1552C/211(800) and A375/211 (see Methods for details).

We measured global mRNA levels in WM1552C/211(400) and

A375/211 cells on Affymetrix arrays and compared these levels

with the corresponding levels measured in the same experiment in

untransfected parental cell lines WM1552C and A375, respec-

tively. This analysis revealed a list of 18 putative target transcripts

for miR-211, which were down-regulated by the artificial

expression of miR-211 in both melanoma cell lines (Figure 5).

When cross-referenced with results reported in Figure 4, nine of

these putative target transcripts were found to be up-regulated in

both melanoma cell lines compared to those in melanocytes and

down-regulated in both melanoma cell lines when miR-211 was

stably expressed. These candidate targets of miR-211 are:

ATP2B1, CDH2, GLIS3, KCNMA1, MEIS2, NCAM-1, NF-AT5,

PRPF38B, and TCF12. Of these, the following seven genes were

previously implicated in cancer progression: ATP2B [45], CDH2

[19,46,47], GLIS3 [48], KCNMA1 [49–51], MEIS2 [52,53],

NCAM-1 [[54], and NF-AT5 [55]. Moreover, CDH2, KCNMA1,

NCAM-1, and NF-AT5 were previously shown to affect metastatic

migration and/or tissue invasion [19,46,47,51,54]. In particular

the expression of KCNMA1, which encodes a component of a K+

exporting channel whose function is modulated by Ca++, has been

linked to tumor cell proliferation in prostate cancer [49], cell

migration in glioma [56] and antineoplastic drug resistance in

Figure 1. Differentially expressed miRNA transcripts in the melanoma cell line WM1552C. Histograms of log2 of mean expression ratios of
miRNA levels in WM1552C to that in the untransformed melanocyte cell line HEM-l (control) are plotted as histograms. Asterisks indicate the
respective levels of statistical significance, indicated below the diagram.
doi:10.1371/journal.pone.0013779.g001
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melanoma cells [57]. The 39-UTR of the KCNMA1 transcript

also contains one of the strongest predicted target sites of miR-211.

Therefore we focused on this transcript for investigation.

KCNMA1 protein and transcript levels correlate inversely
with that of miR-211
If miR-211 targets the KCNMA1 transcript, KCNMA1 protein

expression levels should inversely correlate with that of miR-211

expression levels. A western blot analysis of KCNMA1 expression

was performed, utilizing the same cell lines previously examined

by northern blot (Figure 2B) for KCNMA1 transcript expression.

KCNMA1 protein expression was very low in normal melano-

cytes, but high in all melanoma cell lines (Figure 6A), indicating an

inverse correlation of expression between KCNMA1 protein and

miR-211.

We next investigated whether the induced expression of miR-

211 in melanoma cells can reduce KCNMA1 transcript levels.

qRT-PCR analyses comparing KCNMA1 expression in wild type

WM1552C with that in WM1552C/211(400) revealed that the

introduction of miR-211 down-regulates the KCNMA1 transcript

(Figure 6B). To further address whether KCNMA1 mRNA levels

reflected KCNMA1 protein expression, we performed a western

blot analysis looking for KCNMA1 in cell extracts obtained from:

1) WM1552C, 2) WM1552C/VO (WM1552C cells with a stably-

incorporated empty expression vector), 3) WM1552C/211(400), 4)

WM1552C/211(800), and 5) WM1552C/KC KO (WM1552C

cells with a stably-expressing shRNA against the KCNMA1 mRNA)

(Figure 6C). As expected, KCNMA1 protein levels were

significantly reduced in both melanoma cell lines expressing

miR-211 [even more so in WM1552C/211(800)] compared to

those in WM1552C/VO or untransfected WM1552C cells.

KCNMA1 was virtually undetectable in the WM1552C/KC

KO cell line. These results are consistent with the idea that miR-

211 is able to target the KCNMA1 mRNA, thereby decreasing the

amount of KCNMA1 protein in the cell. miR-211 expression was

measured in engineered melanoma cell lines by qRT-PCR, and it

did not exceed the levels observed in, melanocytes (Figure S2). To

further confirm our observations, we measured the correlation

between miR-211 expression and KCNMA1 protein levels

(Figure 6D). The results revealed an inverted correlation between

miR-211 expression and KCNMA1 protein levels. To confirm

that this expression correlation occurred in non-transformed cells

in addition to cancerous cell lines, we examined the effect of miR-

211 inhibition on the expression of KCNMA1 in melanocytes.

Melanocytes were transfected with anti-miR-211 inhibitors

(Exiqon) and the protein expression of KCNMA1 was measured.

The results indicated that derepression of KCNMA1 protein

expression could be achieved by inhibition of miR-211 (Figure 6E).

miR-211 directly targets the KCNMA1 transcript
To determine whether the computationally predicted target site

of miR-211 in the 39-UTR of the KCNMA1 transcript confers

Figure 2. miR-211 is uniformly under-expressed in all melanoma cell lines. A) Levels of three individual miRNAs, as measured by qRT-PCR in
eight different melanoma cell lines relative to their respective levels in the melanocyte cell line HEM-l, are plotted as histograms. RQ= relative
quantification index. B) Northern blot analysis of miR-211 and miR-let-7g in five melanoma cell lines and melanocytes. miR-let-7g is consistently over-
expressed in melanoma cells. miR-211 is expressed at high level in melanocytes but is not detectable in any of the melanoma cell lines. Error bars are
standard errors of mean of six independent measurements.
doi:10.1371/journal.pone.0013779.g002
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sensitivity to miR-211, we performed a target cleavage assay with a

construct containing the 39-UTR of KCNMA1 cDNA fused

downstream of the reporter gene b-galactosidase. The construct,

pcDNA6/LacZ/KCNMA1, as well as a derivative, pcDNA6/

LacZ/KCNMA1-MUT (containing a mutated target cleavage site

at the seed sequence; see Figure S3), and the control vector

pcDNA6/LacZ, were separately transfected into A375 cells along

with one of the following miRNA mimics: miR-211, miR-16-1,

miR-34b, miR-let-7a-1, cel-miR-67, or no mimic (Figure 6E). The

results revealed a statistically significant drop of nearly 60% in b-

galactosidase activity when the cells were transfected with

pcDNA6/LacZ/KCNMA1 together with miR-211 mimics, but

not with any other combination. Importantly, this drop was not

detectable in cells co-transfected with pcDNA6/LacZ/KCNMA1-

MUT and the miR-211 mimic, demonstrating that miR-211 was

capable of specifically targeting the wild type seed sequence in the

39-UTR of the KCNMA1 transcript.

MITF co-ordinately regulates miR-211 and TRPM1
The gene encoding miR-211 is located within the sixth intron of

the TRPM1 gene, which encodes multiple polypeptide isoforms

including melastatin-1, a transient receptor potential (TRP)

protein family member thought to be a potential suppressor of

melanoma metastasis [58]. However, the molecular basis of the

tumor suppressor activity of TRPM1 gene is not understood. The

transcription factor MITF regulates the expression of TRPM1

gene, where the MITF-binding motif (GCTCACATGT) is located

in the TRPM1 promoter [58]. This prompted us to examine

whether MITF also might transcriptionally regulate miR-211

expression via the TRPM1 promoter. We found that both TRPM1

and miR-211 transcripts are expressed in pigmented but not in the

non-pigmented melanoma cells. To determine whether MITF

expression modulates miR-211 expression, we knocked down

MITF expression by siRNA in the pigmented melanoma cell line

SK-MEL28. Three different doses of siRNA (5 nM, 10 nM and

15 nM) were used, and the knock-down efficiency was measured

by qRT-PCR. As expected, the extent of reduction in MITF

transcript levels directly correlated with the reduction in TRPM1

and miR-211 transcript levels (Figure 7). In conclusion, the results

are consistent with the hypothesis that MITF co-ordinately

regulates TRPM1 and miR-211 expression. If true, it raises the

possibility that one of the ways MITF might also suppress

melanoma metastasis is through its transcriptional activation of

miR-211 via the TRPM1 promoter, and the consequent negative

post-transcriptional effects of miR-211 on KCNMA1 mRNA.

The effect of miR-211 on cell proliferation and invasion
Since the over-expression of KCNMA1 is often associated with

both cell proliferation and cell migration/invasion in various

cancers [49–51], we decided to determine whether the depletion of

miR-211 and associated over-expression of KCNMA1 were

important for these processes in melanoma cells. We began by

comparing the proliferation rates of melanoma cell lines stably

transfected with the miR-211 expression cassette with those of

untransfected melanoma cells and cell lines transfected with the

empty expression vector (Figure 8A) (see Methods), respectively.

All miR-211-expressing cultures of WM1552C/211 showed

reduced cell counts compared to those of WM1552C beginning

at even the first time point (day 4), and the titre continued to fall

behind as time progressed. After a 21-day period, WM1552C/

Figure 3. miR-211 expression in clinical melanoma samples. Histograms show normalized ratios of miR-211 levels in clinical samples relative
to its level in the melanocyte cell line HEM-l (normalized to 1.0), as determined by real time quantitative RT-PCR analysis. Normal skin shows low levels
of miR-211 because melanocytes constitute a small fraction of normal skin cells (see text). By two-tailed t-test, the mean RQ of miR-211 in the four
groups (primary melanoma, regional, distant, and nodal metastatic melanoma) compared to the mean RQ of miR-211 in HEM-l were all statistically
significant at P,1026. MC=Melanocytes, NS =Normal Skin, PM=Primary Melanoma, RM=Regional Metastases, DM=Distant Metastases, and
NM=Nodal Metastases.
doi:10.1371/journal.pone.0013779.g003
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211(400) had greater than 30% decrease in cell counts compared

to those of WM1552C, while WM1552C/211(800) cultures

showed an even greater decrease in cell proliferation.

WM1552C/VO cells showed no significant difference in cell

proliferation compared to WM1552C. Comparable results were

obtained for cell proliferation of A375/211 cell lines, which grew

more slowly than untransfected A375 or A375/VO (Figure 8B).

These results are consistent with the hypothesis that an important

growth stimulatory event in the melanoma cell lines WM1552C

and A375 involves the depletion of miR-211 levels—the latter

possibly leading to the targeted up-regulation of at least KCNMA1

expression among its target genes.

Next, we examined the impact of miR-211 expression on the

invasive properties of WM1552C. WM1552C/211(400) and

WM1552C/211(800) cells, along with WM1552C/VO,

WM1552C/KC KO, and untransfected WM1552C cells were

seeded separately into invasion chambers, and the cells were

allowed to migrate (see Methods). Results indicated that

WM1552C/211(400) and WM1552C/211(800) cells migrated

significantly less (,40% and 60% less, respectively) than

WM1552C (Figures 8C and 8D), whereas WM1552C/VO cells

showed almost no variation compared to parental cells. The

frequency of cells with invasion defects significantly exceeded the

decrease in the proliferation rates of these cells (an ,8–10%

decrease in growth over the 48 hours of the invasion assay period),

suggesting that the two effects on miR-211 expression are

independent of each other. The most significant effect on invasion

was observed in the WM1552C/KC KO cells. While a sequence-

scrambled oligonucleotide (miR-Scramble) did not show an effect

on cell invasion, cells treated with a miR-211 inhibitor restored the

invasion phenotype by as much as 40% (Figure 8D). Given that

previously published evidence directly links KCNMA1 gene dosage

and/or expression with increased motility/invasion in several

cancers [49–51], these results suggest that at least part of the

invasion defect caused by miR-211 in melanoma cell lines is due to

targeted down-regulation of the KCNMA1 transcript. To fully

demonstrate that KCNMA1 is a key contributor to miR-211

effects, we examined whether concomitant over-expression of

KCNMA1 might also rescue the miR-211 anti-invasive effects. A

KCNMA1 constitutively-expressing plasmid was transiently trans-

fected into WM1552C/211(800) cells. This plasmid (Origene

clone NM_002247.2) contains a KCNMA1 ORF without its

native 39UTR (making it resistant to regulation by miR-211).

KCNMA1 protein expression levels were then detected by

KCNMA1 antibody. Western blot results revealed that KCNMA1

protein levels were elevated in transfected cells [‘‘WM1552C/

211(800) + KCNMA1 vector’’ relative to control cells] (Figure 8E,

bottom). Results from an invasion assay (Figure 8E, top) illustrate

that the same batch of melanoma cells that exhibit high KCNMA1

protein expression [WM1552C/211(800) + KCNMA1 vector’’

cells] also show high cell invasiveness, higher by at least 60%

compared to the control cell cultures.

Discussion

Current understanding of the molecular mechanisms of

carcinogenesis is beginning to include not only the role of protein

coding genes but also that of non-coding regulatory RNA,

especially miRNAs. In the case of melanoma, our discovery of

miRNAs whose expression levels are reduced in melanoma cells

Figure 4. Expression of predicted target genes of miR-211 in WM1552C. Histograms of log2 transformed mean expression ratios (fold
change) of mRNAs in WM1552C to those in the melanocyte line HEM-l are plotted. The computationally predicted target genes were selected
according to criteria described in Methods. Only genes with statistically significant fold change in expression were plotted.
doi:10.1371/journal.pone.0013779.g004
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can potentially lead to the identification of genes that are

responsible for oncogenesis and invasiveness. Along that line, we

report here that miR-211 levels are consistently reduced in

melanoma cells compared to its levels in melanocytes, and that the

expression levels of several potential miR-211 target mRNAs are

elevated in melanoma cells. We demonstrate that the increased

expression of one particular confirmed target transcript,

KCNMA1, is associated with high invasiveness and proliferation

in melanoma cells in vitro.

The simplest model we offer is that the down-regulation of miR-

211 causes elevated levels of KCNMA1 protein in melanoma cells,

which at least in part explains the invasiveness of malignant

melanoma. More complex models are possible, such as yet

unidentified targets of miR-211 (besides KCNMA1) that may have

a positive feedback effect on KCNMA1 levels and are responsible

for invasiveness. Another alternative possibility is that miR-211

down-regulation in melanoma causes other transformational events

unrelated to KCNMA1, leading to higher oncogenesis and

invasiveness. Both of these more complex possibilities are consistent

with some of our results, but not with the full set of results presented

here. While the assays of cell invasion reported here are widely used

for demonstrating metastatic potential [59,60], and the results

appear convincing, further in situ studies with immunodeficient mice

are needed to confirm the role of KCNMA1 in melanoma

invasiveness in vivo. We observed that melanoma cell lines

engineered to express high levels of miR-211 begin to lose

expression shortly after removal from selection, indicating a strong

bias against miR-211 expression during the growth of melanoma

cell lines and suggests that the rapid proliferation of melanoma cells

in culture is directly related to low miR-211 activity in these cells.

Future experiments will explore whether the progressive reduction

in miR-211 levels observed in these engineered cells is due to genetic

or epigenetic changes.

The TRPM1 gene, which contains miR-211 sequences in the sixth

intron, was previously suggested to be a suppressor of melanoma

aggressiveness [61,62]. We showed here that the transcription factor

MITF, which regulates the expression of TRPM1, is also needed for

high-level expression of miR-211. Thus, the regulation by MITF of

both TRPM1 and miR-211 genes can be speculated to have similar

effects on melanoma invasiveness separately through their respec-

tive gene products: the former a Ca++ channel protein (TRPM1),

and the latter a miRNA targeted against the Ca++ regulated K+

channel protein KCNMA1. If true, the invasiveness of melanoma

cells could partly be the result of the breakdown of processes related

to calcium-regulated ion homeostasis. The recent finding that

salinomycin, an inhibitor of K+ transport, is a selective inhibitor of

Figure 5. Effects of miR-211 over-expression on KCNMA1 gene expression. WM1552C and A375 melanoma cell lines were transfected with
expression cassettes containing the pre-miR-211 sequences, and stable transfectants were selected (see Methods). Expression levels of miR-211 target
genes in HEM-l, A375, WM1552C, A375/211 and WM1552C/211 were measured by hybridization of cDNA (made from total RNA) to Affymetrix
microarrrays. Histograms represent the log2 ratios of expression in different cell lines as indicated in the figure. MC=HEM-l.
doi:10.1371/journal.pone.0013779.g005

miRNA-211 in Melanoma

PLoS ONE | www.plosone.org 7 November 2010 | Volume 5 | Issue 11 | e13779



cancer stem cell proliferation is consistent with our findings on the

role of KCNMA1 in melanoma cells [63]. We cannot eliminate the

formal possibility that the potential tumor suppressor activity of

TRPM1 gene is, at least in part, due to the co-expression of miR-211

encoded from within its sixth intron. In Figure 9 we summarize our

results, in light of previous studies, as a simple model of the

mechanism of development of invasive melanoma, which highlights

the role of miR-211.

Figure 6. KCNMA1 mRNA is a direct target of miR-211. A) Western blot analysis of KCNMA1 protein expression in melanocytes and melanoma
cell lines. Lysates were prepared from cultures of cells complementing those analyzed by northern blot in Figure 2B, including HEM-l, WM1552C,
RPMI-7951, SK-MEL2, HT-144, and A375 and probed by Western blotting with antibodies against KCNMA1 or b-tubulin. B) Relative expression of
KCNMA1 mRNA in WM1552C compared to WM1552C expressing miR-211 [WM1552C/211(400)]. Histograms represent relative quantification ratio
(RQ) as measured by qRT-PCR analysis. Assays were performed in triplicate. C) Western blot analysis of KCNMA1 protein expression in WM1552C
stable cell lines. Lysates were prepared from cultures of untransfected WM1552C and WM1552C stably transfected with expression vectors
containing: no miR (WM1552C/VO), miR-211 [both WM1552C/211(400) and WM1552C/211(800)], and an shRNA against the KCNMA1 transcript
(WM1552C/KC KO), respectively, and probed by Western blotting with antibodies against KCNMA1 or b-tubulin. D) Inverse correlation between miR-
211 expression and KCNMA1 protein levels. miR-211 mean RQ was measured by quantitative RT-PCR in three different strains: WM1552C/VO
(normalization standard), WM1552C/211(400), and WM1552C/211(800); KCNMA1 protein levels were measured from relative fluorescence in western
blots normalized against fluorescence intensity in WM1552C/VO and b-tubulin load controls. Error bars are standard errors of mean for mean RQ, and
standard deviations of relative fluorescence intensity. E) Anti-miR-211 inhibitor reverses KCNMA1 protein levels in melanocytes. Melanocytes were
transfected with anti-miR-211 inhibitors, and KCNMA1 protein expression was measured in transfected cells by western blot analysis using a KCNMA1
antibody (b-tubulin was used as a load control). Derepression of KCNMA1 protein in the transfected cells is shown in the lane marked as MC+Inh. MC
and MC+Scr are melanocyte controls. F) Inhibitory effect of miR-211 on mRNA containing the KCNMA1 39-UTR sequences. An expression plasmid
containing the KCNMA1 39-UTR seed sequence for miR-211 was fused to a lacZ reporter gene (labelled, KCNMA1) such that the lacZ mRNA would
contain the KCNMA1 39-UTR sequences (harbouring the miR-211 target site) and was co-transfected into the melanoma cell line A375 with one of the
following synthetic miRNAs: miR-211, miR-16-1, miR-34b, miR-let-7a, miR-CE (cel-miR-67), and no miRNA. Histograms are measurements of b-
galactosidase activity at OD420. To directly confirm the importance of the miR-211 seed sequence, a plasmid containing the LacZ gene was fused to a
mutant KCNMA1 39UTR seed sequence (labelled, KCNMA1 Mutant), and the expression vector itself without any 39-UTR fusion to LacZ (labelled,
positive control) were also included. The assays were performed in triplicate. The only sample with statistically significant difference is indicated by an
asterisk (Kruskal Wallis test, x2= 24.142, P,0.001).
doi:10.1371/journal.pone.0013779.g006
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In contrast to our finding that miR-211 levels in most

melanoma cells and clinical samples were down-regulated, Gaur

et al. [64] previously reported that miR-211 was over-expressed in

6 of 8 tested melanoma lines from the NCI-60 panel of cancer

cells. However, a leave-one-out sensitivity analysis conducted by

Gaur et al. [64] failed to show a significant effect on the confidence

interval when miR-211 expression level was omitted, suggesting

low specificity or sensitivity with respect to miR-211 in those

experiments. Muller et al. [41] compared miRNA expression in

melanoma cell lines with pooled normal human epidermal

melanocytes; miR-211 was not down-regulated in their study. It

is likely that the melanocyte cells (pooled epidermal melanocytes)

these authors used were physiologically and genetically different

from the melanocyte lines we used. Jukic et al., [44] reported that

miR-211 was up-regulated in nevi and dramatically down-

regulated in metastatic melanoma compared to nevi controls.

These results are in agreement with our results and contradict the

results published by Schultz, et al.,[31].

In conclusion, we have demonstrated that miR-211 is down-

regulated in non-pigmented melanoma and its expression is

regulated by the MITF gene. The down-regulation of miR-211

and the corresponding up-regulation of its target transcript

KCNMA1 are therefore important molecular events for melano-

ma development and/or progression.

Methods

Cell lines and clinical samples
The human epidermal melanocyte cell line HEM-l (Scien-

CellTM, Catalog # 2200) and primary epidermal melanoyctes –

neonatal (ATCC - PCS-200-012) were grown in MelM media

containing MelGS growth supplements, 0.5% FBS, and pen/strep

solution. The melanoma cell lines examined included: A375 (stage

4, ATCCH Number: CRL-1619), G361 (stage 4, ATCC), LOX-

IMV1 (stage 4, ATCC), HT-144 (stage 4, ATCCH Number: HTB-

63), RPMI-7951 (stage 4, ATCCH Number: HTB-66), SK-MEL2

(stage 4, ATCC), SK-MEL28 (stage 3, ATCC), WM793B (stage 1,

ATCCH Number: CRL-2806), and WM1552C (stage 3, ATCCH

Number: CRL-2808). All melanoma cell lines were grown in

Complete Tu Media containing a 4:1 mixture of MCDB-153

medium with 1.5 g/L sodium bicarbonate and Leibovitz’s L-15

medium with 2 mM L-glutamine, 2% FBS, and 1.68 mM CaCl2.

Information regarding all clinical samples, derived from frozen

samples, is described in Table S1.

miRNA arrays
miRNA NCodeTM version 2 array (Invitrogen) containing 553

human and 427 mouse miRNAs, and the TILDA array (ABI) were

used for miRNA expression profiling. The miRNA samples were

labelled with AlexaFluorH conjugated dendrimers using the direct

labelling kit (Genisphere). We routinely evaluated hybridization

conditions by discriminating between 2 nt variants at internal sites,

and most probes can distinguish between 1 nt variants. The arrays

were scanned with Axon B-4000 (Agilent).

Validation of miRNA array results
Expression levels of all statistically significant and differentially

expressed mRNAs and miRNAs were confirmed by qRT-PCR

using TaqManH expression kits (Applied Biosystems) [65] using

multiple technical and biological replicates. GAPDH was used as

the internal reference probe for normalization of expression values

of mRNA, and RNU48 was used for normalization of miRNA.

RNA analysis by Northern blots used 20 mg of total RNA

concentrated from each sample (melanoma cell lines and

melanocytes), separated on 15% urea denaturing polyacrylamide

gels by electrophoresis. Gels were electroblotted to nylon

membranes, cross-linked by UV, prehybridized in ULTRAhybH-

Oligo (Ambion) for 30 minutes at 42uC, and hybridized with 59-

biotinylated anti-miRNA DNA oligonucleotides (100 nM each) at

42uC overnight, washed, and detected by chemiluminescence

(BrightstarH detection kit, Ambion). Anti-U6 probes were used as a

reference control (at 10 pM).

Microarray data analyses and miRNA target prediction
For the initial transformation of miRNA array data, the

GenePixPro 6.0 global normalization method was employed in

which images and results are normalized together. Statistical

significance tests were Welsh t-test, nonparametric ANOVA, (e.g.,

to select genes that have significantly less within sample variance

compared to between sample variance), and correlation analysis

with Pearson’s product moment r and Spearman’s r. Analysis was

controlled for false discovery rate using q-values, with a priori cut off

point of 10 percent [66,67]. For mRNA expression array data,

commencing with GeneChipH Human Exon 1.0 ST Array

(Affymetrix, Inc.) four probes per exon and roughly 40 probes per

gene, 7 total arrays were analysed (three arrays for melanocyte

RNA, and four arrays for melanoma RNA). Cell files were loaded

into PartekH Genomics SuiteTM (Partek, Inc. St. Louis, Missouri,

USA) under the following algorithm constraints: interrogating

probes selection, RMA background correction, adjusted for GC

content, quintile normalization, log probes using base 2, with probe

set summarization of median polish. Quality control assessment

indicated clear separation based on the cell type. Gene level analysis

use an ANOVA model; yj= m+Tj+J, where m is the mean

expression of the gene, Tj is the tissue type, and J is the error

term. The ANOVA model generated a significance level for each

probe set, along with the fold change, and imputed gene

annotations. miR-211 target set of genes were obtained from public

databases [miRanda, miRbase, miRNAmap, Tarbase, PicTar,

Target ScanS, and DIANA MicroTest (http://www.ncrna.org)],

and the results from ANOVA were matched to obtain the final

target gene list of genes. This target list was imported into Ingenuity

Figure 7. The effect of MITF knock-down on TRPM1 and miR-
211 expression in pigmented melanoma cells; SKMEL-28.
Relative gene expression levels of MITF, TRPM1, and miR-211 in MITF
knock-down cells. Three different doses of MITF siRNA (5 nM, 10 nM
and 15 nM) was used to knock-down MITF gene and expression values
are normalized to scramble siRNA control. Histograms represent the
Ratio of RNA Concentration, as measured by qRT-PCR analysis.
doi:10.1371/journal.pone.0013779.g007
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Pathway Analysis Version 6.0-1202 (Ingenuity SystemsH). A core

analysis was run employing direct relationships only, the Ingenuity

knowledge base genes as the reference set, and with down-regulators

as the defined expression value parameter. All microarray data have

been deposited into GEO, and accession number is pending.

Construction of miR-211 expression plasmids
Oligonucleotides complementary to the miR-211 genomic

sequences (miR-211 pre For – ttccctttgtcatccttcgcct and miR-211

pre Rev – aggcgaaggatgacaaagggaa, containingHindIII and BamHI

sites on their respective 59 and 39 ends) were used to amplify the

110 bp pre-miR-211 sequence from human melanocyte genomic

DNA (Amplitaq GoldH, Applied Biosystems) and TOPOH-cloned

into the pCRH4-TOPOH vector (Invitrogen). The construct was

sequenced, and the pre-hsa-miR-211 fragment was sub-cloned into

pcDNA4/myc-HisA (Invitrogen) to create pcDNA4/miR-211. The

KCNMA1 siRNA sequence was derived from SilencerH siRNA

(Ambion, siRNA ID: 112882) and constructed as long complemen-

tary oligos (KCNMA1si For – cgtacttcaatgacaatatttcaagagaatattgt-

cattgaagtacgtctttttt and KCNMA1si Rev – aaaaaagacgtacttcaatga-

caatattctcttgaaatattgtcattgaagtacg, containing HindIII and BamHI

sites on their respective 59 and 39 ends). The oligos were mixed at

100 mM, heated, and amplified through one round of PCR

(Amplitaq GoldH, Applied Biosystems) and then TOPOH-cloned

into the pCRH4-TOPOH vector (Invitrogen). Inserts were se-

quenced and then sub-cloned into pcDNA4/myc-HisA (Invitrogen)

to create pcDNA4/shKCNMA1.

Construction of stable melanoma cell lines
2.56105 WM1552C or A375 melanoma cells were seeded into

a single well of a 6-well plate and transfected overnight with 5 mg

pcDNA4/miR-211, pcDNA4/shKCNMA1, or pcDNA4/myc-

HisA (‘‘vector only’’ negative control) using FugeneH 6 (Roche).

The transfected cells were selected at 400 or 800 mg/mL

ZeocinTM for 15 days, and the presence of the transgene copy

in stable ZeocinTM-resistant foci was confirmed by PCR

(AmplitaqH Gold, Applied Biosystems). Cell lines were named

WM1552C/211(400) or A375/211(400) when selection was at

400 mg/ml ZeocinTM, and WM1552C/211(800) when selection

was at 800 mg/ml ZeocinTM, respectively. The ‘‘vector only’’

control cells were selected at 800 mg/ml ZeocinTM. WM1552C/

KC KO were selected at 400 mg/ml ZeocinTM.

Target cleavage assays
The 39 UTR seed sequences of putative target genes were

amplified by PCR (PhusionTM PCR kit, Finnzymes) from human

Figure 9. A model summarizing the regulation and role of miR-211 in melanoma. MITF, a transcription factor with tumor-suppressor
activity, is active in melanocytes, where it is required for the expression of TRPM1, the structural gene for melatonin-1. miR-211 gene is located within
the sixth intron of TRPM1, which is co-transcribed with the TRPM1 transcript, is processed to active miR-211 and subsequently the latter acts on the
39-UTR of KCNMA1 transcript. We propose that inhibition of KCNMA1 translation is needed for preventing the development of invasive melanoma.
MITF activity is low in melanoma cells, which is expected to reduce TRPM1 as well as miR-211 transcription, therefore would induce the expression of
KCNMA1. While it is widely held on the basis of expression pattern alone that TRPM1 is a putative tumor suppressor, we show that miR-211, contained
within the pre-mRNA of TRPM1 transcript, also has a tumor suppressor activity through its negative regulation on KCNMA1.
doi:10.1371/journal.pone.0013779.g009

Figure 8. Effects of miR-211 over-expression on melanoma cells. A and B: Relative mean cell titers of (A) WM1552C/211(400), WM1552C/
211(800), and WM1552C/VO (vector only) cells to that of WM1552C cells and of (B) A375/211(400) and A375/VO (vector only) cells to that of A375
cells. (C) and (D): Cell invasion assays comparing WM1552C to WM1552C/VO, WM1552C/211(400), WM1552C/211(800), and WM1552C/KC KO stable
derivatives, as well as to WM1552C/211(800) transfected with the Anti-miR miRNA Inhibiter for hsa-miR-211 [labelled ‘‘WM1552C/211(800) + miR-
211’’] or Negative Control #1 (labelled ‘‘WM1552C/211(800) + miR-Scramble’’) over 48 hours. Each assay was performed in triplicate. Statistical
significance is indicated by an asterisk in the figure pertaining to the experimental group delimited by a bar over the histograms (P-value,0.001). E)
The artificial expression of KCNMA1 protein in WM1552C/211(800) cells increases melanoma cell invasiveness. Western blot results show that
KCNMA1 protein levels are elevated in transfected cells [‘‘WM1552C/211(800) + KCNMA1 Vector’’ relative to control cells without KCNMA1 expression
vector] (bottom). b-tubulin was used as a load control. Results from the invasion assay illustrate that the KCNMA1 protein expression increased
melanoma cell invasiveness (top).
doi:10.1371/journal.pone.0013779.g008
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melanocyte genomic DNA (Primers: KCNMA1 For – tgcggcc-

gccttccctatatctaaacaatgcaaaatc, KCNMA1 Rev – aaccggtcacccatc-

caggcgaggagc, the primer set contained 59 NotI or 39 AgeI sites). The

PCR product was cloned into pCRH4-TOPOH (Invitrogen),

confirmed by sequencing, then sub-cloned into the 39 UTR of the

LacZ gene in pcDNA6/V5-His/LacZ (Invitrogen) using the 59 NotI

and 39 AgeI restriction sites and reconfirmed by sequencing

(pcDNA6/LacZ/KCNMA1). The cloned 39UTR of KCNMA1

was mutated using the primers: KC Mut For- TACGCATAT-

GAATTATTAAAACAATTTT and KC Mut Rev - TATGCG-

TAAATTACAATTAATTGTGCT, and used to PCR amplify

pcDNA6/LacZ/KCNMA1 using Quickchange (Stratagene). The

plasmid product was then recovered and confirmed by sequencing

(pcDNA6/LacZ/KCNMA1-MUT, see Figure S4 for mutagenesis).

A375 melanoma cell lines were then transfected in triplicate (FugeneH

6, Roche) with 5 mg plasmid DNA of: A) pcDNA6/LacZ/

KCNMA1, B) pcDNA6/V5-His/KCNMA1-MUT or C)

pcDNA6/V5-His/LacZ (positive control), and co-transfected (si-

PORTTM, Ambion) at 100 nM with miRIDIANmicroRNAMimics

(Dharmacon) for A) miR-16-1, B) miR-211, C) miR-34b, D) miR-let-

7a-1, E) miRIDIAN cel-miR-67 (negative control; cel-miR-67 has

been confirmed to have minimal sequence identity with miRNAs in

human, mouse, and rat), or F) no mimic miRNA. After overnight

incubation, cells were washed in PBS and reincubated in fresh media.

After 48 hours, cells were harvested by trypsinization, examined for

viability, and samples were prepared for the b-galactosidase assay

using the b-Gal Assay kit (Invitrogen). Samples were incubated

overnight at 37uC, then assayed for b -galactosidase activity in a 96-

well plate format using a FlexStation3 (Molecular Devices).

Western blot analysis of KCNMA1
Total lysates of 56105 cells of each cell line were boiled under

denaturing conditions and proteins separated on 6% Tris-Glycine

denaturing polyacrylamide gels by electrophoresis. Proteins

transferred to nitrocellulose membranes were probed with the

following primary antibodies: anti-Slo1 (NeuroMab, UC Davis) at

1/500 and anti-b-tubulin (BD Pharmingen) at 1/2000 according

to standard methods. Blots were probed with horseradish

peroxidase-conjugated secondary antibodies and visualized with

ECL chemiluminescence (Pierce) or Alexa 680-conjugated sec-

ondary antibodies (Molecular Probes) and visualized on the Licor

Odyssesy (Licor).

Growth rate assays for miR-211 stable melanoma cell
lines
Assays were performed using WM1552C, WM1552C/VO,

WM1552C/211(400), WM1552C/211(800), A375, A375/VO,

and A375/211 cell lines. Cells were grown in log phase,

trypsinized, counted using an automated cell counter (Cellome-

terH, Nexcelom Bioscience), and then seeded into 75 cm2 flasks at

56105 cells per flask (in triplicate). Media was changed after

6 hours, and cells were further fed every 48 hours (Complete Tu

Media). At days 4, 10, 15, and 21, cells were trypsinized, counted

(CellometerH, Nexcelom Bioscience), and then reseeded. Each

assay was performed in duplicate for all cell lines.

Invasion assays
BD BioCoatTM growth factor reduced insert plates (MatrigelTM

Invasion Chamber 12 well plates) were prepared by rehydrating

the BD MatrigelTM matrix coating in the inserts with 0.5 mls of

serum-free Complete Tu media for two hours at 37uC. The

rehydration solution was carefully removed from the inserts,

0.5 ml Complete Tu (2% FBS) was added to the lower wells of the

plate, and 2.56104 cells suspended in 0.5 ml of serum-free

Complete Tu media were added to each insert well. WM1552C/

211(800) cells were additionally transfected with the Anti-miR

miRNA Inhibiter for hsa-miR-211 as well as Negative Control#1

(Ambion) (miR-Scramble) at a concentration of 100 nM using

siPORT NeoFX (Ambion). Invasion assay plates were incubated

for 48 hours at 37uC. Following incubation, the non-invading cells

were removed by scrubbing the upper surface of the insert. The

cells on the lower surface of the insert were stained with crystal

violet, and each trans-well membrane was mounted on a

microscope slide for visualization and analysis. The slides were

scanned using the Aperio Scanscope XT and visualized using the

Aperio Imagescope v10 software. The number of migrating tumor

cells was counted from each of five images per cell line (including

miR Inhibiter transfected cells) in the central area of the filter. Cell

lines were tested in triplicate, and the assays were performed twice.

Data are expressed as the percent invasion through the membrane

relative to the migration of WM1552C (Wild Type) through the

membrane.

Transfection of Human Melanocytes using Anti-miR-211
Inhibiter molecules
56105 HEM-l cells were seeded into wells of a 6-well plate. The

cells were then transfected with FugeneH 6 (Roche) and either

100 nM of anti-miR-211 Inhibitors (Exiqon), 100 nM of anti-miR

Inhibiter Negative Control #1 (‘‘miR-Scramble’’), or transfection

agent only. After 48 hours, the cells were harvested by

trypsinization and counted using an automated cell counter

(CellometerH, Nexcelom Bioscience). 2.56105 cells were then

prepared for western blotting (as above).

Transient Expression of KCNMA1 in a stable miR-211-
expressing melanoma cell line
2.56105 cells WM1552C/211(800) cells were seeded into wells

of a 6-well plate. 1 well was transfected with 5 mg of KCNMA1-

expressing plasmid (Origene catalog # SC122078) using FugeneH

6 (Roche) and a second well was treated with transfection reagent

only. After 48 hours, the cells were harvested by trypsinization and

counted using an automated cell counter (CellometerH, Nexcelom

Bioscience). 2.56104 cells were then utilized for invasion assays (in

triplicate) and 2.56105 cells were prepared for western blotting (as

above).

Supporting Information

Figure S1 miR-211 expression in melanocytes, normal skin and

nevus. Both melanocytes and nevus sample indicate a higher

expression of miR-211. Melanocyte A - HEM-l, Melanocyte B -

HEM (neonatal cell line).

Found at: doi:10.1371/journal.pone.0013779.s001 (0.26 MB TIF)

Figure S2 miR-211 expression in stable melanoma cell lines

compared to melanocytes. Two stable miR-211-expressing

WM1552C cell lines, as well as a ‘‘Vector Only’’ (VO) control

cell line, as measured by qRT-PCR relative to levels in the

melanocyte cell line HEM-l, are plotted as histograms. Error bars

are standard errors of mean of three independent measurements.

Found at: doi:10.1371/journal.pone.0013779.s002 (0.24 MB TIF)

Figure S3 Mutagenesis of miR-211 target seed sequence in the

39UTR of KCNMA1. Diagram indicates the four nucleotides

altered in the target seed sequence within the 39UTR of

KCNMA1 relative to the wild type.

Found at: doi:10.1371/journal.pone.0013779.s003 (0.25 MB TIF)
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Table S1 Description of human clinical samples.

Found at: doi:10.1371/journal.pone.0013779.s004 (0.72 MB TIF)

Table S2 miR-211 expression levels in clinical samples. Note:

Two-tailed t-test comparisons for miR-211 by mean relative

quantification levels of melanocyte and primary melanoma, as well

as regional, distant, and nodal metastatic melanoma were all

statistically significant at P,0.000001.

Found at: doi:10.1371/journal.pone.0013779.s005 (0.84 MB TIF)

Acknowledgments

We thank Drs. Brower, Garber, and Purdie at the Memorial Health

University Medical Centre for clinical samples and discussion, and Debbie

McFadden for help in manuscript preparation.

Author Contributions

Conceived and designed the experiments: AR RJP. Performed the

experiments: JM KD DK AA. Analyzed the data: JM KD EM AA AR

RJP. Contributed reagents/materials/analysis tools: JM KD JG RJP.

Wrote the paper: JM AR RJP.

References

1. Nashan D, Muller ML, Grabbe S, Wustlich S, Enk A (2007) Systemic therapy of
disseminated malignant melanoma: an evidence-based overview of the state-of-
the-art in daily routine. J Eur Acad Dermatol Venereol 21: 1305–1318.

2. Rass K, Reichrath J (2008) UV damage and DNA repair in malignant
melanoma and nonmelanoma skin cancer. Adv Exp Med Biol 624: 162–178.

3. Matsumura Y, Ananthaswamy HN (2002) Molecular mechanisms of photo-
carcinogenesis. Front Biosci 7: d765–783.

4. Cleaver JE, Crowley E (2002) UV damage, DNA repair and skin carcinogenesis.
Front Biosci 7: d1024–1043.

5. de Gruijl FR, van Kranen HJ, Mullenders LH (2001) UV-induced DNA
damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem
Photobiol B 63: 19–27.

6. Soehnge H, Ouhtit A, Ananthaswamy ON (1997) Mechanisms of induction of
skin cancer by UV radiation. Front Biosci 2: d538–551.

7. Gonzalgo ML, Bender CM, You EH, Glendening JM, Flores JF, et al. (1997)
Low frequency of p16/CDKN2A methylation in sporadic melanoma:
comparative approaches for methylation analysis of primary tumors. Cancer
Res 57: 5336–5347.

8. Worm J, Bartkova J, Kirkin AF, Straten P, Zeuthen J, et al. (2000) Aberrant
p27Kip1 promoter methylation in malignant melanoma. Oncogene 19:
5111–5115.

9. Worm J, Christensen C, Gronbaek K, Tulchinsky E, Guldberg P (2004) Genetic
and epigenetic alterations of the APC gene in malignant melanoma. Oncogene
23: 5215–5226.

10. Hoon DS, Spugnardi M, Kuo C, Huang SK, Morton DL, et al. (2004) Profiling
epigenetic inactivation of tumor suppressor genes in tumors and plasma from
cutaneous melanoma patients. Oncogene 23: 4014–4022.

11. Guan X, Sagara J, Yokoyama T, Koganehira Y, Oguchi M, et al. (2003) ASC/
TMS1, a caspase-1 activating adaptor, is downregulated by aberrant
methylation in human melanoma. Int J Cancer 107: 202–208.

12. Cretnik M, Poje G, Musani V, Kruslin B, Ozretic P, et al. (2009) Involvement of
p16 and PTCH in pathogenesis of melanoma and basal cell carcinoma.
Int J Oncol 34: 1045–1050.

13. Mancuso M, Gallo D, Leonardi S, Pierdomenico M, Pasquali E, et al. (2009)
Modulation of basal and squamous cell carcinoma by endogenous estrogen in
mouse models of skin cancer. Carcinogenesis 30: 340–347.

14. Suarez-Martinez EB, Ruiz A, Matias J, Morales L, Cruz A, et al. (2007) Early-
onset of sporadic basal-cell carcinoma: germline mutations in the TP53, PTCH,
and XPD genes. P R Health Sci J 26: 349–354.

15. Geng J, Tang W, Wan X, Zhou Q, Wang XJ, et al. (2008) Photoprotection of
bacterial-derived melanin against ultraviolet A-induced cell death and its
potential application as an active sunscreen. J Eur Acad Dermatol Venereol 22:
852–858.

16. Carr KM, Bittner M, Trent JM (2003) Gene-expression profiling in human
cutaneous melanoma. Oncogene 22: 3076–3080.

17. Houghton AN, Polsky D (2002) Focus on melanoma. Cancer Cell 2: 275–278.

18. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, et al. (2009)
Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat
Genet 41: 544–552.

19. Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, et al. (2006) Notch1 signaling
promotes primary melanoma progression by activating mitogen-activated
protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating
N-cadherin expression. Cancer Res 66: 4182–4190.

20. Massi D, Tarantini F, Franchi A, Paglierani M, Di Serio C, et al. (2006)
Evidence for differential expression of Notch receptors and their ligands in
melanocytic nevi and cutaneous malignant melanoma. Mod Pathol 19: 246–254.

21. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, et al. (2005) Distinct
sets of genetic alterations in melanoma. N Engl J Med 353: 2135–2147.

22. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, et al. (2008)
Efficient tumour formation by single human melanoma cells. Nature 456:
593–598.

23. Shenouda SK, Alahari SK (2009) MicroRNA function in cancer: oncogene or a
tumor suppressor? Cancer Metastasis Rev 28: 369–378.

24. Aqeilan RI, Calin GA, Croce CM (2010) miR-15a and miR-16-1 in cancer:
discovery, function and future perspectives. Cell Death Differ 17: 215–220.

25. Lynam-Lennon N, Maher SG, Reynolds JV (2009) The roles of microRNA in
cancer and apoptosis. Biol Rev Camb Philos Soc 84: 55–71.

26. Schmittgen TD (2008) Regulation of microRNA processing in development,

differentiation and cancer. J Cell Mol Med 12: 1811–1819.

27. Chen A, Luo M, Yuan G, Yu J, Deng T, et al. (2008) Complementary analysis of
microRNA and mRNA expression during phorbol 12-myristate 13-acetate

(TPA)-induced differentiation of HL-60 cells. Biotechnol Lett 30: 2045–2052.

28. Igoucheva O, Alexeev V (2009) MicroRNA-dependent regulation of cKit in
cutaneous melanoma. Biochem Biophys Res Commun 379: 790–794.

29. Baugh LR, Demodena J, Sternberg PW (2009) RNA Pol II accumulates at
promoters of growth genes during developmental arrest. Science 324: 92–94.

30. Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A, et al. (2008) The
promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls
melanoma progression through multiple oncogenic mechanisms. Cancer Res
68: 2745–2754.

31. Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M (2008) MicroRNA let-7b
targets important cell cycle molecules in malignant melanoma cells and

interferes with anchorage-independent growth. Cell Res 18: 549–557.

32. Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, et al. (2008)
MicroRNA-137 targets microphthalmia-associated transcription factor in

melanoma cell lines. Cancer Res 68: 1362–1368.

33. Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med
353: 1768–1771.

34. Dalmay T, Edwards DR (2006) MicroRNAs and the hallmarks of cancer.
Oncogene 25: 6170–6175.

35. Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in
cancer. Nat Rev Cancer 6: 259–269.

36. Perera RJ, Ray A (2007) MicroRNAs in the search for understanding human
diseases. BioDrugs 21: 97–104.

37. Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as

tumor suppressors and oncogenes. Oncogene 25: 6188–6196.

38. Zhang B, Pan X, Cobb GP, Anderson TA (2006) microRNAs as oncogenes and
tumor suppressors. Dev Biol.

39. Hammond SM (2006) MicroRNAs as oncogenes. Curr Opin Genet Dev 16:
4–9.

40. Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, et al. (2004) Expression
profiling reveals novel pathways in the transformation of melanocytes to
melanomas. Cancer Res 64: 5270–5282.

41. Mueller DW, Rehli M, Bosserhoff AK (2009) miRNA Expression Profiling in
Melanocytes and Melanoma Cell Lines Reveals miRNAs Associated with
Formation and Progression of Malignant Melanoma. J Invest Dermatol.

42. Felicetti F, Errico MC, Segnalini P, Mattia G, Care A (2008) MicroRNA-221
and -222 pathway controls melanoma progression. Expert Rev Anticancer Ther
8: 1759–1765.

43. Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, et al. (2009) Aberrant
miR-182 expression promotes melanoma metastasis by repressing FOXO3 and
microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A 106:
1814–1819.

44. Jukic DM, Rao UN, Kelly L, Skaf JS, Drogowski LM, et al. (2010) Microrna
profiling analysis of differences between the melanoma of young adults and older

adults. J Transl Med 8: 27.

45. Lee WJ, Roberts-Thomson SJ, Holman NA, May FJ, Lehrbach GM, et al.
(2002) Expression of plasma membrane calcium pump isoform mRNAs in breast

cancer cell lines. Cell Signal 14: 1015–1022.

46. Li G, Satyamoorthy K, Herlyn M (2001) N-cadherin-mediated intercellular
interactions promote survival and migration of melanoma cells. Cancer Res 61:

3819–3825.

47. Qi J, Chen N, Wang J, Siu CH (2005) Transendothelial migration of melanoma
cells involves N-cadherin-mediated adhesion and activation of the beta-catenin

signaling pathway. Mol Biol Cell 16: 4386–4397.

48. Lukashova-v Zangen I, Kneitz S, Monoranu CM, Rutkowski S, Hinkes B, et al.
(2007) Ependymoma gene expression profiles associated with histological

subtype, proliferation, and patient survival. Acta Neuropathol 113: 325–337.

49. Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, et al. (2007)
KCNMA1 gene amplification promotes tumor cell proliferation in human

prostate cancer. Oncogene 26: 2525–2534.

50. Tajima N, Schonherr K, Niedling S, Kaatz M, Kanno H, et al. (2006) Ca2+-
activated K+ channels in human melanoma cells are up-regulated by hypoxia

miRNA-211 in Melanoma

PLoS ONE | www.plosone.org 13 November 2010 | Volume 5 | Issue 11 | e13779



involving hypoxia-inducible factor-1alpha and the von Hippel-Lindau protein.
J Physiol 571: 349–359.

51. Weaver AK, Bomben VC, Sontheimer H (2006) Expression and function of
calcium-activated potassium channels in human glioma cells. Glia 54: 223–233.

52. Crijns AP, de Graeff P, Geerts D, Ten Hoor KA, Hollema H, et al. (2007) MEIS
and PBX homeobox proteins in ovarian cancer. Eur J Cancer 43: 2495–2505.

53. Geerts D, Schilderink N, Jorritsma G, Versteeg R (2003) The role of the MEIS
homeobox genes in neuroblastoma. Cancer Lett 197: 87–92.

54. Conn EM, Madsen MA, Cravatt BF, Ruf W, Deryugina EI, et al. (2008) Cell
surface proteomics identifies molecules functionally linked to tumor cell
intravasation. J Biol Chem 283: 26518–26527.

55. Chen M, Sinha M, Luxon BA, Bresnick AR, O’Connor KL (2009) Integrin
alpha6beta4 controls the expression of genes associated with cell motility,
invasion, and metastasis, including S100A4/metastasin. J Biol Chem 284:
1484–1494.

56. Aubert B, Barate R, Bona M, Boutigny D, Couderc F, et al. (2006) Observation
of a new Ds meson decaying to DK at a mass of 2.86 GeV/c2. Phys Rev Lett 97:
222001.

57. Gyorffy B, Serra V, Materna V, Schafer R, Dietel M, et al. (2006) Analysis of
gene expression profiles in melanoma cells with acquired resistance against
antineoplastic drugs. Melanoma Res 16: 147–155.

58. Miller AJ, Du J, Rowan S, Hershey CL, Widlund HR, et al. (2004)
Transcriptional regulation of the melanoma prognostic marker melastatin
(TRPM1) by MITF in melanocytes and melanoma. Cancer Res 64: 509–516.

59. Repesh LA (1989) A new in vitro assay for quantitating tumor cell invasion.

Invasion Metastasis 9: 192–208.

60. Ma X-J, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, et al. (2004) A two-gene

expression ratio predicts clinical outcome in breast cancer patients treated with

tamoxifen. Cancer Cell 5: 607–616.

61. Duncan LM, Deeds J, Cronin FE, Donovan M, Sober AJ, et al. (2001)

Melastatin expression and prognosis in cutaneous malignant melanoma. J Clin

Oncol 19: 568–576.

62. Oancea E, Vriens J, Brauchi S, Jun J, Splawski I, et al. (2009) TRPM1 forms ion

channels associated with melanin content in melanocytes. Sci Signal 2: ra21.

63. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, et al. (2009)

Identification of selective inhibitors of cancer stem cells by high-throughput

screening. Cell 138: 645–659.

64. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, et al. (2007)

Characterization of microRNA expression levels and their biological correlates

in human cancer cell lines. Cancer Res 67: 2456–2468.

65. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, et al. (2005) Real-time

quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:

e179.

66. Storey JD, Tibshirani R (2003) Statistical methods for identifying differentially

expressed genes in DNA microarrays. Methods Mol Biol 224: 149–157.

67. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies.

Proc Natl Acad Sci U S A 100: 9440–9445.

miRNA-211 in Melanoma

PLoS ONE | www.plosone.org 14 November 2010 | Volume 5 | Issue 11 | e13779


