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Abstract

The MDM2 oncogene is a key negative regulator of the p53 tumor suppressor protein. MDM2 and p53 form an autoregulatory feedback loop to 

tightly control the proper cellular responses to various stress signals in order to prevent mutations and tumor formation. The levels and function of 

the MDM2 protein, an E3 ubiquitin ligase, are regulated by a wide variety of extracellular and intracellular stress signals through distinct signaling 

pathways and mechanisms. These signals regulate the E3 ubiquitin ligase activity of MDM2, the ability of MDM2 to interact with p53 and a number 

of other proteins, and the cellular localization of MDM2, which in turn impact significantly upon p53 function. This review provides an overview of the 

regulation of MDM2 activities by the signals and factors that regulate the MDM2 protein, including genotoxic stress signals, oncogenic activation, cell 

cycle transition, ribosomal stress, chronic stress, neurohormones, and microRNAs. Disruption of the proper regulation of the MDM2-p53 negative 

feedback loop impacts significantly upon the frequency of tumorigenesis in a host. A better understanding of the complex regulation of MDM2 and its 

impact upon p53 function in cells under different conditions will help to develop novel and more effective strategies for cancer therapy and prevention.
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Introduction

MDM2 is an oncogene that was discov-

ered in a locus amplified on double min-

ute chromosomes in a tumorigenic 

mouse cell line (3T3-DM).1 The main 

function of MDM2 is to negatively regu-

late the levels and function of p53 tumor 

suppressor proteins. High MDM2 levels 

decrease p53 protein levels and attenu-

ate p53 function, which increase cancer 

risk and/or accelerate tumor formation 

and progression. Overexpression of 

MDM2 is observed in some human 

tumors. Amplification of the mdm2 gene 

is a major mechanism of MDM2 overex-

pression. Furthermore, MDM2 gene 

amplification and the mutation of p53 

are most commonly mutually exclu-

sive.2 In addition, SNP309, a naturally 

occurring polymorphism in the mdm2 

gene, leads to the increased MDM2 tran-

scriptional levels in humans, which is 

associated with increased risk for sev-

eral cancers.3

MDM2 is a member of the RING fin-

ger family of E3 ligases that contains sev-

eral conserved functional regions: the 

N-terminal region contains a p53 binding 

domain; the central region contains 

nuclear localization and export sequences, 

an acidic domain, a zinc finger domain, 

and binding sites for TBP,4 p300,5,6 and 

ARF7; and the C-terminal region contains 

a RING finger domain (Fig. 1). The 

RING finger domain binds to an E2 ubiq-

uitin-conjugating enzyme to promote the 

ubiquitination of target proteins. The 

main substrate of MDM2 is p53, although 

MDM2 also ubiquitinates other sub-

strates such as MDM4, β-arrestin, 

NUMB, ribosomal protein S7, PCAF, 

and the insulin-like growth factor 1 

receptor.8-12 MDM2 binds to p53 and 

mono-ubiquitinates and poly-ubiquiti-

nates p53. Poly-ubiquitination of p53 

marks p53 for proteasomal degradation. 

The interaction of MDM2 with p53 can 

mediate the translocation of p53 to the 

cytoplasm,13 thereby removing it from its 

nuclear site of action and leading to rapid 

p53 degradation by cytoplasmic protea-

somes. In addition, MDM2 negatively 

regulates p53 function by binding to the 

p53 transactivation domain to prevent its 

activity. This binding of MDM2 to the 

p53 N-terminal transactivation domain 

prevents the interaction of p53 with the 

basal transcription machinery.14-16 The 

critical role of MDM2 in the negative 

regulation of p53 is best illustrated by 

elegant mouse studies; mice deficient for 

MDM2 have an embryonic lethal pheno-

type due to excessive p53-dependent 

apoptosis, which can be rescued by 

knocking out the p53 gene.17

The negative regulation of p53 by 

MDM2 can be modulated by another 

member of the MDM2 family, MDM4. 

The amino acid sequences of MDM4 are 

highly homologous to MDM2; MDM4 

also contains an N-terminal p53 binding 

domain, a central acidic domain, and a 

C-terminal RING finger domain. MDM4 

can bind to p53 and block the p53  

transcriptional activity. While MDM4 

does not stimulate p53 degradation 

through direct ubiquitination, MDM4 
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forms heterodimers with MDM2 through 

its RING finger domain, which then 

influences the E3 ubiquitin ligase func-

tion of MDM2.18-20 Depending upon the 

circumstances, MDM4 either enhances 

or inhibits the E3 ubiquitin ligase func-

tion of MDM2 for the p53 protein.20-22 

MDM4 can be overexpressed in human 

tumors, and the spectrum of tumors with 

MDM4 overexpression is different from 

that with MDM2 overexpression.23 Loss 

of MDM4 also leads to p53-dependent 

embryonic lethality in mice, but the fetus 

dies at different times during develop-

ment when MDM2 or MDM4 is deleted.24 

Therefore, MDM4 acts as a critical regu-

lator of the p53-MDM2 feedback loop.

As a key negative regulator of p53 

protein levels and activity, MDM2 is a 

highly regulated protein. MDM2 is a 

transcriptional target of p53. p53 posi-

tively regulates MDM2 through binding 

to the p53 DNA consensus binding ele-

ment in the first intron of the mdm2  

gene to form an autoregulatory negative 

feedback loop with MDM2.25-27 Stress-

mediated p53-dependent increased lev-

els and activity of MDM2 may play an 

important role in the regulation of the 

duration and amplitude of the p53 

response after stress. In addition, vari-

ous extracellular or intracellular signals 

function through distinct signaling path-

ways to regulate MDM2 levels, activity, 

and intracellular localization, leading to 

the activation or inhibition of p53 func-

tion. Here, we review the regulation of 

MDM2 and its impact upon p53 func-

tion by these signals and factors, includ-

ing DNA damage, oncogenic activation, 

cell cycle transition, ribosomal biogene-

sis, chronic stress, neurohormones, and 

microRNAs.

The Regulation of MDM2 by 

Genotoxic Stress Signals

DNA Damage (Ionizing Radiation and 

Ultraviolet Light). In response to ionizing 

radiation (IR), p53 is rapidly activated by 

the ATM protein kinase, leading to the 

accumulation of p53 proteins in cells. The 

phosphorylation of p53 at Ser-15 by ATM, 

which reduces the affinity of p53 for 

MDM2, results in reduced p53 degrada-

tion by MDM2 and thus enhanced p53 

protein stability and function. The rapid 

ATM-dependent MDM2 phosphorylation 

on Ser-395 prior to p53 protein accumula-

tion also plays a critical role in this pro-

cess. The phosphorylation of MDM2 

Ser-395 blocks the ability of MDM2 to 

export p53 from the nucleus,28 which pre-

vents p53 degradation and promotes the 

accumulation of p53 proteins in cells. In 

addition, the phosphorylation of MDM2 at 

Ser-395 also reduces the RING domain 

oligomerization, which in turn attenuates 

the processivity of the E3 ligase activity of 

MDM2.29 The phosphorylation of MDM2 

at Ser-395 also promotes an interaction 

between p53 mRNA and the MDM2 pro-

tein, which increases the synthesis of the 

p53 protein after genotoxic stress. This 

p53 mRNA–MDM2 interaction also pro-

motes SUMO-conjugation of MDM2 and 

its accumulation in the nucleoli compart-

ment, preventing the negative regulation 

of p53 by MDM2 and in turn leading to the 

activation of p53 in the nucleoplasm.30-32 

ATM not only directly phosphorylates 

MDM2 but also activates a second kinase, 

c-Abl, to indirectly regulate MDM2 in 

response to genotoxic stress.33 c-Abl inter-

acts with MDM2 and phosphorylates 

MDM2 at multiple sites, reducing the abil-

ity of MDM2 to down-regulate p53 (Fig. 

2). In addition, ATM regulates HAUSP, a 

specific de-ubiquitinase for both p53 and 

MDM2, in response to genotoxic stress.  

In nonstressed cells, HAUSP is phosphor-

ylated at Ser-18, which maintains the sta-

bility of HAUSP and prevents auto- 

ubiquitination of MDM2 through interac-

tion with MDM2.34 In response to DNA 

damage, ATM activates PPM1G, a phos-

phatase that dephosphorylates HAUSP at 

Ser-18 and enhances HAUSP degradation, 

which in turn increases the degradation of 

MDM2 and the accumulation of p53 pro-

teins in cells.35

Ultraviolet (UV) light exposure is 

another type of radiation that rapidly 

activates p53, leading to the accumula-

tion of the p53 protein. UV light expo-

sure preferentially activates the ATR 

protein kinase, which phosphorylates 

both p53 and MDM2. ATR phosphory-

lates p53 at multiple sites, including Ser-

15 and Ser -37, and phosphorylates 

MDM2 at Ser-407.36,37 The phosphory-

lation of MDM2 at Ser-407 by ATR 

reduces MDM2-dependent export of 

p53 from nuclei to cytoplasm, which in 

turn increases the accumulation of the 

p53 protein and its function37 (Fig. 2).

Thus, at the early stage of cellular 

response to genotoxic stress, the modifi-

cations of both p53 and MDM2 through 

different mechanisms are responsible 

for the rapid stabilization of the p53 pro-

tein and activation of the p53 signaling 

pathway. p53 then exerts its function to 

maintain genomic stability through tran-

scriptional regulation of its target genes. 

Meanwhile, the activation of p53 also 

leads to increased MDM2 expression. 

This delayed increase of MDM2 reduces 

the p53 protein levels. This results in 

oscillations of MDM2 and p53 levels 

that are temporally out of phase with 

each other. This could maintain a proper 

p53 response toward stress in cells, 

reducing the risk of having too much 

p53 and leading to cell death when cell 

cycle arrest and DNA repair are a more 

appropriate response.38,39 In addition, 

Wip1, a p53 target gene and a phospha-

tase that is induced by p53 at a later  

time in response to genotoxic stress,  

can dephosphorylate MDM2.40 Wip1 

p53 binding domain NLS NES Zinc finger domainAcidic domain RING finger domain

1 100 200 300 400 491

MDM2

Figure 1. Schematic model showing the domain structure of the MDM2 protein. Functional 

domains of the MDM2 protein include the p53 binding domain, nuclear localization sequence 

(NLS), nuclear export sequence (NES), acidic domain, zinc finger domain, and RING finger domain. 

The amino acid residues are numbered.
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dephosphorylates MDM2 at Ser-395, 

the site phosphorylated by ATM. 

Dephosphorylation of MDM2 at Ser-

395 increases the affinity of MDM2 

toward p53 to enhance p53 ubiquitina-

tion and degradation and at the same 

time decreases MDM2 auto-ubiquitina-

tion (Fig. 2). Thus, Wip1 acts as an addi-

tional important regulator for the 

p53-MDM2 negative feedback loop.

The Regulation of MDM2 by 

Oncogenes

Oncogenic Activation. Aberrant activa-

tion of a number of oncogenes (E2F-1, 

β-catenin, Myc, Ras, nucleophosmin, etc.) 

can activate p53, which is crucial for 

tumor suppression. One mechanism of this 

p53 activation involves the p14/p19 ARF 

tumor suppressor protein that inhibits 

MDM2. ARF is the alternate reading 

frame protein that is encoded by the Ink4a 

locus.41 The transcription of ARF is 

induced by E2F-142 and β-catenin,43 and 

its transcription is repressed by p53. In 

addition, Myc, Ras, and nucleophosmin 

increase the ARF protein levels by inhibit-

ing the degradation of the ARF protein.44-46 

ARF is ubiquitinated and degraded 

through binding to ULF (ubiquitin ligase 

for ARF). Myc inhibits ULF-mediated 

ARF ubiquitination through interaction 

with ULF. Nucleophosmin overexpression 

leads to co-localization of ARF and 

nucleophosmin in nucleoli, segregating 

ARF from its ubiquitin ligase that is 

mainly present in the nucleoplasm.47 ARF 

accumulates in nucleoli of cells. ARF 

binds to the central domain of the MDM2 

protein and promotes the accumulation of 

MDM2 in the nucleoli, resulting in the 

segregation of MDM2 from p53. The 

interaction of ARF with MDM2 also 

antagonizes MDM2’s E3 ubiquitin ligase 

activity toward p53, which prevents 

MDM2-mediated p53 degradation and 

increases p53 levels and activity31,48 (Fig. 

3). Disruption of this ARF-MDM2-p53 

tumor surveillance pathway predisposes 

an individual to cancer, and inactivation of 

INK4a-ARF by deletion, silencing, or 

mutation has been frequently observed in 

many human cancers.49

Other Oncogenes

AKT and survival signaling. IGF-1/

AKT pathway is an evolutionally con-

served pathway that plays critical roles 

in the regulation of cell proliferation and 

survival. The binding of IGF-1 to its 

tyrosine kinase receptor (IGF-1R) 

results in the activation of the PI3 kinase 

(PI3K), which in turn phosphorylates 

the phosphoinositides and leads to 

increased PIP3 levels at the plasma 

membrane. PIP3 then recruits protein 

kinases containing pleckstrin homology 

domains to the membrane, including 

AKT, PDK1, and PDK2, 2 upstream 

activators of AKT. Increased PIP3 acti-

vates PDKs, which then phosphorylate 

AKT at Thr-308 and Ser-473.50-52 The 

activation of AKT permits the release of 

AKT from the membrane to interact 

with and phosphorylate a range of cyto-

plasmic and nuclear substrates, which 

leads to the inhibition of apoptosis and 

promotion of cell survival. MDM2 is a 

substrate of AKT. AKT phosphorylates 

MDM2 at Ser-166/186, both of which 

lie within the RXRXXS/T consensus 

motifs for AKT kinase.53 The phosphor-

ylation of MDM2 at Ser-166/186 pro-

motes its nuclear localization and its 

interaction with p300, a transcriptional 

co-activator that forms a complex with 

MDM2 and promotes p53 degrada-

tion.5,54 This also inhibits the interaction 

of MDM2 with ARF. Therefore, the 

phosphorylation of MDM2 at Ser-

166/186 by AKT increases the activity 

of MDM2, which results in increased 

p53 degradation and the inhibition of 

p53 function (Fig. 4).

The AKT activity and its regulation 

of MDM2 and p53 are positively or neg-

atively regulated by a number of factors 

(Fig. 4). Two p53 transcriptional targets, 

PTEN and 14-3-3σ, have been shown to 

inhibit the AKT activity and increase 

p53 function through down-regulation 

of MDM2.55,56 PTEN is a PIP3 phospha-

tase that degrades PIP3 to PIP2, which 

no longer activates PDKs, therefore 

decreasing the AKT activity. 14-3-3σ 

directly binds to AKT and inhibits its 

activity. In turn, both PTEN and 14-3-3σ 

reduce the phosphorylation of MDM2 at 

Ser-166/186 and increase the p53 activ-

ity by preventing MDM2-dependent p53 

degradation. Therefore, both PTEN and 

14-3-3σ connect the p53 pathway with 

IR

ATM

p53 MDM2

Abl

WIP1

UV

ATR

Figure 2. The regulation of MDM2 by DNA 

damage. Ionizing radiation (IR) and ultraviolet 

(UV) light activate ATM and ATR, respectively. 

Activated ATM and ATR phosphorylate p53 and 

MDM2, which result in the decreased function 

of MDM2 and stabilization of the p53 protein. 

In addition, ATM activates Abl to phosphorylate 

and down-regulate MDM2 function. p53 

activation leads to transcriptional induction of 

its target genes. Wip1, a p53 target gene, is a 

phosphatase that dephosphorylates MDM2 at 

the site phosphorylated by ATM, leading to the 

increase of MDM2 function and activity.

E2F -1

Beta-catenin

Myc

Ras

Nucleophosmin

p14/p19 ARF

p53 MDM2

Figure 3. The ARF-MDM2-p53 loop. Aberrant 

activation of a number of oncogenes increases 

ARF transcription or protein levels. ARF binds 

to MDM2 to accumulate MDM2 in nucleoli and 

inhibit its E3 ubiquitin ligase activity toward p53, 

which leads to p53 protein accumulation and 

increased p53 function. The transcription of 

ARF can be down-regulated by p53 itself.
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the AKT pathway and form a positive 

feedback loop to enhance the p53 activ-

ity and down-regulate the AKT activity. 

In addition, tyrosine phosphatases from 

regenerating liver 1 and 3 (PRL-1 and 

PRL-3) have been shown to enhance 

AKT activity, resulting in the phosphor-

ylation of MDM2.57 Her-2/neu, which is 

often amplified or overexpressed in 

human cancers, can activate the AKT 

pathway, which in turn enhances MDM2 

phosphorylation and inhibits p53 func-

tion.53 The AKT activity has been found 

to be elevated in many human tumors.58 

The aberrant activation of the AKT 

kinase can result from the amplification 

of the AKT gene. In cancers, it is also 

common to observe the altered regula-

tion of the downstream pathways under 

AKT regulation caused by the amplifi-

cation of Her-2/neu, mutations of the 

catalytic subunit of PI3K, loss of the 

PTEN gene or protein, and loss of 14-3-

3σ expression.56,59,60

The Regulation of MDM2 during 

Cell Cycle Transition

It has been shown that cell cycle transi-

tion may regulate the activity of MDM2.61 

The murine MDM2 protein contains a 

cyclin recognition motif that is located 

between the nuclear localization and 

nuclear export sequences with a 

sequence of RRSL (residues 181-184). 

Cyclin A–CDK1 and cyclin A–CDK2, 

but not other cyclin-containing com-

plexes, bind to MDM2 and phosphory-

late MDM2 at Thr-216. The phosphor - 

ylation of MDM2 at Thr-216 modestly 

reduces the p53-MDM2 interaction. It is 

possible that because Thr-216 is outside 

of the p53-MDM2 interaction domain, 

the phosphorylation of MDM2 at Thr-

216 has an indirect effect on the p53-

MDM2 interaction by altering the 

conformation of the MDM2 protein. 

Meanwhile, the phosphorylation of 

MDM2 at Thr-216 modestly increases 

the binding of MDM2 to ARF. Both the 

reduced p53-MDM2 interaction and the 

increased MDM2-ARF interaction 

result in the increased activity of p53 

(Fig. 5). The phosphorylation of MDM2 

at Thr-216 occurs at the onset of S phase 

when levels of the cyclin A protein 

become detectable and Thr-216 phos-

phorylation disappears when cells pass 

through S phase. It has been shown that 

cyclin G, a transcriptional target of p53, 

interacts with PP2A phosphatase and 

stimulates the ability of PP2A to dephos-

phorylate MDM2 at Thr-216; thus, 

cyclin G–PP2A phosphatase enhances 

MDM2 activity and inhibits p53.62 

Cyclin G–null MEF cells have high 

phosphorylation levels of MDM2 Thr-

216 and high p53 protein levels.62 A pos-

sible explanation for Thr-216 

phosphorylation and the resultant mod-

est increase of p53 at the onset of S 

phase is that p53 has an increased tran-

scriptional activity toward p21. p21 has 

been reported to bind to cyclin A– and 

cyclin B–containing complexes when 

cells pass S phase to control the activity 

of both cyclin A–CDKs and p53 when 

cells go into S phase.63-65

The Regulation of MDM2 by 

Ribosomal Stress

The MDM2-p53 negative feedback loop 

is also regulated by ribosomal stress, 

also known as nucleolar stress. Ribo-

somal biogenesis is a coordinated cellu-

lar process that involves the expression 

of ribosomal RNA (rRNA) and ribo-

somal proteins (RPs), processing of 

rRNA, and assembly of RPs and rRNA 

to generate mature 80S ribosomes to 

ensure an adequate rate of protein syn-

thesis to enter the cell cycle and main-

tain cellular homeostasis. This entire 

process consumes a significant amount 

of cellular resources and plays an  

important role in a number of important 

cellular activities.66 Perturbations of 

ribosomal biogenesis, including inade-

quate rRNA transcription, disruption of 

rRNA processing, and RP imbalances, 

induce ribosomal stress, which activates 

p53 through the RP-MDM2-p53 path-

way. Several RPs, including RPL5, 

RPL11, RPL23, RPL26, RPS3, RPS7, 

RPS14, and RPS27/L, have been shown 

to be able to interact with MDM2. 

MDM2 is a nucleocytoplasmic shuttling 

protein, and RPs mostly reside between 

cytosol, where they are synthesized, and 

the nucleoli, where they are assembled 

into the ribosomes. The interaction of 

RPs and MDM2 may occur under the 

following conditions: 1) the overexpres-

sion of the oncogene Myc increases the 

transcription of rRNAs, RPs, and 

tRNAs. Myc also increases the transla-

tional rate of RPs along with a global 

increase in the rate of translation67; 2) 

when free RPs are released into the 

nucleoplasm due to the breakdown of 

IGF -1

p53

MDM2

IGF -1 R

PI3K

PIP3

PDK1/2

AKT

PTEN

14-3-3σ

PRL1/3

Her2/neu

Figure 4. The activation of MDM2 by the AKT 

pathway. AKT phosphorylates and activates 

MDM2, which promotes the degradation of the 

p53 protein. The AKT activity and its regulation 

of MDM2 are positively or negatively regulated 

by a number of factors. PTEN and 14-3-3σ, 

2 transcriptional targets of p53, inhibit AKT 

activity and its regulation of MDM2, which in 

turn enhances p53 function. PRL-1, PRL-3, 

and Her2/neu activate the AKT pathway, which 

in turn inhibits p53 function.

p53 MDM2

cyclin A CDK1/2

cyclin G

cyclin G

PP2A

Figure 5. The regulation of MDM2 during cell 

cycle transition. Phosphorylation of MDM2 by 

cyclin A–CDK1/2 down-regulates the MDM2 

activity, which occurs at the onset of S phase 

and disappears when cells pass through S 

phase. Cyclin G, a transcriptional target of p53, 

forms a complex with PP2A, which removes the 

phosphorylation of MDM2 by cyclin A–CDK1/2, 

and therefore enhances MDM2 activity.
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nucleoli, which is triggered by the dis-

ruption of ribosomal biogenesis68,69; and 

3) when MDM2 shuttles into nucleoli as 

a consequence of its interaction with the 

nucleolar protein ARF.31,70 The resultant 

excess of free RPs then binds to the cen-

tral acidic region of MDM2 in a manner 

dictated by specific sequence require-

ments for binding. For example, the 

MDM2 C4 zinc finger region is critical 

for its interaction with RPL5 and RPL11 

but not for RPL23. Zinc finger mutant 

MDM2C305F loses interaction with RPL5 

and RPL11,71,72 while a slight different 

zinc finger mutant MDM2C305S loses 

interaction with RPL11 but not RPL5 

and RPL23.73 The RP-MDM2 interac-

tion blocks the E3 ubiquitin ligase func-

tion of MDM2, which results in the 

accumulation and activation of p53 (Fig. 

6). It is currently unclear how the bind-

ing of RPs to the central acidic region of 

MDM2 inhibits the E3 ubiquitin ligase 

function of its C-terminal RING finger 

domain. A possible mechanism is that 

the binding of RPs to the MDM2 central 

region reduces its flexibility, and the 

rigid MDM2 is thus unable to bring its 

RING finger domain and p53 together. 

In addition, RPS7 functions as both the 

effector and affector of MDM2. RPS7 

inhibits MDM2 E3 ligase function, 

which can be facilitated by MDM4, and 

RPS7 itself is a substrate of MDM2.12 

RPS27-like protein (RPS27L), which 

inhibits the activity of MDM2 to acti-

vate p53, is a p53 target gene and forms 

a positive feedback loop with p53.74 

Interestingly, not all RP-MDM2 interac-

tions activate p53; the interaction of 

RPL26 with MDM2 has a different 

impact upon the p53 activity. RPL26 

increases the translational rate of p53 

mRNA by binding to its 5′-untranslated 

region (UTR).75 RPL26 is a substrate of 

MDM2; MDM2 binds to RPL26 to pre-

vent the interaction of RPL26 with p53 

and drives the poly-ubiquitylation and 

proteasomal degradation of RPL26, 

which leads to the inhibition of p53 

translation.76 It is currently unclear why 

multiple RPs bind to and interact with 

MDM2 to active p53 function in 

response to ribosomal stress. One possi-

bility is that because different RPs bind 

to different amino acid sequences in the 

MDM2 protein, they can bind MDM2 

simultaneously and have a synergistic 

inhibitory effect on MDM2 to fully acti-

vate p53 in cells.71,72,77 Interestingly, het-

erozygous mutations in several RPs that 

interact with MDM2, including RPL5, 

RPL11, and RPS7, have been found in 

Diamond-Blackfan anemia patients, 

who have chronic regenerative anemia, 

various degrees of congenital abnormal-

ity, and increased risk of malignancy.78,79 

Mutations of many RPs in zebrafish 

show an association with growth impair-

ment and tumor predisposition.80 These 

findings all suggest that the RP-MDM2-

p53 pathway is functional in vivo and 

plays an important role in monitoring 

proper ribosomal biogenesis.

The Regulation of MDM2 

by Chronic Stress and 

Neurohormones
In an intact organism, the “psychological 

stress response” refers to an intricate  

process that involves the change of infor-

mation processing pathways in the cen-

tral nervous system and periphery in 

response to environmental and psycho-

logical factors, which leads to fight or 

flight, or defect/withdrawal responses.81 

In response to psychological stress, 2 

main systems, the hypothalamic-pitu-

itary-adrenal (HPA) axis and the sympa-

thetic-adrenal medulla (SAM), are 

activated. The hypothalamus secretes 

corticotropin-releasing factor into a por-

tal circulation to the anterior pituitary, 

which secretes adrenocorticotropic hor-

mone (ACTH) into the general circu-

lation, stimulating the release of 

glucocorticoid hormones from the adre-

nal cortex. The activation of the SAM 

increases the synthesis of norepinephrine 

from the locus coeruleus and epinephrine 

levels in the periphery. Acute activation 

of these pathways is necessary for  

adaptive processes and normally prepares 

humans or animals to endure a threat. 

However, under chronic stress, most 

organs are negatively affected by the pro-

longed activation of these pathways with 

extended exposure to elevated levels of 

these neurohormones.

Chronic stress, such as depression or 

lack of social support, has been shown to 

have significant negative influences on 

the onset, progression, and mortality of 

various cancers.82-86 A recent meta-analy-

sis of 165 longitudinal studies demon-

strated that psychosocial factors and 

stressful life experiences are associated 

with higher cancer incidence, poorer can-

cer survival, and higher mortality.85 How-

ever, the molecular mechanism by which 

chronic stress promotes tumorigenesis is 

not well understood. Interestingly, recent 

studies suggest that neurohormones ele-

vated during chronic stress down-regu-

late p53 through the activation of MDM2, 

which could be an important mechanism 

by which chronic stress promotes tumori-

genesis.87,88 Glucocorticoid hormones, 

p53 MDM2

Ribosomal Stress

RPL5

RPL11

RPL23

RPS3

RPS7

RPS14

RPS27

RPS27LRPS27L

RPL26

Figure 6. The regulation of MDM2 by ribosomal 

stress. Ribosomal stress can be induced by the 

perturbation of ribosomal biogenesis, including 

inadequate rRNA transcription, disruption of 

rRNA processing, and imbalance of ribosomal 

proteins (RPs). In response to ribosomal stress, 

a number of RPs, including RPL5, RPL11, 

RPL23, RPS3, RPS7, RPS14, RPS27, and 

RPS27L, interact with MDM2 to inhibit MDM2 

function and activate p53. Among these RPs, 

RPS27L is a p53 target gene, which can be 

positively regulated by p53. In addition, RPL26 

binds to 5′-UTR of the p53 gene and increases 

the translational rate of p53. RPL26 is also a 

substrate of MDM2. The interaction of MDM2-

RPL26 promotes the degradation of RPL26 

and inhibits p53 translation.
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including cortisol (a major glucocorticoid 

in humans) and corticosterone (a major 

glucocorticoid in mice), clearly increase 

phosphorylation levels of MDM2 Ser-

166/186 and decrease p53 protein levels 

and function.87 This effect is largely 

mediated by serum- and glucocorticoid-

induced protein kinase (SGK1), a gene 

regulated by glucocorticoids. Glucocorti-

coids bind to a glucocorticoid receptor, 

which then translocates to the nucleus 

and acts as a transcriptional factor to reg-

ulate the expression of its target genes, 

including SGK1.89,90 SGK1 is a ubiqui-

tously expressed serine-threonine kinase, 

which shares high sequence homology 

with AKT (~50% through their catalytic 

domain) and a similar consensus phos-

phorylation site RXRXXS/T with AKT.91 

Interestingly, similar to AKT, SGK1 acti-

vates MDM2 through phosphorylation of 

MDM2 at Ser-166/186,87,92 which in 

turn down-regulates p53 function (Fig. 

7). Blocking SGK1 function abolishes 

the phosphorylation of MDM2 at Ser-

166/186 by glucocorticoids and the 

inhibitory effect of glucocorticoids on 

p53 function. Consistent with these 

results, chronic stress with continuous 

elevation of glucocorticoids clearly 

decreases p53 function. In p53+/– mice, 

chronic stress greatly promotes IR-

induced tumorigenesis. Furthermore, 

chronic stress promotes the growth of 

human xenograft tumors in a largely 

p53-dependent manner.87

Epinephrine and norepinephrine 

exert most of their functions by binding 

to a variety of adrenergic receptors 

(ARs), including α
1
, α

2
, β

1
, β

2
, and β

3
 

receptors.93 Prolonged treatment of iso-

proterenol, a synthetic analog of epi-

nephrine, was reported to down-regulate 

p53 protein levels through the activation 

of MDM2. This effect of isoproterenol 

on MDM2 and p53 is through its bind-

ing to β
2
-ARs, which promotes the acti-

vation of PKA, followed by the 

recruitment of β-arrestins to activate the 

PKA–β-arrestin pathway.88 In both mice 

and human cells, the activation of 

β-arrestin-1 facilitates AKT-mediated 

activation of MDM2. β-arrestin-1 also 

acts as a molecular scaffold to promote 

the MDM2-p53 interaction and the  

degradation of the p53 protein (Fig. 7). 

Furthermore, this prolonged treatment 

of isoproterenol increases DNA damage 

in cells, which may also promote 

tumorigenesis.

The Regulation of MDM2 

Translation by MicroRNAs

MicroRNAs are endogenously expressed, 

small noncoding RNAs, which play a key 

role in the posttranscriptional regulation 

of gene products. MicroRNAs pair with 

partially complementary sites in 3′-UTRs 

of target mRNAs, leading to translational 

repression of target genes. Aberrant 

microRNA expression has been observed 

in human cancers.94-96 Emerging evi-

dence demonstrates that microRNAs 

play an important role in tumorigene-

sis.97-100 Several microRNAs targeting 

MDM2 have been identified, including 

miR143/145, miR605, miR25, and 

miR32.101-103 miR143/145, which can be 

posttranscriptionally induced by p53, 

negatively regulates both MDM2 mRNA 

and protein levels through direct binding 

to 3′-UTR of MDM2 mRNA, resulting in 

the increase of p53 protein levels and 

function.101 The miR605 gene is a tran-

scriptional target of p53. Overexpression 

of miR605 directly decreases MDM2 

protein levels and increases p53 func-

tion.103 The transcription of miR25 and 

miR32 is negatively regulated by p53 and 

positively regulated by E2F-1 and Myc. 

miR25 and miR32 also negatively regu-

late MDM2 protein levels through direct 

binding to 3′-UTR of MDM2 mRNA, 

and this stabilizes the p53 protein and 

increases p53 function.102 Overexpres-

sion of miR25 and miR32 in glioblas-

toma multiforme cells inhibits growth of 

tumor cells in the mouse brain. These 

microRNAs thus form feedback loops 

with MDM2-p53 to decrease MDM2 lev-

els and promote p53 functions (Fig. 8). 

Future identification of microRNAs tar-

geting components regulating MDM2, 

such as ARF, AKT, and others, will help 

to further understand the regulation of 

MDM2 by microRNAs.

Conclusion and Future 

Perspective

As reviewed here, the p53 protein is 

activated and functions in response to a 

large and diverse set of stress signals. In 

addition to the stresses described here, 

the p53 pathway response is activated by 

telomere erosion (through the ATM 

pathway), hypoxia, heat and cold shock, 

reprogramming of epigenetic marks and 

stem cell formation, and denaturation of 

proteins in the cell. Remarkably, each 

stress signal has its own detector and 

pathway, but every one of these path-

ways funnels into a common node in the 

network, the MDM2 protein. The posi-

tive or negative regulation of the MDM2 

protein ubiquitin ligase activity in turn 

regulates the p53 levels, and further pro-

tein modifications of the p53 protein 

activate it for transcription of selected 

genes. This results in a cellular response, 

including cell cycle arrest, DNA repair, 

apoptosis, or senescence, which in turn 

Chronic stress

p53MDM2

Glucocorticoids

GR

SGK1

Epinephrine

PKA

AKT

β
2
-AR

β-arrestin-1

Figure 7. The regulation of MDM2 by chronic 

stress and neurohormones. Chronic stress 

increases the levels of neurohormones, including 

glucocorticoids and epinephrine, both of which 

activate MDM2 and inhibit p53 function through 

distinct signaling pathways. Glucocorticoids 

bind to a glucocorticoid receptor (GR) to induce 

the expression of SGK1, which phosphorylates 

and activates MDM2. Epinephrine functions 

through β
2
-adrenergic receptor (AR) to activate 

the PKA–β-arrestin-1 pathway, which then 

promotes AKT-mediated MDM2 activation.
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depends upon the stress, the cell type, 

the state of cancerous transformation, 

and the developmental time or stage of 

the cells and organism. By having p53 

activity dependent upon the half-life of 

the p53 protein (which under non-

stressed conditions is 6 to 20 minutes in 

different cells), this level of regulation is 

rapid with a protein concentration dou-

bling every 6 to 20 minutes and protein 

modifications in seconds. A slower step 

comes in rolling out the transcriptional 

program of the p53 pathway. The orga-

nization of these stress response path-

ways brings up a number of interesting 

questions.

Why do so many diverse stress 

responses get funneled into a single 

node with MDM2 and p53 at the center? 

Mutations in the mdm2 gene (amplifica-

tions) or the p53 gene result in a high 

level of mistakes and mutations in cells 

that then develop into cancers. Why is 

this pathway not backed up with redun-

dant activities? Is there an advantage of 

a single node that can then integrate 

diverse sets of stress signals (more than 

one stress at the same time)? Clearly, 

different pathways with diverse signals 

for MDM2 and p53 (sites of phosphory-

lation, acetylation, methylation, etc.) 

can carry a code that modulates different 

responses to stress. Where did this orga-

nization and uniform response to stress 

come from? What is the evolutionary 

path that the p53 family of genes has 

taken that results in protection from can-

cers over our lifetimes? p53 is one of a 

family of transcription factors along 

with p63 and p73. They share a great 

deal of homology in the DNA binding 

domains of the 3 proteins and even bind 

to the same DNA sequences. We can 

readily recognize p63/p73 ancestors in 

choanoflagellates, sea anemones, fruit 

flies, and roundworms104 and p53 and 

MDM2 homologs in placozoans and 

spiders.105 In these invertebrates, in 

every case where the functions of these 

gene products have been explored, the 

p53, p63, and p73 genes play a role in 

protecting the germline cells from DNA 

damage or starvation (glucose depriva-

tion). Under these stress conditions, p53 

family genes respond with cell death of 

germline cells, preventing developmen-

tal defects and monitoring the fidelity of 

the offspring. The p53 family proteins 

do this by using similar stress response 

pathways, activating a p53-like protein 

that binds to the same DNA sequences 

that the human p53 protein binds to and 

functions in a program of cell death. 

There is a preservation of structure and 

function over a billion years of evolu-

tion. In the vertebrates (as early as the 

cartilaginous fishes), the p53 protein 

moves from germline protection to 

somatic cell protection and cancer pre-

vention. In humans and mice, all 3 of the 

p53/p63 and p73 gene products continue 

to play a role in the functions of the 

female germline and implantation of fer-

tilized eggs.106

In humans, what are the functions of 

the p53 protein? Is it more than protect-

ing us from cancers? What are the stress 

signals that trigger cancers in humans 

which p53 prevents from happening? Is 

it oncogene activation via ARF, or is it 

DNA damage? Clearly, one function of 

the p53 gene is to protect the species 

from early-onset cancers. More than 

50% of cancers harbor p53 mutations, 

and Li-Fraumeni syndrome patients har-

bor p53 germline mutations and develop 

cancers at an early age. High levels of 

p53 somatic mutations (60%-100%) are 

observed in BRCA-1 and triple-negative 

breast cancers and ovarian cancers, and 

these cancers are driven by DNA dam-

age, so the p53 function in DNA damage 

control is an important protective 

response. While the ARF response to 

oncogene activation may be active in the 

formation of benign polyps in the colon 

(where APC mutations lead to high 

β-catenin levels that activate ARF and 

p53 controls polyp cell growth via apop-

tosis), this will require additional evi-

dence to prove the point. The p53 protein 

can cause a number of pathologies while 

responding to stresses. Acute ischemia 

results in hypoxic death by p53 activa-

tion. Tissue damage is mediated by p53 

death in the central nervous system 

(stroke) or heart. p53-null mice reduce 

this damage.107 Similarly, radiation sick-

ness and loss of the immune response 

with excessive radiation are a p53-

driven response. The loss of eggs during 

chemotherapy is a p63 response, and 

lower levels of primary oocytes in an 

ovary are a p73-mediated event.108,109 

Anorexia or glucose starvation results in 

oocyte death (likely a p63 event), lower 

estrogen levels, and failure to menstru-

ate. The p53 family of genes is involved 

in inflammation and regulating the 

immune system. There will likely be an 

important role for the p53 gene family in 

stem cell regeneration and epigenetic 

changes.110 Stem cell regulation in the 

central nervous system and neurodegen-

erative diseases have been suggested to 

involve p53 and p73.111,112 There may 

well be a price to pay for the diverse 

roles of p53 in stem cells. Several exper-

iments suggest that too active a p53 

response can deplete stem cells, in par-

ticular in bone marrow stem cells.113 

This could help to explain the sugges-

tions that too high a level of p53 short-

ens the longevity of an organism.113

There are strong tissue and cell type 

specificities in the p53 pathway and 

responses. The spectrum of tissues that 

develop tumors observed in people with 

Li-Fraumeni syndrome differs from the 

tissue spectrum of somatic p53 muta-

tions observed in most cancers. Gene 

amplifications of MDM2 and MDM4 

miR143/145 miR106
miR25

miR32

p53 MDM2

Figure 8. The regulation of MDM2 by 

microRNAs. A group of microRNAs, including 

miR143/145, miR605, miR23, and miR32, can 

down-regulate MDM2 through direct binding 

to 3′-UTR of the MDM2 mRNA, which in turn 

increases p53 protein levels and function. 

These microRNAs are either positively or 

negatively regulated by p53.



206 Genes & Cancer / vol 3 no 3-4 (2012)M MONOGRAPHS

show distinct tissue specificity. Just why 

these mutational distributions are tissue 

specific remains a real mystery. Does 

MDM2 or MDM4 have functions in 

addition to p53 regulation? There are 

suggestions in favor of this idea, but this 

requires more studies. Are there other 

disorders, in addition to cancers, that 

p53 mutations can give rise to in the host 

organism? Have we examined in enough 

detail the metabolic pathways, immune 

system dysfunctions, central nervous 

system disorders, and reproductive dis-

orders in individuals with Li-Fraumeni 

syndrome or in mice with different p53 

mutant alleles? The p53 knockout mice 

have some metabolic deficits114 with 

likely more to come.

As we begin to understand more 

about the pathways that connect physi-

cal and psychological stresses to the 

MDM2-p53 central node, we will likely 

find the answers to some of these ques-

tions. Just how we respond to stress, 

repair its consequences, and move back 

into a homeostatic state are key elements 

in reproduction free of errors or mis-

takes. The p53, p63, and p73 pathways 

enforce error-free reproduction by death 

to clones that harbor these mutations. As 

such, it limits variation both in the germ-

line and the somatic tissue. In the germ-

line, limiting variations slow the rates of 

evolution by narrowing the possibilities 

in the diversity of offspring. There is 

therefore a tension between an optimal 

rate of change and fidelity, and p53, p63, 

and p73 genes have evolved to function 

within this optimal window of protect-

ing us long enough to reproduce our-

selves and permitting enough mistakes 

so that natural selection can act upon a 

diverse genetic species of organisms.
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