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The accumulation of carbon storage compounds by many unicellular algae after nutrient deprivation occurs despite declines in
their photosynthetic apparatus. To understand the regulation and roles of photosynthesis during this potentially bioenergetically
valuable process, we analyzed photosynthetic structure and function after nitrogen deprivation in the model alga Chlamydomonas
reinhardtii. Transcriptomic, proteomic, metabolite, and lipid profiling and microscopic time course data were combined with multiple
measures of photosynthetic function. Levels of transcripts and proteins of photosystems I and II and most antenna genes fell with
differing trajectories; thylakoid membrane lipid levels decreased, while their proportions remained similar and thylakoid membrane
organization appeared to be preserved. Cellular chlorophyll (Chl) content decreased more than 2-fold within 24 h, and we conclude
from transcript protein and 13C labeling rates that Chl synthesis was down-regulated both pre- and posttranslationally and
that Chl levels fell because of a rapid cessation in synthesis and dilution by cellular growth rather than because of degradation.
Photosynthetically driven oxygen production and the efficiency of photosystem II as well as P700+ reduction and electrochromic shift
kinetics all decreased over the time course, without evidence of substantial energy overflow. The results also indicate that linear
electron flow fell approximately 15% more than cyclic flow over the first 24 h. Comparing Calvin-Benson cycle transcript and
enzyme levels with changes in photosynthetic 13CO2 incorporation rates also pointed to a coordinated multilevel down-regulation of
photosynthetic fluxes during starch synthesis before the induction of high triacylglycerol accumulation rates.

Our current dependence on fossil fuels is unsustain-
able, motivating the development of bioenergy resources.
Among these, microalgal oil and biomass production
has shown promise (Chisti, 2007; Ohlrogge et al., 2009;
Williams and Laurens, 2010; Atabani et al., 2012) because
of the photoautotrophic growth of algae and their ability
to reach high cell densities and accumulate high dry
weight percentages of triacylglycerol (TAG) and their
potential for much higher productivity per hectare than

terrestrial biofuel crops (Hu et al., 2008; Wijffels and
Barbosa, 2010). The unicellular green alga Chlamydomonas
reinhardtii is among the most widely studied models of
photosynthesis (Rochaix, 2002) and other cellular pro-
cesses, including lipid accumulation by algae under
stress (Merchant et al., 2012). Its advantages for study-
ing photosynthetic mechanisms and regulation include
the ability to grow both photo- and heterotrophically
so that photosynthetic down-regulation and photosyn-
thetically impaired mutants can be isolated (Dent et al.,
2001) and a fully sequenced genome, collections of
mutants, and the ease with which its growth, physiology,
and photosynthetic rates can be measured.

In a range of microalgae, nitrogen (N) deprivation
induces high accumulation of starch and TAG (Martin
and Goodenough, 1975; Shifrin and Chisholm, 1981;
Granum et al., 2002; Hu et al., 2008; Liu and Benning,
2013). In an effort to understand algal TAG production
during N deprivation and to guide engineering of higher
oil yields, omics-based approaches have been employed
(Jamers et al., 2009). Using the annotated C. reinhardtii

1This work was supported as part of the Center for Advanced
Biofuels Systems, an Energy Frontier Research Center funded by
the U.S. Department of Energy, Office of Science, Office of Basic En-
ergy Sciences (award no. DE–SC0001295).

* Address correspondence to yairhill@msu.edu.
The author responsible for distribution of materials integral to the

findings presented in this article in accordance with the policy de-
scribed in the Instructions for Authors (www.plantphysiol.org) is:
Yair Shachar-Hill (yairhill@msu.edu).

[OPEN] Articles can be viewed without a subscription.
www.plantphysiol.org/cgi/doi/10.1104/pp.114.250530

558 Plant Physiology�, February 2015, Vol. 167, pp. 558–573, www.plantphysiol.org � 2014 American Society of Plant Biologists. All Rights Reserved.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lp

h
y
s
/a

rtic
le

/1
6
7
/2

/5
5
8
/6

1
1
3
6
5
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

mailto:yairhill@msu.edu
http://www.plantphysiol.org
mailto:yairhill@msu.edu
http://www.plantphysiol.org/cgi/doi/10.1104/pp.114.250530


genome (Merchant et al., 2007), the C. reinhardtii tran-
scriptome was analyzed before and after N deprivation,
which revealed multiple changes in gene expression that
affect diverse parts of metabolism (Miller et al., 2010;
Blaby et al., 2013; Goodenough et al., 2014; Schmollinger
et al., 2014). In addition, proteomics have been used
to profile the changes in protein expression during
N deprivation in Phaeodactylum tricornutum (Yang et al.,
2014), C. reinhardtii (Nguyen et al., 2011; Longworth
et al., 2012; Schmollinger et al., 2014), andNannochloropsis
oceanica (Dong et al., 2013), and metabolomics have been
used to assess changes in metabolite pool sizes (Bölling
and Fiehn, 2005; Lee et al., 2012). These and other studies
point to wide-ranging changes in the structure and op-
eration of the metabolic and other cellular networks.
Several studies have considered the relationships among
metabolic processes, including how carbon and energy
fixation by photosynthesis affects oil accumulation dur-
ing N deprivation (Miller et al., 2010; Msanne et al., 2012;
Johnson and Alric, 2013). However an integrated systems
analysis of both the machinery and the physiological
functioning of the photosynthetic apparatus during nu-
trient deprivation is still lacking, and this limits our un-
derstanding of the multilevel regulation of energy and
carbon fluxes.
During N deprivation in algae, energy and carbon for

de novo synthesis of TAG can come directly from photo-
synthesis (Msanne et al., 2012) or from external carbon
substrates (Wang et al., 2009; Johnson and Alric, 2013).
Photosynthetic yields decrease during N deprivation,
even under phototrophic conditions where cells are en-
tirely dependent upon photosynthesis (Philipps et al.,
2012; Simionato et al., 2013). Chlorophyll (Chl) fluores-
cence, which is sensitive to environmental changes and
stress conditions that induce alterations in photosynthetic
components (Iwai et al., 2008), can monitor the efficiency
of linear electron flow (Baker et al., 2007) and has indi-
cated that in N. oceanica (Simionato et al., 2013) and other
algae, including C. reinhardtii (Berges et al., 1996; Li et al.,
2010; Blaby et al., 2013), photosynthetic efficiency falls
after N deprivation. Photosynthetically driven metabolic
fluxes can also be probed by supplying 13C-labeled
bicarbonate/CO2 and quantifying 13C incorpora-
tion into metabolite pools (Shastri and Morgan, 2007;
Feng et al., 2010; Young et al., 2011).
Thylakoidmembrane lipids are central to photosynthetic

function, including the stabilization of photosynthetic
complexes and oxygen evolution (Jarvis et al., 2000;
Jones, 2007; Leng et al., 2008; Mizusawa andWada, 2012;
Boudière et al., 2013). The most abundant classes are
the neutral lipids monogalactosyldiacylglycerol (MGDG)
and digalactosyldiacylglycerol (DGDG) and the anionic
lipids sulfoquinovosyldiacylglycerol (SQGD) and phos-
phatidylglycerol (PG; Frentzen, 2004; Shimojima et al.,
2010; Mizusawa and Wada, 2012). Stress, nutrient dep-
rivation, or changing environmental conditions cause
changes in lipid composition, leading to effects on pho-
tosynthetic yield and efficiency (Li et al., 2012; Philipps
et al., 2012). Cellular Chl and carotenoid concentrations
provide additional measures of photosynthetic potential.

Carotenoids play a role in protecting cells from excess
energy harvesting and act as structural components in
the photocenters (Takaichi, 2011). In C. reinhardtii, de-
creasing Chl content is associated with down-regulation
of synthesis genes and potentially also degradation and
follows a decrease in photosynthetic yield during N
deprivation (Li et al., 2010; Philipps et al., 2012).

This study examines photosynthetic changes at the
level of transcript, protein, lipid, and functional fluxes
during the first 48 h after N deprivation. Until recently,
studies of nutrient limitation in microalgae have focused
on the effects seen one to several days after deprivation
(Wykoff et al., 1998; Moseley et al., 2002; Urzica et al.,
2013) when oil accumulation rates are high (Plumley and
Schmidt, 1989; Li et al., 2010; Miller et al., 2010; Philipps
et al., 2012; Simionato et al., 2013; Yang et al., 2013) and
photosynthetic functions are already substantially dimin-
ished. Here, we focus on the induction phase to investigate
the transition into a nutrient-deprived, oil-accumulating
state and the regulation of photosynthesis during that
transition. The results demonstrate coordinated changes in
photosynthetic gene expression as well as the levels of the
photosynthetic machinery and their activities. Photosyn-
thetic transcripts, and to a lesser extent protein levels for
different parts of the photosynthetic infrastructure, were
down-regulated, as were the levels of thylakoid lipids and
Chl. Photosynthetic function as measured by dynamic
optical parameters indicated modest decreases in the effi-
ciency of light utilization during the first 24 h and a
relative decrease in linear compared with cyclic electron
flow (CEF). Calvin cycle protein and transcript levels
decreased modestly after 6 h, though 13C-labeling in-
corporation from CO2 was significantly reduced by that
time. The results provide a multilevel description of the
controlled down-regulation of photosynthetic compo-
nents and photosynthetic fluxes, highlight the value of
combined multiomic and functional measurements, and
have significant implications for current hypotheses
about the relationship between photosynthesis and TAG
accumulation in algae.

RESULTS

Changes in the Levels of Transcripts and Proteins
of Photosynthesis

C. reinhardtii samples were harvested at 0, 0.5, 1, 2, 4,
6, 12, and 24 h after N deprivation, and transcripts were
analyzed by high-throughput sequencing as described by
Park et al. (2014). Nitrogen-replete cells (time 0) were
used as the reference for all subsequent time points.
Quantitative proteomic analysis was performed using
iTRAQ labeling combined with strong cation exchange
fractionation and nano liquid chromatography (nanoLC)-
electrospray ionization-tandem mass spectrometry (MS/
MS) at all the time points except for 0.5 h. One hundred
ninety-two photosynthetically related genes with pu-
tative or confirmed annotations were collected using
genomic annotation, the literature, and additional data-
bases (see “Materials and Methods”). Genes were
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classed as belonging to the following functional
groups: photosynthetic-reaction center complexes, light-
harvesting complexes, electron transport, photosyn-
thetic antennae, carbon-concentrating mechanisms, the
Calvin-Benson cycle, oxidative stress responses, and
pigment production and degradation. The transcript
and protein level changes for these are presented in
Supplemental Figure S1 and Supplemental Table S1. As
previously reported, (Merchant et al., 2007; Schmollinger
et al., 2014), expression of most photosynthetic genes is
down-regulated during N deprivation, with a wide range
of trajectories.

To analyze gene expression for different functional
groups within photosynthesis in a statistically objective
manner, K-means clustering was performed, which di-
vided the transcripts into seven different expression pat-
terns or classes (average, 2.1 within class variance over
50 iterations; Fig. 1A). Agglomerative hierarchical clus-
tering of the expression classes demonstrated four over-
arching expression trends, with classes 5, 3, 2, and 7
clustering together and classes 6, 1, and 4 by themselves.
The distribution of the genes for each functional group
across the expression pattern classes (K-means classes) are
shown in Figure 1B, and the contribution of genes from
each functional group to the different K-means classes is
shown in Figure 1C.

The transcript levels for many genes involved in the
photosynthetic light reactions decreased within 30 min
after N deprivation, continuing to 24 h. There are several
notable exceptions, especially those found in expression
class 1, including the PSII 22-kDa protein and cyto-
chrome c6, whose transcripts increased in abundance.
Additionally, PSII and PSI genes in general appear in
two different expression classes, with PSII dominantly in
expression class 1, while PSI appears in expression class
6; this difference in photosystem regulation has been
found in other organisms (Berges et al., 1996). The de-
crease in transcript abundance was greatest for three
genes corresponding to oxygen evolution enhancers
1 to 3 in PSII and for most genes in PSI, with decreases
of the order of 10- to 100-fold. Photosynthetic antenna
proteins showed 10- to 20-fold decreases in transcript
abundance for both light-harvesting centers1 LHC1
and LHC2 during the first 24 h of N deprivation.
LHC stress-related proteins LHCSR1, LHCSR2, and
LHCSR3 (class 1), also involved in nonphotochemical
quenching (NPQ; Peers et al., 2009; Tokutsu and
Minagawa, 2013; Maruyama et al., 2014), increased
in protein abundance by 2.5-fold. Transcript abun-
dance for most genes of the Calvin-Benson cycle are
found in expression class 1, increasing in the first
four and then dropping to the original values or lower
by 24 h. Calvin-Benson cycle protein abundances are
maintained through 12 h and then decrease slightly
by 24 h.

While PSI and PSII genes were down-regulated, genes
implicated in both CEF pathways were up-regulated.
In the Proton Gradient Regulation5 (PGR5)-mediated
pathway, PGR5 and Proton Gradient Regulation-Like1B
(PGRL1B), both found in green algae and higher plants,

aid transfer of electrons from reduced ferredoxin to plas-
toquinol (Munekage et al., 2002; Petroutsos et al., 2009;
Hertle et al., 2013; Johnson et al., 2014). These genes
both doubled in transcript abundance within 1 h, with
levels falling to N-replete levels by 24 h, similar to
values reported in Schmollinger et al. (2014); protein
levels were not reliably quantified. PGRL1 was also
found to respond to iron deficiency (Petroutsos et al.,
2009). A type 2 NADPH Dehydrogenase NDA2 is
thought to be responsible for the second CEF pathway
in C. reinhardtii (Jans et al., 2008; Johnson et al., 2014).
NDA2 transcript abundances increased slightly by
24 h, while protein level increased 1.5-fold by 24 h,
suggesting that CEF through this route may increase
during N deprivation.

Carbon concentrating mechanism-related genes (for
review, see Wang et al., 2011), such as the carbonic an-
hydrases CAH1 (Van and Spalding, 1999) and CAH3,
and carbon limiting-associated genes Carbon Concen-
trating Protein1 (CCP1), CCP2, Low Carbon-Induced E
(LCIE), and LCI9 showed increased transcript abundance
in the first 4 h, which then decreased, represented by ex-
pression class 1, while protein abundance increased by
24 h. This was likewise found in the marine algaDunaliella
tertiolecta ‘Butcher’ (Young and Beardall, 2005) and
Chlorella spp. (Beardall et al., 1982; Beardall et al., 1991),
where both Fe and N limitation led to an increased affinity
for inorganic carbon. Others such as CAH2 showed a
decrease in transcript expression over time (class 7). CAH1
and similar proteins have been found in the periplasm and
growth medium under ambient-air CO2 concentrations
(Coleman et al., 1984).

Genes involved with removing radical oxygen species
such as Iron Superoxide Dismutase1 (Myouga et al.,
2008) and Catalase1 (Yoshida et al., 2003) showed de-
clines in transcript and protein levels. An exception
is GPX5 (a glutathione peroxidase), whose transcript
levels increased by approximately 30% by 24 h of
deprivation and whose protein abundance increased
approximately 20%. GPX5 is known to metabolize per-
oxide, and like other oxidative stress response genes, is
known to be up-regulated under photosynthetic stress
conditions such as high light (Fischer et al., 2009). Pro-
tein levels followed transcript changes 6 to 12 h after
N deprivation.

Questions have been raised about the importance and
mechanisms of alternative electron acceptor pathways,
such as chlororespiration, in regulating photosynthetic
energy fluxes during N deprivation (Peltier and Schmidt,
1991). The alternative oxidases, plastid plastoquinol ter-
minal oxidases PTOX1 and PTOX2, are thought to be
involved in the chlororespiration in C. reinhardtii (Rumeau
et al., 2007; Bailleul et al., 2010; Houille-Vernes et al., 2011),
and changes in protein and transcript abundance have
been found to be associated with nutrient deprivation in
algae, particularly iron deprivation (Cardol et al., 2008) as
well as light stress (Houille-Vernes et al., 2011). PTOX1
and PTOX2 transcripts decreased in abundance 1.5-fold
within the first half hour but then increased through
24 h to slightly less or greater than N-replete conditions.
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PTOX2 protein values increased 2.4-fold by 24 h, sug-
gesting that during N deprivation, in addition to linear
and cyclic electron transport being down-regulated,
additional electrons are returned to oxygen, which
may help to regulate the ATP to NADPH ratio and
photosynthetic output (Peltier and Schmidt, 1991). This
may help explain why we observed only minor decreases

in the oxidation level of PSII primary quinone A (QA;
Fig. 4D).

Pigment Levels and Their Regulation

Chl content decreased during N deprivation, with
levels dropping from approximately 33 mg mg–1 cell

Figure 1. Statistical analysis of photosynthetic transcripts. A, K-means clustering class centroid expression (log fold change
[6 log2]) of classes derived from statistical analysis. Blue diamond, Class 1; red square, class 2; green triangle, class 3; purple X,
class 4; teal star, class 5; orange circle, class 6; and black cross, class 7. B and C, Heat maps of class fractional enrichment by
functional group member totals (row total normalized to add to 1) and class member totals (column total normalized to equal
1). Member enrichment is indicated by black, while enrichment of 0.7 or more is indicated by white. Gene functional cate-
gories are listed between B and C. Dendrograms above B and C heat maps represent statistical difference between each ex-
pression class in A, while numbers indicate class number being presented.
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dry weight (CDW) to less than 10 mg mg–1 CDW after
24 h of N deprivation (Fig. 2A), with decreases being
most rapid soon after deprivation. Chl content per
million cells (Fig. 2B) fell from 0.9 to 0.63 mg within the
first 12 h and then declined more slowly to 0.43 mg by
48 h. The ratio of Chl a to Chl b was not significantly
altered. However, Figure 2B shows that Chl levels per
culture volume were initially unchanged after N dep-
rivation and decreased rather slowly after 6 h.

Chl synthesis genes for both the porphyrin ring and
phytol chain were rapidly down-regulated at both
the transcript and protein levels, with transcripts
falling by one-half and proteins by approximately
30% of initial values by 2 h, while transcript abun-
dances for Chl catabolic genes, such as chlorophyl-
lase, were significantly elevated after 1 h. 13C labeling
and analysis of phytol 13C contents was therefore
used to follow Chl synthesis rates during N dep-
rivation (Fig. 2C). N-depleted cells supplied with
13C acetate incorporated 13C into Chl or phytol only within
the first 3 h, indicating that de novo Chl synthesis
ceases soon after N deprivation. This cessation of syn-
thesis, together with the continued growth (cell division
continued for 12 h after N deprivation substantial rates
of biomass increase continued beyond that), is suffi-
cient to account for the large decreases in Chl content
over the first 24 h without significant Chl degradation.
It has been suggested that Chl decreases following N
deprivation in cyanobacteria are due to dilution from
cell growth (Collier and Grossman, 1992), which we
demonstrate here with 13C labeling. Chl degradation
has been previously inferred to occur both to remobi-
lize nitrogen (from both Chl and associated proteins)
and to reduce light stress (Allen and Smith, 1969; Geider
et al., 1998).

Carotenoids are involved with light absorption and
energy dissipation, reducing radical oxygen species
production (Lohr, 2009). Within the first 4 h of N
deprivation, the expression of some carotenoid synthe-
sis and modification genes were strongly up-regulated,
while most stayed at the same level or decreased. After
4 h, most of the related transcript abundances de-
creased, although they were still elevated compared
with N-replete conditions. Transcript levels of the deg-
radation enzymes carotenoid cleavage dioxygenases
CCD1 and CCD2 were elevated during N deprivation.
Carotenoid levels, determined by HPLC at 450 nm
(Supplemental Fig. S2, A–F), showed that levels of
the xanthophyll cycle carotenoid violaxanthin (Jahns
and Holzwarth, 2012) decreased continuously, being
undetectable by 48 h, while zeaxanthin levels dou-
bled by 24 h relative to time 0-h levels and then
returned to initial levels at 48 h after N deprivation.
Levels of other xanthin carotenoids, neoxanthin and
loraxanthin, and lutein also decreased after N dep-
rivation, with neoxanthin falling to undetectable
levels after 48 h of deprivation. b-Carotene levels
showed a trend similar to free zeaxanthin, with an
increase to 24 h and then a decrease back to initial
values at 48 h.

Thylakoid Lipid Levels and Composition

Over the course of N deprivation, we observed a de-
crease in the levels of thylakoid membrane lipids. This
includes the glycolipids MGDG and DGDG and the
anionic lipids SQGD and PG (Benning, 2010; Shimojima
et al., 2010). There was a sharp decrease in their levels in
the first 6 h and then a more gradual decrease until 24 h

Figure 2. Chl concentrations and synthesis. A, Chl concentration per
CDW in N-replete and N-depleted cultures (black and white rectangles,
respectively). The ratio of Chl a to Chl b for N replete and N depleted
(black and white circles, respectively). B, Micrograms of Chl per culture
volume of N replete (black square) and N deplete (white square). C, 13C
incorporation in molecules containing 13C label in N-replete and
N-depleted cultures (black and white rectangles, respectively). Error
bars indicate SD (n = 3).

562 Plant Physiol. Vol. 167, 2015

Juergens et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lp

h
y
s
/a

rtic
le

/1
6
7
/2

/5
5
8
/6

1
1
3
6
5
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

http://www.plantphysiol.org/cgi/content/full/pp.114.250530/DC1


(Supplemental Fig. S3). Proportions of polar (PG and
SQGD) and nonpolar (MGDG and DGDG) thylakoid
lipid levels did not change, which suggests that the
thylakoid membrane composition and charge density are
maintained. Thylakoid structure was examined by elec-
tron microscopy during the first 48 h of N deprivation
(Fig. 3), revealing that the chloroplast decreases in size,
consistent with the decreases observed in plastid mem-
brane lipid levels. Thylakoid stack structure appears
normal until at least 72 h, which contrasts with the de-
terioration of cytosolic structure and suggests that pho-
tosynthetic capacity is maintained.

Energy Capture and Conversion Is Down-Regulated
during N Deprivation

We used Chl fluorescence spectroscopy to assess
photosynthetic function during N deprivation. Over the
48-h N deprivation time course, a slow, approximately
linear decrease in the theoretical maximum quantum ef-
ficiency of PSII (Fv/Fm; Baker, 2008) occurred. After 24 h,
Fv/Fm was approximately 85% of N-replete values, and
at 48 h, it was approximately 75%, similar to the levels
reported by Schmollinger et al. (2014) and (Li et al. (2010).
The operating quantum efficiency of PSII photochemistry
in the light (FII; Genty et al., 1989; Baker, 2008) decreased
continually after 6 h, reaching close to one-half the initial

value by 48 h (Fig. 4B). In N-replete cells, FII was 15%
lower than the Fv/Fm, while N-deprived FII was almost
55% lower. NPQ during N deprivation was also mea-
sured (Fig. 4C), showing that in N-deprived cells, NPQ
decreased from approximately 0.3 to approximately
0.07 by 48 h.

In PSII, the efficiency of electron transfer is partly de-
pendent on the number of open/oxidized QA. qP and qL
are two parameters used to describe the percentage
of open PSII reaction centers (oxidized QA pool) based
on the puddle (qP) and lake (qL) models, respectively
(Kramer et al., 2004). During N deprivation, qP fell from
0.93 to 0.82 in 6 h and further to 0.75 by 48 h, indicating a
decrease in the abundance of open reaction centers, while
in N-replete control cultures, its levels remained constant
throughout the time course (Fig. 5D). qL is similar to qP,
except that it takes in to account the lake model of shared
light-harvesting centers. In these experiments, its values
were approximately 1% to 2% lower than qP. Both qP
and qL demonstrated that the QA pool was increasingly
reduced over time (Supplemental Fig. S4).

To probe potential changes in the allocation of light
energy between photosystems, 77-K fluorescence spectra,
which are a measure of the amount of light-harvesting
complex Chl associated with different photocenters, were
acquired (Fig. 4E). A substantial fall in the fluorescence
peak at 715 nm relative to the PSII peak at 685 nm was
observed at 6 h and beyond (consistent with previous

Figure 3. Chloroplast imaging with electron microscopy. A, N-replete cell. B, N-replete chloroplast. C, Six-hour N-depleted
chloroplast. D, Twelve-hour N-depleted chloroplast. E, Twenty-four-hour N-depleted chloroplast. F, Forty-eight-hour
N-depleted chloroplast. Bars = 500 nm (A and E) and 100 nm (B–D and F). C, Chloroplast; M, mitochondria; N, nucleus; OB, oil
bodies; P, pyrenoid; S, starch; T, thylakoids; V, vacuole.
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reports in nitrogen-limited C. reinhardtii; Plumley et al.,
1989). State Transition7 (class 1), a protein kinase re-
sponsible for inducing state transitions and adaptation to
different light conditions (Depége et al., 2003), increased
3-fold in transcript abundance within 2 h and then
returned to initial levels by 24 h, while its protein levels
decreased from 6 to 24 h. 77-K spectra and protein data
suggest a decreasing role for state transitions during
N deprivation. Alternatively, the 77-K spectra could
represent rapid remodeling of antennae and photocenter
arrangements.

Oxygen Evolution

Photosynthetic oxygen evolution in the light and its
consumption immediately upon transfer to the dark were
measured over the N-depleted time course (Fig. 5A). Un-
der the growth conditions of this study (160 uE m–2 s–1),
light-driven gross oxygen evolution and consumption
rates per cell decreased by one-half in the first 12 h, with
minor decreases through 48 h. Similar trends in oxygen

exchange rates were recently reported by Schmollinger
et al. (2014) using higher light levels for measurement than
for culturing. Thus, the electron flux through PSII was
down-regulated over the first 24 h after nitrogen depri-
vation, and this can be accounted for by the measured
decreases in the efficiency of PSII and Chl levels.

Total PSI Turnover Rate Falls during N Deprivation

The absorbance changes at 705 nm under PSII-inhibited
conditions are proportional to the oxidation/reduction of
PSI (Alric, 2010; Johnson and Alric, 2012). These P700
absorbance changes shown in Figure 5 are attributed to
redox turnover at PSI due to CEF (Fig. 5B). Thus, CEF
rates fall by approximately 50% over 48 h when ex-
pressed on a per cell basis; when expressed on a per
Chl basis, the decreases are more modest. This indi-
cates that cellular rates of CEF fall more because of
decreases in the numbers of photocenters per cell (as
reflected in Chl levels) than because of the turnover
rates of each photocenter.

Figure 4. Photosynthetic fluorescence func-
tional measurements. A, Fv /Fm. B, FII. C, NPQ.
D, qP. E, 77-K fluorescence. Contributions to
efficiency decreases were measured through
Chl fluorescence experiments over 48 h of
N deprivation using PAM fluorometry. A to
D, Black shapes indicate N replete and white
shapes indicate N-depleted conditions. E, 77-K
fluorescence spectra during N deprivation. Con-
trol (black line), 6-h N depleted (black hashed
line), and 24-h N depleted (gray hashed line) are
shown. PSI-associated fluorescence (maximum
at 715 nm) decreased markedly from 95% to
65% (61%) of the fluorescence intensity at PSII
(maximum at 685 nm) by 6 h and then decreased
slightly (58% 6 7%) by 24 h. Not shown are
48- and 72-h curves, which had fluorescence
signals at 715 nm, with 64% and 66% (63%),
respectively, of the signal intensity at 685 nm.
Error bars indicate SD (n = 3). Each 77-K spectrum
is the average of three replicates.
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Electrochromic Shift Measurements to Probe Thylakoid
Proton Motive Force and Fluxes

The electrochemical potential across thylakoid mem-
branes was assessed using electrochromic shift (ECS)-
induced absorbance changes at 520 nm (Avenson et al.,
2005; Bailleul et al., 2010; Lucker and Kramer, 2013).
When pigments are immobilized within an electric field,
a shift in the dipole moment can be induced, which
changes the spectral properties of the pigment absorbance.
Changes in absorbance at 520 nm during brief periods of
dark are due to the dissipation of the thylakoid proton
motive force. This is believed to occur primarily through
proton translocation through the ATP synthase. The initial
slope of ECS-induced absorbance change during light-to-
dark transitions gives estimates of total proton efflux (n

H+)
during steady-state photosynthesis. Figure 5C shows that
n

H+ decreased by approximately 50% in the first 12 h after
N deprivation and then another 20% by 48 h.
The amplitude of the ECS signal is proportional to the

concentration of the relevant pigments and the amplitude
of the electrochemical potential. Therefore, to account for
any changes in pigment concentrations on the n

H+ calcu-
lation during the N-deprived time course, we normalized
the ECS signal using the P700 absorbance changes in the
presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea. This
was rationalized as follows. Under PSII-inhibited condi-
tions, changes in A705 during light-to-dark transitions are
directly proportional to PSI turnovers under PSII-inhibited

conditions and are linearly proportional to the ECS at
520 nm signal (Lucker and Kramer, 2013). We can there-
fore calibrate changes in the ECS signal due to pigment
changes with the PSI signal. The PSII-inhibited ∆705 to
∆520 nm ratio (Supplemental Fig. S5) was found to in-
crease only approximately 10% by 48 h, demonstrating
that pigment changes had minimal impact on measured
ECS absorbance changes over the time course. This is
consistent with the observation that carotenoid pigment
levels change much less than Chl, and it allows greater
confidence in the estimates of proton flux. Normalized n

H+

is presented in Figure 5C.
To determine the relative contributions of linear

electron flow (LEF) and CEF to total photosynthetic
electron flow, we compared n

H+ to gross evolved oxygen
(GEO) rates during nutrient deprivation. Figure 5D
shows that during N deprivation, n

H+/GEO increases
approximately 15% by 24 h, indicating modest increases
in the contribution of CEF relative to LEF to the chloro-
plastic proton motive force. From 24 to 48 h, n

H+/GEO
decreased to N-replete levels. Calibrated n

H+/GEO shows
a small increase in favor of CEF versus LEF over the time
course, most significantly at 24 h.

Photosynthetic Carbon Fixation

Steady-state 13C-labeling experiments showed that
under nutrient-replete conditions, photosynthetic carbon

Figure 5. Oxygen evolution, ECS, and P700
spectroscopy. A to C, White squares indicate
values per million cells and white diamonds
indicate values per microgram Chl. A, Gross
oxygen evolution and consumption (white cir-
cle; nmol min–1). B, P700 (DA705 s–1) 3 1,000.
C, n

H+ (DA520 s–1) 3 1,000. White triangle and
dashed line indicate samples normalized to PSII-
inhibited P700/ECS ratios. D, n

H+/GEO 3 1,000.
White square and black line show n

H+/GEO
values and white triangles and dashed line show
n

H+/GEO values normalized to PSII-inhibited
P700/n

H+ ratios. Error bars indicate SD (n = 3).

Plant Physiol. Vol. 167, 2015 565

Regulation of Photosynthesis under Nutrient Stress

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lp

h
y
s
/a

rtic
le

/1
6
7
/2

/5
5
8
/6

1
1
3
6
5
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

http://www.plantphysiol.org/cgi/content/full/pp.114.250530/DC1


fixation contributed approximately one-third of carbon
used for growth. To assess changes in flux from photo-
synthetic carbon fixation into soluble metabolite pools,
cells were pulse labeled with 13C bicarbonate before or
6 h after N deprivation (Fig. 6). The rate of labeling of
Glc-6-P and particularly of Gly and Ser was reduced by
between 15% and 50% within 6 h of N deprivation,
indicating that fluxes through the photosynthetic dark
reactions of the Calvin cycle are substantially reduced
before any significant changes in the relevant enzyme
levels.

Starch Synthesis

In C. reinhardtii, N deprivation induces the accumula-
tion of starch sooner and to a greater extent than TAG
(Siaut et al., 2011; Fan et al., 2012). Starch levels (Fig. 7A)
show a linear increase starting within 6 h and increasing
from 5 mg per million cells to approximately 25 mg per
million cells by 48 h. Transcripts for genes related to
starch synthesis (Fig. 7B; Supplemental Table S1), espe-
cially soluble starch synthase I, are up-regulated within 30
min of N deprivation, while most genes related to starch
degradation were down-regulated early on. The levels
of most of the corresponding proteins closely followed
changes in transcripts. Interestingly, the expression of
some starch degradation genes, including many starch-
binding and -debranching enzymes, are up-regulated
after 4 h. Such findings suggest that the starch pool may
be turned over during N deprivation, which would point
to starch metabolism having more than a simple storage
function. Starch turnover has been demonstrated during
normal growth (Klein, 1987) and has been suggested to
occur during N deprivation based on observations on
starch-breakdown mutants (Tunçay et al., 2013). Starch
accumulation occurs during a time when cells are down-
regulating photosynthesis, decreasing carbon fixation, and
reducing ATP and NADPH production. While oxygen
production rates before N deprivation are sufficient to
sustain the initial starch accumulation rates, within ap-
proximately 12 h, this is no longer the case, and we
therefore suggest that starch accumulation is not
primarily driven by photosynthetic carbon or energy
overflow under these conditions.

DISCUSSION

Regulation of Photosynthetic Activity

When microalgae are deprived of nitrogen or other
inorganic nutrients, growth slows, photosynthesis is
down-regulated, and starch and oil accumulate. Pro-
nounced and rapid decreases in transcripts for most
genes encoding the photosynthetic complexes, electron
transport, light-harvesting centers, photosynthetic pig-
ments, and the Calvin-Benson cycle were observed here
and in other studies (Miller et al., 2010; Blaby et al.,
2013; Schmollinger et al., 2014), pointing to a central role
for transcriptional regulation in reducing photosynthetic

rates. Protein levels for many of these genes also de-
creased, albeit to a substantially lesser extent and with
delays generally in the 6- to 12-h range. However, anal-
yses of photosynthetic energy fluxes and of 13C-labeling
rates show that regulation at the posttranslational level is
at least as important as expression changes in the short-
term response to nutrient deprivation. Thus photo-
synthetic CO2 fixation and Chl synthesis rates are both
markedly inhibited before the corresponding protein

Figure 6. 13C incorporation. Time course of 13C incorporated into Glc-
6-P (A), Gly (B), and Ser (C) after addition of 13C bicarbonate to cultures
deprived of N for 6 h. The percentages of molecules containing 13C label
were determined by GC/MS after rapid quenching of cells in –70˚C
methanol and subsequent extraction. Error bars indicate SD (n = 3).
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levels are significantly decreased. Likewise, the timing of
changes in the photosynthetic apparatus and in electron
and proton fluxes does not correlate with the expression
levels of the relevant genes. For example, as a whole,
expression of almost all PSI genes are decreased relative
to that of PSII genes, whereas CEF fluxes at PSI increase
relative to LEF, which are initiated at PSII. Another sig-
nificant posttranslational change is the relative par-
titioning of light-harvesting complexes between the
photosystems, which occurs within 6 h, before the levels
of the antennae proteins have changed significantly.
Posttranslational regulation of photosynthesis is known
to be important in a range of stress responses as well
as in diurnal changes (de Vitry et al., 1989; Geiger and
Servaites, 1994; Turkina et al., 2006; Pfalz et al., 2012).
Such changes include structural modifications of indi-
vidual proteins and photosynthetic complexes as well as
allosteric regulation of enzyme activities.

Differential Regulation of PSI and PSII

It has been reported that PSI and PSII respond quite
differently during N deprivation, with PSII protein and
activity decreasing more than that of PSI (Plumley et al.,
1989; Berges et al., 1996; Wykoff et al., 1998). Plumley
et al. (1989; in C. reinhardtii) and Berges et al. (1996; in
Thalassiosira weissflogii, D. tertiolecta, and Synechococcus
sp. PCC 7002) concluded that the major effects of nitro-
gen deprivation are in PSII and that there is a relatively
large capacity for CEF under these conditions. Similarly,
Wykoff et al. (1998), studying C. reinhardtii under S and P

deprivation, found that electron flow was inhibited at
PSII, whereas PSI activity was essentially unchanged in
starved cells. By using multiple measurement methods to
assess photosynthetic fluxes, we conclude that under the
culture conditions used, fluxes through the two photo-
systems are both reduced and that while linear electron
fluxes fall more than cyclic ones in the first day of nu-
trient deprivation, the difference is much less dramatic
than previously concluded.

At the transcript level, PSII gene expression is increased
within 2 h of N deprivation (class 1), while PSI transcript
levels fall (class 6). This suggests that PSII protein levels
should stay higher longer than PSI; however, this is not
the case. Second, from 77-K fluorescence data, we find a
higher proportion of Chl fluorescence associated with
PSII than PSI over time, which is the reverse of findings in
N. oceanica (Simionato et al., 2013). By contrast, the gross
oxygen evolution rate, a measure of PSII activity, de-
creases somewhat more than the n

H+ during the first 24 h,
indicating a decrease in the contribution of LEF compared
with CEF. From 24 to 48 h, there appears to be a reba-
lancing of photosynthetic electron fluxes, with LEF in-
creasing relative to CEF. Interestingly, Fv/Fm does not
decrease rapidly, suggesting that PSII complexes remain
functional and that LEF is being down-regulated in an-
other manner partly due to dilution of Chl per cell. As
mentioned above, the PTOX protein abundance increases
and may be involved in redirecting electrons from linear
electron transport toward chlororespiration (Peltier and
Schmidt, 1991), while the increases in PGR5, PGRL1B,
and NDA2 transcript and protein levels suggest increased
CEF capacity (Johnson et al., 2014). The increase over the

Figure 7. Starch analysis. Transcripts (A) and protein (B) abundance values over a 24-h N-depleted time course for genes related
to starch metabolism. Transcript values are expressed as log2-fold change, and protein values are expressed as ratios of value at
time point to original value at time 0; each follows the color scales denoted below their respective sections, with blue rep-
resenting an increase in expression, yellow representing a decrease, and white representing not reliably quantified. C shows
starch levels in N-replete (black diamonds) and N-deprived (white diamonds) cells. Error bars indicate SD (n = 3).
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first 24 h of the proportion of proton efflux apparently
driven by CEF implies there is an increase in demand for
photosynthetically generated ATP relative to NADPH.
We postulate that such a shift reflects a decreasing de-
mand for NADPH for de novo biosynthesis as growth
slows, while ATP demands for maintenance and re-
modeling of the proteome remain closer to those dur-
ing normal growth.

Photosynthesis Is Down-Regulated in a Controlled and
Orderly Manner

During N deprivation, it has been suggested that pho-
tosynthesis induces significant stress via energetic over-
flows, leading to potential oxidative damage and driving
starch and oil accumulation as energy sinks (Roessler, 1990;
Hu et al., 2008; Li et al., 2012). Consistent with this, GPX5, a
gene associated with reactive oxygen species (ROS), was
up-regulated. The photosystem II subunit S (PSBS) gene,
believed to be involved in NPQ (Bonente et al., 2008; Miller
et al., 2010), the LHCSR genes, and the PSBA D1 protein
are also up-regulated, and zeaxanthin levels doubled
within 6 h. While zeaxanthin accumulation and LHCSR
and PSBS up-regulation are typically associated with light-
induced stress and thylakoid acidification (Gilmore and
Yamamoto, 1993; Horton et al., 1994; Peers et al., 2009), our
other results provide evidence that photosynthetic fluxes
are down-regulated sufficiently to prevent significant
stress. NPQ, which is elevated markedly under photo-
synthetic stress conditions such as drought or high light
exposure (Niyogi et al., 1997; Müller et al., 2001), did not
increase following N deprivation. It may be that the
moderate light levels at which C. reinhardtii is cultured and
at which NPQ was measured here are too low to induce
significant quenching. Also, we observed little or no
increase in the levels of ROS-related proteins (with the
exception of modest increases in GPX5), which is con-
sistent with a recent study in which no increases in ROS
levels were detected during N deprivation in wild type
C. reinhardtii (Li et al., 2012). Chl levels per cell decrease
strongly, and this, together with changes in photosyn-
thetic light use efficiency, can be estimated to reduce
energy capture by approximately 3-fold within 24 h,
consistent with the observation of strong reduction in
the light-driven oxygen production rate. It is likely that
during the first 24 h, decreased light capture is a more
important factor than changes in Calvin cycle enzyme
levels or activities in the decreased carbon fixation rates.
Also consistent with a picture of an orderly down-
regulation of photosynthesis that preserves structure
and function while avoiding stress from energy over-
flow are the findings that Chl levels fall by dilution
without the induction of degradation, and the same
apparent pattern in the decreasing levels of thylakoid
membranes, with their proportions and organization in
the thylakoid stacks being preserved. The fact that
starch and later TAG accumulation increase while
photosynthetic energy capture is greatly decreased
suggests that photosynthetic energy overflow may

not be the primary driver of storage compound accu-
mulation. Thus, for example, maximal starch production
rates are achieved before growth rates have slowed sig-
nificantly. A full energetic and carbon balance under au-
totrophic as well as mixotrophic conditions would be
needed to quantitatively assess the contribution of pho-
tosynthesis to storage compound accumulation. As algae
in nature commonly face nutrient deprivation (Grossman,
2000; Grossman et al., 2010; Merchant and Helmann,
2012), it should perhaps not be surprising that they are
able to respond in an orderly manner, preventing sub-
stantial energetic overflows and oxidative damage.

MATERIALS AND METHODS

Culturing

Chlamydomonas reinhardtii strain cc400 cw-15 mt++ was obtained from the

Chlamydomonas Research Center and grown at 23°C in liquid Tris-acetate-

phosphate (TAP) mediim (Gorman and Levine, 1965) in flasks shaken at 125

rpm under continuous illumination at 160 mE m–2 s–1 and ambient CO2 con-

centrations. Cell growth was determined by optical density measurements at

750 nm using a DU 800 spectrophotometer (Beckman-Coulter). Cultures were

grown to cell densities of between 0.15 and 0.3 optical density to minimize

self-shading, which becomes significant in denser cultures. Cells were counted

using a Z-series Coulter Counter cell and particle counter (Beckman-Coulter).

For N deprivation, cells were centrifuged and resuspended in TAP medium

lacking ammonium chloride (nitrogen source). For labeling studies, acetate

was replaced with 13C2 acetate.

Transcriptomics

Transcript analysis was conducted as described in Park et al. (2014), which

includes the mapping, parameters for single nucleotide polymorphism anal-

ysis, statistical data tools, and functional annotations. Briefly, cells were har-

vested by centrifugation at 0°C, resuspended in RNAlater solution (Qiagen

Sciences), and stored at between –80°C and –60°C ; RNA was extracted from

two biological replicates for each time point using TRIzol reagent (Invitrogen)

according to the manufacturer’s protocol. Complementary DNA library

preparation and high throughput RNA sequencing analyses were per-

formed as previously described by He et al. (2012).

Proteomics

Cells were harvested by centrifugation and frozen in liquid N. Proteins were

extracted and trypsin digested as described in Wang et al. (2012). One hundred

micrograms of each digested sample was labeled using 4plex iTRAQ reagents

according to the manufacturer’s instructions (AB Sciex). Two 4plex iTRAQ

experiments were performed for each biological replicate of the seven time

points. Labeled samples from each experiment with iTRAQ labels 114 to 117

were mixed and fractionated via strong cation exchange as in Alvarez et al.

(2011). Fractions from 5 to 24 min were analyzed by nanoLC-tandem mass

spectrometry (MS/MS) using an LTQ-Orbitrap Velos mass spectrometer

(ThermoFisher) coupled with a nanoLC Ultra (Eksigent). Mascot Distiller

version 2.4 (Matrix Science) was used to process data, and Mascot Daemon

was used to search data against the C. reinhardtii protein database from

Phytozome9 and the Chlamydomonas chloroplast and nuclear database from

NCBInr (Phytozome 9, January 7, 2013, 17,114 sequences and 12,173,409 res-

idues). The false-positive rate of protein identification was assessed with an

automatic decoy database search, and identified proteins were grouped based

on 98% homology with Scaffold version 3.1 (Proteome Software). Full details

can be found in Park et al. (2014).

Annotation and Expression Analysis

Transcripts and proteins identified during sequencing were filtered for

relatedness to photosynthetic function based upon annotation in Phytozome,

Kyoto Encyclopedia of Genes and Genomes, the C. reinhardtii sourcebook
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(Harris et al., 2008), similarity to Arabidopsis (Arabidopsis thaliana) sequences

provided on The Arabidopsis Information Resource, and papers cited in this

work. K-means and hierarchical clustering for transcripts was carried out using

XLSTAT (Addinsoft) in Microsoft Excel. Number of expression classes was chosen

based upon least number of classes with least amount of within-class variance

generated after 500 iterations.

Chl Concentration

Cells were collected by centrifugation of 1 mL of culture, and Chl was

extracted in 1 mL of 80% (v/v) acetone for 20 min from pelleted samples after

supernatant was removed. After extraction, samples were pelleted by cen-

trifugation and the supernatant was used for analysis. Chl was quantified

spectroscopically as described in Ritchie (2006) using a DU 800 spectropho-

tometer (Beckman Coulter).

Phytol Isotopic Labeling

For determination of Chl synthesis rates, 13C incorporation into the phytol

side chain of the Chl molecule was measured using gas chromatography

(GC)/MS. Exponentially growing cells were centrifuged and transferred to
13C2 acetate TAP medium with and without N. Two milliliters of cells

(approximately 0.15 mg CDW) was harvested at various time points.

Lipids were extracted with chloroform-methanol (2:1) and dried under a

stream of N. The dried lipid extract was saponified using methanolic potassium

hydroxide at 100°C for 2 h in a 2-mL screw-capped tube. The unsaponified

components that contained the phytol chain were then extracted using hexane

and dried under N. The extract was derivatized to its tetramethylsilane (TMS)

derivative using 50 mL of N-Methyl-N-(trimethylsilyl)trifluoroacetamide with

1% (v/v) trimethylchlorosilane (Sigma Aldrich) by incubating at 80°C for 1 h.

One microliter of the derivative was injected into the GC/MS consisting of HP

6890 GC (Hewlett Packard) equipped with a DB-5MS column (5% [w/w]

phenyl-methyl-siloxan-diphenylpolysiloxan; 30 m 3 0.251 mm 3 0.25 mm,

Agilent) and a quadrupole mass spectrometer (MS 5975, Agilent). Electron

ionization was carried out at 70 eV. The separation was carried out in GC (carrier

gas, 1.1 mL min–1 helium) with the following temperature program: initial col-

umn temperature of 100°C, increase of 20°C min–1 until 150°C, 4°C min–1 until

225°C, and 30°C min–1 until 325°C with a final holding time of 5 min. The inlet

and quadrupole both had temperatures set to 320°C. The ions 143, 144, 145, 146,

and 147 of the mass spectra were monitored, which represent a four-carbon

fragment of the phytol chain. The obtained mass spectrometric data were cor-

rected for the natural abundance of the elements to give fractional 13C labeling.

Carotenoid Quantification

Folch extracts were analyzed for free carotenoid content via HPLC as de-

scribed by Rodriguez-Uribe et al. (2012). Extracts were diluted in CHCl3:MeOH

(2:1, v/v), and a 20-mL aliquot was separated on a 4.6- 3 250-mm carotenoid

column (YMC America LLC). Carotenoid peaks were detected by a 996 pho-

todiode array detector at 400 to 600 nm (Waters), and peak detection and inte-

gration were performed using the extracted 450-nm absorbance chromatogram.

Peak areas were integrated for relative quantification by peak area using the

Empower software (Waters). Astaxanthin, loroxanthin, and neoxanthin were

identified by comparison of the UV absorbance spectra to their respective ref-

erenced UV spectra in Britton et al. (2009).

Lipid Analyses

Cells were centrifuged at 0°C, and lyophilized and total lipids were extracted

from approximately 10 mg of dry cell mass by the method of Folch et al. (1957).

Briefly, the lyophilized tissue was weighed into 2-mL Eppendorf vials and

extracted with 200 mL of CHCl3:MeOH (2:1, v/v) shaking on a vortexer for

30 min. The sample was then centrifuged, and the supernatant was collected,

dried under N, and stored at –20°C until analysis. Thylakoid membrane lipids

were quantified by direct infusion into a Fourier Transform-Ion Cyclotron

Resonance MS as previously described (Holguin and Schaub, 2013).

Electron Microscopy

During N deprivation at selected time points, 50 mL of cells at 0.2 optical

density of 750 nmwas harvested, pelleted, and resuspended in fixation solution

of TAP medium with 0.5% (v/v) glutaraldehyde and 10 mL of hydrogen

peroxide to 10 mL for 1 h in the dark at 4°C on a rotary plate. After fixation,

cells were pelleted (3,500 rpm) and then resuspended in 0.5 mL of TAP me-

dium. Cells were packaged at Michigan State University and sent to Cam-

bridge, United Kingdom for analysis. Fixed cell samples were then treated

with 1% (v/v) osmium ferricyanide at 25°C for 2 h and rinsed in deionized

water five times. Pelleted cells were then treated with 2% uranyl acetate in

0.05 M maleate buffer at pH 5.5 for 2 h at 25°C. They were again rinsed in

deionized water, dehydrated in an ascending series of ethanol solutions from

70% to 100% (v/v), and then treated with two changes of dry acetonitrile and

infiltration with Quetol epoxy resin. Sections were cut at 50 nm on a Leica

Ultracut S. Samples were stained with uranyl acetate and lead citrate and

viewed at 120 kV in an FEI Tecnai G2. Images were captured with an AMT

XR60B camera using Deben software.

Oxygen Evolution and Consumption

Changes in dissolved oxygen was measured with an NEOFOX analyzer

FOXY-R probe with a FOXY-AF-MG coating (Ocean Optics). Probe was placed

in 2 mL of culture in a capped 3-mL cuvette with stir bar to keep samples

mixed. Net oxygen evolution was measured for 5 min at 160 mE m–2 s–1, and

consumption was measured in the dark immediately after the light period

for 1 min. Gross oxygen evolution was calculated as net oxygen evolution

minus consumption.

In Vivo Spectroscopy

All spectroscopic measurements were performed with biological triplicates

at each time point. Light-induced absorbance and Chl fluorescence yield were

measured using a kinetic spectrophotometer/fluorometer (Sacksteder et al.,

2001; Livingston et al., 2010; Hall C et al., 2011) modified for liquid samples by

replacing the leaf holder with a temperature-controlled, stirring-enabled cuvette

holder (standard 1-cm path length). Cells were treated with a far-red light light-

emitting diode (LED; 730 nm) in otherwise darkness for 20 min to oxidize the

plastoquinone pool for accurate minimal fluorescence measurements. After

dark/far-red adaptation, the first saturating pulse for Chl fluorescence measure-

ments was taken with a pulsed measuring beam (505-nm peak-emission LED)

filtered through a BG18 (Edmund Optics) glass filter. The sample was then illu-

minated with 160 mmol photons m–2 s–1 of photosynthetic photon flux density,

provided by a pair of LEDs (Luxeon III LXHL-PD09, Philips) with maximal

emission at 620 nm, directed toward opposite sides of the cuvette, perpendicular

to the measuring beam. Fluorescence yields from saturating pulses were mea-

sured under actinic light and averaged over six measurements, separated by 120-s

intervals. Both absorption and fluorescence measuring pulses were 20 to 35 ms in

duration and attenuated to produce less than a 0.1% increase in Chl fluorescence

yield in dark-adapted samples. The first dark-interval relaxation kinetics trace

measuring the ECS kinetics (one trace per biological replicate) was measured after

3 min of actinic illumination, followed by 1 min of actinic light. Actinic LEDs were

calibrated using a Licor LI190 PAR quantum sensor.

The kinetics of PSI primary donor (P700+) oxidation/reduction kinetics

measurements were performed 5 min after the cells had been treated with

10 mM 3(3,4-dichlorophenyl)-1,1-dimethylurea (Sigma Aldrich) as described in

Lucker and Kramer (2013). Briefly, absorbance changes attributed to P700

redox changes were monitored using a measuring LED (peak emission,

720 nm) filtered through a 5-nm band pass filter centered at 700 nm, giving an

emission peak at approximately 705 nm. A Schott RG695 color glass filter was

used to protect the detector from actinic light. The kinetics of P700+ reduction

were measured by the absorbance changes during light-to-dark transition after

10 s of actinic illumination with 160 mmol photons m–2 s–1.

77-K Chl Fluorescence Emission Spectra

Cell cultures were taken directly from the incubator at the specified times

and poured into a 3-mL styrene cuvette in triplicates at 3 mg Chl mL–1. The

cuvettes were immediately placed in a liquid N-filled Dewar, freezing the

cells, and then stored at –80°C until further analysis. Immediate freezing of

samples was important to prevent state transitions. For analysis, cuvettes were

placed in a liquid N-filled Dewar. A beam of blue excitation light from an LED

(peak, 440 nm) was directed through an optic fiber (Murakami, 1997). Fluo-

rescence emission spectra from 187 to 1,110 nm were detected using a fiber

optic spectrophotometer (USB2000+ UV-VIS, Ocean Optics; Hill et al., 2012).
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To determine relative intensity values, data from a TAP medium blank was

first subtracted. Samples were then normalized to the 685 nm (PSII-associated

peak). PSI-associated fluorescence was maximal at 715 nm and was used from

comparison between samples.

13C Bicarbonate Labeling

13C bicarbonate from a stock solution was added to a final concentration of

17 mM to 400-mL cultures of cells growing with or without N for 6 h. Cells

were harvested at 0, 1, 2.5, 5, 7, 10, and 15 min after the addition of label by

quenching 40-mL culture aliquots with 10 mL of methanol at –80°C. Samples

were centrifuged at 0°C, the supernatant was discarded, intracellular metab-

olites were extracted with 100% methanol, and then extracts were dried under

a stream of N2. Methoxyamine-pyridine (50 mL of a 25-mg methoxyamine-HCl

mL–1 solution in pyridine) was added to the dried extract and incubated for 45

min at 80°C, followed by TMS derivatization as described above for phytol

analysis. One microliter of derivative was used for GC-MS. For gas chro-

matographic separation, helium was the carrier gas at a flow rate of 1.1 mL

min–1, with the following temperature program: initial column temperature of

100°C, increasing at 10°C min–1 to 325°C with a final holding time of 5 min.

The inlet and quadrupole had temperatures of 320°C. Ions corresponding to TMS

derivatives of amino acids and sugar phosphates were monitored and corrected

for the natural abundance of the elements to give fractional 13C labeling.

Starch Analysis

Total Glc contained in starch was measured after amyloglucosidase and

amylase digestion with the Megazyme total starch analysis kit, similar to Work

et al. (2010). Briefly, starch pellets remaining after methanol:chloroform (2:1)

lipid extraction was autoclaved for 1 h in 0.1 M acetate buffer (pH 4.8) and then

was treated with a-amylase and amyloglucosidase for 1 h at 55°C. Free Glc

was quantitated with a colorimetric assay at 510 nm as described in the Total

Starch Assay kit (Megazyme).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Photosynthetic transcripts and protein expression.

Supplemental Figure S2. Carotenoid levels at successive times following

N deprivation determined by extraction, HPLC separation, and mea-

surement of absorbance at 450 nm compared with authentic standards.

Supplemental Figure S3. Relative changes in thylakoid lipid levels.

Supplemental Figure S4. Relative amount of oxidized QA based upon the

lake model.

Supplemental Figure S5. PSII-inhibited P700/n
H+ during N deprivation.

Supplemental Table S1. The levels of transcripts and proteins of photo-

synthetic pigment metabolism and starch metabolism.
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