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ABSTRACT 

Motivation 
Various genome sequencing efforts for individuals with rare Mendelian disease have increased the research focus on 
the non-coding genome and the clinical need for methods that prioritize potentially disease causal non-coding variants. 
Some methods and annotations are not available for the current human genome build (GRCh38), for which the 

adoption in databases, software and pipelines was slow. 

Results 
Here, we present an updated version of the Regulatory Mendelian Mutation (ReMM) score, re-trained on features and 
variants derived from the GRCh38 genome build. Like its GRCh37 version, it achieves good performance on its highly 
imbalanced data. To improve accessibility and provide users with a toolbox to score their variant files and lookup 

scores in the genome, we developed a website and API for easy score lookup. 

Availability and Implementation 
Pre-scored whole genome files of GRCh37 and GRCh38 genome builds are available on Zenodo 

https://doi.org/10.5281/zenodo.6576087. The website and API are available at https://remm.bihealth.org. 

INTRODUCTION 

The Regulatory Mendelian Mutation (ReMM) score predicts the potential pathogenicity of non -coding variations in 
the human reference genome build GRCh37/hg19 (Smedley et al. 2016). The updated reference genome 
GRCh38/hg38 contains new sequences at nearly 100 assembly gaps and reduces unresolved bases at about 3% of the 
genome (Guo et al. 2017). This establishes a need for an update of the ReMM score and we present a version developed 
particularly for GRCh38. Further, we update the ReMM score for GRCh37 by including feature updates and an 
improvement in handling missing values. Finally, we provide a webserver and API for scoring VCF files, single 

variant lookups or range lookups. 

IMPLEMENTATION 

The ReMM score is based on an imbalanced-aware machine learning algorithm, hyperSMURF (Schubach et al. 2017), 
trained from known pathogenic non-coding variants of Mendelian disorders and a set of putatively benign variants. 
As pathogenic set, we use 406 hand-curated variants already used in the prior version (Smedley et al. 2016), lifted to 
GRCh38 using UCSC liftOver (v377) (Lee et al. 2022). The proxy-benign set includes around 14 million of human-

lineage-derived sequence alterations (Rentzsch et al. 2019), which we filtered to non-coding sequence using Jannovar 
v0.36 (Jäger et al. 2014) and RefSeq (O’Leary et al. 2016). The high imbalance after non-coding filtering is similar 
on both genome builds (14.8M and 13.9M negatives for GRCh37 and GRCh38, respectively). Therefore, we kept 
parameters for hyperSMURF as determined in Smedley et al. 2016 (Supplementary Table 1). Because of the large and 
computationally expensive dataset, we replaced hyperSMURF with the updated parSMURF implementation (Petrini 

et al. 2020). 

Genomic data is confounded by local correlation of annotations. Further, known pathogenic variants are not distributed 
evenly across the genome (e.g., due to selection bias). When not accounted for, learners might infer superior hold-out 
performance because of genomic proximity of variants. To handle the local correlation structure, we apply cytogenic 

band-aware cross-validation using ten folds (Smedley et al. 2016). 

Twenty-six selected features (see Supplementary Table 2) capture functional constraint and sequence functions 
(sequence composition, epigenetics, conservation, population variance and regulatory regions). The feature set was 
kept close to the original feature set of ReMM, but some were not available from the original databases or were 
updated. Some features have a high proportion of missing values and the initial version of ReMM imputed all of them 

with zero. In genomics, a missing value often indicates an experimental signal that is too low to be measured, in line 
with this imputation. We have now identified some features (e.g., GC content or conservation scores) where the 
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genome-wide average of the annotation is more appropriate and impute them differently in this version (see 

Supplementary Table 2). For missing p-values, we use the value 1. 

Pre-scored, block-gzip compressed and indexed whole genome files (Li 2011) were generated to allow a fast scoring 
of variants as well as an easy integration into other software. Every genomic position was scored with a general ReMM 
model trained on all data (v0.4.hg19 and v0.4.hg38, respectively). To guarantee unbiased score usage, e.g., for 
performance benchmarks with other tools, we replaced the score of variants in the training set with the cross-validated 
scores. The training and scoring pipeline is implemented in snakemake, a workflow management system for 

reproducible and scalable analysis (Mölder et al. 2021). 

RESULTS 

Performance of ReMM on GRCh38 
After 100 training cycles using different random seeds and ten-fold cytoband cross validation, we achieve an excellent 
performance with an average area under the precision recall curve (AUPRC) of 0.613±0.005 (Supplementary Table 
3). We randomly picked one model for the final scoring with an AUPRC of 0.610 (Supplementary Figure 1a, ROC 

performance available in Supplementary Table 1b). 

Rather than using ReMM scores for ranking, some users need to specify score thresholds for classifying into 
pathogenic and benign variants. Using a cutoff of 0.5 yields a good result in terms of retrieving known pathogenic 
non-coding variants (i.e., recall or True Positive rate, TP), but the number of negatives might be extremely large. For 
ReMM v0.4.hg38, recall is 92% (375 out of 406) at a cutoff of 0.5 (Supplementary Figure 1c), but precision is close 

to zero with lots of false positives (FP) (86,507 out of 13,911,061; FP rate=0.006). The F1-score (harmonic mean of 
recall and precision) is highest at 0.963, resulting in a TP rate of 0.554 and a FP rate of 5.3e-6. Using the F2-score, 
we can give more weight to recall. Here, the optimal cutoff is 0.914, resulting in a TP rate of 0.702 and a FP rate of 
2.3e-5. Analogous to NCBI ClinVar (Landrum et al. 2018) pathogenic and likely pathogenic categories, we suggest 
to use a ReMM score above the F1 threshold as weak computational evidence for "pathogenic" and a score above the 
F2 threshold and below the F1 threshold for "likely pathogenic". For ReMM v0.4.hg19, these thresholds are 0.961 

and 0.924 (Supplementary Figure 1d), respectively. 

Correlation of scores and features 
To compare both genome builds, we correlate ReMM scores from three genomic regions (genic content and not 
overlapping with assembly gap changes) and 120K randomly sampled positions and find that scores are highly 

correlated between versions (Supplementary Table 4). We also used these regions and sites to explore the average 
feature correlation (Supplementary Table 5). Further, we compare feature correlations between the genome builds 
directly on the training data (Supplementary Figure 2). As expected, we have highest correlation for sequence features, 
like GC content. Further, population variance features correlate well, with reduced correlation for the rare variant 
feature. This is likely due to spurious calls highly depending on the caller and the quality of the reference genome. 

We only see low correlation on sparse data (Fantom5). 

Imputing missing values 
In previous ReMM versions, we used zero for missing values globally and trusted in the non-linearity of decision 
trees. Now, we use the average value of all defined positions for sequence and conservation features and one for p-
values (see Supplementary Table 2). With the new approach, we see that the average AUPRC increases slightly (0.005 

for v0.4.hg19, 0.009 for v0.4.hg38, Supplementary Table 6). 

Feature importance 
From the underlying Ranger random forest (RF) models (Wright and Ziegler 2017), we can retrieve feature importance 
using the Gini index. We averaged values over all 100 RFs in the model (Supplementary Table 7). In general, mean 

feature importance scores distribute over all 26 features. No single feature stands out and our broad feature categories 
are all represented with at least one highly ranked feature. We interpret this as evidence that features were carefully 
picked and biases avoided. Epigenetic features increased in importance for the GRCh38 model (average rank 16 vs 
19), maybe due to better mapping and processing of the underlying data. Fantom5 features are probably too sparse to 
receive high importance, but might be relevant for some variants. Between genome builds, feature importance values 
are similar and no significant change is detected (p-value 0.565, two-sided ranksum test). The replaced 

encRegTfbsClustered feature achieves a similar average Gini index (rank 6 on v0.4.hg19) as the previous 

numTFBSConserved feature (rank 4, data not shown). 
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DATA AVAILABILITY 

We precomputed the ReMM score for all sequence-resolved positions in the genome (GRCh37 and GRCh38 builds) 
and provide them on Zenodo (https://doi.org/10.5281/zenodo.6576087) or on our website (https://remm.bihealth.org). 
Our website also enables fast and easy scoring of variants. Variants can be uploaded via a VCF file (Danecek et al. 

2011), or scores directly displayed with a single site or genomic range variant lookup. In addition, we provide a REST-
API that allows tools and scripts to retrieve ReMM scores directly. Scoring on the website is available for both genome 

builds and all major ReMM versions. 

CONCLUSION 

The ReMM v0.4 score is a fully retrained non-coding score available for both the GRCh37 and GRCh38 genome 
builds. Scores over the genome are highly correlated to the prior release with a performance increase due to the better 

coverage of features. In addition, we now established a reproducible and scalable framework for integration of new 
features or new training data for further development of ReMM. The pre-scored whole genome files and a website 
provide fast access and easy usage of the ReMM score for researchers in all areas. With this release, tools like 
Genomiser (Smedley et al. 2016) can now be run on the latest genome build, a highly demanded feature from the 

community. 
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