
GigaScience, 2023, 12, 1–7

DOI: 10.1093/gigascience/giad024

Technical Note

The Regulatory Mendelian Mutation score for GRCh38

Max Schubach 1,*, Lusiné Nazaretyan 1 and Martin Kircher 1,2

1Exploratory Diagnostic Sciences, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
2Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany
∗Correspondence address. Max Schubach. Charitéplatz 1, 10117 Berlin, Germany. E-mail: max.schubach@bih-charite.de

Abstract

Background: Genome sequencing efforts for individuals with rare Mendelian disease have increased the research focus on the non-
coding genome and the clinical need for methods that prioritize potentially disease causal noncoding variants. Some tools for assess-
ment of variant pathogenicity as well as annotations are not available for the current human genome build (GRCh38), for which the
adoption in databases, software, and pipelines was slow.

Results: Here, we present an updated version of the Regulatory Mendelian Mutation (ReMM) score, retrained on features and variants
derived from the GRCh38 genome build. Like its GRCh37 version, it achieves good performance on its highly imbalanced data. To
improve accessibility and provide users with a toolbox to score their variant files and look up scores in the genome, we developed a
website and API for easy score lookup.

Conclusions: Scores of the GRCh38 genome build are highly correlated to the prior release with a performance increase due to the
better coverage of features. For prioritization of noncoding mutations in imbalanced datasets, the ReMM score performed much better
than other variation scores. Prescored whole-genome files of GRCh37 and GRCh38 genome builds are cited in the article and the
website; UCSC genome browser tracks, and an API are available at https://remm.bihealth.org.
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Findings

Introduction

The Regulatory Mendelian Mutation (ReMM) score predicts
the potential pathogenicity of noncoding variants [1]. It is
specifically designed for highly imbalanced datasets with
an excess of neutral variants, which naturally occurs in
whole-genome sequencing of probands with Mendelian dis-
orders because only a small number of variants are ex-
pected to be causal among thousands of observed variants.
The original score was constructed on the human reference
genome build GRCh37/hg19. Nowadays, the standard for se-
quencing projects in clinic and research is the updated reference
genome GRCh38/hg38. It contains new sequences at nearly 100
assembly gaps and reduces unresolved bases at about 3% of the
genome [2]. Often, coordinate liftovers are performed between
builds, but they are limited to well-characterized regions in
both genome builds and may be insensitive to changes in the
exact sequence. In addition to the advantages of an updated
reference genome [3, 4], new annotations may primarily support
GRCh38. This establishes a need for an update of the ReMM score,
and we present a version developed particularly for GRCh38.
Further, we update the ReMM score for GRCh37 by including
feature updates and improving its handling of missing values.
We show that the score has superior performance on imbalanced
datasets compared to competing approaches and the most fre-
quently used scores in the field. Finally, we provide a webserver
and API for scoring VCF files, single-variant lookups, or range
lookups.

Methods
Training set labels and hyperparameters
The ReMM score is based on an imbalance-aware machine learn-
ing algorithm, hyperSMURF [5], trained from known pathogenic
noncoding variants of Mendelian disorders and a set of putatively
benign variants. As a pathogenic set, we use 406 hand-curated
variants already used in the prior ReMM version [1], reciprocally
lifted to GRCh38 using UCSC liftOver (RRID:SCR_018160) v377 [6]
and validated for identical allelic sequences. The proxy-benign
set includes around 14 million of human lineage–derived se-
quence alterations [7], which we filtered to noncoding sequences
using Jannovar v0.36 [8] and RefSeq (RRID:SCR_003496) [9]. Re-
stricting variants to noncoding only removes a small proportion
of variants (0.7% and 1% for GRCh37), and the high imbalance
with the pathogenic variant set is similar on both genome builds
(14.8 million and 13.9 million proxy-benign variants for GRCh37
and GRCh38, respectively). Therefore, we kept parameters for hy-
perSMURF model training as determined in [1] (Supplementary
Table S1).

Imbalance-aware model training
The hyperSMURF algorithm applies a special sampling technique
essential for the highly imbalanced data of human pathogenic
variants [1, 5]. The minority class (for ReMM, the pathogenic
variants) is oversampled based on the Synthetic Minority Over-
sampling Technique (SMOTE) that creates synthetic examples us-
ing k-nearest neighbors rather than oversampling the data with
replacement [10]. The majority class (proxy-benign set) is divided
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into n nonoverlapping partitions, which then are subsampled ac-
cording to a ratio parameter. The minority class is oversampled by
factor 2, and the majority class is undersampled by factor 3, which
leads to the ration of pathogenic versus benign variants of 2–3 in
a more balanced dataset with around 2,000 data points. However,
each balanced dataset alone provides insufficient coverage of the
large data space of the majority class. That is why hyperSMURF
applies an ensemble method: it divides the dataset into 100 parti-
tions, each containing all oversampled pathogenic and 1 partition
of downsampled proxy-benign variants. On each partition, a ran-
dom forest [11] is trained and the final pathogenicity score is the
average over the 100 predictions. It ranges from 0 (not pathogenic)
to 1 (pathogenic) and gives the probability values of a variant to
belong to the pathogenic training data. Thus, the higher the score,
the more likely that a variant at that position is pathogenic. We
used parSMURF as an implementation of hyperSMURF, a fast and
highly scalable model training tool based on random forest algo-
rithms [12].

Cytogenic band-aware cross-validation
Genomic data are confounded by local correlation of annota-
tions (i.e., gnomically proximal variants tend to be more simi-
lar in their annotation results than random variants). Further,
known pathogenic variants are not distributed evenly across the
genome (e.g., due to selection bias, shared identification, available
validation assays) but rather cluster around certain well-studied
genes and share certain molecular functions or properties. When
not accounted for, learners might infer superior hold-out perfor-
mance because of genomic proximity of variants. To handle the
local correlation structure in the genome, we apply 10-fold cyto-
genic band-aware cross-validation (CV) [1]. This is a stratified CV
approach where each cytoband of the genome is associated to 1
out of 10 folds. Folds are assigned to have a similar number of
pathogenic variants, and cytobands without pathogenic variants
are randomly assigned to a fold. Proxy-benign variants are con-
sidered in the folds of their associated bands. Thereby, gnomically
proximal (i.e., same cytoband) pathogenic and proxy-benign vari-
ants are considered together, making it more challenging for the
learner to discriminate between the 2 groups. Ten separate mod-
els are trained on 9 folds and validated on the 10th fold. Unbi-
ased predictions of variants contained in the training set can be
performed with the model that only used the variants in the val-
idation fold, while other variants are reported by a general model
trained on all input data.

Model features and imputation
Twenty-six selected features (see Supplementary Table S2) cap-
ture functional constraint and different sequence functions (se-
quence composition, epigenetics, conservation, population vari-
ance, and regulatory regions) of the genetic variants. The fea-
ture set was kept close to the original feature set of ReMM, but
some were not available from the original databases or were up-
dated. Some features have a high proportion of missing values,
and the initial version of ReMM imputed all of them with zero.
In genomics, a missing value often indicates an experimental
signal that is too low to be measured, in line with this impu-
tation. We have now identified some features (e.g., GC content
or conservation scores) where the genome-wide average of the
annotation is more appropriate and impute them differently in
this version (see Supplementary Table S2). For missing P values,
we use the value 1.

Availability of prescored files and scoring workflow
Prescored, block-gzip compressed and indexed whole-genome
files [13] were generated to allow a fast scoring of variants as well
as an easy integration into other software. Every genomic posi-
tion was scored with a general ReMM model trained on all data
(v0.4.hg19 and v0.4.hg38, respectively). To guarantee unbiased
score usage (e.g., for performance benchmarks with other tools),
we replaced the score of variants in the training set with cross-
validated scores (see above). The training and scoring pipeline is
implemented in snakemake, a workflow management system for
reproducible and scalable analysis [14, 15].

ClinVar dataset
Version 2022–12-03 of NCBI ClinVar (RRID:SCR_006169) was down-
loaded on 19 December 2022. Variants were filtered for single-
nucleotide changes with unambiguous clinical assertions of
“pathogenic,” “likely pathogenic,” “likely benign,” and “benign.” The
set was annotated using Jannovar as described above and filtered
for noncoding effects. Variants overlapping the training dataset as
well as mitochondrial single-nucleotide variants (SNVs) were ex-
cluded (remaining n = 946 likely pathogenic/pathogenic and n =
192,057 likely benign/benign).

Comparison with other scores
For performance comparison on the GRCh38 training set (CV re-
sults as described above) of ReMM v0.4.hg38 with other scores,
prescored GRCh38 whole-genome files of CADD [7] version 1.6
were used to retrieve raw scores. ExPecto [16] and Sei [17] scores
were computed using VCF files as described on their source code
repositories [18, 19]. For ExPecto, the UCSC hg19 fasta reference
file was replaced with hg38 to retrieve scores on the new genome
build. Sei was run with the –hg38 option, respectively. The ab-
solute mean and absolute maximum over all 218 outputs were
used as final scores of Expecto. On the NCBI ClinVar set, we used
GRCh37 whole-genome files of CADD v1.3, CADD v1.6. [7], ExPecto
[16], and Sei [17] as described above but with the UCSC hg19 ref-
erence genome. LINSIGHT scores [20] were downloaded from its
source code repository [21] in bigWig format and extracted us-
ing the pyBigWig package [22]. fathmm-MKL [23] and RegBase [24]
were downloaded in VCF format from the respective source code
repositories [25], and the scores were extracted using bcftools in-
tersect [26]. The ncER v2 [27] BED file was downloaded from its
dataset repository [28] using bedtools intersect to retrieve scores.
ReMM scores for hg38 were included in the comparison by lifting
the variant positions from the ClinVar set to the hg38 reference
genome using UCSC liftOver (v377) [6] and extracting the corre-
sponding ReMM v0.4.hg38 scores from the whole-genome file.

Results
Performance of ReMM on GRCh38
After 100 training cycles using different random seeds and 10-fold
cytoband cross-validation, we achieved a performance with an av-
erage area under the precision recall curve (AUPRC) of 0.613 ±
0.005 (Supplementary Table S3). We randomly picked 1 model for
the final scoring with an AUPRC of 0.610 (Fig. 1A, receiver operat-
ing characteristic [ROC] performance available in Fig. 1B).

Rather than using ReMM scores for ranking, some users choose
to specify score thresholds for classifying into pathogenic and be-
nign variants. Using a cutoff of 0.5 yields a good result in terms
of retrieving known pathogenic noncoding variants (i.e., recall or
true-positive [TP] rate), but the number of benign variants might
be extremely large. For ReMM v0.4.hg38, recall is 92% (375 of 406)
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Figure 1: Precision-recall, ROC, and F1- and F2-score curves—performance metrics of ReMM v0.4.hg19 and v0.4.hg38 generated via 10-fold cytoband
cross-validation. Precision-recall curves (A), ROC curves (B), and precision-recall, F1-score, and F2-score (y-axis) over different ReMM score thresholds
(x-axis) for v0.4.hg38 (C) and v0.4.hg19 (D). Vertical lines denote the ReMM score with the maximum F1-score (yellow) and the maximum F2-score
(purple). Area under the curve is shown in parentheses.

at a cutoff of 0.5 (Fig. 1C), but precision is close to zero with a
high false-positive (FP) rate (86,507 of 13,911,061; FP rate = 0.006).
The F1-score (harmonic mean of recall and precision) is highest
at 0.963, resulting in a TP rate of 0.554 and an FP rate of 5.3e-
6. Using the F2-score, we can give more weight to recall. Here,
the optimal cutoff is 0.914, resulting in a TP rate of 0.702 and an
FP rate of 2.3e-5. Analogous to NCBI ClinVar [29] pathogenic and
likely pathogenic categories, we suggest using a ReMM score above
the F1 threshold as weak computational evidence for “pathogenic”
and a score above the F2 threshold and below the F1 threshold
for “likely pathogenic.” For ReMM v0.4.hg19, these thresholds are
0.961 and 0.924 (Fig. 1D), respectively.

Correlation of scores and features
To compare both genome builds, we correlate ReMM scores from
three genomic regions without assembly gap changes (DLK1, HBB,
and PRDM9 loci) and >100,000 randomly sampled autosomal po-
sitions with successful reciprocal liftover (Supplementary Table
S4). Here, ReMM scores are highly correlated between versions
(Spearman and Pearson correlation between 0.7 and 0.8; Supple-
mentary Table S4). We also used these regions and sites to explore
the average feature correlation and find those to be similar, with
the exception of 1 region (PRDM9), which is lower (Spearman cor-
relation of 0.7 and Pearson correlation between 0.6 and 0.8; Sup-
plementary Table S5). Further, we compare feature correlations

between the genome builds directly on the training data (Fig. 2).
As expected from the high sequence similarity between reference
sequence versions, we see the highest correlation for sequence
features, like GC content. Further, population variance features
correlate well, with reduced correlation for the rare variant fea-
ture. This is likely due to spurious calls highly depending on the
caller and the quality of the reference genome. We see the lowest
correlation on the sparse Fantom5 regulatory element annotation
data.

Imputing missing values
In previous ReMM versions, we used zero for missing values glob-
ally and trusted the nonlinearity of decision trees. Now, we use the
average value of all defined positions for sequence and conserva-
tion features and one for P values (see Supplementary Table S2).
With the new approach, we see that the average AUPRC increases
slightly (0.005 for v0.4.hg19 and 0.009 for v0.4.hg38; Supplemen-
tary Table S6).

Feature importance
From the underlying Ranger random forest (RF) models [30], we re-
trieve feature importance using the Gini index. We averaged val-
ues over all 100 RFs in the model (Supplementary Table S7). In
general, mean feature importance scores indicate contributions
of all 26 features. No single feature stands out, and our broad
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Figure 2: Correlation of feature values across genome builds—feature correlation between features of the GRCh37 (x-axis) and the GRCh38 (y-axis)
genome builds. The left heatmap (A) shows Spearman correlation, and the right (B) shows Pearson correlation. Both plots show unexpectedly low
correlations for some features along the diagonal. For example, the histone modification features (ENCODE) are lowly correlated as well as the
enhancer features (FANTOM).

feature categories are all represented with at least 1 highly ranked
feature. We interpret this as evidence that features were carefully
picked and biases avoided. Epigenetic features increased in impor-
tance for the GRCh38 model (average rank 16 vs. 19), which may be
due to better mapping and processing of the underlying data. Fan-
tom5 features are probably too sparse to receive high importance
but might be relevant for some variants. Between genome builds,
feature importance values are similar, and no significant changes
are detected (P = 0.565, 2-sided rank-sum test). The replaced en-
cRegTfbsClustered feature achieves a similar average Gini index
(rank 6 on v0.4.hg19) as the previous numTFBSConserved feature
(rank 4, data not shown).

Comparison to other scores
A number of different tools for scoring pathogenicity of non-
coding variants exist [31]. However, most tools are still based on
the GRCh37 genome build, which comes with the previously dis-
cussed drawbacks when scores are lifted to a new genome build
[3, 4, 32]. To our knowledge, CADD, one of the most popular whole-
genome scores, seems to be the only tool directly trained on train-
ing data and features derived from GRCh38. Nine years after the
GRCh38 release, no other noncoding score is adapted to the new
genome build. Also, more recent sequence-based tools, like Ex-
Pecto [16] or DeepSEA-Sei [17], are trained on the previous genome
release. However, coordinate liftover can be avoided for those tools
because predictions are solely based on sequence, and the se-
quence around variants from GRCh38 can be used directly. We
compared performance of ReMM with CADD v1.6 GRCh38, Sei, and
ExPecto on the GRCh38 imbalanced training data. The area under
the precision-recall (PR) curve of ReMM substantially outperforms
other methods (Fig. 3A), while the area under the ROC curve is
above 0.8 for all tools (Fig. 3B). In the context of extremely unbal-
anced data, the area under the PR curve is more informative than
the area under the ROC curve [33]. In these figures, the number
of variants varies depending on how many were annotated with
the respective tools. Specifically, ExPecto annotated only 7,299,993
out of the 14 million proxy-benign variants, probably due to miss-
ing transcripts close by. Therefore, its performance might be over-
estimated. In Supplementary Fig. S1, PR and ROC curves from
the intersection of variants scored by all tools are shown (406
pathogenic and 7,299,993 proxy-benign variants), confirming that
order and general result are stable despite the difference in the
number of scored variants.

Due to the very limited availability of noncoding scores on
GRCh38, we compared ReMM on GRCh37 with multiple other
scores and on a set of noncoding variants from NCBI ClinVar
that do not overlap its training set. We only used variants where
all scores were able to provide a prediction (869 pathogenic
and 190,548 benign) and plotted PR and ROC curves (Fig. 4A,B).
CADD v1.6 achieved the best performance in terms of AURPC
(0.160) and area under the ROC curve (AUROC = 0.811), followed
by the (liftover) GRCh38 version of ReMM (AUPRC = 0.035, AU-
ROC = 0.694). Interestingly, CADD v1.3, a previous version that
does not yet include features for intronic splice variants, has
a much lower performance on the noncoding ClinVar dataset
(AUPRC = 0.012, AUROC = 0.633). We therefore speculate that
the performance boost in CADD v1.6 is due to the presence of
many splice variants in the noncoding ClinVar dataset and the
inclusion of specific splice scores, like SpliceAI [34] or MMSs-
plice [35], in recent CADD versions. All compared scores, ex-
cluding CADD v1.6, are not optimized for splicing effects. Fur-
ther, ReMM’s pathogenic training set does not contain splice vari-
ants, and we did not add specific splicing features with this
update.

Conclusion
The ReMM v0.4 score is a fully retrained noncoding score avail-
able for both the GRCh37 and GRCh38 genome builds. This fills
the high need of supporting variant prioritization on the GRCh38
genome release, which is the de facto standard in research and rou-
tine diagnostics. Scores over the GRCh38 genome are highly corre-
lated to the prior release with a performance increase for GRCh38
due to the better coverage of features. On imbalanced data (com-
monly observed in whole-genome sequencing of individuals af-
fected with Mendelian disease), ReMM scores outperform other
noncoding effect scores. However, our analysis of new noncod-
ing ClinVar variants also highlights limitations when scores are
applied to variants (here splice variants) missing from the train-
ing data or for which no specific model features were included. In
summary, we established a reproducible and scalable framework
for integration of new features or new training data for further
development of ReMM. The prescored whole-genome files, UCSC
genome browser annotation tracks [36], and a website provide fast
access and easy usage of the ReMM score for researchers in all ar-
eas. With this release, tools like Genomiser [1] can now be run
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Figure 3: ROC and PR curves of ReMM, CADD, ExPecto, and Sei—PR curves (A) and ROC curves (B) of ReMM v0.4.hg38 (10-fold cytoband cross-validation
scores) as well as CADD v1.6, ExPecto, and Sei on the GRCh38 training data. Area under the curve is shown in parentheses. ExPecto absmax is the
maximum absolute value over all ExPecto outputs and ExPecto absmean the mean absolute value, respectively.

Figure 4: ROC and PR curve of noncoding NCBI ClinVar—PR curves (A) and ROC curves (B) of different pathogenicity scores on NCBI pathogenic/likely
pathogenic and benign/likely benign variants in the noncoding genome (absent from the training set of ReMM). All scores are trained and available on
GRCh37. For ReMM v0.4.hg38 lifted, we lifted the GRCh37 ClinVar positions using UCSC liftOver and looked up the corresponding ReMM v0.4.hg38
score. Area under the curve is shown in parentheses, and score names are sorted descending on the area under the PR curve. ExPecto absmax is the
maximum absolute value over all ExPecto outputs and ExPecto absmean the mean absolute value, respectively.

on the latest genome build, a highly demanded feature from the
community.

Availability of Supporting Source Code and
Requirements
Project name: ReMM score

Project homepage: https://remm.bihealth.org
Operating system(s): Platform independent (website), Linux

(workflow)

Programming language: Python, Java, C++, Bash
Other requirements: browser (website); conda, snakemake,

parSMURF (workflow)
License: MIT License
RRID:SCR_023095

Additional Files
Supplementary Table S1. Hyperparameters of ReMM training
(used across all currently available versions).
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Supplementary Table S2. Features used for training of the ReMM
v0.4 score and their default for missing values. The description
column contains the original source from where features were
downloaded.
Supplementary Table S3. ReMM score v0.4 performance—area
under the precision recall curve (AUPRC) and area under the re-
ceiver operating characteristic curve (AUROC) for ReMM score v0.4
on both genome builds, as well as average values (avg) with stan-
dard deviation in parentheses across 100 training runs. AUPRC
and AUROC are computed via 10-fold cytoband cross-validation.
Supplementary Table S4. ReMM score correlation across genome
builds—Pearson and Spearman correlation of ReMM scores be-
tween genome builds of 3 genic regions (DLK1, HBB, PRDM9) and
120,000 random positions (120 K). For 120 K, only variants with
a successful coordinate liftOver from GRCh38 to GRCh37 and lo-
cated on major human chromosomes are used (n = 110,751).
Supplementary Table S5. Feature value correlations across
genome builds for regions and variants—average Pearson and
Spearman correlation of the 26 features used for each genome
build in three genic regions (DLK1, HBB, PRDM9) and 120,000 ran-
dom positions (120 K). For 120 K, only variants with a successful
coordinate liftOver from GRCh38 to GRCh37 and located on major
human chromosomes are used (n = 110,751).
Supplementary Table S6. ReMM performance dependent on
missing values—average area under the precision recall curve
(AUPRC) and area under the receiver operating characteristic
curve (AUROC) values with standard deviation in parentheses
from 100 model training runs using zero as missing values or the
default values listed in Supplementary Table S2. AUPRC and AU-
ROC are computed via 10-fold cytoband cross-validation.
Supplementary Table S7. Feature importance—average feature
importance (Gini index) over 100 random forest partitions of the
hyperSMURF models of ReMM v0.4.hg19 and v0.4.hg38. Gini in-
dex values were derived with the Ranger package after training
on all training data. The standard deviation (std), the minimum
(min), and the maximum (max) values across the 100 partitions
are shown. The rank indicates the importance rank by average
Gini index.
Supplementary Fig. S1. ROC and PR curve of ReMM, CADD, Ex-
Pecto, and Sei for intersection of variants, scored by all tools—PR
curves (A) and ROC curves (B) of ReMM v0.4.hg38 (10-fold cyto-
band cross-validation scores) as well as CADD v1.6, ExPecto, and
Sei on the subset of the GRCh38 training data scored by all tools.
In total, 406 pathogenic and 7,299,993 proxy-benign variants were
scored. Area under the curve is shown in parentheses. ExPecto ab-
smax is the maximum absolute value over all ExPecto outputs and
ExPecto absmean the mean absolute value, respectively.

Abbreviations
AUPRC: area under the precision recall curve; AUROC: area un-
der the receiver operating characteristic curves; API: Application
Programming Interface; BED: Browser Extensible Data format;
CADD: Combined Annotation-Dependent Depletion; CV: cross-
validation; ENCODE: encyclopedia of DNA elements; FANTOM:
functional annotation of the mammalian genome; FP: false-
positive; GC: guanine and cytosine nucleotides in a sequence;
GRCh: Genome Reference Consortium for Human; NCBI: The Na-
tional Center for Biotechnology Information; PR: precision-recall
curve; ReMM: Regulatory Mendelian Mutation; REST: representa-
tion state transfer; RF: random forest; RRID: Research Resource
Identification Initiative ID; ROC: receiver operating characteris-
tic; SMOTE: Synthetic Minority Over-sampling Technique; SNV:

single-nucleotide variant; TP: true-positive; UCSC: University of
California, Santa Cruz; VCF: variant call format.
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