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Abstract 

Soil salinity is one of the most commonly encountered environmental stresses affecting 

plant growth and crop productivity. Accordingly, plants have evolved a variety of 

morphological, physiological and biochemical strategies that enable them to adapt to 

saline growth conditions. For example, it has long been known that salinity-stress increases 

both the production of the gaseous stress hormone ethylene and the in 

planta accumulation of reactive oxygen species (ROS). Recently, there has been significant 

progress in understanding how the fine-tuning of ethylene biosynthesis and signaling 

transduction can promote salinity tolerance, and how salinity-induced ROS accumulation 

also acts as a signal in the mediation of salinity tolerance. Furthermore, recent advances 

have indicated that ethylene signaling modulates salinity responses largely via regulation 

of ROS-generating and ROS-scavenging mechanisms. This review focuses on these recent 

advances in understanding the linked roles of ethylene and ROS in salt tolerance. 

 

Introduction 

Soil salinity is one of the most widespread plant abiotic stresses, affecting more than 6 % 

(~900 million hectares) of total world land area (Tuteja 2007; Munns and Tester 2008). 

This salt-affected land currently includes ~23 % of cultivated land, and is a problem which 

is worsening, particularly on agricultural land where crop growth is dependent upon 

irrigation. Almost all of the most important crop plants are glycophytes, and are therefore 

sensitive to salinity (Munns and Tester 2008; Cheeseman 2015). Moderate levels of 

environmental salt (e.g. 100 mM NaCl) are sufficient to cause dramatic decreases in the 

yield of most crops (Frommer et al. 1999; Munns and Tester 2008). High soil salinity is 

therefore a severe and growing problem, and is preventing the achievement of sustainable 

agriculture (Greenway and Munns 1980; Zhu 2002; Roy et al. 2014). There is therefore an 

urgent need to advance understanding of how different plants respond to salt stress, with 

the aim of developing crop plants better able to maintain growth and productivity on 

salinized lands via genetic modification or marker-assisted breeding. 

Salinity-stress biology and the mechanisms of plant response to high salinity have been 

areas of study at physiological, biochemical, and molecular levels for many decades 

(Flowers et al. 1977; Greenway and Munns 1980). Plants have evolved many different 

strategies for tolerating high salt concentrations. In general, following the initial onset of 

salt stress, plants suffer two phases of stress, a rapid osmotic stress and a slower ionic 

stress (reviewed in Munns and Tester 2008). Accordingly, there are three major 

physiological adaptive mechanisms of salt tolerance: osmotic stress tolerance, 

maintenance of ion (especially Na+ and K+) homeostasis, and compartmentalization of 

Na+ to reduce cytosolic Na+ concentrations (reviewed in Zhu 2003; Deinlein et al. 2014). 

Many of the components involved in the regulation of Na+ and K+homeostasis have been 

characterized (e.g. SOSs, HKTs and NHXs; Zhu 2003; Sunarpi et al. 2005, Ji et al. 2013). 

However, the mechanisms of rapid osmotic phase tolerance remain poorly understood. 
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It has long been known that salinity-stressed plants exhibit dramatically altered levels of 

many endogenous signaling molecules, including abscisic acid (ABA), ethylene, gibberellin 

(GA), reactive oxygen species (ROS), nitric oxide (NO), and others. These signaling 

molecules, and their downstream signaling components, have been shown to play 

essential roles in salinity tolerance responses (Matsui et al. 2008; Harberd et al. 2009; 

León et al. 2014). For example, high environmental Na+ concentrations lead to increased 

ABA levels and ABA signaling (Zhu 2002; Shinozaki and Dennis 2003), which in turn play 

vital roles in the regulation of transcriptome-level salinity responses (Xiong et al. 2001; 

Matsui et al. 2008). We previously found that the DELLA proteins, gibberellin-opposable 

growth inhibitors of the GA signaling pathway, play critical roles in plant tolerance to salt 

stress (reviewed in Harberd et al. 2009; Xu et al. 2014), and that salt-activated ABA and 

ethylene signaling pathways regulate plant growth and/or development via integration at 

the level of DELLA function (Achard et al. 2006). In addition, the salinity-induced reactive 

nitrogen species NO is an important regulator of salinity responses, and likely plays a role 

downstream of ABA (León et al. 2014). 

Ethylene and ROS are important signaling molecules mediating numerous important 

biological processes, including root and root hair growth, cell fate determination, and 

responses to biotic and abiotic stress (Foreman et al. 2003; Apel and Hirt 2004; Chen et 

al. 2005; Steffens 2014). It has long been known that salinity stress increases the in 

planta production of ethylene and ROS. Recently, significant progress has been made in 

understanding the mechanism of how by which ethylene and ROS act as signaling 

molecules in mediating salinity tolerance, with important studies revealing that ethylene 

signaling modulates salinity stress response largely via regulation of ROS-generating and 

ROS-scavenging mechanisms (Jiang et al. 2013; Peng et al. 2014; Li et al. 2015a; Xia et 

al. 2015). This present review focuses on recent advances in understanding of the roles of 

ethylene and ROS in plant salinity response and of the crosstalk between these two classes 

of signaling molecules (Fig. 1). 

 

Fine-tuning of ethylene biosynthesis and ethylene signaling promotes salt tolerance 

Ethylene is often considered to be a plant stress hormone, because its synthesis is induced 

by various biotic and abiotic environmental stresses (Cao et al. 2007; Kazan 2015). Like 

many other environmental stresses, salinity promotes the production of ethylene in 

various species by modulating the activity of enzymes regulating ethylene biosynthesis 

(e.g. ACS2 and ACS7 in Arabidopsis; Achard et al. 2006; Dong et al. 2011). In addition, 

either endogenous overproduction of ethylene (as in the eto1 mutant) or treatment with 

the ethylene precursor ACC can overcome the salt-induced restraint of Arabidopsis seed 

germination (Divi et al. 2010). Using a soil-based mutant screen system, we previously 

found that, at the vegetative growth stage of the life cycle, an increase in in vivo ethylene 

production (as in the eto1, eto2 or eto3 mutants) promotes the salinity tolerance 

of Arabidopsis plants grown on saline soil when transpiration is active, but not that of 

plants grown in in vitro conditions where transpiration is inhibited (Jiang et al. 2013). 

These observations indicate that salinity-induced ethylene is a potent promoter of salt 

tolerance at various developmental stages and in various conditions. These ideas are 
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further supported by recent studies of rice SALT TOLERANCE1 (SIT1, a lectin receptor-like 

kinase), which positively regulates salinity tolerance by promoting the activity of the 

MAPK3/6 protein kinase and promoting ethylene production (Ai et al. 2014). However, in 

some other cases, elevated ethylene levels can adversely affect salinity tolerance. For 

instance, Arabidopsis plants overexpressing wheat ACO1 display elevated ethylene levels, 

but decreased salinity tolerance (Chen et al. 2014). In addition, 

the Arabidopsisacs7 mutant, which displays reduced ethylene production, exhibits 

increased salt tolerance at the seed germination stage (Dong et al. 2011). Although it has 

been suggested that the salinity tolerance of the acs7 mutant might be the consequence 

of changed ABA sensitivity and altered transcript levels of some salinity-induced genes, the 

exact mechanism is yet to be understood (Dong et al. 2011). Moreover, a recent report 

has indicated that ethylene treatment of rice plants confers salt hypersensitivity (Yang et 

al. 2015). Taken together these various studies indicate that in planta ethylene levels can 

either negatively or positively affect the salinity sensitivity of plants, suggesting that 

fine-tuning of ethylene biosynthesis might be essential to salinity tolerance in plants. 

Ethylene is perceived by endoplasmic reticulum-localized receptor kinases. Five ethylene 

receptor-encoding genes have been identified in the Arabidopsis genome: ETHYLENE 

RESPONSE1 (ETR1), ETR2, ETHYLENE INSENSITIVE4 (EIN4), ETHYLENE RESPONSE 

SENSOR1 (ERS1), and ERS2 (Hua and Meyerowitz 1998; Chen et al. 2005; Gallie 2015). 

Ethylene receptors negatively regulate ethylene responses, and ethylene activates 

downstream signaling pathways by deactivating these receptors. In essence, ethylene 

binds to the N-terminal region of the ethylene receptors with the help of a copper 

cofactor, resulting in deactivation of a Raf-like kinase CONSTITUTIVE TRIPLE RESPONSE1 

(CTR1). Deactivation of CTR1 in turn allows a C-terminal section of ETHYLENE INSENSITIVE2 

(EIN2) to be cleaved and translocated into the nucleus, thus stabilizing the transcription 

factors ETHYLENE INSENSITIVE3 (EIN3), EIN3-like1 (EIL1) and EIL2, and consequently 

activating transcription of downstream targets (e.g. ethylene response factors (ERFs): 

reviewed in Wang et al. 2002; Guo and Ecker 2004; Zhao and Guo 2011; Ju et al. 2012; 

Qiao et al. 2012; Wen et al. 2012; Merchante et al. 2013; Ju and Chang 2015; Zheng and 

Zhu 2016). In addition, cytoplasmic EIN2 mediates ethylene signaling also via imposing the 

translational repression of EIN3BINDINGF-box 1 (EBF1) and EBF2 mRNA (Li et al. 2015a; 

Merchante et al. 2015). Accumulating evidence indicates that ethylene signaling positively 

regulates plant salt tolerance, including the following key observations. (1) Expression of 

the ETR1 gene is downregulated by salinity treatment in Arabidopsis, whilst loss of ETR1 or 

EIN4 function confers accelerated germination under salinity conditions (Cao et al. 2007; 

Wilson et al. 2014); in contrast, etr1-1, ein4-1 and etr2-1 gain-of-function mutants are 

insensitive to ethylene and display salt hypersensitivity compared to wild type (Cao et 

al. 2008). (2) Loss of CTR1 function leads to constitutive ethylene response and salt 

tolerance at both germination and vegetative growth stages (Achard et al. 2006; Cao et 

al. 2007; Jiang et al. 2013; Peng et al. 2014). (3) Loss of EIN2 function leads to delayed 

germination and decreased survival rate in saline conditions (Wang et al. 2007; Peng et 

al. 2014), suggesting that EIN2 positively regulates salt tolerance; further studies have 

indicated that EIN2 positively regulates salt tolerance not only by affecting the level of the 
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EIN3 protein (Peng et al. 2014), but also by negatively regulating ABA synthesis or through 

physical interaction with an MA3 domain-containing protein (ECIP1, a positive regulator of 

salt tolerance) (Ghassemian et al. 2000; Wang et al. 2007; Lei et al. 2011). (4) A recent 

report indicates that salinity leads to accumulation of the EIN3 protein via both 

EIN2-dependent and EIN2-independent pathways and by promoting the degradation of 

the F-box protein EBF1 and EBF2, suggesting that salinity-induced accumulation of EIN3 

confers salt tolerance (Peng et al. 2014); this is supported by genetic evidence showing 

that overexpression of EIN3 promotes salinity tolerance, whilst loss of EIN3 function 

confers salinity sensitivity in Arabidopsis (Peng et al. 2014). (5) It has been repeatedly 

confirmed that overexpression of EIN3 target genes (e.g. ERFs and SALT-INDUCED 

EIN3/EIL1-DEPENDENT1 (SIED1)) in various species leads to salt tolerance (Zhang et 

al. 2004; Zhang et al. 2011; Cheng et al. 2013; Imen et al. 2014). (6) Salinity induces 

transcriptional changes of many genes in an EIN3/EIL1-dependent manner (Peng et 

al. 2014). All of the above evidence indicates that salinity can lead to enhanced ethylene 

signaling (e.g. by stabilizing EIN3 and EIL1), which in turn can act as a potent promoter of 

salt tolerance. However, Yang et al. (2015) in contrast found that 

overexpression OsEIL1 and OsEIL2, rice homologs of EIN3, causes salt hypersensitivity at 

the seedling stage, whilst loss of OsEIL1 and OsEIL2 function promotes salt tolerance, 

suggesting that EIN3-dependent ethylene signaling negatively, rather than positively, 

affects salinity tolerance in rice, at least at the seedling stage. 

ROS homeostasis is essential for the ethylene regulation of salt tolerance 

Reactive oxygen species (ROS), such as 1O2, H2O2, O2
− and HO˙, are highly reactive 

molecules, capable of causing oxidative damage to protein, DNA and lipids (Apel and 

Hirt 2004; Miller et al. 2010). However, as well as being toxic molecules, ROS also act as 

important signaling molecules regulating many important biological processes, such as 

growth, development, and responses to abiotic and biotic stresses (Foreman et al. 2003; 

Miller et al. 2008). Because ROS play a dual role in plants, ROS synthesis and ROS 

scavenging machineries are tightly regulated to achieve appropriate levels of ROS at 

different developmental stages and in different growing environments (Foreman et 

al. 2003; Jayakumar et al. 2014). It has long been known that, in abiotic and biotic stress 

conditions, the levels of ROS in plant tissues can be dramatically elevated. In particular, 

salinity stress causes elevated ROS levels, and these elevated ROS levels play a dual role in 

the salinity responses of plants: (1) ROS act as toxic byproducts causing oxidative damage; 

(2) ROS act as signaling molecules mediating salt tolerance (Chung et al. 2008; Miller et 

al. 2008; Ma et al. 2012; Jiang et al. 2013). Because the oxidative damage aspects of 

salinity-stress induced ROS have already been extensively reviewed (Miller et al. 2010; 

Mittler et al. 2011; Steinhorst and Kudla 2014), we here focus on the signaling roles of 

ROS, with special focus on its roles in ethylene-dependent salinity tolerance mechanisms. 

Previous studies have shown that a variety of ethylene-regulated biological processes are 

associated with the regulation of ROS homeostasis (Wilkinson and Davies 2009; He et 

al. 2011; Jiang et al. 2013; Peng et al. 2014; Xia et al. 2015). For example, ethylene 

promotes tolerance to potassium deprivation by promoting ROS production (Jung et 
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al. 2009; Schachtman 2015). Also, ethylene mediates UV-B- and ozone-induced stomatal 

closure through peroxidase-dependent H2O2 synthesis in Vicia faba (Wilkinson and 

Davies 2009; He et al. 2011). We previously found that the soil-salinity sensitive1-1 (sss1-1) 

mutant of Arabidopsis displays a salt hypersensitivity phenotype due to loss-of-function of 

AtrbohF (one member of a family of ten NADPH oxidases in Arabidopsis that catalyze 

production of ROS) and the consequent absence of salinity-induced ROS accumulation in 

root vasculature, suggesting that AtrbohF confers salinity-induced vasculature-specific ROS 

accumulation and salinity tolerance (Jiang et al. 2012). Moreover, we found that, whilst an 

increase in ethylene production (e.g. in eto1) or constitutive activation of ethylene 

signaling (e.g. in ctr1) leads to increased accumulation of ROS in root vascular tissue and 

increased salt tolerance, eto1 atrbohf and ctr1 atrbohf double mutants both lack 

salinity-induced ROS accumulation and are hypersensitive to salinity stress (with a 

sensitivity similar to that of the atrbohf single mutant). In addition, we found that ethylene 

signaling positively regulates the levels of transcripts encoding AtrbohF in root vasculature 

via the ETR1-CTR1-dependent signaling pathway, suggesting that ethylene signaling 

promotes salt tolerance by enhancing tissue-specific, AtrbohF-dependent ROS biosynthesis 

in root vasculature tissue (Jiang et al. 2013). Intriguingly, another study indicated that 

ethylene affects stomatal aperture also through regulation of AtrbohF-dependent ROS 

production in guard cells (Desikan et al. 2006). These studies thus indicate that 

AtrbohF-dependent ROS production may be an important downstream mediator of 

ethylene signaling cascades. The idea that ethylene promotes salinity tolerance by 

increasing ROS production is further supported by studies of the rice receptor-like kinase 

SIT1. The SIT1 protein resides on the plasma membrane, and its kinase activity is rapidly 

activated by salinity stress, causing activation of MPK3/6, in turn promoting ethylene 

synthesis and ROS production, and hence increasing the salt tolerance of rice (Ai et 

al. 2014). 

In addition to ethylene, ABA and JA treatments also induce stomatal closure via AtrbohF- 

and AtrbohD- dependent mechanisms (Kwak et al. 2003; Suhita et al. 2004), and there are 

reports indicating the interconnection of ethylene, JA and ABA in the regulation of 

stomatal closure. For example, ethylene treatment inhibits ABA-induced stomatal closure 

(Tanaka et al. 2015), and ost1 (an ABA-insensitive mutant) displays compromised 

JA-induced stomatal closure (Suhita et al. 2004), whilst jar1 (a JA-insensitive mutant) 

exhibits diminished ABA-induced stomatal closure (Suhita et al. 2004). Nevertheless, the 

overall relationships between ethylene-, JA- and ABA-regulated stomatal closure remain 

largely unknown (Murata et al. 2015). 

As shown above, ethylene in many cases positively regulates the biosynthesis of ROS. 

However, there are also alternative cases in which ethylene appears to negatively regulate 

ROS production in specific circumstances. For example, overexpression of JERF3, an ERF 

protein, enhances tolerance to salt, drought, and freezing in tobacco seedlings by reducing 

ROS accumulation (Wu et al. 2008). In addition, a recent study indicated that 

salinity-induced accumulation of EIN3/EIL1 promotes salinity tolerance, likely by 

enhancing ROS scavenging at the seedling stage in Petri-dish conditions (Peng et al. 2014). 
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This study showed that EIN3/EIL1 regulates transcriptional change of over 200 genes 

under salinity conditions: 92 salt-induced EIN3/EIL1-dependent (SIED) genes and 

121 salt-repressed EIN3/EIL1-dependent (SRED) genes were found. Genes encoding 

oxidoreductases were found to be enriched in SIED, whilst many genes encoding 

peroxidases (PODs) were found to be induced by salt treatment via an 

EIN3/EIL1-dependent mechanism. Accordingly, an ein3 eil1 double mutant displayed lower 

levels of POD-encoding transcripts, higher levels of ROS, and consequent hypersensitivity 

to salt stress (Peng et al. 2014). These results thus suggest an alternative mechanism to 

explain how EIN3 promotes salt tolerance, namely by enhancing the scavenging of toxic 

ROS. 

The ROS steady-state is regulated by a complex network comprising more than a hundred 

genes (Mittler et al. 2004). It is therefore not surprising to find that ethylene promotes 

both ROS synthesis and scavenging at different developmental stages, under different 

growth conditions, and in different tissues following the onset of salinity treatments (Jiang 

et al. 2013; Peng et al. 2014). In addition, ethylene-dependent salinity tolerance 

mechanisms have been shown to have wide-ranging crosstalk with other salt tolerance 

pathways (Xia et al. 2015). It is therefore possible that under different experimental 

conditions, and at different developmental stages, ethylene signaling interacts 

preferentially with different pathways and thus differentially regulates ROS synthesis and 

scavenging mechanisms. However, the exact mechanisms for these differential 

preferences is yet to be understood. 

Ethylene signaling regulates Na+/K+ homeostasis via ROS-dependent and ROS-independent 

mechanisms 

High soil sodium ion (Na+) concentrations cause inhibition of K+ uptake, increased loss of 

K+, and an increase in Na+ uptake, thus leading to a decrease in plant K+/Na+ ratio 

(Zhu 2003; Shabala and Cuin 2008). It has long been known that maintenance of 

Na+/K+ homeostasis is essential for soil-salinity tolerance. A variety of mechanisms 

contributing to maintenance of Na+/K+ homeostasis in high salinity conditions have been 

characterized, including: reduced net Na+ uptake into the root (i.e. decreased Na+ influx 

and/or increased Na+ efflux) and reduced xylem loading (Zhu 2003); retrieval of Na+ from 

the transpiration stream xylem sap during transport to the shoot (Sunarpi et al. 2005; 

Munns and Tester 2008); sequestration of Na+ into vacuoles to avert ion toxicity in the 

cytosol (Amtmann and Sanders 1999); and excretion of excess Na+ by the salt glands 

characteristic of some halophytic plants (Smith et al. 2010). Among the best understood of 

the mechanisms regulating Na+ homeostasis are the SALT OVERLY SENSITIVE1 (SOS1) (Shi 

et al. 2000; Qiu et al. 2002; Lin et al. 2009; Zhou et al. 2015; reviewed in Zhu 2003 and Ji et 

al. 2013) and HIGH-AFFINITY K+ TRANSPORTER1 (HKT1) HKT1 pathways (Mäser et al. 2002; 

Sunarpi et al. 2005). Either tissue-specific (e.g. vasculature-specific) overexpression 

of AtHKT1 or ectopic overexpression of AtSOS1 causes reduced shoot Na+ accumulation, 

thus lowering the Na+/K+ ratio and in turn promoting the salinity tolerance of A. 

thaliana (Schachtman and Schroeder 1994; Shi et al. 2000; Møller et al. 2009; Yang et 

al. 2009; reviewed in Zhu 2002 and Horie et al. 2009). 
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Previous studies have indicated that ROS likely play important roles in the regulation of 

Na+and K+ homeostasis (Apel and Hirt 2004; Miller et al. 2010; Mittler et al. 2011). For 

example, studies of poplar callus cells indicated that salinity-induced production of 

H2O2 promotes salt tolerance by maintaining reduced Na+ and increased K+ levels, thus 

lowering the Na+/K+ ratio (Zhang et al. 2007; Sun et al. 2010). Ma et al. (2012) found that, 

under in vitro conditions, the atrbohdatrbohf double mutant, but not 

the atrbohd or atrbohf single mutants, exhibit overaccumulation of Na+ in saline 

conditions. This overaccumulation of Na+ adversely affects K+ influx, suggesting that 

AtrbohD and AtrbohF redundantly regulate Na+/K+ homeostasis (at least under the 

particular conditions used in this study). Ma et al. (2012) also showed 

that atrbohdatrbohf displays reduced K+ influx not only in saline conditions, but also in 

control (non-saline) conditions, suggesting that ROS produced by AtrbohD and AtrbohF is 

essential for the regulation of K+ homeostasis. In contrast, we recently showed that 

AtrbohF alone confers essential regulation of Na+ homeostasis and salt tolerance in plants 

grown in soil (Jiang et al. 2012). We found that the salinity-induced, AtrbohF-mediated 

increase in root vascular ROS levels restricts xylem-sap Na+ content, thus reducing 

transport of Na+ from root to the shoot, resulting in a reduced Na+/K+ ratio and 

contributing to soil-salinity tolerance (Jiang et al. 2012). Despite the wealth of evidence 

indicating that salinity-induced ROS production confers regulation of Na+ and 

K+ homeostasis, the exact molecular mechanism of this regulation remains largely 

unknown. One possible mechanism is that ROS regulate Na+ and K+homeostasis by 

regulating the activity of PM Ca2+-permeable channels, which in turn regulate the activity 

of downstream components such as MPKs, SOS2 and other CBLs (Mori and 

Schroeder 2004; Pottosin et al. 2014). This possibility is attractive because ROS regulation 

of cytosolic free Ca2+ concentrations are known to play important roles in regulating root 

hair growth and in long-distance signal propagation (Foreman et al. 2003; Steinhorst and 

Kudla 2014). Alternatively, ROS may regulate Na+ and K+ homeostasis via effects on the 

stability of SOS1 (Salt Overly Sensitive 1, encoding the PM Na+/H+ anti-porter) mRNA and 

on the activity of the PM H+-ATPase (Zhang et al. 2007; Chung et al. 2008; Ma et al. 2012). 

Ethylene has also been shown to play important roles in the regulation of Na+ and 

K+homeostasis. Yang et al. (2013) showed that ethylene can facilitate the retention of K+ in 

saline conditions. Our recent study found that, following onset of salinity treatment, and 

in conditions where transpiration is active, ETR1-CTR1 dependent ethylene signaling not 

only promotes K+retention, but also significantly contributes to inhibition of root-to-shoot 

Na+ delivery by regulating AtrbohF-dependent vasculature-specific ROS production (Jiang 

et al. 2013). This finding provides genetic evidence that AtrbohF-ROS regulation of 

Na+ homeostasis acts downstream of ethylene signaling. Intriguingly, we also found in 

contrast that ethylene promotes the retention of K+ via an AtrbohF-independent 

mechanism, possibly via increase in the level of transcripts encoding AtHAK5 (a 

high-affinity K+ transporter) in saline conditions. Because ethylene can 

increase AtHAK5 transcript levels in either low K+ or high Fe stress conditions (Jung et 

al. 2009; Li et al. 2015b), and because the effect of low K+ on levels of transcripts encoding 

AtHAK5 is AtrbohC-dependent (Shin and Schachtman 2004), it is possible that ethylene 
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promotes the retention of K+ in saline conditions via a mechanism dependent upon the 

function of another NADPH oxidase (i.e. AtrbohC rather than AtrbohF). However, this 

possibility requires further experimental verification. 

Conclusions and perspectives 

There has recently been significant progress in our understanding of the roles of ethylene 

and ROS in plant salinity responses, and of how ethylene and ROS interact with one 

another to regulate salt tolerance. Nevertheless, many questions remain unanswered, 

amongst which are the following. (1) Although the majority of the studies reviewed above 

suggest that increased levels of ethylene and associated activation of the ethylene 

signaling pathway are positively associated with salinity tolerance, there are instances 

where such increases, at particular developmental stages, or under particular 

experimental or environmental conditions, or in different species, are suggested to 

negatively affect salinity tolerance. The molecular basis of these cases of negative 

association remain largely unknown. (2) Current knowledge suggests that ethylene 

promotes salinity tolerance either by enhancing ROS scavenging (thus attenuating 

oxidative damage) or by promoting root-vasculature-specific accumulation of ROS (thus 

enhancing Na+/K+ homeostasis). Nevertheless, the precise molecular mechanisms by which 

ethylene tunes the ROS scavenging and ROS generating machinery to maintain proper ROS 

levels in different tissue and cellular compartments remains unclear. (3) The activity of 

AtrbohF is regulated at both transcriptional and posttranscriptional levels. Although 

previous reports have indicated that ethylene positively regulates AtrbohF transcript 

levels, it remains unclear if ethylene affects the activity of AtrbohF at the 

posttranscriptional level, for example, by regulating the protein kinases (e.g. OST1 and 

CIPK26) that directly phosphorylate and regulate the activity of AtrbohF (Sirichandra et 

al. 2009; Kimura et al. 2013). (4) It has been suggested that elevated ROS can cause 

increased cytosolic free Ca2+ concentrations, which in turn can lead to a reduced 

Na+/K+ ratio. Meanwhile, the ROS produced by AtrbohF has been shown to play an 

important role in the regulation of Na+/K+ homeostasis and salt tolerance. Further work is 

needed to determine if AtrbohF-produced ROS enhances the Na+/K+ ratio by 

Ca2+-dependent mechanisms. (5) Like other stress signals, salinity results in the enhanced 

production of ROS that act as signaling molecules to trigger acclimation responses. In the 

future, the application and development of new cellular imaging and real-time detection 

tools will advance our understanding of the tissue- and cell-specificity of salinity-induced 

ROS responses. Such studies will further advance our understanding of the roles of 

ethylene and ROS in salt tolerance, and will potentially provide new routes towards the 

development of salt-tolerant crops. 
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