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Abstract

In this paper we study the Reidemeister spectrum of 2-step nilpotent groups associated to graphs.
We develop three methods, based on the structure of the graph, that can be used to determine
the Reidemeister spectrum of the associated group in terms of the Reidemeister spectra of groups
associated to smaller graphs. We illustrate our methods for several families of graphs, including all
the groups associated to a graph with at most four vertices. We also apply our results in the context
of topological fixed point theory for nilmanifolds.

1 Introduction

In this paper we will be studying Reidemeister numbers (this is the number of so called twisted conjugacy
classes) of automorphisms of a wide class of 2-step nilpotent groups. Twisted conjugacy finds its origin
in topological fixed point theory (see below) but pops up in several branches of mathematics, such as
representation theory ([OV90], [Spr06]), Galois cohomology ([Ser02]), cryptography ([GK16]), . . .

Our own main motivation comes from topological fixed point theory, more specifically from Reidemeis-
ter-Nielsen fixed point theory. We give a short overview of the main aspects of this theory and refer the
reader to [JM06, Jia83, Th89] for more details.

Let f : X → X be a map on a closed manifold X and denote with Fix(f) = {x ∈ X | f(x) = x} the
set of fixed points of f . The main objective of Reidemeister-Nielsen fixed point theory is to find a good
estimate for the minimal value of #Fix(g) where g is a map which is homotopic to f . Let us call this
value MF(f).

To study the fixed points of f one considers the universal covering space p : X̃ → X of X . Then f
can be lifted to a map f̃ : X̃ → X̃ (with p ◦ f̃ = f ◦ p) and it is easy to see that p(Fix(f̃)) ⊆ Fix(f).
In fact, Fix(f) is the union of all p(Fix(f̃)) where the union is taken over all possible lifts f̃ of f . The
group of covering transformations of the universal covering is isomorphic to the fundamental group of X
and so we denote the group of covering transformations by π(X). For any α, β ∈ π(X) and any lift f̃ of
f it holds that α ◦ f̃ ◦ β is again a lift of f . It follows that π(X) acts on the set of all lifts f̃ of f via
conjugation, so γ · f̃ = γ ◦ f̃ ◦ γ−1. We denote the orbit of f̃ by [f̃ ] and call this the lifting class of f̃ .
Then we have that for all f̃ ′ ∈ [f̃ ] it holds that p(Fix(f̃ ′)) = p(Fix(f̃)) while p(Fix(f̃ ′)) ∩ p(Fix(f̃)) = ∅
in case [f̃ ′] 6= [f̃ ]. From this we can conclude that

Fix(f) =
⋃

[f̃ ]

p(Fix(f̃)),

which is a disjoint union. So in this union we consider one subset p(Fix(f̃)) for each lifting class [f̃ ] and
we call this the fixed point class of f determined by the lifting class [f̃ ]. Note that a fixed point class
can be empty, but we still consider two empty fixed point classes different in case they are determined
by a different lifting class. Hence, the number of fixed point classes is the same as the number of lifting
classes and this number is called the Reidemeister number of f and is denoted by R(f).
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There is an algebraic way to count the fixed point classes of a map f and this goes as follows. Fix
one lifting f̃0 of f . Then any other lift of f can be written uniquely as a composition α ◦ f̃0 for some
α ∈ π(X). So the set of liftings of f is in one-to-one correspondence with the fundamental group π(X).
The lift f̃0 determines an endomorphism f∗ of π(X) by the relation f∗(α)◦ f̃0 = f̃0 ◦α (for all α ∈ π(X)).
Note that under the right identification of π(X) with the fundamental group of X , f∗ is just the usual
induced endomorphism of f on the fundamental group of X .

Now α ◦ f̃0 = γ ◦ (β ◦ f̃0) ◦ γ−1 if and only if α = γ ◦β ◦ f∗(γ−1). In this case, we will say that α and β
are twisted conjugate with respect to f∗. Being twisted conjugate is an equivalence relation on π(X) and
the number of equivalence classes is called the Reidemeister number of the morphism f∗ and is denoted
by R(f∗). From the above we have that R(f) = R(f∗) and so counting twisted conjugacy classes is an
algebraic way of counting fixed point classes (or lifting classes).

Although the Reidemeister number of a map gives already some information about the fixed point
classes of f , in general this number does not really give information on MF(f), the minimal number of
fixed points in the homotopy class of f . There is a second number, the Nielsen number of f which does
provide more information, but unfortunately is much more difficult to compute in general. To define the
Nielsen number, there is a way to attach to each fixed point class an index, which is an integer. It would
lead us to far to explain this index in more detail, but the idea is that a fixed point class has index 0
if it can disappear (become empty) via a homotopy. A fixed point class is called essential (resp. non
essential) if it has an index 6= 0 (resp. = 0). The Nielsen number of f , denoted by N(f), is then the
number of essential fixed point classes of f . This Nielsen number (and also the Reidemeister number)
is a homotopy invariant and by a result of Wecken ([Wec42]) it is known that MF (f) = N(f) for all
manifolds of dimension at least 3.

The focus of this paper lies on the class of nilmanifolds, these are obtained as quotient spaces X =
N\G, where G is a simply connected nilpotent Lie group and N is a uniform lattice of G. Such a uniform
lattice N is a finitely generated torsion-free nilpotent group and π(X) = N completely determines the
nilmanifold X = N\G up to diffeomorphism (see e.g. [Rag72, OV93]).

For the class of nilmanifolds, there is a very strong relation between the Reidemeister number and
the Nielsen number of a map f on such a manifold. Indeed, we have that (see [HK97]):

{
N(f) = R(f) ⇐⇒ R(f) <∞
N(f) = 0 ⇐⇒ R(f) = ∞

.

As a conclusion we see that for nilmanifolds, we obtain a full understanding of the minimal number of
fixed points (MF(f) = N(f)) in the homotopy class of a map f by studying the Reidemeister number
R(f) of that map and hence by studying the number R(f∗) of twisted conjugacy classes of the induced
endomorphism f∗.

It is not so difficult to see that for any nilmanifold N\G and any non negative integer n there is a self
map f of N\G with N(f) = n ([DTV20, Theorem 6.1]). The situation for self homeomorphisms (or self
homotopy equivalences) is much more subtle and corresponds to the case where f∗ is an automorphism
of N . The set of all possible Reidemeister numbers one can obtain for these self homotopy equivalences
f (automorphisms f∗) is called the Reidemeister spectrum of the manifold (or of the fundamental group
N). In this paper we study this Reidemeister spectrum for groups N which are 2-step nilpotent and are
associated to a graph. The nilmanifolds with such a 2-step nilpotent fundamental group have been the
object of study in many geometric contexts and form a rich family of interesting examples. We refer to
[CdBR21, Ova20, Nik20, DDM18] for some recent examples in this direction. Moreover, results on 2-step
nilpotent groups can be used to study general nilpotent groups by considering their 2-step nilpotent
quotient.

In the next section we recall some preliminaries on nilpotent groups and twisted conjugacy. Thereafter,
we describe the class of 2-step nilpotent groups associated to a graph. In the next three sections we
develop each time a general method, based on the structure of the graph, that can be used to determine
the Reidemeister spectrum of the associated group, by reducing it to the situation of smaller graphs. We
end by illustrating our methods in some general examples and give a full list of Reidemeister spectra for
all graphs with at most 4 vertices.
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2 Preliminaries on nilpotent groups and twisted conjugacy

2.1 Nilpotent groups

For any group G we denote with γi(G) (for i ∈ N0) the lower central series of G, i.e. the nested series of
subgroups of G defined by γ1(G) := G and γi+1(G) := [γi(G), G] (for i ∈ N0). The group G is said to be
c-step nilpotent if γc(G) 6= 1 and γc+1(G) = 1. It is generally known (see e.g. [KM79, Theorem 17.2.2])
that any finitely generated nilpotent group G has a series 1 = G1⊳G2⊳ · · ·⊳Gs = G with cyclic factors,
i.e. Gi+1/Gi is cyclic for any i = 1, 2, . . . , s− 1. The Hirsch number h(G) of G is the number of infinite
cyclic factors in such a series. The next lemma describes some properties of the Hirsch number.

Lemma 2.1 ([Seg83, page 16]). If G is a finitely generated nilpotent group, then the Hirsch number is
well-defined (meaning that it is independent of the choice of series of G with cyclic factors). If H ⊆ G is
a subgroup of G and N ⊳G a normal subgroup, then the following holds:

(i) h(H) ≤ h(G)

(ii) h(H) = h(G) ⇐⇒ [G : H ] <∞

(iii) h(G) = h(N) + h(G/N)

(iv) h(G) = 0 ⇐⇒ |G|<∞

In section 3 we describe how to associate a finitely generated torsion-free 2-step nilpotent group to
any finite undirected simple graph. The next two lemmas will be used frequently.

Lemma 2.2 ([KMS76]). If G is a 2-step nilpotent group, then [ . , . ] : G×G→ G is bilinear, i.e. for all
g1, g2, g

′
1, g

′
2 ∈ G it holds that

[g1g2, g
′
1g

′
2] = [g1, g

′
2] · [g2, g

′
2] · [g1, g

′
1] · [g2, g

′
1].

Lemma 2.3. If G is a finitely generated torsion-free nilpotent group and ϕ : G → G is a surjective
morphism, then ϕ is also injective. In particular, ϕ is an automorphism of G.

Proof. Since ϕ is surjective, it follows by the first isomorphism theorem and Lemma 2.1 (iii) that

h(Ker (ϕ)) = h(G)− h(G/Ker (ϕ)) = h(G)− h(Im (ϕ)) = 0.

So Lemma 2.1 (iv) implies that Ker (ϕ) is finite. However, since G is torsion-free we obtain that Ker (ϕ)
is a finite torsion-free group. Hence, Ker (ϕ) is trivial.

Fix any endomorphism ϕ ∈ End (G). We denote with ϕi ∈ End (γi(G)/γi+1(G)) (for i ∈ N0) the
induced morphisms on the factors of the lower central series of G. Since the terms of the lower central
series are characteristic subgroups of G, these induced morphisms are well-defined. Moreover, if G is a
finitely generated c-step nilpotent group, then these factors are finitely generated abelian groups (see for
example Lemma 17.2.1 in [KM79]).

In case γi(G)/γi+1(G) is a free abelian group, so isomorphic to Z
k for some k, we can describe ϕi

by a k × k matrix over Z and in this way we can talk about the eigenvalues of ϕi and the determinant
of ϕi. In case γi(G)/γi+1(G) has torsion, we can still talk about the eigenvalues of ϕi by which we

mean the eigenvalues of the induced endomorphism on the torsion-free quotient γi(G)/γi+1(G)
τ(γi(G)/γi+1(G)) (where

τ(γi(G)/γi+1(G)) denotes the torsion subgroup of γi(G)/γi+1(G)).
The next result will be needed later on.

Lemma 2.4. Let G be a finitely generated torsion-free nilpotent group and ϕ : G→ G a morphism such
that ϕ1 : G/γ2(G) → G/γ2(G) is an automorphism. Then ϕ is an automorphism.

Proof. Since ϕ1 is surjective, it follows that

G

γ2(G)
= Im (ϕ1) =

Im (ϕ) γ2(G)

γ2(G)
.

So it holds that Im (ϕ) γ2(G) = G. Since G is nilpotent, this implies tat Im (ϕ) = G (see e.g. [KM79,
Theorem 16.2.5]). Hence, ϕ is a surjective morphism and thus Lemma 2.3 yields the result.
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2.2 Twisted conjugacy

In the introduction we already considered the notion of twisted conjugacy. Let us now define this concept
in some more detail. Let G be a group and ϕ ∈ End (G) a group endomorphism. Two elements a, b ∈ G
are called ϕ-conjugate or twisted conjugate (denoted by a ∼ϕ b) if there exists some third element c ∈ G
such that a = cbϕ(c)−1. This induces an equivalence relation ∼ϕ on G. The equivalence classes are
called the Reidemeister classes of ϕ and the number of equivalence classes is called the Reidemeister
number R(ϕ) of ϕ. The collection of all Reidemeister numbers, by only considering automorphisms of G,
is called the Reidemeister spectrum of G and is denoted by SpecR (G). Formally, we define SpecR (G) :=
{R(ϕ) | ϕ ∈ Aut (G)} ⊆ N0 ∪ {∞}. If SpecR (G) = {∞}, then G is said to have the R∞–property. If
SpecR (G) = N0 ∪ {∞}, then G has a full Reidemeister spectrum.

The Reidemeister spectrum of a group is in general difficult to compute. However, when working with
finitely generated nilpotent groups, there are some well-known techniques to study their Reidemeister
spectrum.

We list two theorems without a proof.

Proposition 2.5 ([DG14, Lemma 2.2] and [Rom11, Corollary 4.2]). Let G be a finitely generated c-step
nilpotent group and ϕ an automorphism of G. Then the following are equivalent:

(i) R(ϕ) = ∞

(ii) There exists some i = 1, 2, . . . , c such that ϕi has 1 as an eigenvalue.

(iii) There exists some i = 1, 2, . . . , c such that R(ϕi) = ∞.

Theorem 2.6 ([DGO21, Proposition 5] and [Rom11, Lemma 2.7]). Let G be a finitely generated nilpotent
group. Let

G = G1 ⊇ G2 ⊇ G3 ⊇ . . . ⊇ Gc ⊇ Gc+1 = 1

be a central series of G and ϕ ∈ Aut (G) such that the following holds:

1. All the factors Gi/Gi+1 (with i = 1, 2, . . . , c) are torsion-free.

2. For all terms Gi (with i = 1, 2, . . . , c+ 1) it holds that ϕ(Gi) = Gi.

Then it holds that:

R(ϕ) =
c∏

i=1

R(ϕi)

where ϕi : Gi/Gi+1 → Gi/Gi+1 (with i = 1, 2, . . . , c) are the induced automorphisms on the factor groups
Gi/Gi+1.

Remark 2.7. Note that in Theorem 2.6 we used the notation ϕi to denote the induced automorphisms
on the factor groups of the given central series of G. However, whenever we do not mention a central
series, we reserve this notation for the induced automorphisms on the factors of the lower central series
(as we introduced above Lemma 2.4).

When describing the Reidemeister spectrum of a group we will frequently use the map | · |∞ which is
defined by

| · |∞: Z → N0 ∪ {∞} : x 7→ |x|∞:=

{
|x| if x 6= 0

∞ if x = 0

where | · | denotes the absolute value.

3 2-step nilpotent groups associated to graphs

To any undirected finite simple graph Γ(V,E), we can associate a finitely generated 2-step nilpotent
group. We do this by considering the 2-step nilpotent quotient of the right angled Artin group associated
to Γ. More precisely, the idea is that we take the vertices (which we denote with xi) as generators of our
group and require that two of these generators commute if the corresponding vertices are connected via
an edge. We denote with yi,j = [xj , xi] the commutators of two vertices that are not connected via an
edge. At last, we make the group 2-step nilpotent by adding the constraints that the yi,j commute with
all the vertices. The formal definition is given below.

4



Definition 3.1. Let Γ({x1, x2, . . . , xn}, E) be an undirected finite simple graph. We define the group
GΓ by setting

GΓ =

〈
x1, x2, . . . , xn,
yi,j if xixj 6∈ E and i < j

∣∣∣∣∣∣

[xj , xi] = 1 if xixj ∈ E
[xj , xi] = yi,j if xixj 6∈ E and i < j
[xl, yi,j ] = 1 l = 1, 2, . . . , n; xixj 6∈ E and i < j

〉

From now on, we will use Γ to denote an undirected finite simple graph. Note that if Γ is the complete
graph on n ∈ N0 vertices, then the associated groupGΓ is isomorphic with Z

n. The Reidemeister spectrum
of Zn is well-known (see for example [Rom11, Section 3]) and is given by

SpecR (Zn) =

{
{2,∞} if n = 1

N0 ∪ {∞} if n ≥ 2
. (3.1)

If on the other hand Γ is the graph on n vertices without any edges, then the associated group GΓ is
isomorphic with Fn/γ3(Fn) (where Fn denotes the free group of rank n). These groups are also known as
the free nilpotent groups of rank n and nilpotency class 2 and are frequently denoted byNn,2. K. Dekimpe,
S. Tertooy and A.R. Vargas extended in [DTV20, Section 4] the result from V. Roman’kov (see [Rom11,
Section 3]) to

SpecR (Nn,2) =






2N0 ∪ {∞} if n = 2

(2N0 − 1) ∪ 4N0 ∪ {∞} if n = 3

N0 ∪ {∞} if n ≥ 4

. (3.2)

Denote with N := |{(i, j) | xixj 6∈ E and i < j}|. To simplify notation, we fix an order y1, y2, . . . , yN
to denote the elements yi,j where we define yl := yil,jl . Using the definition, it follows that any element
of GΓ can be uniquely written as xz11 x

z2
2 . . . xznn yt11 y

t2
2 . . . ytNN with zi, tl ∈ Z and that the multiplication in

GΓ is given by

(xz11 . . . xznn yt11 . . . ytNN )(xv11 . . . xvnn ys11 . . . ysNN ) = xz1+v1
1 . . . xzn+vn

n y
t1+s1+vi1zj1
1 . . . y

tN+sN+viN zjN
N

for zi, vi, tl, sl ∈ Z.
Using the operation in GΓ, we obtain expressions for the center and commutator subgroup of GΓ.

Lemma 3.2. With the notations from above, we have that:

Z(GΓ) =
N

×
i=1

〈yi〉 × ×
i=1,2,...,n;

deg(xi)=n−1

〈xi〉 ∼= Z
N+(the number of vertices of degree n−1)

and γ2(GΓ) =
N

×
i=1

〈yi〉 ∼= Z
N

Note that Lemma 3.2 implies that if Γ is not a complete graph, then the associated group GΓ is a
finitely generated torsion-free 2-step nilpotent group. Hence, we can apply Theorem 2.6 to the lower
central series of GΓ. Combined with the well-known description of the Reidemeister spectrum for finitely
generated torsion-free abelian groups (see e.g. [GW09]) we obtain the next result.

Lemma 3.3. For any ϕ ∈ Aut (GΓ) we have that:

R(ϕ) = R(ϕ1)R(ϕ2) = |det(Id− ϕ1)|∞ |det(Id− ϕ2)|∞

where ϕ1 : GΓ/γ2(GΓ) → GΓ/γ2(GΓ) and ϕ2 : γ2(GΓ) → γ2(GΓ) are the induced automorphisms on the
factors of the lower central series.

We abuse notation and also denote with ϕ1 (respectively ϕ2) the matrix corresponding to the map
ϕ1 (respectively ϕ2).

It is clear that if two graphs are isomorphic, then the associated groups are isomorphic. Also the
converse is true. This can be proven by using the argument for the associated right-angled Artin groups
in [Dro87]. In his argument Droms actually shows that when the 2-step nilpotent quotients of the right-
angled Artin groups associated to the two graphs are isomorphic, that it follows that the graphs are
isomorphic. However, since GΓ is precisely the 2-step nilpotent quotient of the right-angled Artin group
associated to Γ, this argument suffices to conclude the proof of the following Lemma.
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Lemma 3.4. Let Γ1 and Γ2 be two undirected simple graphs. The graphs Γ1 and Γ2 are isomorphic if
and only if GΓ1

∼= GΓ2 .

4 The first method: degree of the vertices

Recall that we want to determine the Reidemeister spectrum of the finitely generated 2-step nilpotent
groups associated to graphs. To do so we develop three methods. For the first method we describe
characteristic subgroups based on the degree of the vertices. The other two methods allow us to partition
the graph by using the simplicial join or the disjoint union.

For any graph Γ({x1, x2, . . . , xn}, E) and any d ∈ {1, 2, . . . , n− 1} we define the vertex set

Vd := {xi | i = 1, 2, . . . , n and deg xi ≥ d}

and the subgroup Hd ⊆ GΓ by

Hd :=

{
∏

xi∈Vd

xzii

N∏

l=1

ytll

∣∣∣∣∣ zi, tl ∈ Z

}
.

We argue that these subgroups Hd are characteristic subgroups of GΓ. For this, we need two lemmas
that describe the Hirsch number of the centralizers of elements of GΓ.

Lemma 4.1. For any zi0 , tl ∈ Z (for some i0 = 1, 2, . . . , n and any l = 1, 2, . . . , N) with zi0 6= 0 it holds
that

h

(
ZGΓ

(
x
zi0
i0

N∏

l=1

ytll

))
= deg(xi0 ) +N + 1.

Proof. By the operation in GΓ, it follows that the centralizer of x := x
zi0
i0

∏N
l=1 y

tl
l has the following form

ZGΓ(x) = {g ∈ GΓ | [g, x] = 1} =

{
n∏

i=1

xvii

N∏

l=1

ysll

∣∣∣∣∣
vi, sl ∈ Z

zi0vi = 0 if xi0xi 6∈ E and i0 6= i

}
.

Since zi0 6= 0, this precisely means that

ZGΓ(x) =






∏

i=1,2,...,n;
xi0xi∈E or i=i0

xvii

N∏

l=1

ysll

∣∣∣∣∣∣∣∣
vi, sl ∈ Z





.

Using Lemma 2.1 it follows that

h(ZGΓ(x)) = N + |{i = 1, 2, . . . , n | xi0xi ∈ E or i = i0}|= deg(xi0 ) +N + 1.

Lemma 4.2. For any zi, tl ∈ Z (for i = 1, 2, . . . , n and l = 1, 2, . . . , N) it holds that

h

(
ZGΓ

(
n∏

i=1

xzii

N∏

l=1

ytll

))
≤ min{n− 1, min

i=1,2,...,n;
zi 6=0

deg(xi)}+N + 1.

Proof. Denote x :=
∏n

i=1 x
zi
i

∏N
l=1 y

tl
l . If all zi are equal to zero, then ZGΓ(x) = GΓ and thus h(ZGΓ) =

n+N and the result follows. So suppose that not all zi are zero. We can assume without loss of generality
that

zi 6= 0 ⇐⇒ i ∈ {1, 2, . . . , k}

for some k ∈ {1, 2, . . . , n} and that

deg(x1) = min
i=1,2,...,k

deg(xi).

6



We denote with m the number of xj ’s (with j = 2, 3, . . . , k) such that x1xj ∈ E. Without loss of
generality, we can assume that

x1xj 6∈ E (with j ∈ {2, 3, . . . , k}) ⇐⇒ j = 2, 3, . . . , k −m.

By the operation in GΓ, we obtain that

ZGΓ(x) =






n∏

i=1

xvii

N∏

l=1

ysll

∣∣∣∣∣∣∣∣

vi, sl ∈ Z

z1vj = v1zj (∀j = 2, 3, . . . , k −m)
zivj = vizj (∀i, j = 2, 3, . . . , k with xixj 6∈ E and i 6= j)
zivj = 0 (∀i = 1, 2, . . . , k; j = k + 1, . . . , n with xixj 6∈ E)





.

We define the subgroup H ⊆ GΓ (that contains ZGΓ(x)) by setting

H :=





n∏

i=1

xvii

N∏

l=1

ysll

∣∣∣∣∣∣

vi, sl ∈ Z

z1vj = v1zj (∀j = 2, 3, . . . , k −m)
zivj = 0 (∀i = 1, 2, . . . , k; j = k + 1, . . . , n with xixj 6∈ E)



 .

By Lemma 2.1 (i) it suffices to argue that h(H) ≤ deg(x1)+N+1. Since z1 6= 0, the equations z1vj = v1zj
(with j = 2, 3, . . . , k −m) can only be satisfied if

(v1, v2, . . . , vk−m) = λ
(z1
d
,
z2
d
, . . . ,

zk−m

d

)
for some λ ∈ Z

where d := gcd(z1, z2, . . . , zk−m). Since all the zl 6= 0 (for l = 1, 2, . . . , k), it follows that vj = 0 for all
j = k + 1, k + 2, . . . , n with xixj 6∈ E for some i = 1, 2, . . . , k. Hence, we obtain that

H =





(
k−m∏

i=1

x
zi/d
i

)v0 k∏

i=k−m+1

xvii
∏

j∈J

x
vj
j

N∏

l=1

ysll

∣∣∣∣∣∣
v0, vi, vj , sl ∈ Z





where we defined

J := {j = k + 1, k + 2, . . . , n | xixj ∈ E for all i = 1, 2, . . . , k}.

By using Lemma 2.1 we can indeed conclude that

h(H) = 1 +m+ |J |+N ≤ 1 +m+N + |{j = k + 1, k + 2, . . . , n | x1xj ∈ E}|

= 1 +m+N + |{j = 2, 3, . . . , n | x1xj ∈ E}|−m

= deg(x1) +N + 1.

Theorem 4.3. The subgroups Hd (for any d = 1, 2, . . . , n− 1) are characteristic subgroups of GΓ.

Proof. Fix any d = 1, 2, . . . , n − 1, an automorphism ϕ ∈ Aut (GΓ) and any xi0 ∈ Vd. Suppose by
contradiction that ϕ(xi0 ) 6∈ Hd. Hence, there exists some xi1 6∈ Vd and zi, tl ∈ Z with zi1 6= 0 such that

ϕ(xi0 ) =

n∏

i=1

xzii

N∏

l=1

ytll .

By using Lemma 4.1 and Lemma 4.2 we now obtain that

d+N + 1 ≤ deg xi0 +N + 1 = h(ZGΓ(xi0 )) = h(ZGΓ(ϕ(xi0 ))) ≤ deg xi1 +N + 1 < d+N + 1

which is a contradiction and thus ϕ(xi0 ) ∈ Hd. By Lemma 3.2 and since γ2(GΓ) is a characteristic
subgroup of GΓ, it now follows that ϕ(Hd) ⊆ Hd. We can use completely the same argument to argue
that ϕ−1(Hd) ⊆ Hd and thus we can conclude that ϕ(Hd) = Hd.
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Theorem 4.3 provides extra information about the automorphisms of GΓ. Therefore, we will use it
frequently in the rest of the paper to determine the Reidemeister spectrum of groups associated to graphs
and to develop new methods to do so. Moreover, Theorem 4.3 can be used to describe graphs for which
the associated finitely generated 2-step nilpotent groups have the R∞–property.

Theorem 4.4. Let Γ({x1, x2, . . . , xn}, E) be an undirected simple graph which has maximal degree n− 2
and for which this degree is attained only once, then GΓ has the R∞–property.

Proof. Take any ϕ ∈ Aut (GΓ). Assume without loss of generality that x1 is the one vertex having degree
n − 2 and that x1x2 6∈ E. Since Hn−2 is a characteristic subgroup of GΓ (by Theorem 4.3), it follows
that ϕ1(x1γ2(GΓ)) = x±1

1 γ2(GΓ).

Fix any j ∈ {3, 4, . . . , n} and denote ϕ(xj) =
∏n

i=1 x
zi
i

∏N
l=1 y

tl
l . Since x1xj ∈ E, we obtain (by

Lemma 2.2) that

1 = ϕ([xj , x1]) =

[
n∏

i=1

xzii , x
±1
1

]
=

n∏

i=1

[xi, x1]
±zi = [x2, x1]

±z2 .

Hence, we obtain that z2 = 0. Since this argument is valid for all j ∈ {3, 4, . . . , n} and since ϕ is an
automorphism, it follows that the matrix of ϕ1 (with respect to {x1γ2(GΓ), x2γ2(GΓ), . . . , xnγ2(GΓ)})
has the following form: 



±1 b1 C
0 ±1 0 . . . 0
0 b3
...

... A
0 bn




where B :=
(
b1 ±1 b3 . . . bn

)⊤
∈ Z

n×1, A ∈ Z
(n−2)×(n−2) and C ∈ Z

1×(n−2). Since ϕ1 is an
automorphism, it holds that A ∈ GLn−2(Z). Applying Lemma 3.3 yields

R(ϕ) = R(ϕ1)R(ϕ2) = |±1− 1|∞ |±1− 1|∞ |det(A− 1n−2)|∞ R(ϕ2).

If one of the two ±1 is equal to 1, then we get that R(ϕ) = ∞ and the result follows. Hence, we can
assume without loss of generality that the two ±1 in the matrix representation are both equal to −1.
However, by Lemma 2.2 we now obtain that

ϕ2([x2, x1]) = [xb11 x
−1
2 xb33 . . . xbnn , x−1

1 ] = [x1, x1]
−b1 [x2, x1]

(−1)(−1)[x3, x1]
−b3 . . . [xn, x1]

−bn

= [x2, x1].

This implies that [x2, x1] is an eigenvector of ϕ2 with corresponding eigenvalue 1 and thus by Proposition
2.5 it follows that R(ϕ) = ∞.

Example 4.5. If Γ is the graph in Figure 1, then GΓ has the R∞–property.

x1 x2

x3x4

Figure 1: Graph for which the associated group has the R∞–property.

Corollary 4.6. Let Γ({x1, x2, . . . , xn}, E) be an undirected simple graph which has maximal degree n− 2
and for which this degree is attained only once and let M be the nilmanifold with fundamental group GΓ.
Then any self-homotopy equivalence of M is homotopic to a fixed point free map.

Remark 4.7. The nilmanifold M whose fundamental group is the group GΓ of Example 4.5 is an 8-
dimensional (since h(GΓ) = 8) example of a 2-step nilmanifold for which every self-homotopy equivalence
is homotopic to a fixed point free map. In Remark 7.8 we mention that the group associated to the
cycle graph on four vertices where we remove one edge also has the R∞–property. Hence, this provides
a 7-dimensional example. One can prove (see [Lat21, Example 8.2.2]) that this is a sharp bound when
considering groups associated to graphs. Moreover, we will show in a forthcoming paper that this is a
general lower bound in the sense that there do not exist 2-step nilmanifolds (so also not associated to a
graph) in dimensions ≤ 6 having the R∞–property.
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5 The second method: simplicial join

There are several ways to combine graphs. We discuss the simplicial join and the disjoint union.

Definition 5.1. Let k ∈ N>1 and Γi(Vi, Ei) (with i = 1, 2, . . . , k) be graphs.

• The disjoint union ⊔k
i=1Γi of the graphs Γ1,Γ2, . . . ,Γk is defined by

k⊔

i=1

Γi

(
k⊔

i=1

Vi,

k⊔

i=1

Ei

)
.

• The simplicial join ∗ki=1Γi of the graphs Γ1,Γ2, . . . ,Γk is defined by

k
∗

i=1
Γi

(
k⊔

i=1

Vi,
k⊔

i=1

Ei ∪ { xixj | xi ∈ Vi, xj ∈ Vj and 1 ≤ i < j ≤ k}

)
.

The group associated to the simplicial join of graphs can be written as a direct product. The next
result follows almost immediately by using the definitions.

Lemma 5.2. If Γ(1) and Γ(2) are two undirected simple graphs, then the group GΓ(1)∗Γ(2) associated to the
simplicial join of Γ(1) and Γ(2) is isomorphic with the direct product GΓ(1) ×GΓ(2) . This can be generalised
to the simplicial join of any finite amount of undirected simple graphs.

In order to study the endomorphisms of a direct product, we introduce some notation (which coincides
with the notation from [Sen21]).

Notation 5.3. Let G =×k

i=1
Gi be the direct product of k groups Gi. For any i = 1, 2, . . . , k we denote

with πi : G→ Gi the canonical projection and with ei : Gi → G the canonical inclusion using the direct
product. For any endomorphism ϕ ∈ End (G) and any i, j = 1, 2, . . . , k, we denote with ϕij : Gj → Gi

the morphisms defined by
ϕij := πi ◦ ϕ ◦ ej : Gj → Gi.

Note that if ϕ ∈ Aut (GΓ(1)∗Γ(2)) is an automorphism, then ϕii ∈ End (GΓ(i)) (for i = 1, 2) is not
necessarily an automorphism of GΓ(i) . However, the following lemma tells us something about the images
of ϕij . We refer to [Sen21, Lemma 2.2] for a proof.

Lemma 5.4. Let ϕ ∈ Aut
(
×k

i=1
Gi

)
be an automorphism of×k

i=1
Gi, then for all i = 1, 2, . . . , k it holds

that Gi is generated by Im (ϕi1) , Im (ϕi2) , . . . , Im (ϕik).

In order to describe the Reidemeister spectrum, we introduce some (obvious) notation.

Notation 5.5. Let M,N ⊆ N0 ∪ {∞} be two subsets. We define the product set M ·N by

M ·N := {mn |m ∈M, n ∈ N}.

To avoid confusion, we only use this notation when we express the Reidemeister spectrum of a group.

If Γ(V,E) is a graph and V ′ ⊂ V a subset of the set of vertices, then we denote with Γ(V ′) the
subgraph induced on V ′. This subgraph of Γ is defined by means of the vertex set V ′ and the edge set
{vw ∈ E | v, w ∈ V ′}.

A first step in studying the Reidemeister spectrum of the group associated to the simplicial join of
graphs is to get rid of the vertices that are connected with all other vertices. Recall that these vertices
are precisely contained in the vertex set Vn−1.

Theorem 5.6. Let Γ(V = {x1, x2, . . . , xn}, E) be an undirected simple graph with r := |Vn−1|. If r < n,
then it holds that

SpecR (GΓ) = SpecR (Zr) · SpecR
(
GΓ(V \Vn−1)

)
.
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Proof. Note that Γ = Γ(Vn−1) ∗ Γ(V \ Vn−1) and thus by Lemma 5.2

G ∼= GΓ(Vn−1) ×GΓ(V \Vn−1)
∼= Z

r ×GΓ(V \Vn−1).

Fix any automorphism ϕ ∈ Aut
(
Z
r ×GΓ(V \Vn−1)

)
. Since none of the vertices of Γ(V \Vn−1) is connected

with all the other vertices of Γ(V \ Vn−1), it follows by Lemma 3.2 that

ϕ(Zr × 1) ⊆ ϕ(Zr × Z(GΓ(V \Vn−1))) = Z(Zr ×GΓ(V \Vn−1)) = Z
r × γ2(GΓ(V \Vn−1)).

Denote with (ϕij)1 and (ϕij)2 (with i, j = 1, 2) the morphisms induced on the first and second factor of
the lower central series. Since Im (ϕ21) ⊆ γ2(GΓ(V \Vn−1)) it holds that Im ((ϕ21)1) = 1. Hence, (ϕ21)1 is
the map sending everything to 1γ2(GΓ(V \Vn−1)). So Lemma 5.4 implies that (ϕ22)1 is surjective. Applying
Lemma’s 2.3 and 2.4 yields that ϕ22 is an automorphism of GΓ(V \Vn−1).

By taking a particular generating set of Zr and GΓ(V \Vn−1) it follows that the matrix of ϕ1 (with
respect to this generating set) is of the form

(
A B
0 C

)

where A, B and C are the matrices representing respectively (ϕ11)1, (ϕ12)1 and (ϕ22)1. Since ϕ1 and
(ϕ22)1 are automorphisms, we can conclude that also (ϕ11)1 is an automorphism. Remark that since Z

r

is abelian, it holds that (ϕ11)1 = ϕ11.
Note that

Im ((ϕ12)2) = Im ((ϕ21)2) = 1

and thus R(ϕ2) = R((ϕ22)2). By Lemma 3.3 we can conclude that

R(ϕ) = R(ϕ11)R((ϕ22)1)R((ϕ22)2) = R(ϕ11)R(ϕ22).

Since ϕ11 ∈ Aut (Zr) and ϕ22 ∈ Aut
(
GΓ(V \Vn−1)

)
it follows that

SpecR (GΓ) = SpecR
(
Z
r ×GΓ(V \Vn−1)

)
⊆ SpecR (Zr) · SpecR

(
GΓ(V \Vn−1)

)
.

The other inclusion is well-known (see e.g. [Sen21, Corollary 2.6]).

Notation 5.7. Using Theorem 5.6, we can restrict ourselves to look at graphs for which none of the
vertices is connected (via an edge) with all other vertices. Let Γ be such a finite undirected simple graph.
Assume that Γ = ∗ki=1Γ

(i) and that Γ cannot be decomposed any further using the simplicial join. We
use the superscript “(i)” to denote similar properties as before, but related to the graph Γ(i) (e.g. V (i),

x
(i)
1 and n(i)). Applying Lemma 5.2 yields that GΓ

∼=×k

i=1
GΓ(i) . For any component i = 1, 2, . . . , k we

define the subgroup H(i) ⊆ GΓ by

H(i) :=
i−1

×
m=1

γ2(GΓ(m))×GΓ(i) ×
k

×
m=i+1

γ2(GΓ(m)) = GΓ(i)γ2(GΓ).

Definition 5.8. Let Γ(V,E) be an undirected simple graph. The complement Γc of the graph Γ is
defined by

Γc(V, {vw | v, w ∈ V, v 6= w and vw 6∈ E}).

The following lemma will be needed later on.

Lemma 5.9. If Γ = ∗ki=1Γ
(i) cannot be decomposed any further using the simplicial join, then

(
Γ(i)
)c

is
connected (for all i = 1, 2, . . . , k).

Proof. Fix any i = 1, 2, . . . , k and denote for the sake of simplicity Γ(i) = X(V,E). Suppose by contra-
diction that Xc is not connected. So there exist two subgraphs X1(V1, E1) and X2(V2, E2) of Xc that
are not connected with each other (with V = V1 ⊔ V2 and with E1 ∪E2 the edge set of Xc). This implies
that V1, V2 ⊂ V are non-empty sets of vertices such that

{ xi1xi2 | xi1 ∈ V1 and xi2 ∈ V2} ⊆ E.

Thus, we obtain that
X = X(V1) ∗X(V2)

which contradicts the assumption. Hence, all the complements
(
Γ(i)

)c
are connected.
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Lemma 5.9 allows us to describe the automorphisms of GΓ.

Corollary 5.10. Let Γ(V = {x1, x2, . . . , xn}, E) be an undirected simple graph such that Γ = ∗ki=1Γ
(i),

|Vn−1|= 0 and Γ cannot be decomposed any further using the simplicial join. Then, for any automorphism
ϕ ∈ Aut (GΓ) there exists a unique permutation σ ∈ Sk such that

(i) ϕ
(
H(i)

)
= H(σ(i)) for any i = 1, 2, . . . , k.

(ii) The corresponding components are isomorphic, i.e. Γ(i) ∼= Γ(σ(i)) (for any i = 1, 2, . . . , k).

Proof. Fix any component i0 ∈ {1, 2, . . . , k} and denote with d := degΓ(x
(i0)
1 ) the degree (in Γ) of x

(i0)
1 .

Define for any i = 1, 2, . . . , k the integer d(i) by

d(i) := d−
k∑

j=1,
j 6=i

n(j) = d− n+ n(i).

Note that degΓ(i0)(x
(i0)
1 ) equals d(i0).

Since ϕ is an automorphism, it follows by Theorem 4.3 that ϕ(x
(i0)
1 ) ∈ Hd \Hd+1. Thus we can fix some

component i1 ∈ {1, 2, . . . , k} such that ϕ(x
(i0)
1 ) has a non-zero exponent for some vertex of V (i1) of degree

d in Γ. By Lemma 4.1, it holds that h(ZGΓ(ϕ(x
(i0)
1 ))) = d+N +1. However, by applying Lemma 4.2 we

obtain (by also using Lemma 2.1 (i)) that

d+N + 1 = h(ZGΓ(ϕ(x
(i0)
1 ))) =

k∑

j=1

h(ZG
Γ(j)

(πj(ϕ(x
(i0)
1 ))))

≤ (d(i1) + 1 +N (i1)) +

k∑

j=1,
j 6=i1

(n(j) +N (j))

= d(i1) + 1− n(i1) +
k∑

j=1

(n(j) +N (j)) = d(i1) + 1− n(i1) + n+N

= d+N + 1.

So equality must hold throughout the calculations and thus for all j = 1, 2, . . . , k with j 6= i1 this implies
that

h(ZG
Γ(j)

(πj(ϕ(x
(i0)
1 )))) = n(j) +N (j).

Since there are no vertices of degree n(j) − 1 (in Γ(j)), Lemma 4.2 implies that πj(ϕ(x
(i0)
1 )) ∈ γ2(GΓ(j) )

for all j = 1, 2, . . . , k with j 6= i1. So i1 is the unique component such that ϕ(x
(i0)
1 ) ∈ H(i1) and

thus we define σ(i0) := i1. Repeating this argument for any i0 ∈ {1, 2, . . . , k} yields a unique map
σ : {1, 2, . . . , k} → {1, 2, . . . , k} such that

ϕ(x
(i)
1 ) ∈ H(σ(i)) for all i = 1, 2, . . . , k.

Fix any component i0 and any vertex x
(i0)
j of that component (with j 6= 1) such that x

(i0)
1 x

(i0)
j 6∈ E.

Using the same argument as in the beginning of the proof, we can derive that ϕ(x
(i0)
j ) ∈ H(ĩ0) for some

unique component ĩ0. Since [x
(i0)
j , x

(i0)
1 ] 6= 1, it follows that

1 6= [ϕ(x
(i0)
j ), ϕ(x

(i0)
1 )] ∈ [H(ĩ0), H(σ(i0))] =

{
γ2(GΓ(σ(i0))) if ĩ0 = σ(i0)

1 if ĩ0 6= σ(i0)
.

Thus we obtain that ĩ0 = σ(i0) and so ϕ(x
(i0)
j ) ∈ H(σ(i0)). If we fix any vertex x

(i0)
j (with j 6= 1), then

by Lemma 5.9 there exists a path in
(
Γ(i0)

)c
that connects x

(i0)
j and x

(i0)
1 . We can now use the previous

argument inductively together with this path to conclude that ϕ(x
(i0)
j ) ∈ H(σ(i0)).
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Hence, we can conclude that ϕ(H(i)) ⊆ H(σ(i)) for all components i. By construction of this unique
map σ and since ϕ is an automorphism, one can derive that σ ∈ Sk and ϕ(H(i)) = H(σ(i)) for all
components i. The second item follows directly by applying Lemma 3.4.

Using this description, we are now able to describe the Reidemeister spectrum of GΓ. We subdivide
this description in two theorems, but we prove them at once.

Theorem 5.11. Let Γ(1),Γ(2), . . . ,Γ(k) be isomorphic finite undirected simple graphs with at least 2
vertices that cannot be decomposed using the simplicial join. Then

SpecR

(
G∗k

i=1Γ
(i)

)
= SpecR

(
k

×
i=1

GΓ(i)

)
=

k⋃

i=1

{
i∏

m=1

Rm

∣∣∣∣∣Rm ∈ SpecR (GΓ(1))

}
.

If we divide a graph using the simplicial join, then we say that two components are of the same type
if they are isomorphic. If s is the amount of different types, then we fix some order to be able to address
components of type j (with j = 1, 2, . . . , s).

Theorem 5.12. Let Γ(V = {x1, x2, . . . , xn}, E) be a finite undirected simple graph. Assume that Γ(V \
Vn−1) = ∗ki=1Γ

(i) and Γ(V \ Vn−1) cannot be decomposed any further using the simplicial join. Denote
with s the number of types of components. Then, the Reidemeister spectrum of GΓ is given by

SpecR (GΓ) = SpecR

(
Z
|Vn−1|

)
·

s∏

j=1

SpecR


 ×

components i
of type j

GΓ(i)


 .

Proof of Theorems 5.11 and 5.12. By Theorem 5.6 we can assume that |Vn−1|= 0. Fix any automorphism
ϕ ∈ Aut (GΓ). Take σ ∈ Sk as described in Corollary 5.10. Define the map ϕ ∈ End (GΓ) by setting

ϕ : GΓ → GΓ : (g1, g2, . . . , gk) 7→
k∏

i=1

(1, . . . , 1, ϕσ(i)i(gi)︸ ︷︷ ︸
position σ(i)

, 1, . . . , 1).

Since the components Γ(i) and Γ(σ(i)) are isomorphic, we view ϕσ(i)i ∈ End (GΓ(i)). Since ϕ(H(i)) =

H(σ(i)) (for all i = 1, 2, . . . , k), it follows that if i2 6= σ(i1) then the induced map (ϕi2i1)1 is the zero map.
Hence, by using Lemma 5.4, Lemma 2.3 and Lemma 2.4 we obtain that ϕσ(i)i is an automorphism of
GΓ(i) for all components i = 1, 2, . . . , k and thus ϕ is an automorphism of GΓ. By using the definition
of the automorphism ϕ, one can derive that (ϕ)1 = ϕ1 and (ϕ)2 = ϕ2. Applying Lemma 3.3 now yields
that R(ϕ) = R(ϕ) and thus it suffices to consider the automorphism ϕ.

Since σ maps components to isomorphic components, we are able to write ϕ = ϕ(1) ×ϕ(2) × . . .×ϕ(s)

for some automorphisms ϕ(j) on the groups associated to the graph consisting of the simplicial join of
the components of type j (with j = 1, 2, . . . , s). It is known that R(ϕ) =

∏s
j=1 R(ϕ

(j)) (see e.g. [Sen21,
Corollary 2.6]). So it suffices to prove Theorem 5.11.

To limit notational complexity, we assume that there are only k = 2 components. The general case
can be proven similarly. We refer the interested reader to [Lat21, Proposition 8.1.11].

Assume that Γ = Γ(1) ∗ Γ(2) (and Γ cannot be decomposed any further using the simplicial join)
where Γ(1) ∼= Γ(2) are isomorphic finite undirected simple graphs with at least 2 vertices. We argue that

SpecR (GΓ(1)∗Γ(2)) =
⋃2

i=1

{∏i
m=1Rm

∣∣∣Rm ∈ SpecR (GΓ(1))
}
. First we assume that ϕ(g1, 1) ∈ 1 ×GΓ(2)

and that ϕ(1, g2) ∈ GΓ(1) × 1 for all gi ∈ GΓ(i) (in particular, σ = (1 2) ∈ S2). We define a new set of
generators for GΓ(1) and GΓ(2) by setting

x̃
(i)
j :=

{
x
(1)
j if i = 1

ϕ21(x
(1)
j ) if i = 2

for all j = 1, 2, . . . , n(1)

ỹ
(i)
j :=

{
y
(1)
j if i = 1

ϕ21(y
(1)
j ) if i = 2

for all j = 1, 2, . . . , N (1).
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One can check that this is well-defined since ϕ is an automorphism. Hence, there exists some automor-
phism ψ ∈ Aut (GΓ(1)) such that the matrix of ϕi (with i = 1, 2) with respect to this new set of generators
has the following form (

0 Ai

1 0

)

where Ai is the matrix of the induced automorphism ψi. By Lemma 3.3 we now obtain that

R(ϕi) =

∣∣∣∣det
(
1−

(
0 Ai

1 0

))∣∣∣∣
∞

= |det(1−Ai)|∞= R(ψi)

and hence R(ϕ) = R(ψ).
If on the other hand ϕ = ϕ11×ϕ22 (and thus σ is the identity permutation), then R(ϕ) = R(ϕ11)R(ϕ22)

(see e.g. [Sen21, Corollary 2.6]). Combining these two cases, we obtain that SpecR (GΓ(1)∗Γ(2)) ⊆
⋃2

i=1

{∏i
m=1Rm

∣∣∣Rm ∈ SpecR (GΓ(1))
}
. One can prove the other inclusion by using the same ideas

for constructing the desired automorphisms.

Using Theorem 5.12, we can now construct more 2-step nilpotent groups having the R∞–property.

Corollary 5.13. Let Γ(V,E) be a finite undirected simple graph such that Γ = ∗ki=1Γ
(i) (where Γ cannot

be decomposed any further). Then the following statements are equivalent

(i) There exists some i = 1, 2, . . . , k such that GΓ(i) has the R∞–property

(ii) GΓ has the R∞–property

As a direct consequence of this we now also find the following result.

Corollary 5.14. For any n ≥ 7 there exists a 2-step nilmanifold Mn of dimension n such that any
self-homotopy equivalence of Mn is homotopic to a fixed point free map.

Proof. Indeed, forM7 we can take the 7-dimensional manifold of Remark 4.7. For any n > 7, let k = n−7
and take Mn = T k ×M7, where T

k is the k-dimensional torus. Then, we have that the fundamental
group of Mn is Zk ×GΓ, where Γ is the cycle graph on four vertices with one edge removed. It follows
that the fundamental group of Mn is then the group associated to the simplicial join of Γ and k graphs
consisting of just one vertex. By the previous corollary, we know that Z

k × GΓ has the R∞–property
from which the result follows.

In order to illustrate Theorem 5.11 and Theorem 5.12 we give some examples.

Example 5.15. Consider the cycle graph C4 on 4 vertices in Figure 2a. Note that C4 is the simplicial
join of twice the graph with 2 vertices and no edges. Hence, we can use Theorem 5.11 and equation (3.2)
to conclude that

SpecR (GC4) = SpecR (N2,2 ×N2,2) =
2⋃

i=1

{
i∏

m=1

Rm

∣∣∣∣∣Rm ∈ SpecR (N2,2)

}

= (2N0 ∪ {∞}) ∪ (4N0 ∪ {∞}) = 2N0 ∪ {∞}.

Let us consider the graph Γ in Figure 2b. Hence, it follows that Vn−1 = {x1} and thus Theorem 5.12
(together with equations (3.1) and (3.2)) yields that

SpecR (GΓ) = SpecR (Z) · SpecR (N3,2) = ({2,∞}) · ((2N0 − 1) ∪ 4N0 ∪ {∞})

= 2(2N0 − 1) ∪ 8N0 ∪ {∞}.

x
(1)
1 x

(2)
1

x
(1)
2x

(2)
2

(a) Cycle graph

x1 x
(1)
1

x
(1)
2x

(1)
3

(b) Simplicial join of 1 vertex and 3 vertices

Figure 2: Illustration simplicial join on graphs with 4 vertices
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6 The third method: connected components

Let Γ(V,E) be a finite undirected simple graph. Denote with Γ(0) the induced subgraph Γ(V0 \ V1)
consisting of vertices of degree zero and with Γ(i) (for i = 1, 2, . . . , k) the connected components of Γ(V1).

It follows that Γ =
⊔k

i=0 Γ
(i). We use the superscript “(i)” to denote similar properties as before, but

related to the graph Γ(i). Define for all i ∈ {0, 1, . . . , k} the subgroup H(i) of GΓ by

H(i) :=






n(i)∏

j=1

(
x
(i)
j

)z(i)
j

N∏

l=1

ytll

∣∣∣∣∣∣
z
(i)
j , tl ∈ Z




 = GΓ(i)γ2(GΓ).

As with the simplicial join, it turns out that any automorphism of GΓ maps the subgroups H(i) (with
i = 1, 2, . . . , k) to such a subgroup associated to an isomorphic component. In order to prove this, we
need the following lemma, which studies the centralizers of elements of GΓ.

Lemma 6.1. If Γ(V,E) is a finite undirected simple graph such that Γ =
⊔k

i=1 Γ
(i), then for any z

(i)
j , tl ∈

Z with some i1 6= i2 and j1, j2 such that z
(i1)
j1

, z
(i2)
j2

6= 0, it holds that:

ZGΓ



∏

i

∏

j

(
x
(i)
j

)z(i)
j

N∏

l=1

ytll


 =

〈
∏

i

∏

j

(
x
(i)
j

)z(i)
j

/d
〉

× γ2(GΓ) ∼= Z
N+1

where d := gcdi,j z
(i)
j .

Proof. Without loss of generality we assume that i1 = 1, i2 = 2 and j1 = j2 = 1 (and thus z
(1)
1 , z

(2)
1 6= 0).

To make notation more clear, we denote

x =
∏

i

∏

j

(
x
(i)
j

)z(i)
j

N∏

l=1

ytll .

Using the operation in GΓ, we obtain that

ZGΓ(x) =





∏

i

∏

j

(
x
(i)
j

)v(i)
j

N∏

l=1

ysll

∣∣∣∣∣∣∣∣∣

v
(i)
j , sl ∈ Z

z
(i1)
j1

v
(i2)
j2

= v
(i1)
j1

z
(i2)
j2

if i1 6= i2; ∀j1, j2

z
(i)
j1
v
(i)
j2

= v
(i)
j1
z
(i)
j2

if x
(i)
j1
x
(i)
j2

6∈ E(i)




.

Since z
(1)
1 , z

(2)
1 6= 0, the equations of the form z

(1)
1 v

(i)
j = v

(1)
1 z

(i)
j (with i = 2, 3, . . . , k) and the equations

of the form z
(2)
1 v

(1)
j = v

(2)
1 z

(1)
j can only be satisfied if there exists some λ ∈ Z such that

v
(i)
j = λ

z
(i)
j

d
for all i = 1, 2, . . . , k and j = 1, 2, . . . , n(i)

where d := gcdi,j z
(i)
j . This solution satisfies all the other conditions in the expression of the centralizer

of x and thus we can conclude that

ZGΓ(x) =








∏

i

∏

j

(
x
(i)
j

)z(i)
j

/d




v0
N∏

l=1

ysll

∣∣∣∣∣∣
v0, sl ∈ Z




 =

〈
∏

i

∏

j

(
x
(i)
j

)z(i)
j

/d
〉

× γ2(GΓ) ∼= Z
N+1.

Lemma 6.1 allows us to study the automorphisms of GΓ.

Corollary 6.2. Let Γ(V,E) be a finite undirected simple graph. Denote with Γ(0) the induced subgraph
Γ(V0 \ V1) and with Γ(i) the connected components of Γ(V1) (where i = 1, 2, . . . , k). Then for any auto-
morphism ϕ ∈ Aut (GΓ) there exists a unique permutation σ ∈ Sk such that:
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(i) ϕ
(
H(i)

)
= H(σ(i)) for any i = 1, 2, . . . , k.

(ii) The corresponding connected components are isomorphic, i.e. Γ(i) ∼= Γ(σ(i)) (for any i = 1, 2, . . . , k).

Proof. Fix any component i0 ∈ {1, 2, . . . , k}. Since Γ(i0) is a subgraph of Γ(V1), it follows by Lemma 4.1
that

h(ZGΓ(ϕ(x
(i0)
1 ))) = deg(x

(i0)
1 ) +N + 1 > N + 1.

Lemma 6.1 now implies that ϕ(x
(i0)
1 ) can only have non-zero exponents for vertices from one component.

Recall that H1 is a characteristic subgroup (see Lemma 4.3). Hence, we obtain that there is a unique

component σ(i0) ∈ {1, 2, . . . , k} such that ϕ(x
(i0)
1 ) ∈ H(σ(i0)). Repeating this argument for any i0 ∈

{1, 2, . . . , k} yields a unique map σ : {1, 2, . . . , k} → {1, 2, . . . , k} such that

ϕ(x
(i)
1 ) ∈ H(σ(i)) for all i = 1, 2, . . . , k.

Fix any component i0 ∈ {1, 2, . . . , k} and some vertex x
(i0)
j of that component such that x

(i0)
1 x

(i0)
j ∈ E.

Using the same argument as in the beginning of the proof, we can derive that ϕ(x
(i0)
j ) ∈ H(ĩ0) for some

unique component ĩ0 ∈ {1, 2, . . . , k}. Since x
(i0)
1 and x

(i0)
j commute, it holds that also ϕ(x

(i0)
1 ) and

ϕ(x
(i0)
j ) commute. However, since ϕ(x

(i0)
1 ), ϕ(x

(i0)
j ) 6∈ γ2(GΓ) and vertices from different components are

not connected via an edge (and thus the corresponding group elements do not commute), we obtain that

ĩ0 = σ(i0) and thus ϕ(x
(i0)
j ) ∈ H(σ(i0)). If x

(i0)
j is any vertex of component i0, then there exists a path

in Γ(i0) connecting x
(i0)
1 and x

(i0)
j . Using the previous argument inductively with this path we can derive

that ϕ(x
(i0)
j ) ∈ H(σ(i0)).

Hence, we can conclude that ϕ(H(i)) ⊆ H(σ(i)) for all components i. By construction of this unique
map σ and since ϕ is an automorphism, one can derive that σ ∈ Sk and ϕ(H(i)) = H(σ(i)) for all
components i ∈ {1, 2, . . . , k}. The second item follows directly by applying Lemma 3.4.

In contract to the situation for the simplicial join, it is not possible to give a nice general description
of the Reidemeister spectrum of a group GΓ in terms of the Reidemeister spectra of the groups associated
to the connected components of Γ. Nevertheless, in practice Corollary 6.2 is very useful to determine the
Reidemeister spectrum in concrete cases.

Indeed, fix any automorphism ϕ ∈ Aut (GΓ). Corollary 6.2 allows us to describe the matrices corre-
sponding to ϕ1 and ϕ2. These matrices will have the following form




A(1) 0 . . . 0 ∗

0 A(2) . . .
...

...
...

. . .
. . . 0

...
0 . . . 0 A(s) ∗

0 . . . . . . 0 A(0)




and




(A(1))2 0 . . . 0 0 ∗ ∗

0 (A(2))2
. . .

...
...

...
...

...
. . .

. . . 0
...

...
...

0 . . . 0 (A(s))2 0 ∗ ∗
0 . . . . . . 0 T ∗ ∗
0 . . . . . . 0 0 T ′ ∗

0 . . . . . . 0 0 0 (A(0))2




where (as with the simplicial join) we use s to denote the number of types of components. The matrices
with a superscript correspond to automorphisms on the induced groups associated to the disjoint union
of the components of a particular type.

The matrix T can be described by using blocks corresponding with the commutators between different
connected components of Γ(V1). Each column of this block matrix consists of all zeros except at one
position. The matrix at this spot can be described by means of the tensor product of two matrices.
Similarly, the matrix T ′ can be described by using blocks corresponding with the commutators between
Γ(V0 \V1) and the connected components of Γ(V1). Each column of this block matrix consists of all zeros
except at one position which can be described by using the tensor product of some matrix with A(0).
For the precise description of the matrices corresponding to ϕ1 and ϕ2, we refer the interested reader to
[Lat21, Application 7.1.6]. We illustrate this full description by considering two graphs with four vertices.
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Example 6.3. Let us consider the graph Γ in Figure 3a. Hence, Γ = Γ(0) ⊔ Γ(1) where Γ(0) and Γ(1)

denote the induced subgraphs Γ(V0) and Γ(V1 \V0). Fix any automorphism ϕ ∈ Aut (GΓ). Using the full
description it follows that the matrices of ϕ1 and ϕ2 have the following form

(
A(1) ∗
0 A(0)

)
and

(
A(1) ⊗A(0) ∗

0 det(A(0))

)

where A(1), A(0) ∈ GL2(Z).
Consider the graph Γ in Figure 3b. Thus Γ = Γ(1)⊔Γ(2) where Γ(1) and Γ(2) denote the two connected

components of Γ(V1 \ V0). For any automorphism ϕ ∈ Aut (GΓ) we obtain by Corollary 6.2 that either
ϕ(H(1)) = H(2) and ϕ(H(2)) = H(1) or that ϕ(H(i)) = H(i) (for i = 1, 2). In the first case, the matrices
of ϕ1 and ϕ2 have the following form

(
0 A

(1)
2

A
(1)
1 0

)
and

(
−(A

(1)
2 ⊗A

(1)
1 )
)

where A
(1)
1 , A

(1)
2 ∈ GL2(Z). In the other case, the matrices of ϕ1 and ϕ2 have the following form

(
A

(1)
1 0

0 A
(1)
2

)
and

(
A

(1)
1 ⊗A

(1)
2

)

where A
(1)
1 , A

(1)
2 ∈ GL2(Z).

For the details of these two examples we refer the reader to [Lat21, Theorem 7.2.2 and 7.2.3].

x
(1)
1 x

(1)
2

x
(0)
2x

(0)
1

(a) Only one edge

x
(1)
1 x

(1)
2

x
(2)
2x

(2)
1

(b) 2 edges and 2 components

Figure 3: Illustration disjoint union on graphs with 4 vertices

7 Examples

We illustrate the results from the previous sections by determining the Reidemeister spectrum of some
families of groups associated to graphs. We first introduce some notation.

Notation 7.1. Let Γ({x1, x2, . . . , xn}, E) be a finite undirected simple graph and denote with λ =(
λ1 λ2 . . . λn

)T
∈ Z

n×1 some vector of integers. We introduce the notation (x1, . . . , xn)
λ to de-

note xλ1
1 xλ2

2 . . . xλn
n . If A ∈ Z

n×n, then we denote by A:i (respectively Ai:) the i-th column (respectively
row) of A (with i = 1, 2, . . . , n).

7.1 Disjoint union of a complete graph and an isolated vertex

Denote with Γn (for n ∈ N>2) the disjoint union of the complete graph on n− 1 vertices and an isolated
vertex. We assume that xn is the isolated vertex (and thus Γ({x1, x2, . . . , xn−1}) is a complete graph).
Denote with yi := [xn, xi] (for i = 1, 2, . . . , n− 1) the commutators of GΓn

.

Theorem 7.2. The Reidemeister spectrum of the groups associated to Γn (for n ∈ N>2) is given by

SpecR (GΓn
) =

{
2N2

0 ∪ 2|N2 − 4|∞∪{∞} if n = 3

2(2N0 − 1) ∪ 8N0 ∪ {∞} if n ≥ 4

where N
2 (respectively N

2
0) denotes the squares (respectively non-zero squares) of integers.
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Proof. We use a similar approach as in [DTV20, section 4] where they determine the Reidemeister
spectrum of Nr,2 for r ∈ N≥2.

Fix any automorphism ϕ ∈ Aut (GΓn
). Corollary 6.2 implies that the matrix of ϕ1 has the following

form (
A ∗
0 α

)

where ∗ ∈ Z
(n−1)×1, A ∈ GLn−1(Z) and α ∈ {−1, 1}. Note that by Lemma 2.2 for any i = 1, 2, . . . , n− 1

it holds that
ϕ(yi) = [ϕ(xn), ϕ(xi)] = [xαn , (x1, . . . , xn−1)

A:i ] = (y1, . . . , yn−1)
αA:i

and thus the matrix of ϕ2 is equal to αA. Using Lemma 3.3 it follows that

R(ϕ) = |det(1n−1 −A)|∞ |1− α|∞ |det(1n−1 − αA)|∞.

If we assume that R(ϕ) <∞, then we obtain that α = −1. We denote with pA ∈ Z[x] the characteristic
polynomial of the matrix A. Hence, we get that R(ϕ) = 2|pA(1)pA(−1)|∞.

To any matrix A ∈ GLn−1(Z) we can associate an automorphism of GΓn
with Reidemeister number

2|pA(1)pA(−1)|∞. Indeed, fix any matrix A ∈ GLn−1(Z). Define the map ϕ : GΓn
→ GΓn

by setting
(with i = 1, 2, . . . , n− 1): 




ϕ(xi) = (x1, . . . , xn−1)
A:i

ϕ(xn) = x−1
n

ϕ(yi) = (y1, . . . , yn−1)
−A:i

and extending it to GΓn
. One can check that ϕ ∈ Aut (GΓn

) and that R(ϕ) = 2|pA(1)pA(−1)|∞. For any
monic polynomial p(x) = xn−1 + an−2x

n−2 + · · ·+ a0 ∈ Z[x] (with a0 = ±1) we consider the companion
matrix Cp of the polynomial p, i.e. the matrix defined by

Cp =




0 . . . 0 −a0
−a1

1n−2

...
−an−2


 .

Note that Cp ∈ GLn−1(Z) and its characteristic polynomial is equal to p. Thus using the matrix Cp

and the above argument, it follows that there exists an automorphism of GΓn
with Reidemeister number

2|p(1)p(−1)|∞. Hence, we obtain that

SpecR (GΓn
) = {2|p(1)p(−1)|∞ | p(x) ∈ Z[x] is monic, deg(p) = n− 1 and p(0) = ±1}.

Fix any p(x) = xn−1 + an−2x
n−2 + · · ·+ a0 ∈ Z[x] (with a0 = ±1). If n = 3, then

|p(1)p(−1)|∞= 2|(1 + a1 + a0)(1− a1 + a0)|∞=

{
2|a21|∞ if a0 = −1

2|4− a21|∞ if a0 = 1
.

Using this, it indeed follows that

SpecR (GΓ3) = 2N2
0 ∪ 2|N2 − 4|∞ ∪ {∞}.

If n ≥ 4, then one can check that

2|p(1)p(−1)|∞=






2

∣∣∣∣
(
1 +

∑m−1
i=0 a2i

)2
− (

∑m
i=1 a2i−1)

2

∣∣∣∣
∞

if n = 2m+ 1

2

∣∣∣∣
(∑m−1

i=0 a2i

)2
−
(
1 +

∑m−1
i=1 a2i−1

)2∣∣∣∣
∞

if n = 2m

.

So in both cases the Reidemeister spectrum is two times the difference of two squares. Note that the
difference of two squares is always a multiple of four or an odd number. Hence, for any n ∈ N≥4 it holds
that

SpecR (GΓn
) ⊆ 2(2N0 − 1) ∪ 8N0 ∪ {∞}.
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To prove equality, it suffices to define (for any n ∈ N≥4 and k ∈ N0) the polynomials

qk(x) =

{
x2m + (k − 2)x2 + (k − 1)x+ 1 if n = 2m+ 1

x2m−1 + (k − 1)x2 + (k − 2)x+ 1 if n = 2m

rk(x) =

{
x2m + (k − 1)x2 + (k − 1)x+ 1 if n = 2m+ 1

x2m−1 + kx2 + (k − 2)x+ 1 if n = 2m

and note that
2|qk(1)qk(−1)|∞= 2(2k − 1) and 2|rk(1)rk(−1)|∞= 8k.

7.2 Graphs with four vertices and one or two disjoint edges

In this section we again consider the two graphs from Example 6.3 (see Figure 3). We include these two
graphs to illustrate that not all Reidemeister spectra can be described using short and easy expressions.
In Example 6.3 we described the matrices of ϕ1 and ϕ2 (for any ϕ ∈ Aut (GΓ)). Using these matrices,
Lemma 3.3 gives us an expression of the Reidemeister number R(ϕ). However, this expression depends
on the tensor product of two invertible 2 × 2 matrices over Z. The next lemma follows by some easy
calculations. We refer to [Lat21, Lemma 7.2.1] for a detailed proof.

Lemma 7.3. Let A,B ∈ GL2(Z) be invertible matrices and ǫ = ±1 and let tA = Tr(A), tB = Tr(B),
dA = det(A) and dB = det(B). Then

det(12 −A) = 1− tA + dA =

{
2− tA if dA = 1

−tA if dA = −1

det(14 − ǫ A⊗ B) =






(tB − ǫ tA)
2 if dA = dB = 1

−(tB + ǫ tA)
2 if dA = dB = −1

−(t2B − t2A − 4) if dA = −1 and dB = 1

t2B − t2A + 4 if dA = 1 and dB = −1.

The expressions from Lemma 7.3 together with the description in Example 6.3 allow us to express the
Reidemeister number R(ϕ) in terms of two integers. To prove that any such expression is contained in the

spectrum, one can use matrices of the form

(
0 1
1 m

)
∈ GL2(Z) (with m ∈ Z) to construct automorphisms

having these specified Reidemeister numbers. We omit the details and refer the interested reader to [Lat21,
Theorems 7.2.2 and 7.2.3].

Theorem 7.4. If Γ is the undirected simple graph with four vertices and one edge (see Figure 3a), then

SpecR (GΓ) = {2|nm(n+m)2|∞, 2|nm(n2 −m2 − 4m)|∞ with m,n ∈ Z}.

If Γ is the undirected simple graph with four vertices and two disjoint edges (see Figure 3b), then

SpecR (GΓ) = N
3
0 ∪
{
|nm(n+m)2|∞, |nm(n2 −m2 − 4m)|∞, |(n− 2)(n+ 2)2|∞ with m,n ∈ Z

}
.

7.3 Cycle graphs

In this section we consider the cycle graphs Cn. It turns out that for n ∈ N≥5 the associated group GCn

has the R∞–property. We present the ideas behind this claim, but for the details and the proofs in this
section, we refer to [Lat21, Section 9.1].

For any n ∈ N≥3 we define the cycle graph Cn by

Cn({x1, x2, . . . , xn}, {x1x2, x2x3, . . . , xn−1xn, xnx1}).

In order to describe the Reidemeister spectrum of GCn
we need to understand the automorphisms of

GCn
. As before, one can study the Hirsch number of the centralizers of elements of GCn

and derive the
next lemma.

18



Lemma 7.5. Let n ≥ 5 be an integer. For any zi, tl ∈ Z (for i = 1, 2, . . . , n and l = 1, 2, . . . , N) it holds
that

h

(
ZGCn

(
n∏

i=1

xzii

N∏

l=1

ytll

))
< N + 3

if there are two different indices i1, i2 ∈ {1, 2, . . . , n} such that zi1 , zi2 6= 0.

By Lemma 4.1 it holds that h(ZGCn
(ϕ(xi))) = N + 3 for any i = 1, 2, . . . , n and any ϕ ∈ Aut (GCn

).
Hence, Lemma 7.5 yields that ϕ1(xiγ2(GCn

)) ∈ 〈xσ(i)γ2(GCn
)〉 for some σ(i) = 1, 2, . . . , n. Based on this

argument, one can proof the next corollary.

Corollary 7.6. Let n ≥ 5 be an integer and ϕ ∈ Aut (GCn
) an automorphism of GCn

. Then there exist
a permutation σ ∈ Sn and ǫi = ±1 (for all i = 1, 2, . . . , n) such that

ϕ1(xiγ2(GCn
)) = xǫiσ(i)γ2(GCn

) for all i = 1, 2, . . . , n.

Moreover, the permutation σ belongs to the dihedral group Dn of order 2n. In particular, σ consists of a
rotation or a reflection of the graph Cn.

Corollary 7.6 gives us enough information on the automorphisms to prove that GCn
has the R∞–

property for n ≥ 5. This proof uses Proposition 2.5 by describing an eigenvector with eigenvalue 1 for ϕ1

or ϕ2. Note that GC3
∼= Z

3 since C3 is the complete graph on 3 vertices. We already discussed the cycle
graph C4 in Example 5.15. This leads to the next result.

Theorem 7.7. The Reidemeister spectrum of the group GCn
associated to the cycle graph Cn on n

vertices is given by

SpecR (GCn
) =






N0 ∪ {∞} if n = 3

2N0 ∪ {∞} if n = 4

{∞} if n ≥ 5

.

Remark 7.8. Using similar ideas, one can consider the cycle graph Pn on n vertices with one edge
removed (also known as the path graph on n vertices). For the details we refer to [Lat21, Section 9.2].
The Reidemeister spectrum of GPn

is given by

SpecR (GPn
) =

{
4N0 ∪ {∞} if n = 3

{∞} if n ≥ 4
.

In [GW09, Example 4.1] D. Gonçalves and P. Wong prove that GP4 has the R∞–property. We linked the
group to the path graph on four vertices to better understand its structure. The methods in this paper
provide a more general framework to consider similar groups and allow for a more elegant proof of this
result. Moreover, we presented new examples of finitely generated torsion-free 2-step nilpotent groups
that are associated to a graph and have the R∞–property.

7.4 Reidemeister spectrum of groups associated to graphs with at most 4

vertices

Looking back at the different methods we developed, we are able to describe the Reidemeister spectrum
of the groups associated to the graphs with at most four vertices. The result is summarised in Table 1
and Table 2.
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Graph Γ Reidemeister spectrum SpecR (GΓ) Graph Γ Reidemeister spectrum SpecR (GΓ)

x1 {2,∞}

x1

x2

2N0 ∪ {∞}

x1

x2

N0 ∪ {∞}

x1 x2

x3
(2N0 − 1) ∪ 4N0 ∪ {∞}

x1 x2

x3

2N2
0 ∪ 2|N2 − 4|∞ ∪ {∞}

x1 x2

x3
4N0 ∪ {∞}

x1 x2

x3
N0 ∪ {∞}

Table 1: Reidemeister spectrum of groups associated to graphs with at most 3 vertices.
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Graph Γ Reidemeister spectrum SpecR (GΓ) Graph Γ Reidemeister spectrum SpecR (GΓ)

x1 x2

x3x4

N0 ∪ {∞}

x1 x2

x3x4






2|nm(n+m)2|∞,
2|nm(n2 −m2 − 4m)|∞

with m,n ∈ Z






x1 x2

x3x4

N
3
0 ∪




|nm(n+m)2|∞,
|nm(n2 −m2 − 4m)|∞,

|(n− 2)(n+ 2)2|∞
with m,n ∈ Z





x1 x2

x3x4

{∞}

x1 x2

x3x4

2(2N0 − 1) ∪ 8N0 ∪ {∞}

x1 x2

x3x4

2(2N0 − 1) ∪ 8N0 ∪ {∞}

x1 x2

x3x4

{∞}

x1 x2

x3x4

4N2
0 ∪ 4|N2 − 4|∞ ∪ {∞}

x1 x2

x3x4

2N0 ∪ {∞}

x1 x2

x3x4

2N0 ∪ {∞}

x1 x2

x3x4

N0 ∪ {∞}

Table 2: Reidemeister spectrum of groups associated to graphs with 4 vertices.
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