
The relation between radio luminosity and spectrum for extended extragalactic radio sources Summary. We have investigated the relation between radio spectrum and
radio luminosity for samples of extragalactic radio sources selected at 178
and 2700 MHz . Spectra were derived for the extended regions of emission
in these sources, which we have also classified by morphological type. At
low frequencies the degree of spectral curvature is found to be correlated
with luminosity for sources with hot-spots. The spectra of powerful sources
show downward curvature which is greatest for the most luminous objects,
whereas weak sources have spectra which steepen at low frequencies.
At high frequencies, the correlation between spectral index and luminosity
is confirmed and is shown to extend throughout the luminosity range con-
sidered. This relation is due mainly to sources with hot-spots and implies an
even stronger relation for the hot-spots themselves.

1 Introduction
The existence of a correlation between luminosity and spectral index for extragalactic radio sources, in the sense that spectra steepen with increasing radio luminosity, was first suggested by Heeschen (1960). More recent discussions were given by Macleod \& Doherty (1972), Bridle, Kesteven \& Guindon (1972) and Véron, Véron \& Witzel (1972). These authors conclude that the correlation holds primarily for radio galaxies with straight spectra, although
quasars continue the relation to higher luminosities.

It is now possible to improve on the earlier work in the following ways:
(1) Complete samples of extragalactic radio sources can be selected at both low and high frequencies.
(2) Many more optical identifications and redshifts are available, so that distant galaxies are not discriminated against.
this paper, so that:
a) Sources which are dominated by a compact ($<100 \mathrm{pc}$) component coincident with the optical identification can be recognized and discarded. Such objects have very high brightness temperatures and their spectra are affected by synchrotron self-absorption over

[^0]the entire observable frequency range. The energy distribution of the radiating electrons is therefore not related to the spectrum.
(b) Compact central components in extended sources also have self-absorbed spectra but
 of large-scale ($>1 \mathrm{kpc}$) emission, unbiased by the presence of central components, can therefore be derived for all extended sources.
(c) Morphological classification of extended sources is now possible. In particular, the complex, low-luminosity objects.
(4) The presence of spectral curvature can provide valuable information about physical conditions in a source. This can now be investigated systematically for extended emission
The two mechanisms which are most likely to produce curvature in the spectrum of radiation from an electron energy distribution initially of power-law form are (e.g.
(a) energy losses by synchrotron radiation, which cause downward curvature at high frequencies, and

(b) self-absorption of radiation from regions of high brightness temperature.

We have selected statistically complete samples at 178 MHz and at 2700 MHz (Section 2.1). The morphological classification of the sources is discussed in Section 2.2. We have compiled a set of flux densities over the range $10-14900 \mathrm{MHz}$ (Section 3.1), adjusted to
 $5-\mathrm{km}$ telescope at either 2.7 or 5.0 GHz . The spectra of the extended regions have been u! pue К!!

 brief discussion and a summary of the main conclusions.

2 The source samples

In order to reduce selection effects, we have used two complete samples of extragalactic radio sources defined at 178 MHz and at 2700 MHz by the following criteria:
78 MHz . Jy on the KPW scale (Kellermann Pauliny-Toth \& Williams 1969)
(b) $\delta \geqslant 10^{\circ}$.

 3C 326 , which have also been omitted. 165 sources remain.

2700 MHz

This sample has been compiled by Peacock \& Wall (in preparation), who describe the selection procedure. It includes a large proportion of flat-spectrum, compact sources, which are not considered in this paper. Of the remainder, 72 are included in the $178-\mathrm{MHz}$ sample, whereas
seven are not.
The spectra of compact ($<100 \mathrm{pc}$) regions are dominated by synchrotron self-absorption throughout the observable frequency range. If we are interested in the distribution of electron energies in a source, we must ignore such emission and consider only radiation from extended regions. We therefore need to separate sources whose emission at the selection frequency is dominated by a compact component (CC) from those with structure on scales 1 kpc .
The angular resolution of currently available synthesis maps is insufficient to distinguish
between CC's and distant extended sources whose angular sizes are comparable with the beamwidth used. We have therefore classed as compact all sources whose angular size is less than $2 \operatorname{arcsec}$ (i.e. those unresolved by the $5-\mathrm{km}$ telescope at 5 GHz). This will include a few distant, extended sources, but any other selection criterion would have to be based on the source spectrum and would thus introduce undesirable selection effects. D2 sources (Miley 1971) with two components, one of which is coincident with the optical object, are also classed as compact.
We have further divided extended sources into three subsets: Classes I and II of Fanaroff \& Riley (1974), FRI and FRII, and ambiguous classifications. In an FRI source, the ratio of the distance between the regions of highest surface brightness on opposite sides of the optical
 ratio is greater than 0.5 . The purpose of this system is to discriminate between 'classical

[^1]Simon 1978). There are some sources which cannot be classified unambiguously under this scheme for one of the following reasons: the brightness peaks are of low contrast, so that the classification depends on resolution; the position of the optical identification is uncertain,
 listed in the Appendix (Table A1). The detailed description follows Simon (1978). 3C 231 (M82; a nearby Irr II galaxy) has been classified separately.

3 Flux densities, spectra and luminosities

Flux-density measurements are available between frequencies of 10 MHz and 14900 MHz for most of the sources considered in this paper. To check that these are consistent with the best available absolute scale, we have adopted the spectra of Cas A and Cyg A given by Baars et al. (1977; BGPW) who fit empirical formulae to the absolute measurements. The fit is good for frequencies above 38 MHz but both spectra show severe downward curvature
 pendent absolute measurements for $\nu<38 \mathrm{MHz}$. The uncertainties in calculated flux densities for Cas A and Cyg A are thought to be about 2 per cent between 300 and 30000 MHz , rising to 5 per cent below 300 MHz . The adoption of these spectra entails corrections to commonly-used flux density scales which are listed in Table 2. We have used the correction factors given by BGPW for $v \geqslant 750 \mathrm{MHz}$, but not at lower frequencies for the following reasons:
(a) The scales at 38 and 178 MHz are known to be non-linear so that correction factors based on the flux densities of Cas A or Cyg A will be incorrect. We have therefore used the scaling of Roger, Bridle \& Costain (1973; RBC).
(b) BGPW do not quote correction factors for the scales at 86, 26.3, 22.25 and 10.03 MHz (references as in Table 2).

Further details are given in the notes to Table 2.

3.2 DERIVATION OF SPECTRAL INDICES

Compact central components make sizable contributions to the flux densities of some extended sources at high frequencies, so that the integrated spectra are incorrect representations of the emission from extended structure. By subtracting the contributions of CC's as determined from synthesis maps, we derived two spectra for such sources, for large-scale emission and for total flux density respectively.
The flux densities of central components were measured at frequencies ranging from 1.4 to 15.4 GHz (see Table A 2 of the Appendix). These measurements are complete at 5 GHz for the $178-\mathrm{MHz}$ sample, except for 3 C 296 . Fifty of the extended sources in this sample have detectable emission from a CC and, for these objects, flux densities at the standard frequencies were derived from the information referenced in Table A2. When
measurements were available at two or more frequencies, the missing values and their errors were estimated by fitting a power law; when only one measurement was available, a flat spectrum was assumed, consistent with the average for CC's. The relatively large

907
Radio luminosity and spectrum for extragalactic radio sources

$\begin{aligned} & \text { Frequency/ } \\ & \mathrm{MHz} \end{aligned}$	Reference for original measurement	Scaling factor	Reference for scaling factor
14900	Genze1, Pauliny-Toth, Preuss \& Witzel (1976)	1.0	$\begin{aligned} & \text { BGPW } \\ & \text { (see section } 4.4 \text {) } \end{aligned}$
10700	Kellermann \& PaulinyToth (1973)	0.938	Based on $\mathrm{S}($ Cyg A) $=140.8 \mathrm{Jy}$ (BGPW) compared with 150 Jy (Kellermann \& Pauliny-Toth); see section 4.
5000	Pauliny-Toth \& Kellermann (1968) as in KPW	0.993	BGPW
2695	Kellermann, Pauliny-Toth \& Tyler (1968) as in KPW	1.011	BGPW
1400	Bridle, Davis, Fomalont \& Lequeux (1972) Pauliny-Toth, Wade \& Heeschen (1966) as revised by KPW. New polarization corrections have been made	1.029	BGPW
750	Pauliny-Toth, Wade \& Heeschen (1966) as revised by KPW	1.046	BGPW
178	KPW	1.09	RBC
86	Artyukh et a ${ }^{\text {a }}$. (1969)	1.0	Based on S(Cyg. A) $=16118 \mathrm{Jy}$ and $S($ Cas $A)=20100 \mathrm{Jy}$ (epoch 1969.5) at 81.5 MHz from BGPW. The measurements of Scott \& Shakeshaft (1971) have been used to relate the 86 MHz scale to these values. The derived correction is 1.01 ± 0.02
38	KPW	1.18	RBC
26.3	Viner \& Erickson (1975)	1.0	Absolute measurements by Viner (1975)
22.25	Roger, Costain \& Lacey (1969) RBC	$\begin{aligned} & 1.15 \\ & 1.0 \end{aligned}$	RBC Absolute measurements by Roger, Costain \& Lacey (1969)
10.03	Bridle \& Purton (1968 RBC	$\begin{aligned} & 1.20 \\ & 1.0 \end{aligned}$	RBC Absolute measurements by Bridle (1967)

[^2]

are relatively smaller and better determined over this range than they are at higher
 laws are generally good.
 sample (scaled as in Table 2) are listed on Microfiche MN 190/2.

3.3 LUMINOSITIES

Luminosities were evaluated at 1400 MHz both for the extended emission (using CC-subtracted flux densities and spectral indices) and for the total emission. This frequency was chosen because very accurate flux densities are available, and contributions from CC's are small. The redshifts for galaxies, when unknown, were estimated from a magnitude-redshift plot for radio galaxies. The assumed relation, and references for optical data, are listed in the Appendix (Table A3). A Hubble constant of $50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ and a density parameter $\Omega_{0}=0$ have been assumed throughout.

4 The relation between spectral curvature and luminosity

4.1 INTRODUCTION
In order to test for spectral curvature, we have evaluated the ratio:

$R=S_{\nu} / S_{\mathrm{e}}$

where S_{ν} is the flux density measured at frequency ν, and S_{e} is the flux density predicted from the power-law fit to the spectrum between 750 and 5000 MHz . Contributions from CC's have been subtracted. The analysis has been restricted to FRII sources for the following reasons:
(a) Many FRI sources have large angular sizes, so that few flux-density measurements
ave been attempted at high frequencies and the low-frequency values may be in error due to resolution effects (Table A1). Any estimates of spectral curvature would be incomplete and biased.
(b) The unclassified sources are of diverse physical types and some have very unusual spectra (see Section 4.4).
(c) The FRII sources are of limited angular extent and form a large, homogeneous class
We have distinguished sources for which the values of R are likely to be seriously in error because of badly determined corrections for CC's or the effects of confusion.
4.2 SPECTRALCURVATURE AT LOW FREQUENCIES
Fig. 1 a-f show plots of R against P_{1400} at frequencies below 750 MHz for all identified sources in the $178-\mathrm{MHz}$ sample. The values of R are in general very different from 1 , corre-
 in the flux densities. It is apparent that, for a given frequency in this range, R decreases with increasing luminosity. This result holds even if the flux-density scales are in error by constant factors.

[^3]

\backsim
R

The shapes of radio-source spectra are therefore correlated with their luminosities; some illustrative examples are shown in Fig. 2. The least-luminous sources ($P_{1400}<10^{25} \mathrm{~W} \mathrm{~Hz}^{-1}$ sr^{-1}) have values of $R>1$, implying that their spectra steepen at low frequencies. An example is $3 \mathrm{C} 192\left(P_{1400}=6.5 \times 10^{24} \mathrm{WHz}^{-1} \mathrm{sr}^{-1}\right)$. A necessary explanation is that a steep-spectrum
$(\alpha \sim 1)$ component is present, possibly as a result of synchrotron or Inverse-Compton losses acting on a remnant of earlier activity in the source. Somewhat more powerful sources (e.g.
 ($R \sim 1$). The recognition of a low-frequency component depends on its spectral index and luminosity relative to those of the higher-frequency structure. It is therefore plausible that
 structure has a flatter spectrum ($\alpha \sim 0.7$) and is relatively less luminous.
 typically less than 1 and decrease with increasing luminosity. The spectra of powerful sources are curved downwards, so that R decreases with decreasing frequency. The mean

 $R \sim 0.5$ at the lowest frequencies.
$\vec{\sigma}$ To summarize: weak sources have spectra which steepen at low frequencies; powerful
sources have spectra which flatten. The former effect can be attributed to the presence of extended components with steep spectra.
4.3 Spectral curvature at high frequencies
In Fig. $1(\mathrm{~g})$ and (h) the ratios R at frequencies of 14900 and 10700 MHz are plotted as a function of luminosity for all the identified FRII sources in the $178-\mathrm{MHz}$ sample which have flux densities measured at the relevant frequencies. These diagrams show the following features:
(a) R is independent of luminosity. (b) Of the sources with $R>1$, very few have accurate flux-density measurements, in
particular because of uncertainties in the subtraction of CC's. Points which are very un-
(c) The mean values of R are significantly less than 1. For all FRII objects (including unidentified sources) with accurate subtraction of flux densities from CC's, the mean values

$\left\langle R_{14900}\right\rangle=0.838 \pm 0.023$ (73 sources),

$\left\langle R_{10700}\right\rangle=0.868 \pm 0.013$ (89 sources)

small compared with that available at low frequencies (Section 4.2). The values of R_{14900} and R_{10700} are therefore closer to 1 than are those at frequencies below 750 MHz and it is not obvious whether the curvature is real or is caused by errors in the flux-density scales at 10700 and 14900 MHz .
In order to clarify this problem, we have considered the following two alternatives:
(a) The flux-density scales are correct and the spectral curvatures are real. In this case,

(b) All spectra are straight and the flux-density scales at 10700 and at 14900 MHz are in error by constant factors. The spectra should then become power laws when S_{14900} and
We have tested both these assumptions for the 73 FRII sources whose spectra are welldetermined between 750 and 14900 MHz . The distributions of χ^{2} which resulted from the

[^4]

 (1969) who found that sources with convex spectra are more likely to contain components of angular diameter <1 arcsec than are those with straight spectra. The turnover frequencies due to synchrotron self-absorption in a typical hot-spot with a flux density of 0.5 Jy at $1400 \mathrm{MHz}, \alpha=1$ at high frequencies and a linear size of 1 kpc , are given in Table 5 for a range of redshifts. A cubical source and equipartition of the energies of magnetic field and relativistic particles are assumed, but the calculated tumover frequencies are insensitive both
 energy distribution of electrons is curved downwards below the frequency $\nu_{\text {SSA }}$ at which the
 explain the observed low-frequency curvature.

Three examples of spectra showing low-frequency curvature are given in Fig. 2. The spectrum of 3 C 295 has a turnover at 70 MHz and indicates that an extended source can show self-absorption; that of 3 C 247 has a kink at 150 MHz which is likely to be due to the self-absorption of a compact hot-spot, and that of 3 C 196 curves gradually below 100 MHz ,

 \& Henbest 1974; Jenkins et al 1977).

 -дәмоd 'э!

 and van Breugel (1979) we derive the following ages:

$$
\text { 3C } 338
$$

$$
1000
$$

$$
\begin{aligned}
& 1 \times 10^{-9} \\
& 3 \times 10^{7}
\end{aligned}
$$

 these sources suggest that no replenishment of radiating electrons has taken place in the extended regions for the last $10^{7}-10^{8} \mathrm{yr}$. The radio structures of the two sources are similar, with brightness peaks of low contrast surrounded by diffuse emission. Other sources of this morphological type also have anomalously steep spectra (Section 5.2), possibly for the same
reason.

sources. 3C 231 (M82) has also been omitted since it is an atypical object of very low lum

Radio luminosity and spectrum for extragalactic radio sources 915

 which contributions due to CC's had been subtracted.
We have plotted the distributions of these spectral indices for the two samples in Fig. 4, which reveals the following features:
(a) A deficit of sources with high spectral indices in the $2700-\mathrm{MHz}$ sample, as expected.
(b) High spectral indices for the unidentified sources. Because of the correlation between
luminosity and spectral index, as was noted by KPW, this is consistent with their being
distant, powerful radio galaxies. The two unidentified sources with relatively flat spectra
in the $2700-\mathrm{MHz}$ sample lie in crowded optical fields, so that the correct identifications are
uncertain.

Figure 4. Spectral index distributions for extended
Figure 4. Spectral index distributions for extended sources in the two samples. Central components have
been subtracted. (a) All FRII sources; (b) FRII galaxies and unidentified sources (hatched); (c) FRI and unclassified sources (hatched); (d) FRII quasars.

(c) Fig. 4(c) shows that the FRI sources have relatively flat spectra, but the unclassified sources (a heterogeneous collection) have a wide range of spectral indices.
(d) The distribution of the spectral indices of extended emission in quasars (Fig. 4d) is
consistent with that for the FRII galaxies.
Fig. 5 shows plots of α against P_{1400} for the extended sources, divided into the morphological classes of Section 2.2. There are strong correlations for both samples, significant at better than the 0.05 per cent level using the Spearman rank test. The correlation is due primarily to the FRII sources which are discussed in detail later (Section 5.3). The FRI

 sample, as expected from the higher selection frequency (see Section 5.1).
The unclassified sources include some objects with anomalously steep spectra (3C28, 310, 314.1, 319 and 338); these are discussed in more detail in Section 4.4.
 sources (Fig. 6), in particular those with $P_{1400}<10^{26} \mathrm{~W} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ (most such sources are common to both samples), but the scatter increases considerably at higher luminosities.
 MHz samples respectively. The fitted regressions lines of α on P_{1400} are:

$$
\alpha=0.088 \log \left(P_{1400} / \mathrm{W} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}\right)-1.38(178 \mathrm{MHz}),
$$

$\alpha=0.062 \log \left(P_{1400} / \mathrm{W} \mathrm{Hz}^{-1} \mathrm{sr}^{-1}\right)-0.73(2700 \mathrm{MHz})$.

Figure 6. Plots of spectral index, α, against luminosity, P_{1400}, for FRII sources alone. Central components
have been subtracted. (a) $178-\mathrm{MHz}$ sample; (b) $2700-\mathrm{MHz}$ sample; \bullet galaxy with measured redshift;
o galaxy with estimated redshift; \times quasar.
of redshifts could change the detailed form of the diagram for $P_{1400}>10^{26} \mathrm{~W} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$, but cannot destroy the correlation. There are 16 unidentified sources in the $178-\mathrm{MHz}$ sample which are expected to have $P_{1400}>5 \times 10^{26} \mathrm{~W} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$; these have relatively steep spectra (see Section 5.2) and follow the trend for powerful galaxies. There are only four unidentified extended sources in the $2700-\mathrm{MHz}$ sample.

5.4 COMPARISON WITH PREVIOUS RESULTS

Of the previous analyses, our approach is closest to that of Veron et al. (1972) in that we selected sources on the basis of their morphologies. Radio maps of much higher resolution are now available, together with many more identifications and redshifts, so that a better morphological classification can be used for a larger example. Véron et al. considered 'elliptical radiogalaxies' (principally the low-power sources) selected at 178 MHz . This corresponds to the restriction that $P_{1400}<10^{26} \mathrm{~W} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$, the range over which the correlation is best defined. The slope of their regression line is 0.08 , in good agreement with our value of 0.087 for the FRII sources in the $178-\mathrm{MHz}$ sample.

Bridle et al. (1972) considered sources selected at 1400 MHz whose spectra appeared to be straight between 100 and 7000 MHz , including some FRI sources and a few powerful FRII sources. Their regression line has a slope of ≈ 0.06, close to our slope for the 2700 MHz sample, as expected

Macleod \& Doherty (1972) suggested that the correlation was entirely due to galaxies with straight spectra. Since they considered spectra defined between 10 MHz and 10700 MHz , their sample was restricted to low luminosities (see Section 4.2). In this region, the correlation for the FRII sources is much steeper than over our entire luminosity range (see Fig. 6) and this may explain the high slope of 0.21 for their regression line.

$$
5.6 \text { SPECTRAL INDEX AND COMPACTNESS FOR FRII SOURCES }
$$

Jenkins \& McEllin (1977) showed that there is a correlation for FRII sources between luminosity and compactness, C, defined as

$C=\frac{\text { Flux density in hot-spots of scale }<15 \mathrm{kpc}}{\text { Total }}$ at 5 GHz

 of flux density in hot-spots.

6 Discussion

We have investigated the relation between radio spectrum and radio luminosity for samples

 significantly discriminated against.
The correlation between spectral index and luminosity found by earlier workers is con-

 (c)

919

Figure 8. A plot of spectral index, α, against compactness, C, for all FRII sources in the $178-\mathrm{MHz}$ sample.
Central components have been subtracted.
 this is not a selection effect caused by the spectral dependence of the radio K-correction which would favour the inclusion of flat-spectrum sources at high redshifts in a sample
limited by flux density and lead to a correlation in the opposite sense to that observed. The correlation for FRII sources takes on added significance when we consider it in relation to two other observations. Firstly, where spectral index distributions within sources have been
 the diffuse structure and often considerably flatter. Secondly, the hot-spots contribute a

 иоп̣ץןə implies an even stronger relation between P and α for the hot-spots themselves.

 ұеч u! uо!̣вuв

 will therefore be greater. There is evidence for downward curvature in the spectra of some
luminous FRII sources at high frequencies.

We may summarize the problems raised by this work as follows:

(1) The steep-spectrum components in weak sources (Section 4.2) should be observable
by synthesis telescopes operating at low frequencies $(\nu<200 \mathrm{MHz}$).
(2) The range of frequencies available is insufficient to define high-frequency curvature
(3) The $P_{-\alpha}$ correlation needs to be investigated for types of source not well represented our samples, for example the FRI and 'giant' ($D>1 \mathrm{Mpc}$) sources.
(4) The sources whose spectra are anomalously steep require further investigation to establish whether they form a distinct physical class.

(5) The scatter in the $P-\alpha$ relation for FRII sources appears to be smaller at low luminosities. This requires substantiation for a larger sample.
(6) The inferred correlation between P and α for hot-spots alone should be observable directly.
(7) To determine whether the above relations depend primarily on luminosity or on
redshift requires a larger sample, selected to a much lower flux-density limit.
It is a pleasure to thank M. S. Longair, P. A. G. Scheuer, J. R. Shakeshaft and J. V. Wall for helpful discussions. We also thank the SRC for financial support.
References
Burch, S. F., 1979 b. Mon. Not. R. astr. Soc., 186, 519.
Burch, S. F., 1979c. PhD Thesis, University of Cambridge.
Caswell, J. L \& Crowther, J. H., 1969. Mon. Not. R. astr. Soc., 145, 181.
De Young D. S., Hogg D. E. \& Wilkes, C. T. 1979. Astro 1.
Donaldson, W., Miley, G. K. \& Palmer, H. P., 1971. Mon. Not. R. astr. Soc
Fanaroff, B. L. \& Riley, J. M., 1974. Mon. Not. R. astr. Soc., 167, 31P.
Genzel, R., Pauliny-Toth, I. I. K., Preuss, E. \& Witzel, A., 1976. Astr. J., 81, 1084.
Ghigo, F. D., 1978 . Astr J. 83, 1363.
Ghigo, F. D., 1978. Astr. J., 83, 1363.
Högbom, J. A. \& Carlsson, I., 1974. Astr. Astrophys., 34, 341
Jaffe, W. J. \& Perola, G. C
Jenkins, C. J. \& McEllin, M., 1977. Mon. Not. R. astr. Soc., 180, 219.
Jenkins, C. J., Pooley, G. G. \& Riley, J. M., 1977. Mem. R. astr. Soc.,
Jenkins, C. J., Pooley, G. G. \& Riley, J. M., 1977. Mem. R. astr. Soc., 84, 61.
Katgert, P., de Ruiter, H. R. \& van der Laan, H., 1979. Nature, 280, 20.
Kellermann, K. I. \& Pauliny-Toth, I. I. K., 1973. Astr. J., 78, 828
Kellermann, K. I., Pauliny-Toth, I. I. K. \& Tyler, W. C., 1968. Astr. J., 73, 298.
Kellermann, K. I., Pauliny-Toth. I. I. K. \& Williams, P. J. S., 1969. Astrophys. J,
Kellermann, K. I., Pauliny-Toth. I. I. K. \& Williams, P. J. S., 1969. Astrophys. J., 157, 1.
Kristian, J., Sandage, A. \& Katem, B., 1978. Astrophys. J. 219803
Laing, R. A., Longair, M. S., Riley, J. M., Kibblewhite, E. J. \& Gunn,
Macdonald, G. H., Kenderdine, S. \& Neville, A. C., 1968. Mon. Not. R. astr. Soc., 138, 259.
Mackay, C. D., 1969. Mon. Not. R. astr. Soc., 145, 31.
Meier, D. L., Ulrich, M-H., Fanti, R., Gioia, I. \& Lari, C., 1979. Astrophys. J., 229, 25. Menon, T. K., 1976. Astrophys. J., 204, 717.
Northover, K. J. E., 1973. Mon. Not. R. astr. Soc., 165, 369.
$\underset{\sim}{2}$ Radio luminosity and spectrum for extragalactic radio sources Northover, K. J. E., 1976. Mon. Not. R. astr. Soc., 177, 307. Pacholczyk, A. G., 1970. Radio A strophysics, W. H. Freeman, San F Pacholczyk, A. G., 1977. Radio Galaxies, Pergamon Press. Oxford.
Pauliny-Toth, I. I. K. \& Kellermann, K. I., 1968. Astr. J., 73, 953.
Pauliny-Toth, I. I. K., Wade, C. M. \& Heeschen, D. S., 1966. Astrophys. J. Suppl. Ser., 13, 65. Pooley, G. G. \& Henbest, S. N., 1974. Mon. Not. R. astr. Soc., 169, 477. Readhead, A. C. S. \& Longair, M. S., 1975. Mon. Not. R. astr. Soc., 170, 393
Riley, J. M. \& Branson, N. J. B. A., 1973. Mon. Not. R. astr. Soc., 164, 271. Riley, J. M. \& Pooley, G. G., 1976. Mem. R. astr. Soc., 80, 105. Riley, J. M. \& Pooley, G. G., 1978a. Mon. Not. R. astr. Soc., 183, 245.
Riley, J. M. \& Pooley, G. G., 1978b. Mon. Not. R. astr. Soc., 184, 769. Roger, R. S., Bridle, A. H. \& Costain, C. H., 1973. Astr. J., 78, 1030.
Roger, R. S., Bride, A. H. \& Costain, C. H., 1973. Astr. J., 78, 1030
Roger, R. S., Costain, C. H. \& Lacey, J. D., 1969. Astr. J., 74, 36.
Scott, P. F. \& Shakeshaft, J. R., 1971. Mon. Not. R. astr. Soc., 155, 19P
Simon, A. J. B., 1978. Mon. Not. R. astr. Soc., 184, 537. Smith, H. E., Junkkarinen, V., Spinrad, H., Grueff, G. \& Vigotti, M., 1979. Astrophys. J., $231,307$.
Smith, H. E., Spinrad, H. \& Smith, E. O., 1976. Publs. astr. Soc. Pacif., 88, 621. Spinrad, H., Westphal, J., Kristian, J. \& Sandage, A., 1977. Astrophys. J. Lett., 216, L87.

 Tabara, H. \& Inoue, M., 1979. Preprint, Utsunomiya University, Japan.
Turland, B. D., 1975. Mon. Not. R. astr. Soc., 170, 281 . Turland, B. D., 1975. Mon. Not. R. astr. Soc., 170, 281 .
van Breugel, W. J. M., 1979. Preprint, Netherlands Foundation for Radio Astronomy. van Breugel, W. J. M. \& Miley, G. K., 1977. Nature, 265, 315.
van der Laan, H. \& Perola, G. C., 1969. A str. Astrophys., 3, 468 van der Laan, H. \& Perola, G. C., 1969. Astr. A strophys., 3, 468. Véron, M. P., Véron, P. \& Witzel, A., 1972. Astr. Astrophys., 18, 82.
Véron, M. P., Véron, P. \& Witzel, A., 1974. Astr. Astrophys. Suppl., 13, 1. Veron, M. P., Véron, P. \& Witzel, A.,
Viner, M. R., 1975. Astr. J., 80, 83. Viner, M. R. \& Erickson, W. C., 1975. Astr. J.. 80, 931
Wills, B. J., 1973. Astrophys. J., 180, 335 .

Appendix

Table A1. Morphological classification of low luminosity galaxies.

Source	Sample membership $178 \mathrm{MHz} \quad 2700 \mathrm{MHz}$	$\begin{gathered} \text { FR } \\ \text { Class } \end{gathered}$	Comments	References	${ }^{\alpha}$	$\log \left(\mathrm{P}_{1400} / \mathrm{WHz}^{-1} \mathrm{sr}^{-1}\right)$
3628	*	?		Riley \& Pooley (1976)	1.239	26.59
3 C 31	* *	I	$3 C 31$ Type	Burch (1977)	0.748^{*}	24.81
	*	?	Insufficient sensitivity	Mackay (1969)	0.893^{*}	25.68
3C 66B	* *	I	3C 31 Type	Northover (1973)	0.810^{*}	25.27
3 C 76.1	* *		3 Cl 3 Type	Macklin (in preparation)	0.645	25.14
3 C 83.18	* *	I	Twin-tail	Riley \& Pooley (1976)	$0.692{ }^{*}$	25.10
0703+42	*	1	Twin-tail	Peacock (in preparation)	0.869*	25.32
3C 264	* *	I	3C 31 Type ?	Northover (1976)	$0.908{ }^{*}$	25.03
3C 272.1	* *	I	3C 31 Type	Jenkins et al. (1977)	0.634	23.42
3C 274	* *	I	$3 C 31$ Type	Turland (1975)	0.871	25.24
3C 288	* *	?		Pooley \& Henbest (1974)	0.983	27.04
3C 293	* *	?	Double with extended structure	Argue, Riley \& Pooley (1978)	0.710	25.62
3C 296	* *	1	3 C 31 Type	Birkinshaw, Laing \& Peacock (in preparation)	0.632^{*}	25.01
3C 305	*	?	Double with extended structure	Pooley \& Henbest (1974)	0.896	25.37

- 은 $\underset{-}{\sim}$
 Notes to Table A1: Morphological Classification
3C 31 Type: An intense, collimated emitting regi
3C 31 Type: An intense, collimated emitting region coincident with the galaxy, fading into diffuse outer
structure.
Bent Double: Bright components on either side of the nucleus, with fainter regions further out.
Twin Tail: Two parallel streamers of emission stretching back from the galaxy, decreasing in brightness Twin Tail: Two paralle
along their lengths.
Table A2. References for flux densities of central components.

$$
\begin{aligned}
& \text { Reference } \\
& \text { Burch (1979a) } \\
& \text { Donaldson, Miley \& Palmer (1971) } \\
& \text { Högbom \& Carlsson (1974) } \\
& \text { Mactonald Kondordine \& Noville (1968) }
\end{aligned}
$$

Macdonald, Kenderdine \& Neville (1968)
Bentley et al. (1975)
Bridle \& Fomalont (1978)
Burch (1977, 1979a)
Laing (in preparation)
Northover (1973, 1976)
Jenkins, Pooley \& Riley (1977)
(and references therein)

$$
\text { (6L6L) SaxL!M. } 8 \text { G6oh 'bunod วo }
$$

$$
(8 \angle 61) 740 \text { Lewod } 8 \text { olp! } 18
$$

$$
\begin{aligned}
& \text { De Young \& Hogg (1973) } \\
& \text { De Young, Hogg \& Wilkes }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ghigo (1978) } \\
& \text { Menon (1976) }
\end{aligned}
$$

14900 and 10700 MHz The scales at these frequencies are based on the flux densities given by BGPW for Virgo A and Cyg A 1400 MHz
The measurements by Bridle et al. (1972) were used whenever possible, supplemented by those of Pauliny-Toth et al. (1966), adjusted as described by KPW. Both sets of observations were made with
linearly polarized feeds in P.A. 0°, and measured the Stokes parameter $I+Q$. We have converted to total intensity I using the polarization measurements listed by Tabara \& Inoue (1979).
750 MHz
The observations by Pauliny-Toth et al. (1966) used linearly polarized feeds in P.A. 90°, measuring $I-Q$, but corrections for polarization have not been made because they are small (typically <1 per 10,22 and 26 MHz
At frequencies below 30 MHz , the fitted spectra given by BGPW for Cas A and Cyg A do not agree well with the absolute measurements. We have therefore based the calibration directly on the values of Bridle (1975) unaltered. The scales at 22 and 26 MHz differ by 5 ± 2 per cent (Viner \& Erickson 1975). This is
 from higher frequencies. 38 and 178 MHz
 densities of all sources apart from the very bright primary calibrators (Cas A, Cyg A and Tau A) are too
low (e.g. Scott \& Shakeshaft 1971). Various correction factors have been proposed; in particular, RBC

 discrepancies between our values and those of RBC are not significant. For simplicity, we therefore
adopted the scaling of RBC.

Comparison with other flux-density scales
It is of interest to compare our results with the flux-density scales of Véron, Véron \& Witzel (1974),
Wills (1973) and RBC. As is shown in Section 4.2, the spectra of most sources are curved at low wrequencies, the amount and direction of curvature being correlated with luminosity. It is therefore un-
frest and

R. A. Laing and J. A. Peacock

924

Crowther 1969) from which our $178-\mathrm{MHz}$ flux densities have been taken whenever possible, the value
becomes 1.13 ± 0.03 (3C 227 , whose $178-\mathrm{MHz}$ flux density is grossly discrepant, is excluded). This is in
much better agreement with our value of 1.09 .
The low-frequency scale adopted by RBC is identical to ours except at 86 MHz , where we have
preferred to leave uncorrected the measurements of Artyukh et al. (1969). This is consistent with RBC's
statement that their correction factor at 86 MHz is not significantly different from 1 .
Table A3. Estimated redshifts and references to optical
等
isual Magnitude V
$\begin{array}{ll} \\ 0 \\ 0 & 0 \\ 0\end{array}$
-
$\stackrel{\sim}{8}$
$\stackrel{\square}{-}$
\approx

$02 \cdot 1$
Optical data are taken from Smith, Spinrad \& Smith (1976)
with additional redshifts from:
Kristian (private communication)
Smith et al. (1979)
Spinrad (1978)
Spinrad (private communication)
Spinrad et al. (1977)
and identifications from:
Jenkins, Pooley \& Riley (1977)
Kristian, Sandage \& Katem (1978)
Laing et al. (1978)

VOL. 190, NO. 3, 1980
CThe Royal Astronomical Society

[^5]We reproduce nere the basic data for the 178 Miz sample used in
this paper.
Table 1 gives total flux densities between 14900 MHz and
750 MHz scaled as described in section 3.1, together with their
associated errors.
Columns $1 \& 2$: Flux density and error at 14900 MHz
0700
5000

6
8

0001
092

scaled as described in section 3.1 , together with their associated errors. Columns 1 \& 2 : Flux density and error at 178 mHz
∞
88
N
$\underset{\sim}{N}$
01
 as used in section 5.
Columns $1 \& 2$: Spectral index and error, evaluated using total flux $3 \& 4 \quad P_{1400}$ and $\log _{10}\left(P_{1400}\right)$, evaluated using total flux densities
payejagns=j0 buisn patentena 'rovia pue xopul ledzoads 989 flux densities

今क 5

 2

促

时 9

 कぁ

 ©

 －

[^6]Downloaded from https://academic.oup.com/mnras/article/190/4/903/1037762 by guest on 21 August 2022

Q

\#4, WW 4

 0 NR \&

GQ 96.6 ,

 ，onen

 ＝

（3）Sutn

 －
世कた

20 4

Downloaded from https：／／academic．oup．com／mnras／article／190／4／903／1037762 by guest on 21 August 2022

 O 0

웅ํ

为

 \％
 \％osmum

 ：
 \＆

[^7]Downloaded from https://academic.oup.com/mnras/article/190/4/903/1037762 by guest on 21 August 2022

Downloaded from https：／／academic．oup．com／mnras／article／190／4／903／1037762 by guest on 21 August 2022

	$\underset{i x}{\infty}$	＊©\＆ 中心WH 4 が世荡 4．56ta
	等	灾 （6） $\underset{\sim y y y y y y y y y}{*}$
	6	母＠ \cos 管 ∞ （1）
	\％	
	0	
	$e_{i f i n}^{x+m}$	 s\％
	8	
	8	$46 \cos ^{4} 9 \boldsymbol{y}$ 46 ter
	8080	 す
－	\rightarrow	 ＂G4 स
2 2 0	∞	 （V）
A puancous		∞ 网 m
$\begin{gathered} 8 \\ \stackrel{8}{8} \\ -3 \\ i \end{gathered}$		 －

 (v) \qquad

 O 2

Qucu .祭冝

∞

*

64ccos cuvirnctu 					2	
	8	Fruturwrin	cevo	QuAfutherminktu		i_{0}
Cundistubitis से以 10 －	 	 	crexed 0	 	${ }^{4}$	

 0 O 5

	A	－	？	a	1	
N6turs	GOUETMAT	＊	M\％	（4）${ }^{\text {ch }}$	d	6
－	¢0 40	－maturutaminem				
	\％oner cuis	－${ }^{\text {a }}$	\％ack			

0 等

隹

\cdots

－
w o
$-\infty$ Num
 whequmw

[^0]:

[^1]:

[^2]: introduce a significant change in the spectral index. A similar procedure has been adopted for the sources selected at 2700 MHz . No corrections were made at frequencies below 1400 MHz , where the CC's are very weak compared with the extended emission. Corrections at 1400 MHz are in general very small.

 Despite the removal of contributions from CC's, a single power-law fits very few of the resulting spectra over the entire frequency range. This means that the approach of Bride et al. (1972) and of Macleod \& Doherty (1972), which restricts the analysis to sources with

[^3]:

[^4]:

[^5]:

[^6]:

[^7]: 刀aig
 Q $\%=\boldsymbol{c}$

