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The relation between size and apparent heaviness

DAVID V. CROSS and LAURENCE ROTKIN
State University of New York at Stony Brook, Stony Brook, New York 11794

A formula for the size-weight illusion was derived from the Stevens and Rubin (1970) finding that
heaviness functions form a family of power functions that converge at a common point in the vicinity of the
heaviest weight that can be lifted. Magnitude estimations of the apparent heaviness of 42 plastic cylinders
varying in size and weight were obtained from 20 subjects, who were allowed to use both hands to lift the
weights. It was predicted that this would increase the maximum weight that could be lifted, which would,
in turn, enhance the magnitude of the illusion (the dependence of heaviness on size). The results
supported this and other predictions of the model concerning the dependence of the illusion on weight as

well as volume.

Two objects of equal weight may not appear equally
heavy if they are of ditferent size, the smaller of the
two usually appears to be heavier. This so-called
“size-weight illusion™ is exemplified by the old catch,
“Which is heavier, a pound of lead or a pound of
teathers?’” Although a pound is a pound, the lead
weight invariably feels heavier, as much as three or
four times heavier.

The reason the apparent heaviness of an object
depends on its perceived size, according to
Woodworth (1921), is that one expects larger objects
to be heavier and is prepared to exert more effort to
lift them; smaller, presumably lighter, objects should
require less effort to lift. When the objects are in fact
the same weight, the ditference in motor preparedness
or in one's expectations contributes to different
experiences in lifting them. In Woodworth's own
words: “What seems to happen ... is a motor
adjustment for the apparent weights, as indicated by
their visual appearance, with the result that the
weight of larger size is lifted more strongly than the
weight of smaller size; so that the big one comes up
easily and seems light, the little one slowly and seems
heavy’" (p. 460).

This illusion was given precise quantification over
large ranges of weight and volume by J. C. Stevens
and Rubin (1970). Using the method of magnitude
estimation, they found that apparent heaviness cannot
be expressed as a single power function of weight as
suggested by S. S. Stevens and Galanter (1957);
rather, a tamily of power functions seems to be
needed. For weights of equal volume, heaviness
appears to increase as a simple power function of
weight, but with changes in volume both the exponent
and the proportionality constant of the individual
functions changes. The heaviness of an object is a
power tunction of its weight, W, with an exponent and
constant of proportionality both dependent on the
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object's volume, V, as expressed in the following
equation:

HW,V) = f(V) We¥, M
where the size of the exponent, g(V), increases with
volume and the constant of proportionality, f(V),
decreases as volume increases; the constants are both
expressed as different functions of physical volume.

J. C. Stevens and Rubin discovered by
extrapolation of the separately fitted functions in this
family of curves that they tended to converge at a
common point in the vicinity of the heaviest weight
that could be lifted under the experimental
conditions. This point with coordinates (H,, W) is a
common point, or point of concurrence, for all
tunctions in the family. For objects with weight W,
all volumes give, apart from random error, the same
heaviness H,, but as W moves away from this
maximum value the rate of change of H with respect
to W is ditferent tor each volume V. If we evaluate
Equation 1 at the point of concurrence, we obtain

@

A significant consequence of Equation 2 is that the
exponent and proportionality constants for the family
of curves defined 'by Equation 1 are simply and
mathematically related as follows:

g(V)=blogf(V) +a

H, = f(V) W 2V,

(3)
where
b=—(logW,) ! and a=(logH_[logW,).

From what has been given, it is easy to show that
relative heaviness is a simple power function of
relative weight as represented by the equation

H(W,V)/H, = (W/W )2V, 4)
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which can be rewritten in the equivalent tforms

HW.V)/H, = (W/Wc)a—llog HV)/log Wel  (45)

and

H(W,V)/H, = (W/W)? [f(V)] L1 (o8 W/lee Worl
(4b)

In words, the heaviness of an object relative to the
estimated heaviness ot the effective maximum weight,
W.. can be expressed as a power product of two
terms: one involves its weight relative to W, and the
other involves an appropriate function of its volume,
(V). Said another way, the equation for heaviness can
be factored into two components: one is independent
of volume, the other is strictly dependent on volume.
A general equation for the size-weight illusion can
be derived from Equation 4 by defining the heaviness
ratio of two objects having equal weight, W, and
volumes V, and V, as follows:
HW,V, )/H(W,Vg) = (W/Wc)g(v' )—g(V, ) (5)
By substituting Equation 3 in Equation S5, we can
write this equation in the equivalent forms

H(W,V, )/HW,V, ) = (W/W )P 1esLEVD/EVD) (5,

and
H(W,V,)HW,V,) = [f(V,)/f(V,)] 1108 Wilog Werl
(5b)

in which the constant, or volume independent. terms
in Equations 4a and 4b cancel.

All that is needed in order to derive an explicit
illusion function is the form of the function f(V). A
reasonable candidate for f(V), one that is in accord
with the data of Stevens and Rubin, as we will show
later, is the simple power function

f(V)y=dv=°® (e>0) 6)
where d and e are empirical constants estimated from
the data (e is not to be confused with the Naperian
constant e = 2.718...). Fries and Holmberg (1967)
and Kolehmainen and Mikkonen (1970) both found
that for stimuli of constant weight subjective
heaviness is a power function of volume. Stevens and
Rubin considered this possibility, but a graphical
analysis of their data revealed a slight curvature in the
relation between log heaviness and log volume.
Looking at the same data in semilog coordinates, they
concluded that, for constant weight, heaviness
decreases approximately as a logarithmic function of
volume—although they acknowledged that if the

heaviness functions were converging power functions,
the illusion functions could not be exactly
logarithmic. Since the logarithmic function is logically
inconsistent with the representation of heaviness by a
system of converging power functions of weight and
volume and since there is experimental support for the
power function, it will be used here.

Substituting Equation 6 in Equation Sb produces
the following equation for the size-weight illusion:

HW,V, )JHW.V, ) = (V, [V, ) ¢[17 0o W/log Wo)l
(7

This is a quantitative illusion function which tells how
much heavier one weight seems than another which
has the same mass but a different volume; the
heaviness ratio is a power function of the volume
ratio. Only two tree parameters are involved in this
function: the exponent e of the power function given
in Equation 6 and the weight W, which Stevens and
Rubin interpret as the heaviest weight that can be
comtortably lifted in the experiment. This is a natural
interpretation of W, which suggests that it should
vary with the mechanics of the task; smaller values of
W, are to be expected if, for example, the subject
must lift the object by gripping an attached knob with
the fingers of one hand (as in the Stevens-Rubin
experiment), and a higher value of W, should obtain
when the object can be seized firmly with both hands
and hefted. :

Both the direction and the magnitude of the illusion
can be derived from Equation 7, with the following
consequences and predictions: (a) H(W,V,) >
HW.Vy it V>V, and W <W.; (b) HW,V, =
H(W.V,) if either V; = V, or W = W_; (c) The
magnitude of the illusion increases with an increase in
relative volume of the compared objects (i.e., with an
increase in the size of the ratio V{/Vy; (d) the
magnitude of the illusion decreases as the equal
weight of the compared objects increases; and (e) the
magnitude of the illusion increases with W.. All of
these consequences, with the exception of (e), were
observed by Stevens and Rubin.

The present study was designed to further test the
validity of the assumptions leading to these
predictions, to partially replicate the original study of
Stevens and Rubins which provided the fundamental
insights enabling the derivation of Equation 7, and,
most importantly, to see if W, can be increased by
modifcation of the lifting task with the consequence of
enhancing the size ot the illusion.

METHOD
Stimuli
The stimuli were 42 cylinders varying in size and weight. They
were made from commercial plastic tubing of diameters 4.05, 4.6,
5.5.6.2, 7.7, 8.6, 11.0, 12.5, and 14.5 cm cut to heights 7.3, 8.6,
10.2, 11.5, 14.4, 17.5, 20.3, 24.1, and 28.7 cm to produce a total of
nine sizes: 94, 143, 239, 345, 669, 1,008, 1,943, 2,943, and



4.710 cc. Polystyrene foam inserts were centrally loaded with
varying amounts of lead shot and fitted snugly into each cylinder in
order to produce nine different weights of 51, 92, 168, 308, 567,
1,036, 3,480, 1,889, and 6,168 g. Plastic disks were cemented on
each end, and the cylinders were then painted a flat black. The
combinations of weights and volumes selected for the 42 stimuli are
given in Table 1 as the rows and columns that have cell entries.
Because of the wide ranges of sizes and weights involved, it was
impossible to construct a cylinder with every size-weight
combination; e.g.. a 94-cc object weighing 6,168 g would have a
density of 65.6 (lead has a density of 11.3).

Subjects

Twenty university students, 5 female and 15 male, were selected
on the basis of their availability and willingness to serve in this study
without pay. None had had any previous laboratory experience
requiring psychophysical judgments.

Procedure

The subjects were run individually in single sessions lasting
approximately 35 min. In the beginning of the session, the subject
was shown a series of 20 lines varying in five steps from 1.2 to
22.3 cm in length and was asked to estimate the approximate
length of each. The purpose of this exercise was to provide practice
making proportional numerical judgments and to insure that the
subject understood the instructions for magnitude estimation.

The subject was then told that cylinders of varying size and
weight would be presented to him; he was to grasp each one firmly
with both hands in the middle of the cylinder, holding it upright,
give it a single heft. and judge its ‘‘heaviness” by assigning “‘a
number that reflects only the weight of each object and preserves
the ratios of weights between objects.”” No standard stimulus was
specified, nor was a modular response required. The subjects were
free to use any numbers that seemed appropriate to them.

Stimuli were presented one at a time through a curtained opening
of a large white screen that separated the subject from the
experimenter. The subject never viewed more than one cylinder at a
time.

Most of the 42 stimuli were presented for judgment only once
each, but repeated judgments were obtained for two uniform weight
series and two uniform volume series. These are the stimuli
indicated by asterisked entries in Table {. The four stimuli in each
of these series were presented four extra times each in a schedule
that permitted each separate level in a series to be preceded by each
other level exactly once. This was done to facilitate the estimation of
order effects in weight judgments. When such effects occur in
magnitude estimation experiments, they may contribute to
regression biases that affect the exponent of the power function that
is fitted to the data (Cross, 1973). The subjects were divided equally
into two groups: one group received the extra presentations of
stimuli equal in weight but varying in volume (the uniform weight
series), and the other group received the extra presentations of
stimuli equal in volume but varying in weight (the uniform volume
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series). Thus, each subject gave a total of 74 weight judgments: one
to each of 34 weights and five to each of 8 weights.

RESULTS

Geometric means of the heaviness estimates were
calculated for each cylinger. The results are presented
in Table 1. For most entries, the geémetric means are
based on 20 judgments, 1 from each subject. The
asterisked entries are based on 60 judgments, 1 from
each of 10 subjects and S from each of 10 subjects.
The double-asterisked entires are based on 100
judgments, 5 from each of 20 subjects.

The geometric mean heaviness estimates are plotted
in log-log coordinates as a function of weight in
Figure 1. A separate function is depicted for each
volume. The horizontal positions of these nine plots
have been arbitrarily adjusted for purposes of clarity,
but the form and slope of each regression remains
unaltered. For each volume series, a separate power
function was fitted by the method of least squares,
with the results shown by the straight lines. The
exponent values and proportionality constants for the
power functions represented by these lines in normal
(unadjusted) position are given in Table 2. A test for
parallelism (Sprent, 1969) indicates that the
differences between exponents are significant; F(8,24)
= 3.79 (p <.01).

If the power functions characterized by the
exponents and proportionality constants in Table 2
are convergent (intersect at a common point), then the
exponents, § = g(V), should be linearly related to the
logarithms of the proportionality constants, a = f(V),
as expressed by Equation 3. The linear correlation
between f# and log a for these data is r = —0.993,
indicating experimental verification of Equation 3.

Estimation of the point of concurrence (H., W) for
this family of power functions is problematic because
of the difficulty of getting unbiased estimates of the
regression parameters in Equation 3. Both § and a are
estimated with error, hence the regression of § on log
a and the regression of log o on 8 are both biased
estimates of the true regression parameter (Isaac,
1970).

Table 1
Magnitude Estimations of the Heaviness of Plastic Cylinders Varying in Weight and in Volume

Volume (cc)

Weight
(©) 94 143 239 345 669 1008 1943 2943 4710
6168 49.3 48.7* 44.7
3480 34.5% 30.6* 27.6%* 25.2*
1889 17.2 14.6 13.2 12.7* 12.8
1036 145 126 105 8.6 8.4 6.1* 4.4
567 7.7 7.0 5.0 438 29
308 5.1 49* 4.0 4.1 2.7 20
168 3.1 3.0* 2.6 2.2 1.6 1.2
92 1.9* 1.7** 1.2* 1.0*
51 1.13 1.0*

Note—Each entry is the geometric mean of 20 estimations (60 for asterisked entries and 100 for doubly asterisked).
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Figure 1. Heaviness as a function of weight.
The parameter is volume in cubic centimeters.
The horizontal position of each curve has been
arbitrarily adjusted for clarity.
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Combining Equations 2, 3, and 6 produces the
following awkward appearing but explicit relationship
between apparent heaviness, H, and the stimulus
dimensions weight, W, and volume, V:

H(W,V) - dV—ew—be(log V)+b(log d)+a' (8)

According to this model, the exponents in Table 2
should be linearly related to the logarithm of the
corresponding volume, a controlled variable, and the
proportionality constants vary as a power function of
volume. Unbiased- least squares estimates of the
parameters a, b, d, and e can be obtained from the
regression of § on log V and from the regression of
log « on log V since, according to Equation 8, § =
—be(log V) + b(log d) + a and « = dV—°. The
constant b can be obtained by first solving the second
equation for e and dividing this into the
proportionality constant of the first equation.

The relation between 8 and log V for these data is
shown in Figure 2. The regression is reasonably linear
with 94% of the variance in the empirical exponent

Table 2
Expornent Values and Proportionality Constants for the Power
Functions Found to Relate Heaviness to Weight
for Each Volume Series

Propor- Obtained Adjusted

Volume tionality Exponent Exponent
(cc) Constant Value Value
94 0428 835 945
143 0304 .889 999
239 0127 1.013 1.123
345 0103 1.031 1.141
669 .0087 1.010 1.120
1008 0040 1.102 1.212
1943 0021 1.164 1.274
2943 .0018 1.176 1.286
4710 .0007 1.281 1.391

values accounted for by linear regression on log V.
The deviations from linear regression are not
significantly different from the weighted average of
deviations from linear regression used as an error
term in the above test for parallelism: F(7,24) = 2.03
(ns.). On the other hand, the linear regression of « on
log V is significant: F(1,7) = 6.89 (p <.09).

In the log-log coordinates of Figure 3, the constants
of proportionality are plotted as a function of volume.
It is clear that the assumption of Equation 6 is
reasonably valid for these data: 97.6% of the variance
in log @ is accounted for by linear regression on log V.
In this study, the constant of proportionality for each
heaviness function turns out to be approximately
proportional to the reciprocal of physical volume.

Estimates of the parameters a, b, d. and e, derived
from these functions, are shown in Table 3. The point
of concurrence for the theoretical family of converging
heaviness functions for the experimental conditions of
the present study occurs at approximately 18 kg
(about 40 Ib).

When the estimated parameter values are inserted
in the illusion function given by Equation 7, the
following simplified version results:

H(W,V, )/H(W,V,) = (V, [V, )0 23108 7098 (g

In Figure 4, the geometric mean heaviness estimates
are plotted as a function of volume showing the
size-weight illusion in log-log coordinates. The
parameter is weight in grams. The slopes of the
straight lines drawn through each set of points are
given by the exponents of Equation 9 for the different
weights, W.

Figure 4 reveals several features of the size-weight
illusion. As predicted by the model, the magnitude of
the illusion depends on both size and weight. The
effect of size is greater for lighter weights and
decreases as the weight of the judged object increases.
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Figure 2. The exponent for heaviness as a function of size.
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Figure 3. The relation between the proportionality constant in
the heaviness function and size.

For a given weight, the greater its volume the lighter it
appears to be. The magnitude of the illusion is
sufficiently great that one object having twice the
physical weight of another may in fact appear lighter
it it is four or five times larger in size.

The data of Stevens and Rubin were reanalyzed
with the present model in mind, and the resulting
estimates for the parameters a, b, d, and e are shown
in Table 3 for comparison with the results of the
present study. The family of power functions
describing these data converge at a weight of 8.7 kg.
This represents the maximum weight that could be
lifted under the conditions of the experiment in which
each weight was grasped by an attached knob with the
fingers of one hand and lifted. This is less than half
the value of 18 kg obtained in the present study, in
which both hands could be used by grasping the
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cylinders firmly around their middle and hefting
them.

The power function of Equation 6 well describes
the relation between the proportionality constants of
the Stevens-Rubin heaviness functions and volume.
For their data, approximately 95.3% of the variance in
log « is accounied for by linear regression on log V.
However, the exponent of -0.65 is only two-thirds the
value obtained in the present study. The difference
between these two outcomes is puzzling, and nothing
in the differences in experimental procedure suggests
itselt as a possible explanation for the difference.

The values for the parameters given in Table 3 were
inserted in Equation 8, and theoretical heaviness
values were computed for the weights used by Stevens
and Rubin as well as for those used in the present
study. The relation between theoretical (fitted) values
and obtained heaviness estimates is shown in Figure 5
tor the Stevens-Rubin study and in Figure 6 for the
present study. The agreement between theoretical and
obtained values is good in both cases. Only 0.3% of
the variance of obtained estimates remains
unaccounted for by the model in the first study and
0.7% is unaccounted for in the present study.

The exponents of the heaviness functions shown in
Table 2 are systematically lower than those obtained
by Stevens and Rubin for comparable volumes. These
differences can be attributed, in part, to differences in
the magnitude of the size-weight illusion in the two
studies (different values of W and e). On the other
hand, cross-modality matching procedures in general
and magnitude estimation procedures in particular
are known to be subject to regression biases that cause
the theoretically correct exponents to be under-
estimated (S. S. Stevens & Greenbaum, 1966). The
possibility of regression bias in the present data
cannot be ignored.

Two types of regression bias have been identified.
One results in a multiplicative transformation of the
correct exponent (Cross, 1974). This is interpreted as
a response bias that arises from tendencies to avoid
extreme judgments or to be limited in the range of
responses available (as in category scaling). If this
source of bias is operating in the present experiment,
it is as likely to influence the estimation of line length
as it is to bias the heaviness judgments. The line

Table 3
Evaluation of Parameters: Results of Two Studies

Para- Present Stevens and
meter Study Rubin (1970)
a 5407 721
b -.235 -.254
e 98 .65
d 3.66 97
W, 18 kg 8.7 kg
H 200 690

o
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Figure 4. Heaviness as a function of volume showing the
size-weight illusion in log-log coordinates. The parameter is weight
in grams. The lines have the slopes given by the illusion function of
Equation 7.

Ty

TTTTT T LR SR RES | T

1000 r T

(Stevens and Rubin, 1970}

Al

FITTED VALUES (H!
o
" idadd

)
T
>

=TTy
Lot aaf

T
1

Addhad b

1000

1 Lo sl i 1ol 1

\ 10 100
OBTAINED ESTIMATIONS
Figure 5. Fitted values of heaviness given by Equation 8 with the

parameter values shown in Table3 vs. obtained heaviness
estimations (data from Stevens & Rubin, 1970).

length judgments obtained in the beginning of the
experimental sessions of the present study were
averaged over subjects and regressed against objective
length. A power function with an exponent equal to
0.884 was found to describe the relation between
geometric mean length estimates and physical length.
Although 99.5% of the variance in log line judgments
were accounted for by linear regression on the
logarithm of actual length, the regression coefficient
0.884 is not significantly different from the expected
value of unity. Therefore, it is probably not
appropriate to conclude that response biases are

responsible for the lower exponents in the heaviness
functions.

The other contribution to regression arises from
order effect in the perception of temporally ordered
stimuli. This contribution to regression adds or
subtracts a constant to the correct exponent,
depending on whether the order etfects are contrastive
or assimilative. It appears that in magnitude
estimation tasks, order effects are usually assimilative
and contribute to an underestimation of the true
exponent (Cross, 1973; Luce & Green, 1974). In this
case, it may be possible to represent perceived
magnitude as a power product of the focal stimulus
and the immediately preceding stimulus as follows:

¥=ks$f°s? ., (10)
where 5; and S;_1 are the stimuli presented on Trials i
and i-1, B is the true exponent, and o is a bias
parameter reflecting the size of the order effect. When
each stimulus level is preceded by every other one, the
geometric mean of the biased estimates of stimulus
magnitude will be proportional to the focal stimulus
intensity raised to the power fi-o. Hence, the
exponent estimated by conventional methods
underestimates the true exponent by an amount equal
to o. In order to remove this source of bias from
estimates of exponent values, the order effect must be
measured.

Figure 7 shows that assimilative order effects were
indeed present in this study. For the two uniform
volume series of weights in which a counterbalanced
presentation schedule allowed each weight in the
series to be preceded by every other weight, including

100 | -

(*H
IIVIIII
2
b
]

T

FITTED VALUES

bededena 4 a3l

100

Lo aaald .

1 10

OBTAINED ESTIMATIONS

Figure 6. Fitted values of heaviness given by Equation 8 using
the parameter values shown in Table 3 for the data of the present
study.



itself, the apparent heaviness of each object is shown
as a function of the weight of the immediately
preceding object (filled circles) and, separately, as a
function of the weight in grams of the focal object
(open cifcles). The open circles represent the
geometric means of the four filled circles for each
weight of the focal stimulus which is also shown as a
parameter for the family of functions depicted in
Figure 7. These data are based on the judgments of 10
subjects. Each filled circle in Figure 7 represents the
geometric mean of 10 independent judgments. The
dashed lines drawn through each set of four points
represents the average etfect of the preceding stimulus
level on estimates of the heaviness of the focal
stimulus where the average is taken over all levels of
the focal stimulus for both uniform volume series. The
slope of these dashed lines corresponds to the bias
exponent, o, in Equation 10. For these data, o has an
estimated value of 0.11.

A second group of 10 subjects gave repeated
heaviness judgments to two uniform weight series in
which the stimuli were equal in weight and they varied
in volume. Although apparent heaviness varies with
volume (see Figure 4), successive judgments to stimuli
varying only in volume showed no order effect. The
average value of o for these data turned out to be
practically zero (o = 0.008).

Since order effects are presumably present only
with sequential variations in weight and not in
volume, the etfects of this bias can be eliminated by
adding the constant amount 0.11 to the exponent for
weight, W, in Equation 8. This increases each of the
obtained exponents listed in Table 2 by the amount
0.11 (hence the true exponents are estimated to vary
between 0.94 for the 94-cc cylinders to 1.39 for the
4,710-cc cylinders), but only the experimental
estimate for the parameter a is affected by the
adjustment. Parameters b, d, and e remain
unchanged. This means that the point of convergence
of the heaviness functions remains at 18 kg, but the
estimate for H_. increases from 200 to 390
corresponding to the increase in a from 0.5407 to
0.6507.

DISCUSSION

Over the years, many explanations have been
offered for the size-weight illusion. Some accounts
have been based on set or expectation and consequent
motor adjustment to that expectation (Loomis, 1907;
Woodworth, 1921). Other theories have identified
density as either the effective stimulus for judgments
of heaviness or as having a biasing influence on such
judgments (Huang, 1945; Ross & DiLollo, 1970;
Seashore, 1913).

A third type of explanation is based on information
integration (Anderson, 1970, 1972; Birnbaum & Veit,
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Figure 7. Apparent heaviness for two sizes of weights as a
function of weight in grams of the focal object (open circles) and as
a function of the weight of the immediately preceding object (filled
circles). The parameter is the weight of the focal object. The dashed
lines have a common slope equal to 0.11.

1974); Sjoberg, 1969). According to this theory, the
perception of a stimulus depends on the integration of
separate bits of information about it. In the case of
weight, ‘“‘we have an interaction of visual and
kinesthetic inputs which produce a final percept of
heaviness which depends on both™ (Sjoberg, 1966,
p. 132). The difference between the theories of this
kind resides chiefly in whether the effects of size and
weight are assunmied to combine additively (Anderson,
1970) or multiplicatively (Sjoberg, 1969).

These explanations are either substantially
incorrect or they are incomplete in that they leave
various features of the size-weight illusion
unexplained. Traditional expectation theoriés do not
explain the consistent decrease in the magnitude of
the illusion with increasing weight found by J. C.
Stevens and Rubin (1970) and in the present study.
Density interpretations do not explain differences in
muscle effort (Loomis, 1907} or muscle potentials
prior to the lift (Jarrard, 1960; Payne & Davis, 1940).
Nor can density effects explain the differences in
judged heaviness found by Harshfield and De Hardt
(1970), whose stimuli were of identical size and
weight, and differed only in apparent composition,
e.g., steel vs. balsa wood.

The information integration models are wrong
because, in their simple versions, they assume that the
magnitude of the illusion for any two weights is
independent of size, and for any two sizes is
independent of weight (Birnbaum &Veit, 1974).

The model proposed here handles all the
established facts concerning the size-weight illusion.
In the one possibly discrepant study, Ross and
DiLollo (1970) propose a variable-basis judgment
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model in which heaviness judgments are increasingly
based on density as stimulus density increases. They
report the finding that for light weights differences in
weight produce large judged heaviness differences,
while differences in density produce lesser differences
in heaviness. For heavy weights, changes in weight
and density produce identical differences in judged
heaviness. However, it is possible that the subjects
were not discriminating weight differences in the
heavy weights because of the small range of
differences employed (less than 25% of the maximum
weight). The most outstanding of their results is that
while there was a substantial illusion for light weights,
for heavy weights the illusion was virtually
nonexistent, a result that is predicted by the present
model.

None of the previous theories take into account the
finding that the size of the illusion may be affected by
the way the weights are lifted. We predicted that the
change in the manner of lifting the weights would lead
to an increase in the magnitude of the illusion by
increasing the size of the maximum effective weight
that can be comfortably lifted. That the slopes of the
illusion functions shown in Figure 4 are steeper than
the functions for comparable weights found by
Stevens and Rubin confirms this prediction.

Other factors may be expected to influence the size
of this illusion by alteration of the point of
convergence of the heaviness functions. Men, being
stronger in general than women and thus able to lift
heavier weights, should exhibit a greater illusion
because of an increase in W. By the same reasoning,
young children should show less of the size-weight
effect than older children. The magnitude of the
illusion should increase with age. The experimental
facts indicate just the opposite. Numerous studies
involving children as experimental subjects show a
decrease in the magnitude of the illusion with age
(Oostlander, 1967; Pick & Pick, 1967; Robinson,

1964). This decrease seems to be rapid until about age

11 and then levels off. The illusion is shown by
children as young as 1%z years of age, decreases with
age and, presumably, experience. Of course, other
things are not equal in these comparisons. The
discrepancy may be explained by poor weight
discrimination. Robinson (1964) showed that with
weight discrimination training, the magnitude of the
illusion in children decreased. Adults may simply
discern weights better than children.

J. C. Stevens (1974) has shown that there are many
sensory modalities, in addition to the proprioceptive
senses, in which families of converging power
functions describe the interaction between component
properties of a stimulus. The relation between
brightness and luminance varies as a function of level
of light adaptation, of glare angle, and of the size of
an inhibitory surround. The perception of warmth as
a function of irradiation varies with areal extent; the

perception of cold varies with duration. Auditory
volume and density, as functions of sound pressure,
both also vary with frequency of the tone. In each of
these cases, and others, the relations observed can be
described by power functions that converge at a
common point. In some cases, this common point
corresponds to a level of stimulation that coincides
with the threshold of pain or the limits of sensory
functioning for the modality.

The similarity between the operating characteristics
of these sensory systems and that of the size-weight
interaction in the perception of heaviness causes us to
question the appropriateness of classifying this effect
as an illusion. Consider, for example, the well-known
dependence of loudness on tonal frequency as well as
intensity. Equal-loudness contours drawn in
sound-pressure/frequency coordinates tend to con-
verge for frequencies below 400 Hz because the
exponent of the power function that governs loudness
increases very rapidly as frequency decreases (S. S.
Stevens, 1972). We could construct a set of
equal-heaviness contours in the coordinate space of
size and weight. These contours would be similar in
appearance (although converging to the right instead
of to the left) to the equal-loudness contours for
low-frequency tones. The slope of the equal-heaviness
contours increases as level decreases. The contours
reveal that the heaviness of a weight depends on its
size. Are these statements about heaviness really any
different from the analogous statements about
loudness; namely, that the equal-loudness contours
are steeper for softer tones, and the loudness of a tone
depends on its frequency? We think of the size-weight
effects as illusory, but the interaction between sound
pressure and frequency in loudness determination is
said to be only an operating characteristic of the
auditory system. When the same relations observed
for weights are observed in other sensory systems, we
do not typically think of the perceived effects as
illusory, nor do we seek psychological explanations for
the effects. Perhaps the same attitude should be taken
toward the interacting roles played by size and weight
in the determination of perceived heaviness. Just as
the loudness of a tone varies with frequency, the
heaviness of a weight depends on its size. Heaviness
can be characterized by the system of converging
power functions for the variables of size and weight
just as loudness is characterized by a similar set of
relations defined for frequency and sound pressure.
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