The relation between the Baum-Connes Conjecture and the Trace Conjecture

Wolfgang Lück*
Fachbereich Mathematik und Informatik
Westfälische Wilhelms-Universität Münster
Einsteinstr. 62
48149 Münster
Germany

March 22, 2001

Abstract

We prove a version of the L^2 -index Theorem of Atiyah, which uses the universal center-valued trace instead of the standard trace. We construct for G-equivariant K-homology an equivariant Chern character, which is an isomorphism and lives over the ring $\mathbb{Z} \subset \Lambda^G \subset \mathbb{Q}$ obtained from the integers by inverting the orders of all finite subgroups of G. We use these two results to show that the Baum-Connes Conjecture implies the modified Trace Conjecture, which says that the image of the standard trace $K_0(C_r^*(G)) \to \mathbb{R}$ takes values in Λ^G . The original Trace Conjecture predicted that its image lies in the additive subgroup of \mathbb{R} generated by the inverses of all the orders of the finite subgroups of G, and has been disproved by Roy [13].

Key words: Baum-Connes Conjecture, Trace Conjecture, equivariant Chern character, L^2 -index theorem.

Mathematics subject classification 2000: 19L47, 19K56, 55N91

0. Introduction and statements of results

Throughout this paper let G be a discrete group. The Baum-Connes Conjecture for G says that the assembly map

$$\operatorname{asmb}^G: K_0^G(\underline{E}G) \to K_0(C_r^*(G))$$

from the equivariant K-homology of the classifying space for proper G-actions $\underline{E}G$ to the topological K-theory of the reduced C^* -algebra $C^*_r(G)$ is bijective [3, page 8], [5, Conjecture 3.1]. In connection with this conjecture Baum and Connes [3, page 21] also made the sometimes so called *Trace Conjecture*. It says that the image of the composition

$$K_0(C_r^*(G)) \xrightarrow{i} K_0(\mathcal{N}(G)) \xrightarrow{\operatorname{tr}_{\mathcal{N}(G)}} \mathbb{R}$$

^{*}email: lueck@math.uni-muenster.de, www: http://www.math.uni-muenster.de/u/lueck, FAX: 49 251 8338370

is the additive subgroup of $\mathbb Q$ generated by all numbers $\frac{1}{|H|}$, where $H \subset G$ runs though all finite subgroups of G. Here $\mathcal N(G)$ is the group von Neumann algebra, i the change of rings homomorphism associated to the canonical inclusion $C_r^*(G) \to \mathcal N(G)$ and $\operatorname{tr}_{\mathcal N(G)}$ is the map induced by the standard von Neumann trace $\operatorname{tr}_{\mathcal N(G)}: \mathcal N(G) \to \mathbb C$. Roy has construced a counterexample to the Trace Conjecture in this form in [13] based on her article [14]. She constructs a group Γ , whose finite subgroups are all of order 1 or 3, together with an element in $K_0^G(\underline{E}G)$, whose image under $\operatorname{tr}_{\mathcal N(\Gamma)} \circ i \circ a$ smb is $-\frac{1105}{9}$. The point is that $3 \cdot \frac{1105}{9}$ is not an integer. Notice that Roy's example does not imply that the Baum-Connes Conjecture does not hold for Γ . Since the group Γ contains a torsionfree subgroup of index 9 and the Trace Conjecture for torsionfree groups does follow from the Baum-Connes Conjecture, the Baum-Connes Conjecture predicts that the image of $\operatorname{tr}_{\mathcal N(\Gamma)} \circ i : K_0(C_r^*(\Gamma)) \to \mathbb R$ is contained in $\{r \in \mathbb R \mid 9 \cdot r \in \mathbb Z\}$. So one could hope that the following version of the Trace Conjecture is still true. Denote by

$$\Lambda^G := \mathbb{Z} \left[\frac{1}{|\mathcal{F}in(G)|} \right] \tag{0.1}$$

the ring $\mathbb{Z} \subset \Lambda^G \subset \mathbb{Q}$ obtained from \mathbb{Z} by inverting all the orders |H| of finite subgroups of G. For Roy's group Γ this is $\{m \cdot 3^{-n} \mid m, n \in \mathbb{Z}, n \geq 0\}$ and obviously contains $-\frac{1105}{9}$.

Conjecture 0.2 (Modified Trace Conjecture for a group G) The image of the composition

$$K_0(C_r^*(G)) \xrightarrow{i} K_0(\mathcal{N}(G)) \xrightarrow{\operatorname{tr}_{\mathcal{N}(G)}} \mathbb{R}$$

is contained in Λ^G .

The motivation for this paper is to prove

Theorem 0.3 The image of the composition

$$\Lambda^G \otimes_{\mathbb{Z}} K_0^G(\underline{E}G) \xrightarrow{\operatorname{id} \otimes \operatorname{asmb}^G} \Lambda^G \otimes_{\mathbb{Z}} K_0(C_r^*(G)) \xrightarrow{i} \Lambda^G \otimes_{\mathbb{Z}} K_0(\mathcal{N}(G)) \xrightarrow{\operatorname{tr}_{\mathcal{N}(G)}} \mathbb{R}$$

is Λ^G .

In particular the modified Trace Conjecture 0.2 holds for G, if the assembly map $\operatorname{asmb}^G: K_0^G(\underline{E}G) \to K_0(C_r^*(G))$ appearing in the Baum-Connes Conjecture is surjective.

In order to prove Theorem 0.3 (actually a generalization of it in Theorem 0.8), we will prove a slight generalization of Atiyah's L^2 -Index Theorem and construct an equivariant Chern character for equivariant K-homology of proper G-CW-complexes, which is bijective and defined after applying $\Lambda^G \otimes_{\mathbb{Z}} -$.

Let M be a closed Riemannian manifold and $D^* = (D^*, d^*)$ be an elliptic complex of differential operators of order 1 on M. Denote by $\operatorname{index}(D^*) \in \mathbb{Z}$ its index. Let $\overline{M} \to M$ be a G-covering. Then one can lift D^* to an elliptic G-equivariant complex \overline{D}^* . Using the trace $\operatorname{tr}_{\mathcal{N}(G)} : \mathcal{N}(G) \to \mathbb{C}$ Atiyah [1] defines its L^2 -index $\operatorname{index}_{\mathcal{N}(G)}(\overline{D}^*) \in \mathbb{R}$ and shows

$$index(D^*) = index_{\mathcal{N}(G)}(\overline{D}^*).$$

The L^2 -index theorem of Atiyah implies that the composition

$$K_0^G(EG) \xrightarrow{\mathrm{asmb}^G} K_0(C_r^*(G)) \xrightarrow{i} K_0(\mathcal{N}(G)) \xrightarrow{\mathrm{tr}_{\mathcal{N}(G)}} \mathbb{R}$$

agrees with the composition

$$K_0^G(EG) \xrightarrow{\operatorname{ind}_{G \to \{1\}}} K_0(BG) \xrightarrow{K_0(\operatorname{pr})} K_0(*) \xrightarrow{\operatorname{asmb}^{\{1\}}} K_0(C_r^*(\{1\})) \xrightarrow{\dim_{\mathbb{C}}} \mathbb{Z} \hookrightarrow \mathbb{R}.$$

Since for a torsionfree group G the spaces EG and $\underline{E}G$ agree, the Baum-Connes Conjecture for a torsionfree group G does imply that the image of $K_0(C_r^*(G)) \xrightarrow{i} K_0(\mathcal{N}(G)) \xrightarrow{\operatorname{tr}_{\mathcal{N}(G)}} \mathbb{R}$ is \mathbb{Z} [3, Corollary 1 on page 21]. Instead of using the standard von Neumann trace $\operatorname{tr}_{\mathcal{N}(G)}: \mathcal{N}(G) \to \mathbb{C}$, one can use the universal center-valued trace $\operatorname{tr}_{\mathcal{N}(G)}^u: \mathcal{N}(G) \to \mathcal{Z}(\mathcal{N}(G))$ to define an index

$$\operatorname{index}_{\mathcal{N}(G)}^{u}(\overline{D}^{*}) \in \mathcal{Z}(\mathcal{N}(G)),$$

which takes values in the center $\mathcal{Z}(\mathcal{N}(G))$ of the group von Neumann algebra $\mathcal{N}(G)$. Thus we get additional information, namely, for any element $g \in G$, whose conjugacy class (g) is finite, we get a complex number. However, it turns out that the value at classes (g) with $g \neq 1$ is zero and that the value at (1) is the index of D^* . Namely, we will show in Section 1

Theorem 0.4 Under the conditions above we get in $\mathcal{Z}(\mathcal{N}(G))$

$$\operatorname{index}_{\mathcal{N}(G)}^{u}(\overline{D}^{*}) = \operatorname{index}(D^{*}) \cdot 1_{\mathcal{N}(G)}.$$

As an illustration we discuss the special case, where G is finite, M is an oriented closed 4k-dimensional manifold with free orientation preserving G-action and D^* is the signature operator. Then Theorem 0.4 reduces to the well-known statement that the equivariant signature

$$\operatorname{sign}^{G}(M) := [H_{2k}(M)^{+}] - [H_{2k}(M)^{-}] \in \operatorname{Rep}_{\mathbb{C}}(G)$$

is equal to $\operatorname{sign}(G \setminus M) \cdot [\mathbb{C}G]$ for $\operatorname{sign}(G \setminus M) \in \mathbb{Z}$ the (ordinary) signature of $G \setminus M$. We mention that this implies $\operatorname{sign}(M) = |G| \cdot \operatorname{sign}(G \setminus M)$. Theorem 0.4 is a special case of Theorem 5.4 but we will need it in the proof of Theorem 5.4 and therefore will have to prove it first.

The second ingredient is a variation of the equivariant Chern character of [11] for equivariant K-homology of proper G-CW-complexes. Recall that proper means that all isotropy groups are finite. The construction in [11] works for equivariant homology theories with a Mackey structure on the coefficient system in general, but requires to invert all primes. The construction we will give here works after applying $\Lambda^G \otimes_{\mathbb{Z}}$? and has a different source.

Denote for a proper G-CW-complex X by $\mathcal{F}(X)$ the set of all subgroups $H \subset G$, for which $X^H \neq \emptyset$, and by

$$\Lambda^{G}(X) := \mathbb{Z}\left[\frac{1}{\mathcal{F}(X)}\right] \tag{0.5}$$

the ring $\mathbb{Z} \subset \Lambda^G(X) \subset \Lambda^G$ obtained from \mathbb{Z} by inverting the orders of all subgroups $H \in \mathcal{F}(X)$. Denote by

$$J^G$$
 resp. $J^G(X)$ (0.6)

the set of conjugacy classes (C) of finite cyclic subgroups $C \subset G$ resp. the subset $J^G(X) \subset J^G$ of conjugacy classes (C) of finite cyclic subgroups $C \subset G$, for which X^C is non-empty. Obviously $\Lambda^G = \Lambda^G(\underline{E}G)$ and $J^G = J^G(\underline{E}G)$ since $\underline{E}G$ is characterized up to G-homotopy by the property that $\underline{E}G^H$ is contractible (and hence non-empty) for finite $H \subset G$ and empty for infinite $H \subset G$. Let $C \subset G$ be a finite cyclic subgroup. Let $C_G \subset G$ be the centralizer and $C_G \subset G$ be the normalizer of $C \subset G$. Let $C_G \subset G$ be the quotient $C_G \subset G$. We will construct an idempotent $C_G \subset G$ which acts on $C_G \subset G$. We will see in Lemma 3.4 (b) that the cokernel of

$$\bigoplus_{D \subset C, D \neq C} \operatorname{ind}_D^C : \bigoplus_{D \subset C, D \neq C} \mathbb{Z} \left[\frac{1}{|C|} \right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(D) \to \mathbb{Z} \left[\frac{1}{|C|} \right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C)$$

is isomorphic to the image of the idempotent endomorphism

$$\theta_C : \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C).$$

After introducing and proving some preliminary results about modules over a category and representation theory of finite groups in Sections 2 and 3, we will prove in Section 4

Theorem 0.7 Let X be a proper G-CW-complex. Put $\Lambda = \Lambda^G(X)$ and $J = J^G(X)$. Then there is for p = 0, 1 a natural isomorphism called equivariant Chern character

$$\operatorname{ch}_p^G(X): \oplus_{(C)\in J} \Lambda \otimes_{\mathbb{Z}} K_p(C_GC\backslash X^C) \otimes_{\Lambda[W_GC]} \operatorname{im} (\theta_C: \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C))$$

$$\xrightarrow{\cong} \Lambda \otimes_{\mathbb{Z}} K_p^G(X).$$

Notice that the equivariant Chern character of Theorem 0.7 reduces to the obvious isomorphism $K_0(G\backslash X)\otimes_{\mathbb{Z}}\operatorname{Rep}_{\mathbb{C}}(\{1\})\stackrel{\cong}{\longrightarrow} K_0^G(X)$, if G acts freely on X. In the special case, where G is finite, X is the one-point-space $\{*\}$ and p=0, the equivariant Chern character reduces to an isomorphism

$$\bigoplus_{(C)\in J^G} \mathbb{Z}\left[\frac{1}{|G|}\right] \otimes_{\mathbb{Z}\left[\frac{1}{|G|}\right][W_GC]} \operatorname{im}\left(\theta_C : \mathbb{Z}\left[\frac{1}{|G|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \mathbb{Z}\left[\frac{1}{|G|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C)\right)$$

$$\stackrel{\cong}{\longrightarrow} \mathbb{Z}\left[\frac{1}{|G|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(G).$$

This is a strong version of the well-known theorem of Artin that the map induced by induction

$$\oplus_{(C)\in J^G}\ \mathbb{Q}\otimes_{\mathbb{Z}}\mathrm{Rep}_{\mathbb{C}}(C)\to \mathbb{Q}\otimes_{\mathbb{Z}}\mathrm{Rep}_{\mathbb{C}}(G)$$

is surjective for any finite group G. Theorem 0.7 gives a computation of $\Lambda^G \otimes K_0^G(EG)$, namely

$$\bigoplus_{(C)\in J^G} \Lambda^G \otimes_{\mathbb{Z}} K_p(B(C_GC)) \otimes_{\Lambda^G[W_GC]} \operatorname{im} \left(\theta_C : \Lambda^G \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \Lambda^G \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C)\right) \xrightarrow{\cong} \Lambda^G \otimes_{\mathbb{Z}} K_p^G(\underline{E}G).$$

Another construction of an equivariant Chern character using completely different methods can be found in [4]. However, it works only after applying $\mathbb{C} \otimes_{\mathbb{Z}}$ – and therefore cannot be used for our purposes here.

In Theorem 5.4 we will identify the composition of the Chern character of Theorem 0.7 with the map

$$\Lambda^G \otimes_{\mathbb{Z}} K_0^G(\underline{E}G) \xrightarrow{\operatorname{id} \otimes \operatorname{asmb}^G} \Lambda^G \otimes_{\mathbb{Z}} K_0(C_r^*(G)) \xrightarrow{\operatorname{id} \otimes i} \Lambda^G \otimes_{\mathbb{Z}} K_0(\mathcal{N}(G))$$

with an easier to understand and to calculate homomorphism, whose image is obvious from its definition. This will immediately imply

Theorem 0.8 Let Λ^G resp. J^G be the ring resp. set introduced in (0.1) resp. (0.6). Then the image of the composition

$$\Lambda^G \otimes_{\mathbb{Z}} K_0^G(\underline{E}G) \xrightarrow{\operatorname{id} \otimes_{\mathbb{Z}} \operatorname{asmb}^G} \Lambda^G \otimes_{\mathbb{Z}} K_0(C_r^*(G)) \xrightarrow{\operatorname{id} \otimes_{\mathbb{Z}} i} \Lambda^G \otimes_{\mathbb{Z}} K_0(\mathcal{N}(G))$$

is the image of the map given by induction

$$\bigoplus_{(C)\in J^G} \operatorname{id} \otimes \operatorname{ind}_C^G : \bigoplus_{(C)\in J^G} \Lambda^G \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \Lambda^G \otimes_{\mathbb{Z}} K_0(\mathcal{N}(G)).$$

Now Theorem 0.3 follows from Theorem 0.8.

The change of rings and K-theory map $l: K_0(\mathbb{C}G) \to K_0(C_r^*(G))$ from the algebraic K_0 -group of the complex group ring $\mathbb{C}G$ to the topological K_0 -group of $C_r^*(G)$ is in general far from being surjective. There is some evidence that it is injective after applying $\Lambda \otimes_{\mathbb{Z}} ?$ (see [11, Theorem 0.1]). Theorem 0.8 gives some evidence for the conjecture that the image of $\Lambda^G \otimes_{\mathbb{Z}} K_0(C_r^*(G)) \xrightarrow{\mathrm{id} \otimes_{\mathbb{Z}} i} \Lambda^G \otimes_{\mathbb{Z}} K_0(\mathcal{N}(G))$ agrees with the image of the composition $\Lambda^G \otimes_{\mathbb{Z}} K_0(\mathbb{C}G) \xrightarrow{l} \Lambda^G \otimes_{\mathbb{Z}} K_0(C_r^*(G)) \xrightarrow{\mathrm{id} \otimes_{\mathbb{Z}} i} \Lambda^G \otimes_{\mathbb{Z}} K_0(\mathcal{N}(G))$. The paper is organized as follows

- 1. The L^2 -index theorem
- 2. Modules over a category
- 3. Some representation theory for finite groups
- 4. The construction of the Chern character
- 5. The Baum-Connes Conjecture and the Trace Conjecture References

The author wants to thank the Max-Planck-Institute for Mathematics in Bonn for the hospitality during his stay in January and February 2001, when parts of the paper were written.

1. The L^2 -index theorem

In this section we prove a slight generalization of the L^2 -index theorem of Atiyah [1]. Let \overline{M} be a Riemannian manifold (without boundary) together with a cocompact free proper action of G by isometries. In other words, $M = G \backslash \overline{M}$ is a closed Riemannian manifold, the projection $p: \overline{M} \to M$ is a G-covering and \overline{M} is equipped with the Riemannian metric induced by the one of M. Let $D^* = (D^*, d^*)$ be an elliptic complex of differential operators $d^p: D^p \to D^{p+1}$ of order 1 acting on the space of sections $D^p = C^\infty(E^p)$ of vector bundles $E^p \to M$. Define \overline{E}^p by p^*E^p and \overline{D}^p by $L^2C^\infty(\overline{E}_p)$. Then G-acts on \overline{E}^p and \overline{D}^p . Since differential operators are local operators, there is a unique lift of each operator d^p to a G-equivariant differential operator $\widehat{d}^p: C^\infty(\overline{E}^p) \to C^\infty(\overline{E}^{p+1})$. We obtain an elliptic G-complex $(C^\infty(\overline{E}^*), \widehat{d}^*)$. Let $\overline{d}^p: \overline{D}^p \to \overline{D}^{p+1}$ be the minimal closure of \widehat{d}^p which is the same as its maximal closure [1, Proposition 3.1].

Since D^* is elliptic, each cohomology module $H^p(D^*) := \ker(d^p)/\operatorname{im}(d^{p-1})$ is a finitely generated \mathbb{C} -module. Hence we can define the *index* of the elliptic complex D^* by

$$\operatorname{index}(D^*) := \sum_{p>0} \dim_{\mathbb{C}}(H^p(D^*)) \in \mathbb{Z}. \tag{1.1}$$

Next we want to define an analogous invariant for the lifted complex \overline{D}^* . The group von Neumann algebra $\mathcal{N}(G)$ of G is the *-algebra $\mathcal{B}(l^2(G))^G$ of all bounded G-equivariant operators $l^2(G) \to l^2(G)$, where we equip $l^2(G)$ with the obvious left G-action. Let

$$\operatorname{tr}_{\mathcal{N}(G)}: \mathcal{N}(G) \to \mathbb{C}$$
 (1.2)

be the standard von Neumann trace, which sends $f \in \mathcal{N}(G) = \mathcal{B}(l^2(G))^G$ to $\langle f(e), e \rangle_{l^2(G)}$, where e denotes the element in $l^2(G)$ given by the unit element in $G \subset l^2(G)$. Denote by $\mathcal{Z}(\mathcal{N}(G))$ the center of $\mathcal{N}(G)$. There is the universal center-valued trace [7, Theorem 7.1.12 on page 462, Proposition 7.4.5 on page 483, Theorem 8.2.8 on page 517, Proposition 8.3.10 on page 525, Theorem 8.4.3 on page 532]

$$\operatorname{tr}_{\mathcal{N}(G)}^{u}: \mathcal{N}(G) \to \mathcal{Z}(\mathcal{N}(G))$$
 (1.3)

which is uniquely determined by the following two properties:

- (a) tr^u is a trace with values in the center, i.e. tr^u is \mathbb{C} -linear, for $a \in \mathcal{N}(G)$ with $a \geq 0$ we have $\operatorname{tr}^u(a) \geq 0$ and $\operatorname{tr}^u(ab) = \operatorname{tr}^u(ba)$ for all $a, b \in \mathcal{N}(G)$;
- (b) $\operatorname{tr}^{u}(a) = a$ for all $a \in Z(\mathcal{N}(G))$.

The map tr^u has the following further properties:

- (c) tr^u is faithful;
- (d) tr^u is normal. Equivalently, tr^u is continuous with respect to the ultraweak topology on $\mathcal{N}(G)$;
- (e) $||\operatorname{tr}^{u}(a)|| \leq ||a||$ for $a \in \mathcal{N}(G)$;
- (f) $\operatorname{tr}^{u}(ab) = a \operatorname{tr}^{u}(b)$ for all $a \in Z(\mathcal{N}(G))$ and $b \in \mathcal{N}(G)$;
- (g) Let p and q be projections in $\mathcal{N}(G)$. Then p and q are equivalent, i.e. $p = vv^*$ and $q = v^*v$, if and only if $\operatorname{tr}^u(p) = \operatorname{tr}^u(q)$;
- (h) Any linear functional $f: \mathcal{N}(G) \to \mathbb{C}$, which is continuous with respect to the norm topology on $\mathcal{N}(G)$ and which is central, i.e. f(ab) = f(ba) for all $a, b \in \mathcal{N}(G)$, factorizes as

$$\mathcal{N}(G) \xrightarrow{\operatorname{tr}^u} Z(\mathcal{N}(G)) \xrightarrow{f|_{Z(\mathcal{N}(G))}} \mathbb{C}.$$

In particular $\operatorname{tr}_{\mathcal{N}(G)} \circ \operatorname{tr}_{\mathcal{N}(G)}^u = \operatorname{tr}_{\mathcal{N}(G)}$.

A Hilbert $\mathcal{N}(G)$ -module V is a Hilbert space V together with a G-action by isometries such that there exists a Hilbert space H and a G-equivariant projection $p: H \otimes l^2(G) \to H \otimes l^2(G)$ with the property that V and $\mathrm{im}(p)$ are isometrically G-linearly isomorphic. Here $H \otimes l^2(G)$ is the tensor product of Hilbert spaces and G acts trivially on H and on $l^2(G)$ by the obvious left multiplication. Notice that p is not part of the structure, only its existence is required. We call V finitely generated if H can be choosen to be finite-dimensional.

Our main examples of Hilbert $\mathcal{N}(G)$ -modules are the Hilbert spaces \overline{D}^p which are isometrically G-isomorphic to $L^2(C^\infty(E^p))\otimes l^2(G)$. This can be seen using a fundamental domain \mathcal{F} for the G-action on \overline{M} which is from a measure theory point of view the same as M. A morphism $f:V\to W$ of Hilbert $\mathcal{N}(G)$ -modules is a densely defined closed G-equivariant operator. The differentials \overline{d}^p are morphisms of Hilbert $\mathcal{N}(G)$ -modules.

Let $f: V \to V$ be a morphism of Hilbert $\mathcal{N}(G)$ -modules which is positive. Choose a G-projection $p: H \otimes l^2(G) \to H \otimes l^2(G)$ and an isometric invertible G-equivariant operator $u: \operatorname{im}(p) \to V$. Let $\{b_i \mid i \in I\}$ be a Hilbert basis for H. Let \overline{f} be the composition

$$H \otimes l^2(G) \xrightarrow{p} \operatorname{im}(p) \xrightarrow{u} V \xrightarrow{f} V \xrightarrow{u^{-1}} \operatorname{im}(p) \hookrightarrow H \otimes l^2(G).$$

Define the von Neumann trace of $f: V \to V$ by

$$\operatorname{tr}_{\mathcal{N}(G)}(f) := \sum_{i \in I} \langle \overline{f}(b_i \otimes e), b_i \otimes e \rangle_{H \otimes l^2(G)} \in [0, \infty]. \tag{1.4}$$

This is indeed independent of the choice of p, u and the Hilbert basis $\{b_i \mid i \in I\}$. If V is finitely generated, then $\operatorname{tr}_{\mathcal{N}(G)}(f) < \infty$ is always true. Define the von Neumann dimension of a Hilbert $\mathcal{N}(G)$ -module V by

$$\dim_{\mathcal{N}(G)}(V) := \operatorname{tr}_{\mathcal{N}(G)}(\operatorname{id}: V \to V) \in [0, \infty]. \tag{1.5}$$

If V is a finitely generated Hilbert $\mathcal{N}(G)$ -module, we define the universal center-valued von Neumann dimension

$$\dim_{\mathcal{N}(G)}^{u}(V) := \operatorname{tr}_{\mathcal{N}(G)}^{u}(\operatorname{id}: V \to V) \in \mathcal{Z}(\mathcal{N}(G))$$
(1.6)

analogously to $\dim_{\mathcal{N}(G)}(V)$ replacing $\operatorname{tr}_{\mathcal{N}(G)}$ by $\operatorname{tr}_{\mathcal{N}(G)}^u$. Given a finitely generated Hilbert $\mathcal{N}(G)$ module V, we have $\operatorname{tr}_{\mathcal{N}(G)}(\dim_{\mathcal{N}(G)}^u(V)) = \dim_{\mathcal{N}(G)}(V)$.

Define the L^2 -cohomology $H^p_{(2)}(\overline{D}^*)$ to be $\ker(\overline{d}^p)/\operatorname{clos}(\operatorname{im}(\overline{d}^{p-1}))$, where $\operatorname{clos}(\operatorname{im}(\overline{d}^{p-1}))$ is the closure of the image of \overline{d}^{p-1} . Define the p-th Laplacian by $\overline{\Delta}_p = (\overline{d}^p)^* \overline{d}^p + \overline{d}^{p-1} (\overline{d}^{p-1})^*$. By the L^2 -Hodge-deRham Theorem we get a G-equivariant isometric isomorphism $\ker(\overline{\Delta}_p) \xrightarrow{\cong} H^p_{(2)}(\overline{D}^*)$. Thus $H^p_{(2)}(\overline{D}^*)$ inherits the structure of a Hilbert $\mathcal{N}(G)$ -module. Moreover, it turns out to be a finitely generated Hilbert $\mathcal{N}(G)$ -module. This can be deduced from the results of [12], where an index already over $C^*_r(G)$ is defined and the problem of getting finitely generated modules over $C^*_r(G)$ is treated. Namely, one can deduce from [12] after passing to the group von Neumann algebra, that there are finitely generated Hilbert $\mathcal{N}(G)$ -modules U_1, U_2, V_1 and V_2 and Hilbert $\mathcal{N}(G)$ -modules W_1 and W_2 together with a morphism $v: V_1 \to V_2$ and isomorphisms of Hilbert $\mathcal{N}(G)$ -modules $w: W_1 \xrightarrow{\cong} W_2$, $u_1: \overline{D}^p \oplus U_1 \xrightarrow{\cong} V_1 \oplus W_1$ and $u_2: \overline{D}^p \oplus U_2 \xrightarrow{\cong} V_2 \oplus W_2$ such that $u_2 \circ (\Delta_p \oplus 0) = (v \oplus w) \circ u_1$. Obviously the kernel of v and hence the kernel of $\overline{\Delta}_p$ are finitely generated Hilbert $\mathcal{N}(G)$ -modules.

Define the center-valued L^2 -index and the L^2 -index

$$\operatorname{index}_{\mathcal{N}(G)}^{u}(\overline{D}^{*}) := \sum_{p \geq 0} \dim_{\mathcal{N}(G)}^{u}(H_{(2)}^{p}(\overline{D}^{*})) \in \mathcal{Z}(\mathcal{N}(G)); \tag{1.7}$$

$$\operatorname{index}_{\mathcal{N}(G)}(\overline{D}^*) := \sum_{p \ge 0} \dim_{\mathcal{N}(G)}(H^p_{(2)}(\overline{D}^*)) \in \mathbb{R}.$$
(1.8)

The rest of this section is devoted to the proof of Theorem 0.4

Notation 1.9 Denote by $con(G)_{cf}$ the set of conjugacy classes (g) of elements $g \in G$ such that the set (g) is finite, or, equivalently, the centralizer $C_g(g) = \{g' \in G \mid g'g = gg'\}$ has finite index in G. For $c \in con(G)_{cf}$ let N_c be the element $\sum_{g \in c} g \in \mathbb{C}G$. In the sequel L_c resp. L_g denotes left multiplication with N_c resp. g for $c \in con(G)_{cf}$ resp. $g \in G$.

Notice for the sequel that $N_c \in \mathcal{Z}(\mathcal{N}(G))$ and L_c is G-equivariant and commutes with all G-operators.

Lemma 1.10 Consider $a \in \mathcal{Z}(\mathcal{N}(G))$. Then we have a = 0 if and only if $\operatorname{tr}_{\mathcal{N}(G)}(N_c a) = 0$ holds for any $c \in \operatorname{con}_{cf}(G)$.

<u>Proof</u>: Consider $a \in \mathcal{N}(G) = \mathcal{B}(l^2(G))^G$ which belongs to $\mathcal{Z}(\mathcal{N}(G))$. Write $a(e) = \sum_{g \in G} \lambda_g \cdot g \in l^2(G)$. Since $aR_g = R_g a$ holds for $g \in G$ and $R_g : l^2(G) \to l^2(G)$ given by right multiplication with $g \in G$, we get $\lambda_g = \lambda_{hgh^{-1}}$ for $g, h \in G$. This implies that $\lambda_g = 0$ if the conjugacy class (g) is infinite. On easily checks for an element g with finite (g)

$$\lambda_g = \operatorname{tr}_{\mathcal{N}(G)}(N_{(g^{-1})}a).$$

Lemma 1.11 We get under the conditions above.

$$\operatorname{tr}_{\mathcal{N}(G)}\left(\operatorname{index}_{\mathcal{N}(G)}^{u}(\overline{D}^{*})\right) = \operatorname{index}(D^{*}).$$

Proof: The L^2 -index theorem of Atiyah [1, (1.1)] says

$$\operatorname{index}_{\mathcal{N}(G)}(\overline{D}^*) = \operatorname{index}(D^*).$$

We have

$$\operatorname{tr}_{\mathcal{N}(G)}\left(\operatorname{index}_{\mathcal{N}(G)}^{u}(\overline{D}^{*})\right) = \operatorname{tr}_{\mathcal{N}(G)}\left(\sum_{p\geq 0}(-1)^{p}\operatorname{dim}_{\mathcal{N}(G)}^{u}(H_{(2)}^{p}(\overline{D}^{*}))\right)$$

$$= \sum_{p\geq 0}(-1)^{p}\operatorname{tr}_{\mathcal{N}(G)}\left(\operatorname{dim}_{\mathcal{N}(G)}^{u}(H_{(2)}^{p}(\overline{D}^{*}))\right)$$

$$= \sum_{p\geq 0}(-1)^{p}\operatorname{dim}_{\mathcal{N}(G)}\left(H_{(2)}^{p}(\overline{D}^{*})\right)$$

$$= \operatorname{index}_{\mathcal{N}(G)}(\overline{D}^{*}). \quad \blacksquare$$

Next we want to prove

Lemma 1.12 Consider an element $c \in con(G)_{cf}$ with $c \neq (1)$. Then

$$\operatorname{tr}_{\mathcal{N}(G)}\left(N_c \cdot \operatorname{index}_{\mathcal{N}(G)}^u(\overline{D}^*)\right) = 0.$$

<u>Proof</u>: In the sequel we denote by $\overline{\mathrm{pr}}_p:\overline{D}^p\to\overline{D}^p$ the projection onto the kernel of the p-th Laplacian $\overline{\Delta}_p=(\overline{d}^p)^*\overline{d}^p+\overline{d}^{p-1}(\overline{d}^{p-1})^*$. By the L^2 -Hodge-deRham Theorem we get a G-equivariant isometric isomorphism im $(\overline{\mathrm{pr}}_p)\stackrel{\cong}{\longrightarrow} H^p_{(2)}(\overline{D}^*)$. This implies

$$\operatorname{tr}_{\mathcal{N}(G)}\left(N_{c} \cdot \operatorname{index}_{\mathcal{N}(G)}^{u}(\overline{D}^{*})\right)$$

$$= \sum_{p\geq 0} (-1)^{p} \cdot \operatorname{tr}_{\mathcal{N}(G)}\left(N_{c} \cdot \operatorname{tr}_{\mathcal{N}(G)}^{u}\left(\operatorname{id}: H_{(2)}^{p}(\overline{D}^{*}) \to H_{(2)}^{p}(\overline{D}^{*})\right)\right)$$

$$= \sum_{p\geq 0} (-1)^{p} \cdot \operatorname{tr}_{\mathcal{N}(G)}\left(L_{c}: H_{(2)}^{p}(\overline{D}^{*}) \to H_{(2)}^{p}(\overline{D}^{*})\right)$$

$$= \sum_{p\geq 0} (-1)^{p} \cdot \operatorname{tr}_{\mathcal{N}(G)}\left(L_{c} \circ \overline{\operatorname{pr}}_{p}: \overline{D}^{p} \to \overline{D}^{p}\right). \tag{1.13}$$

The operator $e^{-t\overline{\Delta}_p}: \overline{D}^p \to \overline{D}^p$ is a bounded G-equivariant operator and has a smooth kernel $e^{-t\overline{\Delta}_p}(\overline{x},\overline{y}): \overline{E}^p_{\overline{x}} \to \overline{E}^p_{\overline{y}}$ for $\overline{x},\overline{y} \in \overline{M}$. Thus $e^{-t\overline{\Delta}_p}(\omega)$ applied to a section ω is given at $\overline{y} \in \overline{M}$ by $\int_{\overline{M}} e^{-t\overline{\Delta}_p}(\overline{x},\overline{y})(\omega(\overline{x}))d\mathrm{vol}_{\overline{x}}$. The operator $L_c \circ e^{-t\overline{\Delta}_p}$ is also a bounded G-equivariant operator and has a smooth kernel $\left(L_c \circ e^{-t\overline{\Delta}_p}\right)(\overline{x},\overline{y})$ satisfying

$$\left(L_c \circ e^{-t\overline{\Delta}_p}\right)(\overline{x}, \overline{y}) = \sum_{g \in c} L_g \circ e^{-t\overline{\Delta}_p}(\overline{x}, g^{-1}\overline{y}).$$

If \mathcal{F} is a fundamental domain for the G-action, then [1, Proposition 4.6].

$$\operatorname{tr}_{\mathcal{N}(G)}(L_{c} \circ e^{-t\overline{\Delta}_{p}}) = \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{C}}\left(\left(L_{c} \circ e^{-t\overline{\Delta}_{p}}\right)(\overline{x}, \overline{x})\right) d\operatorname{vol}_{\overline{x}};$$

$$= \sum_{g \in c} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{C}}\left(L_{g} \circ e^{-t\overline{\Delta}_{p}}(\overline{x}, g^{-1}\overline{x})\right) d\operatorname{vol}_{\overline{x}}. \tag{1.14}$$

where $\operatorname{tr}_{\mathbb{C}}$ is the trace of an endomorphism of a finite-dimensional complex vector space. Since M is compact, we can find $\epsilon > 0$ such that the distance of \overline{x} and $g\overline{x}$ is bounded from below by ϵ for all $\overline{x} \in \overline{M}$ and $g \in c$. We have

$$\lim_{t \to 0} \sup \left\{ ||e^{-t\overline{\Delta}_p}(\overline{x}, g^{-1}\overline{x})|| \mid \overline{x} \in \mathcal{F} \right\} = 0, \tag{1.15}$$

where $||e^{-t\overline{\Delta}_p}(\overline{x},g^{-1}\overline{x})||$ is the operator norm of the linear map $e^{-t\overline{\Delta}_p}(\overline{x},g^{-1}\overline{x})$ of finite-dimensional Hilbert spaces. This follows from the finite propagation speed method of [6]. There only the standard Laplacian on 0-forms is treated, but the proof presented there carries over to the Laplacian $\overline{\Delta}_p$ associated to the lift \overline{D}^* to the G-covering \overline{M} of an elliptic complex D^* of differential operators of order 1 on a closed Riemannian manifold M in any dimension p. The point is that \overline{M} has bounded geometry, $\overline{\Delta}_p$ is essentially selfadjoint and positive so that $\sqrt{\overline{\Delta}_p}$ makes sense, and $\frac{\partial^2}{\partial t^2} + \overline{\Delta}_p$ is strictly hyperbolic. Now one applies the results of [6, Section 1] and uses the estimate in [9, page 475], where the special case of D^* being the deRham complex is treated.

Since

$$\left| \operatorname{tr}_{\mathbb{C}} \left(L_g \circ e^{-t\overline{\Delta}_p}(\overline{x}, g^{-1}\overline{x}) \right) \right| \leq \dim_{\mathbb{C}} (E^p) \cdot ||e^{-t\overline{\Delta}_p}(\overline{x}, g^{-1}\overline{x})||$$

and \mathcal{F} is compact, we conclude from (1.14) and (1.15)

$$\lim_{t \to 0} \operatorname{tr}_{\mathcal{N}(G)} (L_c \circ e^{-t\overline{\Delta}_p}) = 0. \tag{1.16}$$

Since the trace $\operatorname{tr}_{\mathcal{N}(G)}$ is ultraweakly continuous and $\lim_{t\to\infty} e^{-t\overline{\Delta}_p} = \overline{\operatorname{pr}}_p$ in the weak topology, we get

$$\lim_{t \to \infty} \operatorname{tr}_{\mathcal{N}(G)}(L_c \circ e^{-t\overline{\Delta}_p}) = \operatorname{tr}_{\mathcal{N}(G)}(L_c \circ \overline{\operatorname{pr}}_p). \tag{1.17}$$

We conclude from (1.13) and (1.17)

$$\operatorname{tr}_{\mathcal{N}(G)}\left(N_c \cdot \operatorname{index}_{\mathcal{N}(G)}^u(\overline{D}^*)\right) = \lim_{t \to \infty} \sum_{p > 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)}\left(L_c \circ e^{-t\overline{\Delta}_p}\right). \tag{1.18}$$

We have

$$\frac{d}{dt} \sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ e^{-t\overline{\Delta}_p} : \overline{D}^p \to \overline{D}^p \right) \\
= \sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ \frac{d}{dt} e^{-t\overline{\Delta}_p} \right) \\
= \sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ (-\overline{\Delta}_p) \circ e^{-t\overline{\Delta}_p} \right) \\
= -\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ \overline{d}^{p-1} \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \right) \\
- \sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ \overline{d}^{p-1} \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \right) \\
= -\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ \overline{d}^{p-1} \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \circ e^{-t\overline{\Delta}_p} \right) \\
- \sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \circ \overline{d}^p \right) \\
= -\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \circ \overline{d}^{p-1} \right) \\
= -\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \circ \overline{d}^{p-1} \right) \\
= -\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \circ \overline{d}^{p-1} \right) \\
= -\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \circ \overline{d}^{p-1} \right) \\
= -\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \circ \overline{d}^{p-1} \right) \\
= -\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \circ \overline{d}^{p-1} \right) \\
= -\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \circ \overline{d}^{p-1} \right) \\
= -\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \circ \overline{d}^{p-1} \right) \\
= -\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \circ \overline{d}^{p-1} \right) \\
= -\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ (\overline{d}^{p-1})^* \circ e^{-t\overline{\Delta}_p} \circ \overline{d}^{p-1} \right) \\
= 0. \tag{1.19}$$

Here are some justifications for the calculation above. Recall that L_c is a bounded G-operator and commutes with any G-equivariant operator. We can commute $\operatorname{tr}_{\mathcal{N}(G)}$ and $\frac{d}{dt}$ since $\operatorname{tr}_{\mathcal{N}(G)}$ is ultraweakly continuous. We conclude $e^{-t\overline{\Delta}_{p+1}} \circ \overline{d}^p = \overline{d}^p \circ e^{-t\overline{\Delta}_p}$ from the fact that $\overline{\Delta}_{p+1} \circ \overline{d}^p = \overline{d}^p \circ \overline{\Delta}_p$ holds on $C^{\infty}(\overline{E}^{p-1})$. We have used at several places the typical trace relation $\operatorname{tr}_{\mathcal{N}(G)}(AB) = \operatorname{tr}_{\mathcal{N}(G)}(BA)$ which is in each case justified by [1, section 4]. In order to be able to apply this trace relation we have splitted $e^{-t\overline{\Delta}_p}$ into $e^{-\frac{t}{2}\overline{\Delta}_p} \circ e^{-\frac{t}{2}\overline{\Delta}_p}$ in the calculation above.

Hence
$$\sum_{p\geq 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)} \left(L_c \circ e^{-t\overline{\Delta}_p} : \overline{D}^p \to \overline{D}^p \right)$$
 is independent of t and we conclude from (1.18)

$$\operatorname{tr}_{\mathcal{N}(G)}\left(N_c \cdot \operatorname{index}_{\mathcal{N}(G)}^u(\overline{D}^*)\right) = \lim_{t \to 0} \sum_{p > 0} (-1)^p \cdot \operatorname{tr}_{\mathcal{N}(G)}\left(L_c \circ e^{-t\overline{\Delta}_p} : \overline{D}^p \to \overline{D}^p\right). \tag{1.20}$$

Now Lemma 1.12 follows from (1.16) (1.20).

Finally Theorem 0.4 follows from Lemma 1.10, Lemma 1.11 and Lemma 1.12.

2. Modules over a category

In this section we recall some facts about modules over the category $Sub = Sub(G; \mathcal{F}(X))$ for a proper G-CW-complex X as far as needed here. For more information about modules over a category we refer to [10].

Let $\operatorname{Sub} := \operatorname{Sub}(G; \mathcal{F}(X))$ be the following category. Objects are the elements of the set $\mathcal{F}(X)$ of subgroups $H \subset G$, for which $X^H \neq \emptyset$. For two finite subgroups H and K in $\mathcal{F}(X)$ denote by $\operatorname{conhom}_G(H,K)$ the set of group homomorphisms $f:H\to K$, for which there exists an element $g\in G$ with $gHg^{-1}\subset K$ such that f is given by conjugation with g, i.e. $f=c(g):H\to K$, $h\mapsto ghg^{-1}$. Notice that c(g)=c(g') holds for two elements $g,g'\in G$ with $gHg^{-1}\subset K$ and $g'H(g')^{-1}\subset K$ if and only if $g^{-1}g'$ lies in the centralizer $C_GH=\{g\in G\mid gh=hg\text{ for all }h\in H\}$ of H in G. The group of inner automorphisms of K acts on $\operatorname{conhom}_G(H,K)$ from the left by composition. Define the set of morphisms $\operatorname{mor}_{\operatorname{Sub}}(H,K)$ by $\operatorname{Inn}(K)\setminus \operatorname{conhom}_G(H,K)$. Let N_GH be the normalizer $\{g\in G\mid gHg^{-1}=H\}$ of H. Define $H\cdot C_GH=\{h\cdot g\mid h\in H,g\in C_GH\}$. This is a normal subgroup of N_GH and we define $W_GH:=N_GH/(H\cdot C_GH)$. One easily checks that W_GH is a finite group and that there is an isomorphism from W_GH to aut_{\operatorname{Sub}}(H) which sends $g(H\cdot C_GH)\in W_GH$ to the automorphism of H represented by $c(g):H\to H$. Notice that there is a morphism from H to K if and only if H is subconjugated to K. There is an isomorphism from H to K if and only if H and K are conjugated. The category Sub is a so called EI-category, i.e. any endomorphism in Sub is an isomorphism.

Let R be a commutative associative ring with unit. A covariant resp. contravariant RSub-module M is a covariant resp. contravariant functor from Sub to the category of R-modules. Morphisms are natural transformations. The structure of an abelian category on the category of R-modules carries over to the category of RSub-modules. In particular the notion of a projective RSub-module is defined. Given a contravariant RSub-module M and a covariant RSub-module N, one can define a R-module, their tensor product over Sub

$$M \otimes_{RSub} N = \bigoplus_{H \in \mathcal{F}(X)} M(H) \otimes_R N(H) / \sim,$$

where \sim is the typical tensor relation $mf \otimes n = m \otimes fn$, i.e. for each morphism $f: H \to K$ in Sub, $m \in M(K)$ and $n \in N(H)$ we introduce the relation $M(f)(m) \otimes n - m \otimes N(f)(n) = 0$.

Given a left $R[W_GH]$ -module N for $H \in \mathcal{F}(X)$, define a covariant RSub-module E_HM by

$$(E_H M)(K) := R \operatorname{mor}_{\operatorname{Sub}}(H, K) \otimes_{R[W_G H]} N \qquad \text{for } K \subset G, |K| < \infty, \tag{2.1}$$

where $R \operatorname{mor}_{\operatorname{Sub}}(H,K)$ is the free R-module generated by the set $\operatorname{mor}_{\operatorname{Sub}}(H,K)$. Given a covariant RSub-module M and $H \in \mathcal{F}(X)$, define $M(H)_s$ to be the left R-submodule of M(H), which is spanned by the images of all R-maps $M(f): M(K) \to M(H)$, where f runs through all morphisms $f: K \to H$ in Sub, which have H as target and are not isomorphisms. Obviously $M(H)_s$ is an $R[W_G H]$ -submodule of M(H). Define a left $R[W_G H]$ -module $S_H M$ by

$$S_H M := M(H)/M(H)_s. \tag{2.2}$$

Both functors E_H and S_H respect direct sums and the property finitely generated and the property projective. Given a left $R[W_GH]$ -module M, $S_K \circ E_HM$ is M, if H = K and is 0, if H and K are not conjugated in G.

Let M be a covariant RSub-module. We want to check whether it is projective or not. A necessary (but not sufficient) condition is that S_HM is a projective $R[W_GH]$ -module. Assume that S_HM is $R[W_GH]$ -projective for all objects H in Sub. We can choose a $R[W_GH]$ -splitting $\sigma_H: S_HM \to M(H)$ of the canonical projection $M(H) \to S_HM = M(H)/M(H)_s$. For a finite subgroup $H \subset G$ define the morphism of covariant RSub-modules

$$i_H M: E_H(M(H)) \to M$$

by $(i_H M)(K)((f: H \to K) \otimes_{R[W_G H]} m) = M(f)(m)$. We obtain after a choice of representatives $H \in (H)$ for any conjugacy class (H) of subgroups $H \in \mathcal{F}(X)$ a morphism of covariant RSub-modules

$$T: \bigoplus_{(H), H \in \mathcal{F}(X)} E_H S_H M \xrightarrow{\bigoplus_{(H), H \in \mathcal{F}(X)} E_H(\sigma_H)} \bigoplus_{(H), H \in \mathcal{F}(X)} E_H(M(H)) \xrightarrow{\bigoplus_{(H), H \in \mathcal{F}(X)} i_H M} M. \quad (2.3)$$

We get as a special case of [11, Theorem 2.11]

Theorem 2.4 The morphism T is always surjective. It is bijective if and only if M is a projective RSub-module.

3. Some representation theory for finite groups

Denote for a finite group H by $\operatorname{Rep}_{\mathbb{Q}}(H)$ resp. $\operatorname{Rep}_{\mathbb{C}}(H)$ the ring of finite dimensional H-representations over the field \mathbb{Q} resp. \mathbb{C} . Recall for the sequel that these are finitely generated free abelian groups. Given an inclusion of finite groups $H \subset G$, we denote by $\operatorname{ind}_H^G : \operatorname{Rep}_{\mathbb{Q}}(H) \to \operatorname{Rep}_{\mathbb{Q}}(G)$ and $\operatorname{res}_G^H : \operatorname{Rep}_{\mathbb{Q}}(G) \to \operatorname{Rep}_{\mathbb{Q}}(H)$ the induction and restriction homomorphism and similar for $R \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{Q}}$, $\operatorname{Rep}_{\mathbb{C}}$ and $R \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}$ for a commutative ring R with $\mathbb{Z} \subset R$. Let $\operatorname{con}_{\mathbb{Q}}(H)$ be the set of \mathbb{Q} -conjugacy classes of elements in H, where h and h' are called \mathbb{Q} -conjugated if the cyclic subgroups $\langle h \rangle$ and $\langle h' \rangle$ are conjugated in G. Let $\operatorname{con}(G)$ be the set of conjugacy classes of elements in G. Denote by $\operatorname{class}_{\mathbb{Q}}(H)$ resp. $\operatorname{class}_{\mathbb{C}}(H)$ the rational resp. complex vector space of functions $\operatorname{con}_{\mathbb{Q}}(H) \to \mathbb{Q}$ resp. $\operatorname{con}(G) \to \mathbb{C}$. Character theory yields isomorphisms [15, page 68 and Theorem 29 on page 102]

$$\chi_{\mathbb{Q}} : \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{Q}}(H) \xrightarrow{\cong} \operatorname{class}_{\mathbb{Q}}(H);$$

 $\chi_{\mathbb{C}} : \mathbb{C} \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(H) \xrightarrow{\cong} \operatorname{class}_{\mathbb{C}}(H).$

For a finite cyclic group C denote by $\theta_C \in \mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{Q}}(C)$ the element whose character $\chi_{\mathbb{Q}}(\theta_C)$ sends $c \in C$ to 1, if c generates C, and to 0 otherwise.

Let $C \subset H$ be a cyclic subgroup of the finite group H. Then we get for $h \in H$

$$\frac{1}{[H:C]} \cdot \chi_{\mathbb{Q}} \left(\operatorname{ind}_{C}^{H} \theta_{C} \right) (h) \ = \ \frac{1}{[H:C]} \cdot \frac{1}{|C|} \cdot \sum_{l \in H, l^{-1}hl \in C} \chi_{\mathbb{Q}} \left(\theta_{C} \right) (l^{-1}hl) \ = \ \frac{1}{|H|} \cdot \sum_{l \in H, \langle l^{-1}hl \rangle = C} 1.$$

Denote by $[\mathbb{Q}] \in \operatorname{Rep}_{\mathbb{Q}}(H)$ the class of the trivial H-representation \mathbb{Q} . Notice that $\chi_{\mathbb{Q}}([\mathbb{Q}])$ is the constant function with values 1. We get in $\mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{Q}}(H)$

$$1 \otimes_{\mathbb{Z}} [\mathbb{Q}] = \sum_{C \subset H, C \text{ cyclic}} \frac{1}{[H:C]} \cdot \operatorname{ind}_C^H \theta_C, \tag{3.1}$$

since for any $l \in H$ and $h \in H$ there is precisely one cyclic subgroup $C \subset H$ with $C = \langle l^{-1}hl \rangle$ and $\chi_{\mathbb{Q}}$ is bijective. In particular we get for a finite cyclic group C in $\mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{Q}}(C)$

$$\theta_C = 1 \otimes_{\mathbb{Z}} [\mathbb{Q}] - \sum_{D \subset C, D \neq C} \frac{1}{[C:D]} \cdot \operatorname{ind}_D^C \theta_D.$$
 (3.2)

Now one easily checks by induction over the order of the finite cyclic subgroup C that the element θ_C satisfies

$$\theta_C \in \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{Q}}(C).$$
 (3.3)

Obviously θ_C is an idempotent in $\mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{Q}}(C)$. By the obvious change of rings homomorphism, $\mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C)$ becomes a $\mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{Q}}(C)$ -module. Hence multiplication with θ_C defines an idempotent endomorphism

$$\theta_C: \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C).$$

It is natural with respect to group automorphisms of C, since θ_C is invariant under group automorphisms of C.

Lemma 3.4 (a) For a finite group H the map

$$\bigoplus_{C \subset H, C \text{ cyclic}} \operatorname{ind}_C^H : \bigoplus_{C \subset H, C \text{ cyclic}} \mathbb{Z} \left[\frac{1}{|H|} \right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \mathbb{Z} \left[\frac{1}{|H|} \right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(H)$$

is surjective;

(b) Let C be a finite cyclic group. Then the image resp. cokernel of

$$\bigoplus_{D \subset C, D \neq C} \operatorname{ind}_D^C : \bigoplus_{D \subset C, D \neq C} \mathbb{Z} \left[\frac{1}{|C|} \right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(D) \to \mathbb{Z} \left[\frac{1}{|C|} \right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C)$$

is equal resp. isomorphic to the kernel resp. image of the idempotent endomorphism

$$\theta_C: \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C);$$

(c) Let C be a finite cyclic group. The image of the idempotent endomorphism

$$\theta_C: \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C);$$

is a projective $\mathbb{Z}\left[\frac{1}{|C|}\right]$ [aut(C)]-module, where the aut(C)-operation comes from the obvious aut(C)-operation on C and induction.

 $\underline{\underline{\mathbf{Proof}}}$: (a) follows from the following calculation for $x \in \mathbb{Z}\left[\frac{1}{|H|}\right] \otimes_{\mathbb{Z}} \mathrm{Rep}_{\mathbb{C}}(H)$ based on (3.1)

$$x = (1 \otimes_{\mathbb{Z}} [\mathbb{Q}]) \cdot x = \left(\sum_{C \subset H, C \text{ cyclic}} \frac{1}{[H:C]} \cdot \operatorname{ind}_C^H \theta_C \right) \cdot x = \sum_{C \subset H, C \text{ cyclic}} \frac{1}{[H:C]} \cdot \operatorname{ind}_C^H (\theta_C \cdot \operatorname{res}_H^C x).$$

(b) follows from the following two calculations based on (3.2) for $x \in \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(H)$

$$x - \theta_C \cdot x = (1 \otimes [\mathbb{Q}] - \theta_C) \cdot x$$

$$= \left(\sum_{D \subset C, D \neq C} \frac{1}{[C : D]} \cdot \operatorname{ind}_D^C \theta_D \right) \cdot x$$

$$= \sum_{D \subset C, D \neq C} \frac{1}{[C : D]} \cdot \operatorname{ind}_D^C (\theta_D \cdot \operatorname{res}_C^D x)$$

and for $D \subset C, D \neq C$ and $y \in \mathbb{Z} \left[\frac{1}{|C|} \right] \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(D)$

$$\theta_C \cdot \operatorname{ind}_D^C y = \operatorname{ind}_D^C (\operatorname{res}_C^D \theta_C \cdot y) = \operatorname{ind}_D^C (0 \cdot y) = 0.$$

(c) Put $\Lambda = \mathbb{Z}\left[\frac{1}{|C|}\right]$. Let C_p be the p-Sylow subgroup of C for a prime p. There are canonical isomorphisms

$$C \cong \prod_{p} C_{p};$$

$$\operatorname{aut}(C) \cong \prod_{p} \operatorname{aut}(C_{p});$$

$$P: \otimes_{p} \operatorname{Rep}_{\mathbb{C}}(C_{p}) \cong \operatorname{Rep}_{\mathbb{C}}(C),$$

where p runs through the prime numbers diving |C|. The isomorphism P assigns to $\otimes_p[V_p]$ for C_p -representations V_p the class of the C-representation $\otimes_p V_p$ with the factorwise action of $\operatorname{aut}(C) = \prod_p \operatorname{aut}(C_p)$. The following diagram commutes

$$\bigotimes_{p} \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C_{p}) \xrightarrow{P} \operatorname{Rep}_{\mathbb{C}}(C)$$

$$\bigotimes_{p} \theta_{C_{p}} \downarrow \qquad \qquad \downarrow \theta_{C}$$

$$\bigotimes_{p} \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C_{p}) \xrightarrow{P} \operatorname{Rep}_{\mathbb{C}}(C)$$

Thus we obtain an isomorphism of $\Lambda[aut(C)]$ -modules

$$\otimes_p \operatorname{im}(\theta_{C_p}) \xrightarrow{\cong} \operatorname{im}(\theta_C),$$

where $\operatorname{aut}(C) = \prod_p \operatorname{aut}(C_p)$ acts factorwise on the source. Hence the claim for C follows if we know it for C_p for all primes p. Therefore it remains to treat the case $C = \mathbb{Z}/p^n$ for some prime number p and positive integer n. Notice that then $\Lambda = \mathbb{Z}\left[\frac{1}{p}\right]$.

In the sequel we abbreviate $A(n) = \operatorname{aut}(\mathbb{Z}/p^n)$. This is isomorphic to multiplicative group of units $\mathbb{Z}/p^n \times \operatorname{in} \mathbb{Z}/p^n$ and hence an abelian group of order $p^{n-1} \cdot (p-1)$. Denote by $A(n)_p$ the p-Sylow subgroup and by $A(n)_p'$ the subgroup $\{a \in A(n) \mid a^{p-1} = 1\}$ which is cyclic of order (p-1). We get a canoncial isomorphism

$$A(n) \cong A(n)_p \times A(n)_p'$$

Notice that \mathbb{Z}/p^n has precisely one subgroup of order p^m for $0 \le m \le n$ which will be denoted by \mathbb{Z}/p^m . These subgroups are characteristic and hence restriction to these subgroups yields homomorphisms $A(n) \to A(n-1) \to \ldots \to A(1)$. They induce epimorphisms $A(m)_p \to A(m-1)_p$ and isomorphisms $A(m)_p \xrightarrow{\cong} A(m-1)_p'$. Using these isomorphisms we will identify

$$A(n)'_p = A(n-1)'_p = \dots = A(1)'_p = \mathbb{Z}/p^{\times}.$$

Thus we get canonical decompositions

$$A(n) = A(n)_p \times \mathbb{Z}/p^{\times}.$$

Let M be a $\Lambda[A(n)]$ -module. Let res M be the $\Lambda[\mathbb{Z}/p^{\times}]$ -module obtained by restriction. The following maps are $\Lambda[A(n)]$ -homomorphisms

$$q: \Lambda[A(n)_p] \otimes_{\Lambda} \operatorname{res} M \to M, \qquad a \otimes m \mapsto am;$$

$$s: M \to \Lambda[A(n)_p] \otimes_{\Lambda} \operatorname{res} M, \qquad m \mapsto \frac{1}{|A(n)_p|} \cdot \sum_{a \in A(n)_p} a \otimes a^{-1}m,$$

where $A(n) = A(n)_p \times \mathbb{Z}/p^{\times}$ acts factorwise on $\Lambda[A(n)_p] \otimes_{\Lambda} \operatorname{res} M$. They satisfy $q \circ s = \operatorname{id}$. Obviously $\Lambda[A(n)_p] \otimes_{\Lambda} \operatorname{res} M$ is $\Lambda[A(n)]$ -projective if $\operatorname{res} M$ is $\Lambda[\mathbb{Z}/p^{\times}]$ -projective. This shows that M is $\Lambda[A(n)]$ -projective if its restriction $\operatorname{res} M$ to a $\Lambda[\mathbb{Z}/p^{\times}]$ -module is projective. Therefore it suffices to show that $\operatorname{im}(\theta_C)$ is $\Lambda[\mathbb{Z}/p^{\times}]$ -projective.

The composition of the induction homomorphism $\operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^{n-1}) \to \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^n)$ with the restriction homomorphism $\operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^n) \to \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^{n-1})$ is $p \cdot \operatorname{id} : \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^{n-1}) \to \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^{n-1})$. We conclude from Lemma 3.4 (b) that the $\Lambda[\mathbb{Z}/p^{\times}]$ -module $\operatorname{im}(\theta_C)$ is isomorphic to the kernel of the surjective restriction homomorphism res : $\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^n) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^{n-1})$. Hence there is an exact sequence of $\Lambda[\mathbb{Z}/p^{\times}]$ -modules

$$0 \to \operatorname{im}(\theta_c) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^n) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^{n-1}) \to 0.$$

It induces an exact sequence of $\Lambda[\mathbb{Z}/p^{\times}]$ -modules

$$0 \to \operatorname{im}(\theta_c) \to \ker (\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^n) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\{1\}))$$
$$\to \ker (\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^{n-1}) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\{1\})) \to 0.$$

Hence it suffices to show that the $\Lambda[\mathbb{Z}/p^{\times}]$ -module $\ker(\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^{m}) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\{1\}))$ is projective for m = 1, 2 ... n.

Recall that \mathbb{Z}/p^{\times} is a subgroup of $A(m) = \operatorname{aut}(\mathbb{Z}/p^m)$ and thus acts on $\mathbb{Z}/p^m - \{\overline{0}\}$ in the obvious way. Denote for $k \in \mathbb{Z}$ by \mathbb{C}_k the one-dimensional \mathbb{Z}/p^m -representation for which $\overline{b} \in \mathbb{Z}/p^m$ acts by multiplication with $\exp(2\pi i k b)$. We obtain a $\Lambda[\mathbb{Z}/p^{\times}]$ -homomorphism

$$Q: \Lambda[\mathbb{Z}/p^m - \{0\}] \to \ker\left(\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^m) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\{1\})\right)$$

by sending \overline{k} to $[\mathbb{C}_k] - \frac{1}{p^m} \cdot [\mathbb{C}[\mathbb{Z}/p^m]]$. This is the composition of the inclusion $\Lambda[\mathbb{Z}/p^m - \overline{0}] \to \Lambda[\mathbb{Z}/p^m]$, the isomorphism $\Lambda[\mathbb{Z}/p^m] \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}(\mathbb{Z}/p^m)$ sending \overline{k} to $[\mathbb{C}_k]$ and the split epimorphism $\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}(\mathbb{Z}/p^m) \to \ker(\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\mathbb{Z}/p^m) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(\{1\}))$ sending [V] to $[V] - \frac{\dim(V)}{p^m} \cdot [\mathbb{C}[\mathbb{Z}/p^m]]$. One easily checks that Q is an isomorphism of $\Lambda[\mathbb{Z}/p^\times]$ -modules. Hence it remains to show that \mathbb{Z}/p^\times -acts freely on $\mathbb{Z}/p^m - \{\overline{0}\}$ because then $\Lambda[\mathbb{Z}/p^m - \{\overline{0}\}]$ is a free $\Lambda[\mathbb{Z}/p^\times]$ -module.

Consider $x \in \mathbb{Z}/p^m$ with $x \neq \overline{0}$. We have to show for $a \in \mathbb{Z}/p^\times = A(m)_p' \subset A(m)$ that a(x) = x implies $a = \mathrm{id}$. Since x is non-zero, x generates a cyclic subgroup \mathbb{Z}/p^l for some $l \in \{1, 2, \dots m\}$. Then $a \in A(m)$ restricted to A(l) is an automorphism $\mathbb{Z}/p^l \to \mathbb{Z}/p^l$ which sends a generator to itself. Hence this automorphism of \mathbb{Z}/p^l is the identity. This implies that a is the identity in $A(l)_p' = \mathbb{Z}/p^\times$. This finishes the proof of Lemma 3.4.

The next result is analogous to [11, Lemma 7.4] but we have to go through its proof again because here we want to invert only the orders of finite subgroups of G, whereas in [11] we have considered everything over \mathbb{Q} .

Theorem 3.5 Let G be a group and $\Lambda = \Lambda^G(X)$ as defined in (0.5). Consider the covariant $\Lambda \operatorname{Sub}$ module $\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?)$ which sends a finite subgroup group $H \subset G$ to $\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(H)$. Then

(a) $S_H \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?)$ is trivial if the finite subgroup $H \subset G$ is not cyclic.

For a finite cyclic subgroup $C \subset G$, the $\Lambda[W_GC]$ -module $S_C\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?)$ is isomorphic to the image of the idempotent $\Lambda[W_GC]$ -homomorphism

$$\theta_C: \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C).$$

The isomorphism is given by the composition of the obvious inclusion $\operatorname{im}(\theta_C) \to \operatorname{Rep}_{\mathbb{C}}(C)$ with the obvious projection $\operatorname{Rep}_{\mathbb{C}}(C) \to S_C \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?)$;

- (b) $\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?)$ is a projective $\Lambda \operatorname{Sub}$ -module;
- (c) Let M be a contravariant Λ Sub-module. There is a natural isomorphism of Λ -modules

$$\bigoplus_{(C), C \text{ cyclic}, C \in \mathcal{F}(X)} M(C) \otimes_{\Lambda[W_G C]} \operatorname{im} (\theta_C : \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C))$$

$$\cong M \otimes_{\Lambda \operatorname{Sub}} \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?);$$

(d) $\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(H)$ is a flat $\Lambda \operatorname{Sub}$ -module, i.e. for an exact sequence $0 \to M_0 \to M_1 \to M_2 \to 0$ of contravariant $\Lambda \operatorname{Sub}$ -modules the induced sequence of R-modules $0 \to M_0 \otimes_{\Lambda \operatorname{Sub}} \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?) \to M_1 \otimes_{\Lambda \operatorname{Sub}} \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?) \to 0$ is exact.

<u>Proof</u>: (a) We conclude from Lemma 3.4 (a) that $S_H \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?)$ is trivial if H is not cyclic. If H = C for a finite cyclic subgroup $C \subset G$, the assertion follows from Lemma 3.4 (b).

(b) Notice that N_GH/C_GH is a subgroup of aut(H) and all W_GH -operations are induced by the obvious aut(H)-operations. We conclude from Lemma 3.4 (c) and assertion (a) that $S_H\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?)$ is a projective $\Lambda[W_GH]$ -module for all $H \in \mathcal{F}(X)$. Because of Theorem 2.4 it suffices to show for the morphism T defined in (2.3) that T(K) is injective for any given element $K \in \mathcal{F}(X)$.

Consider an element u in the kernel of T(K). Put $J(H) = \operatorname{mor}_{Sub}(H, K)/(W_G H)$ for $H \in \mathcal{F}(X)$ and put $I = \{(H) \mid H \in \mathcal{F}(X)\}$. Choose for any $(H) \in I$ a representative $H \in (H)$. Then fix for any element $\overline{f} \in J(H)$ a representative $f : H \to K$ in $\operatorname{mor}_{Sub}(H, K)$. For the remainder of the proof of assertion (b) we abbreviate $L(?) := \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?)$. We can find elements $x_{H,f} \in S_H L$ for $(H) \in I$ and $\overline{f} \in J(H)$ such that only finitely many of the $x_{H,f}$ -s are different from zero and u can be written as

$$u = \sum_{(H)\in I} \sum_{\overline{f}\in J(H)} (f: H \to K) \otimes_{\Lambda[W_GH]} x_{H,f}.$$

We want to show that all elements $x_{H,f}$ are zero. Suppose that this is not the case. Let (H_0) be maximal among those elements $(H) \in I$ for which there is $\overline{f} \in J(H)$ with $x_{H,f} \neq 0$, i.e. if for $(H) \in I$ the element $x_{H,f}$ is different from zero for some morphism $f: H \to K$ in Sub and there is a morphism $H_0 \to H$ in Sub, then $(H_0) = (H)$. In the sequel we choose for any of the morphisms $f: H \to K$ in Sub a group homomorphism denoted in the same way $f: H \to K$ representing it. Recall that $f: H \to K$ is given by conjugation with an appropriate element $g \in G$. Fix $f_0: H_0 \to K$ with $x_{H_0,f_0} \neq 0$. We claim that the composition

$$A: \oplus_{(H) \in I} E_H \circ S_H(L(K)) \xrightarrow{T(K)} L(K) \xrightarrow{\operatorname{res}_K^{\operatorname{im}(f_0)}} L(\operatorname{im}(f_0)) \xrightarrow{\operatorname{ind}_{f_0^{-1}: \operatorname{im}(f_0) \to H_0}} L(H_0) \xrightarrow{\operatorname{pr}_{H_0}} S_{H_0} L(H_0)$$

maps u to $m \cdot x_{H_0, f_0}$ for some integer m > 0 which is invertible in Λ . This would lead to a contradiction because of T(K)(u) = 0 and $x_{H_0, f_0} \neq 0$.

Consider $(H) \in I$ and $\overline{f} \in J(H)$. It suffices to show that $A\left((f: H \to K) \otimes_{\Lambda[W_GH]} x_{H,f}\right)$ is $[K \cap N_G \operatorname{im}(f_0): \operatorname{im}(f_0)] \cdot x_{H,f}$ if $(H) = (H_0)$ and $\overline{f} = \overline{f_0}$, and is zero otherwise. One easily checks that $A((f: H \to K) \otimes_{\Lambda[W_GH]} x_{H,f})$ is the image of $x_{H,f}$ under the composition

$$a(H,f): S_H L \xrightarrow{\sigma_H} L(H) \xrightarrow{\operatorname{ind}_{f:H \to \operatorname{im}(f)}} L(\operatorname{im}(f)) \xrightarrow{\operatorname{ind}_{\operatorname{im}(f)}^K} L(K) \xrightarrow{\operatorname{res}_K^{\operatorname{im}(f_0)}} L(\operatorname{im}(f_0))$$

$$\xrightarrow{\operatorname{ind}_{f_0^{-1}: \operatorname{im}(f_0) \to H_0}} L(H_0) \xrightarrow{\operatorname{pr}_{H_0}} S_{H_0} L.$$

The Double Coset formula implies

$$\operatorname{res}_{K}^{\operatorname{im}(f_0)} \circ \operatorname{ind}_{\operatorname{im}(f)}^{K} = \sum_{k \in \operatorname{im}(f_0) \setminus K / \operatorname{im}(f)} \operatorname{ind}_{c(k) : \operatorname{im}(f) \cap k^{-1} \operatorname{im}(f_0) k \to \operatorname{im}(f_0)} \circ \operatorname{res}_{\operatorname{im}(f)}^{\operatorname{im}(f) \cap k^{-1} \operatorname{im}(f_0) k}.$$

The composition $\operatorname{pr}_{H_0} \circ \operatorname{ind}_{f_0^{-1}:\operatorname{im}(f_0) \to H_0} \circ \operatorname{ind}_{c(k):\operatorname{im}(f) \cap k^{-1} \operatorname{im}(f_0)k \to \operatorname{im}(f_0)}$ is trivial, if $c(k):\operatorname{im}(f) \cap k^{-1} \operatorname{im}(f_0)k \to \operatorname{im}(f_0)$ is not an isomorphism. Suppose that $c(k):\operatorname{im}(f) \cap k^{-1} \operatorname{im}(f_0)k \to \operatorname{im}(f_0)$ is an isomorphism. Then $k^{-1} \operatorname{im}(f_0)k \subset \operatorname{im}(f)$. Since H_0 has been choosen maximal among the H for which $x_{H,f} \neq 0$ for some morphism $f: H \to K$, this implies $x_{H,f} = 0$ or that $k^{-1} \operatorname{im}(f_0)k = \operatorname{im}(f)$. Suppose $k^{-1} \operatorname{im}(f_0)k = \operatorname{im}(f)$. Then $(H) = (H_0)$ which implies $H = H_0$. Moreover, the homomorphisms in Sub represented by f_0 and f agree. Hence the group homomorphisms f_0 and f agree themselves and we get $k \in N_G \operatorname{im}(f_0) \cap K$. This implies that $a(H,f) = [K \cap N_G \operatorname{im}(f_0):\operatorname{im}(f_0)] \cdot \operatorname{id} \operatorname{if}(H) = (H_0)$ and $\overline{f} = \overline{f_0}$, and that otherwise a(H,f) = 0 or $x_{H,f} = 0$ holds. Hence the map T is injective.

(c) follows from assertion (a) and the bijectivity of the isomorphism T defined in (2.3) because there is a natural isomorphism

$$M \otimes_{\Lambda \operatorname{Sub}} E_H S_H \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?) \stackrel{\cong}{\longrightarrow} M(H) \otimes_{\Lambda [W_G H]} S_H \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?).$$
 (3.6)

Now (d) follows from (c) and the fact that the $\Lambda[W_GH]$ -module $S_H\Lambda\otimes_{\mathbb{Z}}\mathrm{Rep}_{\mathbb{C}}(?)\cong\mathrm{im}(\theta_C)$ is projective. This finishes the proof of Theorem 3.5.

4. The construction of the Chern character

In this section we want to prove Theorem 0.7. There are similarities with the construction in [11]. The main difference is that here we want to give a construction, where we only have to invert the orders of elements in $\mathcal{F}(X)$, whereas in [11] we have worked over the rationals. In [11] we have used the Hurewicz homomorphism from stable homotopy to singular homology, which is only an isomorphism after inverting all primes. We will use the multiplicative structure of K_*^G instead and work with a different source for the equivariant Chern character, which allows us to invert only the orders of finite subgroups of G.

In the sequel we denote by $K_p^G(X)$ the equivariant K-homology of a proper G-CW-complex X. It is defined by $\operatorname{colim}_{Y\subset X}KK_G^p(C_0(Y),\mathbb{C})$, where Y runs over all cocompact G-subcomplexes of X and $KK_G^p(C_0(Y),\mathbb{C})$ denotes equivariant KK-theory of the G- C^* -algebra $C_0(X)$ of continuous functions $X\to\mathbb{C}$, which vanish at infinity, and the C^* -algebra \mathbb{C} with the trivial G-action. Given a homomorphism $\phi:H\to G$ of groups and a proper G-CW-complex, then $\operatorname{ind}_{\phi}X:=G\times_{\phi}X$ is a proper G-CW-complex and there is an induction homomorphism

$$\operatorname{ind}_{\phi}: K_0^H(X) \to K_0^G(\operatorname{ind}_{\phi} X).$$

If the kernel of ϕ acts freely on X, then $\operatorname{ind}_{\phi}$ is bijective. In particular we get for a proper G-CW- complex X a homomorphism

$$K_p^G(X) \xrightarrow{\operatorname{ind}_{G \to \{1\}}} K_p(G \backslash X),$$

which is bijective if G acts freely on X. There is an external product

$$\mu: K_p^G(X) \times K_q^{G'}(X') \to K_{p+q}^{G \times G'}(X \times X')$$

for groups G and G', a proper G-CW-complex X and a proper G'-CW-complex X'. External products and induction are compatible. For more information about equivariant K-homology and KK-theory we refer to [8] and in particular for the induction homomorphisms to [16].

Let X be a proper G-CW-complex. We have introduced the ring $\Lambda = \Lambda^G(X)$ in (0.5). We want to construct for $H \in \mathcal{F}(X)$ and p = 0, 1 a Λ -homomorphism

$$\underline{\operatorname{ch}}_p^G(X)(H): \Lambda \otimes_{\mathbb{Z}} K_p(C_G H \backslash X^H) \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(H) \to \Lambda \otimes_{\mathbb{Z}} K_p^G(X), \tag{4.1}$$

where $K_p(C_GH\setminus X^H)$ is the (non-equivariant) K-homology of the CW-complex $C_GH\setminus X^H$. The map will be defined by the following composition

Some explanations are in order. We have a left C_GH -action on $EG \times X^H$ by g(e,x) = (ge,gx) for $g \in C_GH$, $e \in EG$ and $x \in X^H$. It extends to a $C_GH \times H$ -action by letting the factor H acting trivially. The map $\operatorname{pr}_1: EG \times_{C_GH} X^H \to C_GH \backslash X^H$ is the canonical projection. It induces an isomorphism

$$\Lambda \otimes_{\mathbb{Z}} K_p(\operatorname{pr}_1;R): \Lambda \otimes_{\mathbb{Z}} K_p(EG \times_{C_GH} X^H) \xrightarrow{\cong} \Lambda \otimes_{\mathbb{Z}} K_p(C_GH \backslash X^H)$$

since each isotropy group of the C_GH -space X^H is finite and for any finite group L the projection induces an isomorphism $\Lambda \otimes_{\mathbb{Z}} H_p(BL) \xrightarrow{\cong} \Lambda \otimes_{\mathbb{Z}} H_p(*)$ and hence by the Atiyah-Hirzebruch spectral sequence an isomorphism $\Lambda \otimes_{\mathbb{Z}} K_p(BL) \xrightarrow{\cong} \Lambda \otimes_{\mathbb{Z}} K_p(*)$ for all p. The isomorphism $j: K_0^H(*) \xrightarrow{\cong} \operatorname{Rep}_{\mathbb{C}}(H)$ is the canonical isomorphism. The group homomorphism $m_H: C_GH \times H \to G$ sends (g,h) to gh. We denote by $\operatorname{pr}_2: EG \times X^H \to X^H$ the canonical projection. The G-map $v_H: \operatorname{ind}_{m_H} X^H = G \times_{m_H} X^H \to X$ sends (g,x) to gx.

Notice that we obtain a contravariant Sub-module $K_0(C_G?\backslash X^?)$ by assigning to a finite subgroup $H \subset G$ the Λ -module $\Lambda \otimes_{\mathbb{Z}} K_p(C_G H \backslash X^H)$. We have already introduced the covariant Λ -module $\Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?)$. Analogously to [11] one checks that the various maps $\operatorname{\underline{ch}}_p^G(X)(H)$ defined above induce a map of Λ -modules

$$\mathrm{ch}_p^G(X): \Lambda \otimes_{\mathbb{Z}} K_p(C_G?\backslash X^?) \otimes_{\Lambda \mathsf{Sub}} \Lambda \otimes_{\mathbb{Z}} \mathrm{Rep}_{\mathbb{C}}(?) \quad \to \quad \Lambda \otimes_{\mathbb{Z}} K_p^G(X). \tag{4.2}$$

Notice that for $L \in \mathcal{F}(X)$ and X = G/L the Λ Sub-module $K_0(C_G? \setminus (G/L)^?)$ is isomorphic to the Λ Sub-module Λ mor_{Sub}(?, L), which sends a finite subgroup $H \subset G$ to the free Λ -module with base mor_{Sub}(H, K). By the Yoneda Lemma one obtaines a canonical isomorphism

$$\Lambda \otimes_{\mathbb{Z}} K_p(C_G? \setminus (G/L)^?) \otimes_{\Lambda \operatorname{Sub}} \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(?) \stackrel{\cong}{\longrightarrow} \operatorname{Rep}_{\mathbb{C}}(L).$$

One easily checks that under this identification $\operatorname{ch}_0^G(G/L)$ becomes the canonical identification of $\operatorname{Rep}_{\mathbb{C}}(L)$ with $K_0^G(G/L)$. Notice that $K_1(C_G?\setminus (G/L)?)$ and $K_1^G(G/L)$ are both trivial. Hence

 $\operatorname{ch}_{p}^{G}(G/L)$ is bijective for all $L \in \mathcal{F}(X)$ and p = 0, 1. Because of Theorem 3.5 (d) the source of $\operatorname{ch}_{*}^{G}$ is an equivariant homology theory on proper $G\text{-}CW\text{-}\operatorname{complexes}\ Y$ with $\mathcal{F}(Y) \subset \mathcal{F}(X)$. One easily checks that $\operatorname{ch}_{*}^{G}$ is compatible with the Mayer-Vietoris sequences. By induction over the number of equivariant cells and the Five-Lemma $\operatorname{ch}_{p}^{G}(Y)$ is bijective for any finite proper $G\text{-}CW\text{-}\operatorname{complex}\ Y$ with $\mathcal{F}(Y) \subset \mathcal{F}(X)$. Notice that $K_{p}^{G}(Y)$ is the colimit $\operatorname{colim}_{Z \subset Y} K_{p}^{G}(Z)$, where Z runs through all finite $G\text{-}CW\text{-}\operatorname{subcomplexes}\ Z$ of Y. The analogous statement holds for the source of $\operatorname{ch}_{*}^{G}$. Hence $\operatorname{ch}_{p}^{G}(Y)$ is bijective for all proper $G\text{-}CW\text{-}\operatorname{complexes}\ Y$ with $\mathcal{F}(Y) \subset \mathcal{F}(X)$ and p = 0, 1. Now Theorem 0.7 follows from Theorem 3.5 (c).

5. The Baum-Connes Conjecture and the Trace Conjecture

In the sequel we denote for a proper G-CW-complex X by

$$asmb^G: K_0^G(X) \to K_0(C_r^*(G)) \tag{5.1}$$

the assembly map which essentially assigns to an element in $K_0^G(X)$ represented by an equivariant Kasparov cycle its index. Given a homomorphism $\phi: H \to G$ of groups with finite kernel, there is an induction homomorphism $\operatorname{ind}_{\phi}: K_p(C_r^*(H)) \to K_p(C_r^*(G))$ such that the following diagram commutes [16, Theorem 1]

$$K_0^H(X) \xrightarrow{\operatorname{asmb}^H} K_0(C_r^*(H))$$

$$\operatorname{ind}_{\phi} \downarrow \qquad \qquad \operatorname{ind}_{\phi} \downarrow$$

$$K_0^G(\operatorname{ind}_{\phi} X) \xrightarrow{\operatorname{asmb}^G} K_0(C_r^*(G))$$

These induction homomorphisms, the assembly maps and the change of rings homomorphisms associated to the passage from $C_r^*(G)$ to $\mathcal{N}(G)$ are compatible with the external products

$$\mu: K_p^G(X) \times K_q^{G'}(X') \to K_{p+q}^{G \times G'}(X \times X');$$

$$\mu: K_p(C_r^*(G)) \times K_q(C_r^*(G')) \to K_{p+q}(C_r^*(G \times G'));$$

$$\mu: K_p(\mathcal{N}(G)) \times K_q(\mathcal{N}(G')) \to K_{p+q}(\mathcal{N}(G \times G'))$$

for groups G and G', a proper G-CW-complex X and a proper G'-CW-complex X'. We will use in the sequel the elementary fact that for any G-map $f: X \to Y$ of proper G-CW-complexes the composition $K_0^G(X) \xrightarrow{K_0^G(f)} K_0^G(Y) \xrightarrow{\operatorname{asmb}^G} K_0(C_r^*(G))$ is $\operatorname{asmb}^G: K_0^G(X) \to K_0(C_r^*(G))$. In the sequel the letter i denotes change of rings homomorphism for the canonical map $C_r^*(G) \to \mathcal{N}(G)$.

Let X be a proper G-CW-complex. We have introduced $J=J^G(X)$ in (0.6). Define the homomorphism

$$\xi_1: \oplus_{(C)\in J} \Lambda \otimes_{\mathbb{Z}} K_0(C_G C \backslash X^C) \otimes_{\Lambda[W_G C]} \operatorname{im} (\theta_C: \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C)) \\ \to K_0(\mathcal{N}(G)) \quad (5.2)$$

by the composition of the equivariant Chern character of Theorem 0.7

$$\operatorname{ch}_0^G(X): \oplus_{(C)\in J} \Lambda \otimes_{\mathbb{Z}} K_0(C_GC\backslash X^C) \otimes_{\Lambda[W_GC]} \operatorname{im} (\theta_C: \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C))$$

$$\xrightarrow{\cong} \Lambda \otimes_{\mathbb{Z}} K_0^G(X),$$

the assembly map

$$id \otimes asmb^G : \Lambda \otimes_{\mathbb{Z}} K_0^G(X) \to \Lambda \otimes_{\mathbb{Z}} K_0(C_r^*(G))$$

and the change of rings homomorphism

$$id \otimes i : \Lambda \otimes_{\mathbb{Z}} K_0(C_r^*(G)) \to \Lambda \otimes_{\mathbb{Z}} K_0(\mathcal{N}(G)).$$

This is the homomorphism which we want to understand. In particular we are interested in its image. We will identify it with a second easier to compute homomorphism

$$\xi_2: \oplus_{(C)\in J} \Lambda \otimes_{\mathbb{Z}} K_0(C_G C \backslash X^C) \otimes_{\Lambda[W_G C]} \operatorname{im} (\theta_C: \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C)) \\ \to K_0(\mathcal{N}(G)), (5.3)$$

which is defined as follows. Let $l: \operatorname{im}(\theta_C) \to \operatorname{Rep}_{\mathbb{C}}(C)$ be the inclusion. Let $K_0(\operatorname{pr}): K_0(C_GC \setminus X^C) \to K_0(*)$ be induced by the projection from $C_GC \setminus X^C$ to the one-point space *. We obtain a map

$$(i \circ \operatorname{asmb}^{\{1\}} \circ K_0(\operatorname{pr})) \otimes l : K_0(C_G C \setminus X^C) \otimes \operatorname{im}(\theta_C) \to K_0(\mathcal{N}(\{1\})) \otimes \operatorname{Rep}_{\mathbb{C}}(C).$$

Define

$$\alpha: K_0(\mathcal{N}(\{1\})) \otimes \operatorname{Rep}_{\mathbb{C}}(C) \to \operatorname{Rep}_{\mathbb{C}}(C)$$
 $[U] \otimes [W] \mapsto \dim_{\mathbb{C}}(U) \cdot [W].$

Notice that α is essentially given by the external product and $K_0(\mathcal{N}(H)) = \operatorname{Rep}_{\mathbb{C}}(H)$ holds by definition for any finite group H. Induction yields a map

$$\operatorname{ind}_C^G: K_0(\mathcal{N}(C)) \to K_0(\mathcal{N}(G)).$$

The composition of these three maps above induces for any finite cyclic subgroup $C \subset G$ a homomorphism

$$\xi_2(C): \Lambda \otimes_{\mathbb{Z}} K_0(C_GC \setminus X^C) \otimes_{\Lambda[W_GC]} \operatorname{im} (\theta_C: \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \to \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C)) \to K_0(\mathcal{N}(G)).$$

Define ξ_2 to be the direct sum $\bigoplus_{(C)\in J} \xi_2(C)$ after the choice of a representative $C\in (C)$ for each $(C)\in J$.

Theorem 5.4 Let X be a proper G-CW-complex. Then the maps ξ_1 of (5.2) and ξ_2 of (5.3) agree.

<u>Proof</u>: In the sequel maps denoted by the letter μ will be given by external products and pr denotes the projection from a space to the one-point space *. Fix a cyclic subgroup $C \in \mathcal{F}(X)$. Notice that the homomorphism $m_C : C_GC \times C \to G \quad (g,c) \mapsto gc$ has a finite kernel so that induction is defined also on the level of the reduced group C^* -algebra and the group von Neumann algebra. Denote by $\nu : \Lambda \otimes_{\mathbb{Z}} K_0^{C_GC \times C}(EG \times X^C) \to K_0^G(X)$ the composition of the maps $\mathrm{id} \otimes K_0^G(v_C)$, $\mathrm{id} \otimes K_0^G(\mathrm{ind}_{m_C} \operatorname{pr}_2)$ and ind_{m_C} appearing in the definition of $\mathrm{ch}_0(X)(C)$. Then the following diagram commutes

For any group G the map induced by the center-valued von Neumann dimension

$$\dim_{\mathcal{N}(G)}^u : K_0(\mathcal{N}(G)) \to \mathcal{Z}(\mathcal{N}(G))$$

is injective. Given a CW-complex Z and an element $\eta \in K_0(Z)$, there is a closed manifold M with a map $f: M \to BG$ and an elliptic complex D^* of differential operators of order 1 over M such that $K_0(f): K_0(M) \to K_0(Z)$ maps the class $[D^*] \in K_0(M)$ to η [2]. In the case Z = BG the composition

$$K_0(M) \xrightarrow{K_0(f)} K_0(BG) \xrightarrow{(\operatorname{ind}_{G \to \{1\}})^{-1}} K_0^G(EG) \xrightarrow{\operatorname{asmb}^G} K_0(C_r^*(G)) \xrightarrow{i} K_0(\mathcal{N}(G)) \xrightarrow{\operatorname{dim}_{\mathcal{N}(G)}^u} \mathcal{Z}(\mathcal{N}(G))$$

resp. the composition

$$K_0(M) \xrightarrow{K_0(\mathrm{pr})} K_0(*) \xrightarrow{\mathrm{asmb}^{\{1\}}} K_0(C^*(\{1\}) \xrightarrow{i} K_0(\mathcal{N}(\{1\})) \xrightarrow{\mathrm{ind}_{\{1\}}^G} K_0(\mathcal{N}(G)) \xrightarrow{\dim_{\mathcal{N}(G)}^u} \mathcal{Z}(\mathcal{N}(G))$$

maps $[D^*]$ to the element $\operatorname{index}_{\mathcal{N}(G)}^u(\overline{D}^*)$ resp. $\operatorname{index}(D^*) \cdot 1_{\mathcal{N}(G)}$, where $\operatorname{index}_{\mathcal{N}(G)}^u(\overline{D}^*)$ resp. $\operatorname{index}(D^*)$ has been defined in (1.7) resp. (1.1). We conclude from Theorem 0.4 and the injectivity of the map $\dim_{\mathcal{N}(G)}^u$ of (5.5) that the following diagram commutes

$$K_0^G(EG) \xrightarrow{i \circ \operatorname{asmb}^G} K_0(\mathcal{N}(G))$$

$$K_0(\operatorname{pr}) \circ \operatorname{ind}_{G \to \{1\}}^{-1} \downarrow \operatorname{ind}_{\{1\}}^G \uparrow$$

$$K_0(*) \xrightarrow{i \circ \operatorname{asmb}^{\{1\}}} K_0(\mathcal{N}(\{1\}))$$

Since there is a C_GC -map $EG \times X^C \to EC_GC$, we conclude from the diagram above applied to the case $G = C_GC$ that the following diagramm commutes

The composition

$$K_0(\mathcal{N}(\{1\}) \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \xrightarrow{\operatorname{ind}_{\{1\}}^{C_GC} \otimes \operatorname{id}} K_0(\mathcal{N}(C_GC)) \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \xrightarrow{\mu} K_0(\mathcal{N}(C_GC \times C)) \xrightarrow{\operatorname{ind}_{m_C}} K_0(\mathcal{N}(G))$$
 agrees with the composition

$$K_0(\mathcal{N}(\{1\})) \otimes \operatorname{Rep}_{\mathbb{C}}(C) \xrightarrow{\alpha} \operatorname{Rep}_{\mathbb{C}}(C) = K_0(\mathcal{N}(C)) \xrightarrow{\operatorname{ind}_C^G} K_0(\mathcal{N}(G)).$$

We conclude that the following diagram commutes for any cyclic subgroup $C \in \mathcal{F}(X)$

$$\Lambda \otimes_{\mathbb{Z}} K_0^{C_GC}(EG \times X^C) \otimes_{\mathbb{Z}} K^C(*) \xrightarrow{(\operatorname{id} \otimes i \circ \operatorname{asmb}^{C_GC}) \circ \nu \circ \mu} \Lambda \otimes_{\mathbb{Z}} K_0(\mathcal{N}(G))$$

$$\operatorname{id} \otimes (i \circ \operatorname{asmb}^{\{1\}} \circ K_0(\operatorname{pr}) \circ \operatorname{ind}_{C_GC \to \{1\}}) \otimes j \downarrow \qquad \qquad \uparrow \operatorname{id} \otimes \operatorname{ind}_C^G$$

$$\Lambda \otimes_{\mathbb{Z}} K_0(\mathcal{N}(\{1\})) \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \xrightarrow{\operatorname{id} \otimes \alpha} \Lambda \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C)$$

Hence the following diagram commutes for any cyclic subgroup $C \in \mathcal{F}(X)$

$$\begin{split} \Lambda \otimes_{\mathbb{Z}} K_p(C_G C \backslash X^C) \otimes_{\mathbb{Z}} \mathrm{Rep}_{\mathbb{C}}(C) & \xrightarrow{\mathrm{id} \otimes \left(\alpha \circ (i \circ \mathrm{asmb}^{\{1\}} \circ K_0(\mathrm{pr})) \otimes \mathrm{id}\right)} & \Lambda \otimes_{\mathbb{Z}} \mathrm{Rep}_{\mathbb{C}}(C) \\ & \mathrm{id} \otimes_{\underline{\mathrm{ch}}_0^G(X)(C)} \Big\downarrow & \mathrm{id} \otimes_{\underline{\mathrm{ind}}_C^G} \Big\downarrow \\ & \Lambda \otimes_{\mathbb{Z}} K_0^G(X) & \xrightarrow{\underline{\mathrm{id}} \otimes (i \circ \mathrm{asmb}^G)} & \Lambda \otimes_{\mathbb{Z}} K_0(\mathcal{N}(G)) \end{split}$$

Now Theorem 5.4 (and hence also Theorem 0.8) follow.

References

- [1] **Atiyah, M.**: "Elliptic operators, discrete groups and von Neumann algebras", Astérisque 32, 43–72 (1976).
- [2] Baum, P. and Douglas, R.G.: "K-homology and index theory", in "Operator algebras and applications", editor: Kadison, R.V., Proc. Symp. Pure Math. 38 (Part 1), AMS, Providence, 117–173 (1982).
- [3] Baum, P. and Connes, A.: "Geometric K-theory for Lie groups and foliations", Brown-University/IHES-preprint 1982, appeared in L'Enseignement Mathématique 46, 3–42 (2000).
- [4] Baum, P. and Connes, A.: "Chern character for discrete groups", in: Matsumoto, Miyutami, and Morita (eds.): "A fête of topology; dedicated to Tamura", 163–232, Academic Press (1988).
- [5] Baum, P., Connes, A., and Higson, N.: "Classifying space for proper actions and K-theory of group C*-algebras", in: Doran, R.S. (ed.): "C*-algebras", Contemporary Mathematics 167, 241–291 (1994).
- [6] Cheeger, J., Gromov, M., and Taylor, M.: "Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds", Journal of Differential Geometry 17, 15–53 (1982).
- [7] Kadison, R.V. and Ringrose, J.R.: "Fundamentals of the theory of operator algebras, volume II: Advanced theory", Pure and Applied Mathematics, Academic Press (1986).
- [8] Kasparov, G.G.: "Equivariant KK-theory and the Novikov conjecture", Inventiones Mathematicae 91, 147–201 (1988).
- [9] Lott, J.: "Heat kernels on covering spaces and topological invariants", Journal of Differential Geometry 35, 471–510 (1992).
- [10] **Lück, W.**, "Transformation groups and algebraic K-theory", Lecture Notes in Mathematics 1408 (1989).
- [11] Lück, W., "Chern characters for proper equivariant homology theories and applications to Kand L-theory", Preprintreihe SFB 478 — Geometrische Strukture in der Mathematik, Heft 104, Münster (2000).
- [12] Mishchenko, A.S. and Fomenko, A.T.: "The index of elliptic operators over C*-algebras", Math. USSR Izv. 15, 87–112 (1980).
- [13] Roy, R.: "The trace conjecture a counterexample", K-theory 17, 209–213 (1999).
- [14] Roy, R.: "A counterexample to questions on the integrality property of virtual signature", Topology and its applications 100, 177–185 (2000).
- [15] **Serre**, **J.-P.**: "Linear representations of finite groups", Springer-Verlag (1977).
- [16] Valette, A.: "On the Baum-Connes assembly map", appendix to "Introduction to the BC conjecture", to appear as ETHZ lecture notes, Birkhauser.