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Abstract. For an Hermitian matrix the QR transform is diagonally similar to two steps of the
LR transforms. Even for non-Hermitian matrices the QR transform may be written in rational form.
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1. Summary. In this section we assume that the reader is familiar with LR and
QR. The transformations are presented in the next section. A slight variation of the
LR algorithm that is suitable for positive definite Hermitian matrices is the Cholesky
(LR) algorithm: A = CC∗ is mapped into Â = C∗C.

In the positive definite Hermitian case, two steps of Cholesky yield the same
matrix as one step of QR. At first glance this is surprising (how can LR produce a
unitary similarity?) and the proof is sometimes given as an exercise in textbooks;
see [4], [1], and [9]. Students are often left with the (false) impression that positive
definiteness is essential.

In recent years understanding of these algorithms has improved. Both the LR
and QR algorithms are instances of GR algorithms [10]. For all such algorithms k

steps applied to A are equivalent to a similarity driven by a factorization of Ak:

Ak = GkRk, A → G−1

k
AGk.(1.1)

Consequently, two steps of LR on A is equivalent to a similarity driven by A2 : A2 =
LU, A → L−1AL. On the other hand, one step of QR on A is equivalent (up to a
diagonal similarity) to a similarity driven by A∗A:

A = QR, A∗A = R∗R(= LD2L∗), A → Q∗AQ = RAR−1.

If A is Hermitian, then A∗A = A2 and two steps of LR must be equivalent to one
of QR. Despite these remarks it is still interesting to see the equivalence in detail, and
that is the topic of section 2.

The catch is that LR can break down so the more careful statement is that two
LR steps (if they exist) are equivalent to one QR step (which always exists). What is
of more than passing interest is that LR is entirely rational in operation whereas QR
requires square roots and is not rational. The remarks made above show that these
square roots in QR are somehow not essential; QR may be better thought of as LR
driven by A∗A. It is this viewpoint that leads to the various root-free QR algorithms
that have been so successful for symmetric tridiagonal matrices. Four versions are
described in [6] and an even faster one appeared recently in [3].

∗Received by the editors March 1, 1996; accepted for publication (in revised form) by J. Varah
April 17, 1997.
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552 HONGGUO XU

For non-Hermitian matrices there is a similar rational version of QR and it is
described in section 3.

We follow Householder conventions for notation except for denoting the conjugate
transpose of F by F ∗ instead of FH . We ignore shifts because they complicate the
analysis and add nothing to a theoretical paper.

2. Connection of QR to LR. Two algorithms that play an important role
in matrix eigenvalue computations are the LR and QR algorithms. The former was
discovered by Rutishauser in 1958 [7] and the latter developed by Francis in 1959–1960
[2]. A formal derivation of QR was given in [5]. Both algorithms have been widely
studied and good references are [9], [8], and [6].

Recall the basic decompositions.
Triangular factorization (LU). If and only if B ∈ Cn×n has nonzero leading

principal minors of orders 1, 2, . . . , n − 1, then B has a unique decomposition

B = LDU,

where L is unit lower triangular, D is diagonal, and U is unit upper triangular.
Gram-Schmidt factorization (QR). All B ∈ Cn×n may be written

B = QR,

where Q∗ = Q−1 and R is upper triangular with nonnegative diagonal entries. The
factorization is unique if and only if the columns of B are linearly independent.

From the basic factorizations come the basic transforms.
LR transform. If B = LDU , then its LR transform is defined by

◦

B= DUL = L−1BL = (DU)B(DU)−1.

Here is the irritating ambiguity in LR; the definition
◦

B= ULD would be equally
legitimate. For theoretical purposes one could consider the equivalence class of all
diagonal similarities on a given matrix.

QR Transform. If B = QR (uniquely), then its QR transform is defined by

B̂ = RQ = Q∗BQ = RBR−1.

Remark 1. If A is Hermitian and positive definite, then A = LD2L∗ and its
Cholesky transform is given by A′ = DL∗LD. Note that

A′ = D−1
◦

A D

is a diagonal similarity transformation but uses square roots. LR destroys the Her-
mitian property but only by a diagonal similarity.

Denote the Cholesky transform of A′ by A′′ and the LR transform of
◦

A by
◦◦

A. If
A is Hermitian and positive definite, then A′′ = Â: two steps of Cholesky equal one
of QR. However, the positive definite property is not essential as the following result
shows.

All L’s are unit lower triangular and all D’s are diagonal and real. For complete-
ness we include all the diagonal matrices.

THEOREM 2.1. If A is Hermitian, and permits triangular factorization, then
◦◦

A
is diagonally similar to Â.
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THE RELATION BETWEEN QR AND LR ALGORITHMS 553

Proof. By hypothesis A = L1D1L
∗
1

and so

◦

A= D1L
∗
1
L1.

Since L∗
1
L1 is positive definite it permits triangular factorization

L∗
1
L1 = L2D

2

2
L∗

2
(D2 positive).(2.1)

Consequently, the triangular factorization of
◦

A is

◦

A= (D1L2D
−1

1
)(D1D

2

2
)L∗

2
.

Thus,

◦◦

A = D1D
2

2
L∗

2
D1L2D

−1

1

= (D1D2)M(D1D2)
−1,

where

M := D2L
∗
2
D1L2D2.

It remains to show that M is similar to Â with a diagonal unitary transformation.
Rewrite (2.1) as

I = (L−∗
1

L2D2)(D2L
∗
2
L−1

1
).

Since D2 is real

Q = L−∗
1

L2D2(2.2)

is unitary. Use Q = Q−∗ to obtain another triangular factorization of Q

Q = L1L
−∗
2

D−1

2
.(2.3)

Now use Q to rewrite M as

M = (D2L
∗
2
L−1

1
)(L1D1L

∗
1
)(L−∗

1
L2D2)

= Q∗AQ.(2.4)

Finally, using (2.3),

A = L1D1L
∗
1

= (L1L
−∗
2

D−1

2
)(D2L

∗
2
D1L

∗
1
)

= Q sign(D1) · sign(D1)D2L
∗
2
D1L

∗
1

= Q sign(D1)R

reveals the QR factorization of A since R has nonnegative diagonal. By (2.4)

Â = sign(D1)M sign(D1)

= sign(D1)(D1D2)
−1

◦◦

A (D1D2) sign(D1)
−1,

as claimed.
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554 HONGGUO XU

Remark 2. When the LR transform is to be applied to an Hermitian matrix it is
possible to modify the algorithm so that the Hermitian property is restored after two
steps. In the notation used above

◦

A= D1L
∗
1
L1 = D1(L2D2)(L2D2)

∗

and one then redefines
◦◦

A by

◦◦

A:= (L2D2)
∗D1(L2D2) = M.

Such a modification forces a different mapping for odd and even steps and employs
square roots.

The advantage of Theorem 2.1 over the explanation (1.1) mentioned in section 1
is that it reveals explicitly in (2.2) and (2.3) how the triangular factors L1 and L2D2

from LR yield the triangular factorization of Q from QR.
Remark 3. The QR transform does not require that A permit triangular factor-

ization. In fact Â cannot be derived from two steps of LR when, and only when, the
orthogonal factor Q does not permit factorization as

Q = L1D
−1

2
(D2L

−∗
2

D−1

2
).

In many cases, but not all, a well-chosen symmetric permutation A → ΠAΠt will give
rise to a new Q that permits triangular factorization.

3. The non-Hermitian case. For general matrices the LR transform preserves
band structure while the QR transform destroys the upper bandwidth. So the two
procedures are not equivalent. Nevertheless it is legitimate to ask whether the QR
transform can be represented in an alternative form related to triangular factorization.

The answer is yes. The key to extending the result of the previous section is to
factor the given matrix B with a congruence transformation

B = FCF ∗.

This appears to be a strange representation of a non-Hermitian matrix.
Suppose B permits triangular factorization

B = L1D1U1.

Rewrite this as

B = L1(D1U1L
−∗
1

)L∗
1

and note that the middle factor is upper triangular instead of diagonal. Define, as
earlier,

◦

B= (D1U1L
−∗
1

)(L∗
1
L1),

and use the Cholesky factorization

L∗
1
L1 = (L2D2)(L2D2)

∗

to define
◦◦

B = D2L
∗
2
(D1U1L

−∗
1

)L2D2

= (D2L
∗
2
L−1

1
)(L1D1U1)(L

−∗
1

L2D2)

= Q∗BQ, using (2.2).
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Moreover,

B = L1D1U1

= (L1L
−∗
2

D−1

2
)(D2L

∗
2
D1U1)

= Q sign(D1)(sign(D1)D2L
∗
2
D1U1)

is the QR factorization of B.
Now, in general, sign(D1) = diag(exp(iϕ1), . . . , exp(iϕn)).
Another way to interpret these expressions is to observe that, ignoring diagonal

unitary matrices, the Q factor of B is the Q factor of its lower triangular factor L1.

Note that
◦

B= L−1

1
BL1,

◦◦

B= (D2L
∗
2
)

◦

B (D2L
∗
2
)−1, and so the nice unitary matrix

Q is again split into its two triangular factors L1 and (D2L
∗
2
)−1.
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