THE RELATIONS BETWEEN STABILITY

AND HOMOGENEITY*

By

I.. v. BorTKIEWICZ

The idea of investigating the stability of statistical frequen-
cies from the standpoint of the theory of probability goes back
to the French mathematician Bienaymé. From various examples
taken from social and moral statistics, he was the first to estab-
lish the fact that, almost without exception, the stability in ques-
tion was essentially less than the ‘“classical norm,” that is, less
than the expectation which is associated with the classical scheme
of independent trials with a constant underlying probability. In
order to explain this discrepancy between theory and observa-
tion, Bienaymé used a modification of the traditional procedure
which was characterized by the assumption that between neigh-
boring trials in a time ordered sequence a sort of dependence
existed. Though interesting in itself and among other things
adopted by Cournot as his own, we shall replace this method in
what follows by another, originating from Lexis, which has the
advantage of a wider usefulness, in that it can he applied not only

*Translated by A. R. Crathorne. Read before the American Statistical As-
sociation at Cleveland, Qhio, December 30, 1930.
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2 RELATIONS BETWEEN STABILITY AND HOMOGENEITY

to undulatory but to evolutory sequences.?

Let us assume that for a series of 2 successive time inter-
vals, say years, we have found that some event (accident, death,
marriage, crime) has happened o, x,, . . . . times,
and that the corresponding number of “trials,” that is the num-
bers of persons observed, are:x S, 8, + .+ . .80 that the
quotients ¢/, = 3‘?-'1 y Yg= 5 s - - - . . represent
a time ordered sequence of relative frequencies. Instead of as-
suming, as the traditional theory demands, that each term y, of
this series corresponded to a common fundamental probability o,
weighted with accidental errors, Lexis assumed that each value
Y, was associated with a distinct probakility s .

As a result of this, the expected amplitude of the fluctua-
tions of the values ¢ increased, and the greater the varia-
tions in the  p,’s the greater the amplitude. Under the sim-
plifying hypothesis s, =const. ( = s ), the corresponding
standard deviation o is defined by

z 2
2
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For the case of a constant p we may write
M Eloy- %! L=

where £ denotes “expectation.” In the Lexis procedure with
a variable p, , using the notation

2. Jg——2)-a zZ P, =P, PP~ ench - @}

'Bienayme, in the journal “L'Institute,” Vol. 7 (1831), pages 187-189, and
in “Journal de la Societe de Statistique de Paris,” 17e (1876), pages 199-204,
A. Cournot, Exposition de la theorie des chances et des probabilities, Paris,
1843, Nos. 79 and 117.

W. Lexis, “Uber die Theorie der Stabilitat statistischer Reihen,” in the
Jahrbuch fur Nationalokonomie und Statistik, Vol. 32 (1879), pages 60 .
reprinted in Abhandlungen zur Theorie der Bevblkesungs und Moralstat-
istik, Jena, 1903, pages 170-212.
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the corresponding relation

) E (o =u? E37EH 2

can be derived.!

In the following numerical examples the numbers of observa-
tions S, are never less than some ten thousands, while 2 =10.
Hence, as far as these and similar examples are concerned, the
numerical results are not appreciably altered if, instead of (2),

we use
(3) E (c?) =ut+rw?

However, a certain inaccuracy arises, if, in the application
of formula (3) to the raw data, one has disregarded the funda-
mental assumption that Sy is constant and in the expression for
u? has replaced s by the arithmetic mean of the 2z values
sy . lf, however, the latter differ little from one another, such
a procedure gives rise to no great discrepancy. Lexis called the
quantities « and <« in formula (3) the two “fluctuation com-
ponents,” which combine (according to the law of composition of
forces) to give the expected total fluctuation. The quantity
gives expression to the effect of the “accidental causes” in the
sense of the theory of probability, and this-effect grows less and
less with increasing s until it vanishes for 8= oo . For this
reason Lexis called « the normal component. He also used
the term “unessential fluctuation componont.” On the other hand,
w depends on the variations of the fundamental probability, that
is on the underlying general conditions, and in this sense was
designated by Lexis as the physical component. We may also

' One does not find formula (2) in Lexis's work. ; He was satisfied at this
point with a rather inexact method yielding an approximate result. How-
ever, this did not affect the essential part of his discussion.
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call it the essential component.

The first of the two components « and ¢ can be easily
calculated directly with sufficient approximation. The usual
method is to substitute for the unknown f in the expression for
«? the value Y , the arithmetic mean of the frequencies Y

obtaining
(4) w2221 Y-4)

As for the second component « , it is calculated by the in-
direct method of substituting < for £ ( g?) in (3) and then
w is found from ¢y2=02-e¢?2 . This method, however,
assumes that o »« , or what is the same thing, that the dis-
persion coefficient, @R=2 s greater than 1. In his older papers,
Lexis distinguished between subnormal, normal and supernormal
dispersion, according to whether ¢ was distinctly less than 1,
approximately equal to 1, or distinctly greater than 1, and found
that in social and moral statistics the subnormal dispersion never
occurred and the normal rarely. Supernormal dispersion was the
rule. So Lexis based his scheme of a varying underlying prob-
ability on the case of supernormal dispersion. In fact, from
formula (3), we have

w)?2
.

(5) E(R%=1+(%

which says that the variations in the underlying probability lead
us to expect values of @) greater than unity.!

Notwithstanding the fact that ¢ was usually greater than
unity, Lexis did not consider this a proof that his scheme ade-

*Under the influence of accidental causes, § may be less than unity not
only for constant, but also for varying underlying probabilities, and this
circumstance must be considered in the determination of. @ . It would
carry us too far afield to go further into this matter.
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quately described the actual facts. In addition to this he was more
concerned with the fact that in experience & showed a tendency
to decrease with decreasing number of “trials,” that is with de-
creasing S . Indeed, in a series of examples, Lexis had shown
that a value of @ which was decidedly greater than unity when
calculated for an entire country, decreased to nearly 1 when the
data for the single administration districts of the same country
were used. Lexis considered such behavior of @ as entirely in
harmony with his scheme,
If we write formula (5) in the form

Z2w?

(6) EQM=1I+s 235515

we see that the excess of onver and .above 1 is in expectation
directly proportional to s ., This was the explanation of the
decrease of @ with decreasing s , for as Lexis said, we have
no ground to expect that 5 being large or small had any bearing
on the value of w .

It is this last point about which the criticism of Lexis’s dis-
persion theory centers. Notwithstanding the endeavors of Lexis
to fit his theory to statistical reality, we can show that the facts
-were against him as far as his assumption that ¢ is funda-
mentally independent of s is concerned. If this assumption were
true, then formula (6) tells us distinctly how @ decreases with
diminishing 8 . We learn from experience that as a rule this
decrease in @ is less than that given by the formula; from which
it follows that the essential component, < , has a tendency to
increase with decreasing s .

If we desire to investigate just what happens in reality, a
certain complication arises, because we are never able to compare
groups which differ among one another as to s , but not as to
p (or gy ). In order to eliminate to some extent the varia-
tions of p we consider the ratio of w to p . Let % =
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and call &3 the relative essential component to distinguish it from
the absolute essential component ) . Formula (6) ther becomes
the following:

e

2) . zé
@) E@QV=1+5p Tlixi

The product §p can be considered as the expected number
of “successes.” For a constant s, (= s ) we have

=
E(xy)=sp,, E(é él‘xk)’sp

and, letting $= £ 5 5, , the last relation is true with sufficient
approximation for a variable s, provided the variation is not
too pronounced. Let sperm . Often, as in the exariples
which follow, " o is so small that we can consider ( /- P ) as
equal to 1. Formula (7) then becomes

(8) E@QY-1+E5mB*

The question as to whether there is a connection between g
and ¢ is now changed to an investigation of the relationship
between m and /3. In undertaking such an investigation em-
pirically, we compare as to the behavior of 77 and B a statis-
tical aggregate considered as a total with its component parts
considered as partial aggregates. Let the number of the partial
aggregates be 77 , and let the corresponding values of +77 and
B aswellas u, w and o be indicated by the subscript ¢,
which can also serve as the ordinal number of the partial aggre-
gate. For the total aggregate, let (= O . The symbals Sik,
Tk Yik > Pik > arethe 8, , ¢, P of the
¢ th partial aggregate and the K th time interval. We also use
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the notation
/ & 1 =
5¢=ZZ Sik > Xi=z L Tik,
. k=1 K=/
= / =
Yi== ZI y(,kr Plzi ZI p"k
from which we have
n n
SO'Zsil xU‘Z x"
&=/ =/

n n
Yo" élZ:Syt; ga’éozsipi'
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=S; P » atzséz(yl.k yl) P
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Pi(l-P .15 ot
2z - LA w; =
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[73)
Whe"e e‘;k=p‘~1k—P‘.’ ﬁ‘-r—ﬁ‘. »

o
El(of)=ul+a}, @Qi- >

and using the notation €c & E « we have further
7 i k ’

(4

Zeck

k=l
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Finally, corresponding to formula (8), we have

2, 2 a2
) E(Qi)_’*f:-im‘ﬁ‘

We shall now apply these formulas to statistics on the fre-
quency of suicides in Germany for the decade 1902-1911. The
numbers of “trials,” s, , , are here the populations of the
regions in question; the :‘successes,” X, g o Are the numbers
of suicides for each year. The relative frequencies, y ik are
found by dividing the numbers of suicides by the corresponding
populations. Like various other kinds of social phenomena, the
suicides in pre-war German statistics were grouped according to
states, the provinces of Prussia, right Rhenish Bavaria and left
Rhenish Bavaria being included as states. In this way we have
forty territories of very unequal size. For the decade 1902-1911,
the mean population of the territories ranged from a maximum
of 6,587,000 (Rhine Province) to a minimum of 45,000 (Schaum-
burg-Lippe). The maximum average number of suicides per
annum was 1453 (Saxony) and the minimum 7 (Schaumburg-
Lippe). Corresponding to the purpose of the investigation, these
suicide figures 2, , which can be considered as approximations
to r77;, werearranged in descending order, with o, =1453 and
Ko = 7.

For the whole of Germany, we have x, = 13173,
Y, 214107 (that is an average number of 214 suicides per
annum for each million population). The ten values Yo,k Vary
between 204107 and 223-10-® These fluctuations are markedly
greater than one expects from the classical norm. The calcula-
tion of the dispersion-quotient gives Qo = 3.14, and, as the
Lexis theory demands, is greater than any one of the 40 values
of (J;.! These values give 2.03 as a maximum and 0.75 as a
*Astidy of suicides and of homicides in the United States yields much the

same general results as those shown here for suicides in Germany, (Note
by the translator.)
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minimum. Fixing attention on the eight smallest values of o, ,
we find an average value of 1.02 for &; , and of the eight values,
three are larger and five less than 1. So in this example the dis-
persion becomes very nearly 1 by narrowing the observation field.

But we have still to find out whether (), decreases with
x; according to the measure of decrease that one would expect
under the hypothesis that /3; is fundamentally independent of
, - To decide this question, we let (3, =const. =& , in-
cluding &5, =/3 , and substitute also x; for 77 in formula
(9). We have then on the one hand in expected values

x

O‘/+ /1'6

and on the other hand

”

/ 2 _ 2 X, p2
7 ‘Z/ Q; =l*z1 7B
from which follows

¥ é_ i 2_
n,Z:,Oz - 1+4 Q1)

However, in our example, we find

3

»
,%Z f- 156, /L@ 1)=122

\

and the difference 0.34 cannot be ascribed, to chance for it is three
times the probable error (the determination of which we cannot
now take up). We must, then, assume that the average of the
values /3, , for ¢ =1 to 40, is greater than A, . Why this
is so we shall see in the following discussion.

We consider now the mutual relationship between the devia-
tions & ik and €, . which refer to two arbitrary territories
N; and NJ , and we build up according to the formula for a
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correlation coefficient the expression

z
Y, ;=4 Sixlik
Lt k=1 ﬁlﬂj

The number of combinations of the subscripts ¢ and / is
”("L!) , so there are that many values 7%, ; . Finally we
construct a weighted arithmetic mean of these values according to
the formula,

”7 0
oL mim; BB Y,
y= i<l j=i¢l
n n
2.2 mimjBi B

&=l y=itf

The expression ¥ serves to characterize the mutual relation-
ship of time ordered series of fundamental probabilities Pik
hence also of relative frequencies ¢/, , which may be con-
sidered as approximations to Pi k',' If we give the name
“syndromy” to such an array of simultaneously distinct fundamen-
tal probabilities (or relative frequencies), we may call ¥ a
“coefficient of syndromy.” For Y- 1, we shall speak of “isod-
romy,” for 1 > ¥ > 0, of “homodromy,” for ¥ =0, of “para-
dromy,” and for ¥< 0, of “antidromy.” We may include the
last three cases, namely 9 < 1, under the name “anisodromy.”

With the help of " we can exhibit the relation between

/9, on the one hand and the 77 values ,5,,,32, . ﬁn on
the other hand as follows:

19 m)} B é,' mi B+ 7 {(f mi B mfﬂ«‘a}

&=1
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Since m.-Z'? m; ,wefind for 7=1, from (10)

&=
Zmb
=, M L9
(1) G- B
£, m
and for 7<l1

n
(12) ,6° < g; m; ﬁl
m;
b=
Hence, only in the case of isodromy is the assumption justi-
fied that the relative essential fluctuation component for the total
aggregate is as large as that for the partial aggregates. In every

other case, namely for anisodromy, the relative essential com-
ponent for the total aggregate falls below the level for the partial
aggregates more and more as ¥ becomes less and less.

In the suicide example under consideration we have hom-
odromy, which is reasonable, since the fluctuations in suicide fre-
quency in the single states are influenced in part by factors which
are not local but general for all Germany. Somewhat tedious
calculations give 7= 0.38. At the same time we find

. /8, = 0.0246 approximately, while the average for 3;, (=1
to 40 is 0.0392.

If now we group the 40 states into five groups so that states
numbered 1 to 8 form the first group, states numbered 9 to 16
the second, and so on, we find as average values of ﬁ‘- , 00354,
0.0358, 0.0485, 0.0528 and 0.0767. The quantities ﬁ‘- then show
a tendency to increase as ar; (or rm; ) decreases.

If, as in this example, the total aggregate is a “natural unit,”
we should expect to have homodromy in the vast majority of
cases. On the other hand, we should expect paradromy if the
total aggregate is an “artificial unit,” that is, one made up by
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throwing together entirely unrelated groups. As an illustration
of paradromy we take the array of marriage frequencies for the
six cities, Barcelona, Birmingham, Boston, Leipzig, Melbourne
and Rome, for the decade 1899-1908. By marriage frequence
we mean the ratio of the number married (twice the number of
marriages) to population,

For the six cities taken as a whole, with a total population of
about three million, the marriage frequence ¢ o4 Varies be-
tween 18.00 and 19.02 per cent with an average of i8.38 per cent,
The dispersion coefficient ¢, is 3.17. For the six cities taken
singly in the above order, each with a population of about half a
million, the values of @, are 2.69, 4.32, 4.17, 2.88, 3.76 and
272, with an average 3.42, somewhat higher than @, This
result is a direct contradiction of the statement of Lexis that a
narrowing field of observation reduces the value of @. Lexis,
without giving the matter much thought, worked with the hy-
pothesis that isodromy, or at least a decided homodromy, always
existed. In our example, however, we have paradromy, if not
antidromy, for we find 7 to be -0.054. Corresponding to this,
we have /5, less than each of the values B, to By, for 5,
approximates 0.0167 while £3;, ¢ =1 to 6, lies between 0.0334
and 0.0563. The quadratic mean of these quantities is 0.0450.

It is of prime interest to investigate for paradromy the theo-
retical relation of /3, to the quadratic mean of the values s,
B. - - - B, andof @, tothe quadratic mean of @, ,
@, - @, for the case 77, = const. = . In this
case, 77,=77777 , and if O is substituted for 7 in (10) we
have

n
Id° = ;/,-:‘2;6‘ , whence ,6°=7ﬂlﬂ /‘,l-,‘{‘: ﬂ:

At the same time, we find on the one hand, from (9), the ex-
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pected value

or

Q-1+, & Zfﬁ‘.‘

and on the other hand
whence

In the marriage frequence example, where the quantities »7, ,
though not equal, differ very little from one another, we have the
values already found

,=00167 and @ =3.17

to compare with the values

A

7 B ool

3
i~
UV

¢

n
/.! 2,
n (2:/ 0"= .49

The differences 0.0167 ~0.0184=-0.0017 and 3.17 - 3.49=-0.32
are explained partly by the fact that the assumption 77, = const.
is not exactly in accord with the facts, and partly because para-

and
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dromy is really not present as assumed, but only a weak antidromy.
This last should, however, be considered as due to chance. The
artificial character of a total aggregate shows itself in paradromy.

Of the two quantities ¢ and (3, only the latter can be
considered as a proper measure of the stability of a statistical
frequency—more exactly, of the corresponding fundamental
probability. And, since on account of formulas (11) and (12),
the total aggregate can never show a higher value of /3 than
the average for the partial aggregates (because the upper limit
for 7 is 1), we obtain a glimpse of the question of the connec-
tion between stability and homogeneity.

The idea of homogeneity as we here understand it has refer-
ence to the result of the decomposition of a statistical aggregate
according to some attribute or complex of attributes. The aggre-
gate may consist of S elements, say S human beings and
the decomposition may yield /Y sub-aggregates containing
$', " . . . elements. Let some event A be observed
a times in the total aggregate and oc’, x", . . . timesin
the sub-aggregates, If we find the relative frequencies

] "

X e X, X L.
yt 3 3 y-E -s", * y S” y .
*hen, on account of the two identities, S'+S8”" + ., . ., =85 ,
and o'+ ”e . . . =.a , we have the relation

s'y’¢ 5ugn* .....
S +S"+ -

y-

The “general frequency” then appears as the weighted arithmetic
mean of the “special frequencies,” ', y”,

The theory of probabilities, with more or less assurance, fur-
nishes us a criterion for deciding whether or not the deviations

of the quantities &*, &“, . . . from gy are due to chance.



L. v. BORTKIEWICZ 15

If they are not due to chance we say that the total aggregate
“reacts” to the decomposition in question and that the attribute
or complex of attributes which governs the decomposition is
“relevant.” If they are due to chance, we say that the total aggre-
gate does not react to the decomposition and that the attribute
is “indifferent.”

According to the standpoint of the theory cf probability, the
relative frequencies ¢/ , ¢, y” . . . asalso the quotients

) % , . . . can be considered as approximations of
distinct probabilities. If we designate the two series of probabii-
ities thus inferred by p , ', % . . . and ¢’, g .
respectively, we find

(13) ) p:gp'*g"p".’. .....

and the character of the attribute in question as relevant or in-
different finds expression in the fact that the “special probabilities”
,o’, p”,, . . . either differ from one another or are all equal
to p , the “general probability.”

For every ample enough complex of attributes we can imagine
the decomposition going on and on by applying one attribute of
the complex after another. Finally a point is reached where the
sub-aggregates no longer react to further decomposition, or, ex-
pressed otherwise, the supply of relevant attributes is exhausted,
and the probabilities P »p"y . . . which are associated
with these sub-aggregates are called “elementary probabilities.’
In this case we say that the sub-aggregates themselves are “com-

pletely homogeneous” with reference to the event A .

The total aggregate—still in reference to A —is the more
diversified the more the elementary probabilities o ’, p", e
differ among themselves, that is, the more they differ from p .
It is reasonable to take as a measure of this diversity the expression
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& , defined by

(14) 62=‘g'(p'..p)2+9"(P'.'.p)a,,...._

Diversity and homogeneity are antithetical notions; the more
undiversified the aggregate, the more it is homogeneous, and vice
versa.

In order to apply this view of homogeneity, now considered
for itself, to the procedure and the examples which we have
brought forward in the discussion of stability, we must disregard
the time fluctuations of the probabilities in question. That is,
we do not use the gquantities Pix but fix attention on the

probabilities p; which refer to an individua! time interval of
n  partial intervals—say a decade. By carrying out repeatedly
the decomposition according to formula (13), the quantities
p; + P, notincluded may be expressed in the form

p‘. =g‘_' p‘_'./.‘z‘”P‘_".p e

where pl.' R p‘." . . . are elementary probabilities. Cor-
responding to formula (14), we have

(15) 52- 9 (P -p )+ gl (- p ) e

If we designate the proportion of the ¢ th partial aggregate

to the total aggregate by ¢, , that is, if we let -2-: 2 C;

we find

A~ SZ C: P

n
=/



L. v. BORTKIEWICZ 17

and at the same time

a 8- F {Ci 9i (pi-p. )+ <, 9." A/, )‘*--}

The number of summands in (16) is » /¥ , since there are
n partial aggregates and each of these is a totality of N sub-
aggregates. It may easily occur that some of the »n ANV elemen-
tary probabilities are equal and this is expected in connection
with elementary probabilities which are associated with similar
sub-aggregates. But even in the most extreme case, where the
elementary probabilities are equal without exception, we cannot
say that the probabilities o, are all alike. This can occur enly
when the values g‘.’ , g‘f' , . . . are independent of ( .
This highly improbable case is excluded from our discussion. We
have then

”
(17) ‘Z, ci (p-p)* >0
From (15) and (16), we have the following:
¢ ] " o a
9, (P-RY+ 9/ (B[ -R) - = 8+ (p-py)*

n.
&2 < &; + Z'f si (p.-p,)?

° = Py
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so that, on account of (17)

5:’ Z, LY

L=

2

and a fortiors

(18) 8> ¢ < b

The total aggregate is then under all circumstances less
homogeneous than the partial aggregates are on the average

This statement might possibly correspond to the every-day
meaning of the word “homogeneity,” which carries with it no pre-
cise quantitative idea. Indeed, when we consider that in the case
of the total aggregate we have to take into account not only the
lack of homogeneity within the partial aggregates, but also the
diversity with which the partial aggregates may make up the.
whole, we are inclined to say that the total aggregate is less homo-
geneous than any of its parts. With that idea. however, we do
not hit upon the right thing as far as our mathematical criterion
of homogeneity is concerned. The inequality (18) says only,
that the average of the values 5, , Sz» . 5,, is less than
&, not that each one is less than §,.

In our foregoing discussion of stability as measured by the
relative essential fluctuation component, we found that for the
total aggregate the stability was higher than the average for the
partial aggregates, except for the case of isodromy, which in prac-
tice rarely occurs. Hence, there exists between homogeneity and
stability an antagonistic relation—small homogeneity goes hand
in hand with great stability. For example, the provinces into
which a country may be divided will show, on the average, a
greater homogeneity and at the same time a lesser stability in
reference to an event A than will the country taken as a whole.
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Again, the districts into which the provinces may be divided will
on the average show a greater homogeneity associated with a
still smaller stabiljty. We can say that in general the homo-
geneity increases with the narrowing of the field of observation,
while the stability decreases.

Is this to be considered as a warning against the all too popu-
lar diversification of statistical material which is being more and
more aceepted in- research methods? Not in the least. That
would be an obsolete point of view, as if the problem of statistics
consisted in a search far most stable values. Rather does the
opposition between homogeneity and stability give direction to
business practice, especially to that branch of business which is
in such close touch with statistics, namely insurance, where sta-
bility is of prime importance. It has been known for a long
time that it contributes to the even tenor of the business side
if the risks are as heterogeneous as possible. Tt is of advantage
if the insured persons or things are spread relatively widely ac-
cording to geographical and other points of view, instead of con-
centrating on a limited territory or few kinds of risks.

Accordingly, even if this thesis, that an antagonistic relation
exists between homogeneity and stability, seems surprising and
strange, we find on closer consideration that the theory agrees
with a practice which has instinctively grasped the true situation.
It is now twelve years since I had the first opportunity to explain
at greater length than here the foregoing developed ideas and
with the verifying data to present them to my colleagues! As
far as I know, only one of these has taken a definite stand in
the matter. This is John Maynard Keynes? He makes the
charge against me, that instead of clearing up a very simple mat-
ter, I have befogged it with a profusion of mathematical formulas

'Homogeneitat und Stabilitat in der Statistik, in the Skandinavisk Aktu-
arietidskrift, 1918, pages 1-81, Upsala.

'A treatise on probability, London, 1921, pages 403-405.
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and new technical terms, and he believed that he could show this
best by an example of my own from the field 6f insurance. In
referring to this example, Keynes thought that the distinction
made by myself in a much earlier publication between a gen-
eral probability o and the special probabilities p,, p,, . . .
was the one in question, where

- 2 Z2 -
p —z-(pl""\zpz."

Keynes further expressed himself as follows:

“If we are basing our calculations on o and do not
know p,, p,, etc, then these calculations are more
likely to be borne out by the result if the instances are
selected by a method which spreads them over all the
groups 1, 2, etc., than if they are selected by a method
which concentrates them on group 1. In other words
the actuary does not like an undue proportion of his
cases to be drawn from a group which may be subject to
a common relevant influence for which he has not allowed.
If the @ priori calculations are based on the average over
a field which is not homogeneous in all its parts, greater
stability of result will be obtained if the instances are
drawn from all parts of the non-homogeneous total field.
than if they are drawn now from one homcgeneous sub-
field and now from another. This is not at all para-
doxical. Yet I believe, though with hesitation, that this
is all that Von Bortkiewicz’s elaborately supported math-
ematical conclusion amounts to.”

Suppose, for example, that a fire insurance company insures

'Here 2 refers to a series of “equally likely events,” which is broken up
into groups of ®,, & 22 - - - . equally likely events. Hence
2=Z, + 2 2+
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two kinds of buildings, dwellings and factories, which are classified
as different grades of fire risks, for insurancc premiums which
are not graded. The premium is to be calculated per unit on
the supposition that the risks in the two categories are divided
in a definite proportion. Then, according to Keynes, a greater
stability in the business is guaranteed if every year dwellings as
well as factories are insured, than if in one year only dwellings
and in another year only factories are insured. This is certainly
true and requires no lengthy argument. But it has nothing what-
ever to do with my thesis of the antagonistic relation between
stability and homogeneity.

To give an example which does illustrate my theory, think
of three insurance companies, A, B, and C. A insures only
dwelling houses, B only factories, while C insures both. The
premiums in A, B. and C are different because of the different
classes of risks. It is assumed in C that there is no grading of
premiums. A premium per unit is charged which is calculated
according to the relative number of the two risks. The premium
is to be just high enough so that for a period of years, allowing
for variations due to chance, the damages are just covered, In
the course of this period, the danger of fire varies from year to
year, showing gains in some years, losses in others. Such fluctua-
tions of fire hazard would correspond in my scheme to the varia-
tions of the probabilities o, , with respect to &k , while p, ,
is associated with A, Pex With B,and p,, with C. And in
accord with my theory that, except in the case of isodromy, the
values p,, , relatively speaking, show -weaker variations than
Pk and pa.", do on the average, the insurance company C
would show relatively smaller fluctuations of fire damage from
one year to another, resulting in a more stable husiness than
would be shown by the average of A and B. The mixed charac-
ter of the risks would be conducive to greater stability. In the
case of C a certain compensation of effects would take place
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which the time variations of the two-sided fundamental probabil-
ities would make manifest on the business side.! But Keynes
says nothing of these variations. He simply missed the point of
my argument and his remarks were not relevant.

It is to be hoped that the new expositi’od/ of my theory,
although, or because, it is essentially shorter than the older one,
will give no cause for a similar misunderstanding.

'This comhpensation would also appear in the more complicated case where
the proportions of the risks in ¢ are not unchangeable as is assumed in
the text, but would change from year to year (the premium being adjusted
accordingly). We need not go further into this matter because, in my
theory, the composition of S.,« out of the component parts 8,k s
considered as fixed. In my examples, this composition varied, but the
fluctuations were insignificant in comparison to the variations of the valyes
Pik See Skandinavisk Aktiarietidscrift, pages 69-70.



