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PURPOSE. Glaucoma is more common in urban populations than in others. Ninety percent of
the world’s population are exposed to air pollution above World Health Organization (WHO)
recommended limits. Few studies have examined the association between air pollution and
glaucoma.

METHODS. Questionnaire data, ophthalmic measures, and ambient residential area air quality
data for 111,370 UK Biobank participants were analyzed. Particulate matter with an
aerodynamic diameter < 2.5 lm (PM2.5) was selected as the air quality exposure of interest.
Eye measures included self-reported glaucoma, intraocular pressure (IOP), and average
thickness of macular ganglion cell–inner plexiform layer (GCIPL) across nine Early Treatment
Diabetic Retinopathy Study (ETDRS) retinal subfields as obtained from spectral-domain optical
coherence tomography. We examined the associations of PM2.5 concentration with self-
reported glaucoma, IOP, and GCIPL.

RESULTS. Participants resident in areas with higher PM2.5 concentration were more likely to
report a diagnosis of glaucoma (odds ratio ¼ 1.06, 95% confidence interval [CI] ¼ 1.01–1.12,
per interquartile range [IQR] increase P ¼ 0.02). Higher PM2.5 concentration was also
associated with thinner GCIPL (b ¼ �0.56 lm, 95% CI ¼ �0.63 to �0.49, per IQR increase,
P ¼ 1.2 3 10�53). A dose–response relationship was observed between higher levels of PM2.5

and thinner GCIPL (P < 0.001). There was no clinically relevant relationship between PM2.5

concentration and IOP.

CONCLUSIONS. Greater exposure to PM2.5 is associated with both self-reported glaucoma and
adverse structural characteristics of the disease. The absence of an association between PM2.5

and IOP suggests the relationship may occur through a non–pressure-dependent mechanism,
possibly neurotoxic and/or vascular effects.

Keywords: glaucoma, GCIPL, optical coherence tomography, intraocular pressure, fine
particulate matter

The World Health Organization (WHO) ranks exposure to
ambient air pollution as one of the main contributors to

burden of global disease.1,2 Air pollution is associated with
pulmonary and cardiovascular disease, as well as central
nervous system conditions such as Alzheimer’s disease (AD),
Parkinson’s disease, and stroke.2,3 Among all air pollutants,
long-term exposure to particulate matter �2.5 lm in aerody-
namic diameter (PM2.5) is one of the strongest and most
consistent predictors of mortality.2

Glaucoma is a common, age-related degenerative neuropa-
thy and a leading cause of global blindness. Raised intraocular
pressure (IOP) is the major modifiable risk factor for glaucoma
and is sufficient but not necessary to cause the disease.4

Glaucoma is a complex disease with polygenic heritability, with

over 100 single nucleotide polymorphisms (SNPs) accounting
for approximately 26% of the risk of disease among UK
residents.5 However, the precise etiological mechanisms
involved in the development of glaucoma remain obscure.
People living in urban areas are reported to be 50% more likely
to have glaucoma than those rural areas, making air pollution a
plausible risk factor for glaucoma.6 Very recently, an association
between glaucoma disability and national levels of PM2.5 has
been proposed.7 Diseases of the cardiovascular and central
nervous systems and glaucoma share some pathophysiological
mechanisms including inflammation and increased oxidative
stress.8,9 The advent of spectral-domain optical coherence
tomography (SD OCT) now allows precise, reproducible in vivo
quantification of the thickness of individual retinal layers. Of
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relevance to this analysis, the measurement of macular
ganglion cell–inner plexiform layer (GCIPL)10 thickness is
useful in the detection of glaucoma.11

If air pollution shows an adverse association with glaucoma,
this may offer a novel, potentially modifiable risk factor, and
would add weight to campaigns to reduce particulate air
pollutants. We used data from the UK Biobank, a large,
community-based cohort study, to evaluate the relationship
between PM2.5 microparticulate air pollutants, self-reported
glaucoma, IOP, and macular inner retinal anatomical features
associated with glaucoma.

METHODS

Study Population

UK Biobank is a very large community-based cohort of 502,656
UK residents registered with the National Health Service (NHS)
and aged 40 to 69 years at enrollment. Baseline examinations
were carried out between 2006 and 2010 at 22 study
assessment centers. This research used data from the UK
Biobank Resource, under data access request number 2112 and
the North West Multi-Centre Research Ethics Committee
approved the study (reference no. 06/MRE08/65), in accor-
dance with the tenets of the Declaration of Helsinki. Detailed
information about the study is available at the UK Biobank
website (www.ukbiobank.ac.uk). The overall study protocol
(http://www.ukbiobank.ac.uk/resources/) and protocols for
individual tests (http://biobank.ctsu.ox.ac.uk/crystal/docs.cgi)
are provided online in the public domain. In brief, participants
answered a wide-ranging touch-screen questionnaire covering
demographic, socioeconomic, lifestyle, and ocular disease
information. Glaucoma status was determined according to
those who answered yes to ‘‘Has a doctor ever told you that
you have glaucoma?’’ Physical measures included blood
pressure, height, and weight.12

Air Pollution Measurement

The air pollution measures were provided by the Small Area
Health Statistics Unit (http://www.sahsu.org/; in the public
domain) as part of the BioSHaRE-EU Environmental Determi-
nants of Health Project (http://www.bioshare.eu/; in the
public domain). The annual average concentration of PM2.5

was calculated in 2010 using a land use regression (LUR) model
developed by the European Study of Cohorts for Air Pollution
Effects (ESCAPE) project (http://www.escapeproject.eu/; in
the public domain).13 Based on a range of Geographic
Information System (GIS)–derived predictor variables such as
traffic intensity, population, and land use, LUR models
calculate the spatial variation of annual average air pollution
concentration at participants’ residential addresses given at
baseline visit. The LUR model is a validated tool for modeling
airborne pollutants. Results from the ESCAPE project that
modeled the spatial variation of PM2.5 in 20 European study
areas reported a median explained variance of 71% (R-squared,
range¼ 35%–94%).13 Previous epidemiologic studies have used
LUR models for estimating outdoor air pollution concentra-
tions at the home addresses of cohort subjects.14,15

Ocular Measurements

Ocular measures were conducted in six assessment centers by
trained staff following standard operating procedures; detailed
methods have been published.16 Refractive error was mea-
sured with an autorefractor (RC5000; Tomey, Nagoya, Japan)
and spherical equivalent refraction (SER) was calculated as
sphere power plus half cylinder power. IOP was measured

with the Ocular Response Analyzer (ORA; Reichert, Philadel-
phia, PA, USA) and included both corneal-compensated IOP
(IOPcc) and Goldmann-correlated intraocular pressure (IOPg)
in order to examine the influence that corneal biomechanical
characteristics might have on IOP measures (Luce D. IOVS
2006;47:ARVO E-Abstract 2266).17 For participants using IOP-
lowering medication (n ¼ 990, 0.9%), we imputed pretreat-
ment IOP by dividing by 0.7, based on the mean IOP reduction
achieved by medication.18 This approach has been used
successfully in genome-wide association studies of IOP.5,19

Spectral-Domain Optical Coherence Tomography
Imaging Protocol

SD-OCT imaging was performed using the Topcon 3D OCT-
1000 Mk2 (Topcon, Inc., Oakland, NJ, USA) in 2009 and 2010.
Image acquisition was performed in a dark room, without
pupillary dilation using the 3D macular volume scan (512
horizontal A-scans per B-scan; 128 B-scans in a 63 6-mm raster
pattern). All SD-OCT images were stored as .fds image files with
no prior analysis of macular thickness. The Topcon Advanced
Boundary Segmentation algorithm (Version 1.6.1.1)20 was used
to segment the thickness of the GCIPL (ganglion cell layer
[GCL]þ inner plexiform layer [IPL]) in the macula across nine
retinal subfields in a 6-mm-diameter circle centered at the true
fovea location, as defined by the Early Treatment Diabetic
Retinopathy Study (ETDRS).21 GCL is composed of ganglion
cell bodies, while IPL is composed of retinal ganglion cell
dendrites. Average thickness of GCIPL across all nine ETDRS
zones was used in this analysis.

Inclusion and Exclusion Criteria

As we wanted to examine three distinct markers of glaucoma
status, we chose a uniform set of exclusion criteria that were
applied in the analysis of self-reported glaucoma, IOP, and
GCIPL thickness. These comprised participants who withdrew
consent; those who had a history of corneal graft surgery or
refractive surgery; those who self-reported ocular conditions
including diabetes-related eye disease, age-related macular
degeneration, eye injury resulting in vision loss or other
serious eye conditions; and high SER (<�6 diopters [D] or >
þ6 D). These participants were excluded because of the well-
recognized impact these conditions have on retinal layer
thickness22 or IOP measurements.23 Additionally, in sensitivity
analyses, we applied strict quality control criteria to exclude
images of poor scan quality or segmentation failure.24 These
included poor SD OCT signal strength,24 image quality score <
45, poor centration certainty, or poor segmentation certainty,
when examining the association of ambient air pollution on
GCIPL.25

Statistical Analysis

For this analysis, if both eyes of a patient were eligible for
inclusion, one eye was randomly selected using STATA
software (version 13; StataCorp LP, College Station, TX, USA).
We examined the baseline characteristics of participants
gathered over the period 2006 to 2010. Descriptive statistics
for continuous variables are presented as means (standard
deviation [SD]), whereas categorical variables are presented as
numbers (percentage). The distribution of PM2.5 was described
as median (interquartile range [IQR]). We used multivariate
regression models to examine the associations between air
pollutant (PM2.5) (independent variable) with self-reported
glaucoma, IOPcc, IOPg, and thickness of GCIPL (dependent
variables), adjusting for covariates using a forward stepwise
model. Covariates included age, sex, race, Townsend depriva-
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tion index, body mass index (BMI), smoking status, and SER.

Systolic blood pressure (SBP) was additionally adjusted if

IOPcc/IOPg were the outcome variables as blood pressure is

related to both PM2.5
26 and IOP.27 IOPcc was additionally

adjusted if GCIPL was the outcome variable, in view of its

relationship with retinal ganglion cell layer thickness, and as an

etiological factor for glaucoma.28 The effect estimates repre-

sent the change in self-reported glaucoma, IOPcc/IOPg, and
GCIPL variables per IQR and quartile increment in PM2.5

concentration.

RESULTS

Of the 133,964 participants who completed ocular and
medical questionnaires, 24 participants withdrew their con-
sent. We further removed 17,316 participants according to the
exclusion criteria (Figure), leaving data on 116,624 partici-
pants. There were complete data (age, sex, race, Townsend
deprivation index, BMI, smoking status, refractive error, self-
reported glaucoma, and PM2.5) for 111,370 participants. Of the
111,730 participants, there were complete IOP measurements
for 106,907 participants. The mean (SD) of IOPcc and IOPg
were 16.0 mm Hg (3.7 mm Hg) and 15.8 mm Hg (3.6 mm Hg),
respectively. Of the 106,907, there were complete GCIPL
measures for 64,117 participants. The reason for this large
number of exclusions for retinal layer analysis was that OCT
imaging was introduced after the start of the UK Biobank,
preventing imaging of the entire cohort.

The characteristics of participants included in the study are
shown in Table 1. Participants for the three outcomes had
similar baseline characteristics such as age, sex, race, Town-
send deprivation index, BMI, smoking status, and SBP.
Compared to participants with the outcomes of self-reported
glaucoma and IOP, those eligible for analysis of GCIPL
thickness were slightly more myopic (0.04 D difference). The
distributions of ambient PM2.5 levels for each outcome-specific
group are shown in Table 2. The mean GCIPL (SD) was 72.3
lm (7.2 lm). Of the 111,370 participants, 2040 (1.8%)
reported being diagnosed with glaucoma. For each IQR of
PM2.5, there was a 6% (95% confidence interval [CI] ¼ 1.01–
1.12; P ¼ 0.02) higher odds of self-reported glaucoma. There
was no evidence of an association between smoking status and
self-reported glaucoma.

Table 3 presents the relationship between PM2.5 concen-
tration with IOPcc and IOPg after adjustment for all covariates.
A very small per IQR increase in PM2.5 concentration increased
the IOPcc and IOPg by 0.03 and 0.04 mm Hg, respectively.
Compared with those in the lowest PM2.5 concentration
quartile, those in the highest quartile had a minimally higher
IOPcc (b¼0.07 mm Hg, P¼0.04) and IOPg (b¼0.13 mm Hg, P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE. Flowchart of participants included in the study.

TABLE 1. Baseline Characteristics of Participants Included in the Study With Outcomes (Self-Reported Glaucoma, IOP, or GCIPL)

Characteristics

Mean (SD), n (%)

Self-Reported Glaucoma IOP GCIPL

Number of participants 111,370 106,907 64,117

Age, y 56.8 (8.0) 56.8 (8.0) 56.7 (8.0)

Sex

Men 51,384 (46.1) 49,420 (46.2) 29,893 (46.6)

Women 59,986 (53.9) 57,487 (53.8) 34,224 (53.4)

Race

White 101,228 (90.9) 97,268 (91.0) 59,087 (92.1)

Nonwhite 10,142 (9.1) 9,639 (9.0) 5,030 (7.9)

Townsend deprivation index* �1.1 (3.0) �1.1 (3.0) �1.2 (2.9)

Body mass index, kg/m2 27.3 (4.5) 27.3 (4.5) 27.2 (4.4)

Smoking status

Never 62,046 (55.7) 59,468 (55.6) 35,834 (55.9)

Former 38,560 (34.6) 37,158 (34.8) 22,462 (35.0)

Current 10,764 (9.7) 10,281 (9.6) 5.821 (9.1)

Systolic blood pressure, mm Hg 139.9 (19.5) 139.9 (19.5) 139.7 (19.5)

Spherical equivalent refraction, D �0.07 (2.1) �0.08 (2.1) �0.11 (2.1)

* Townsend deprivation index is an indication of the socioeconomic status; the higher and more positive the index, the more deprived an area.
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¼ 7.0 3 10�5). Table 4 shows the association between PM2.5

exposure and overall thickness of GC-IPL. Higher PM2.5

concentration (per IQR increase) was associated with thinner
GC-IPL (b¼�0.56 lm, P¼ 1.23 10�53) (Table 4). There was a
clear exposure–response relationship between higher levels of
ambient PM2.5 and thinner GCIPL (P < 0.001). Exposure to
higher PM2.5 was associated with thinner GCIPL thickness in
the inner superior (b¼�0.65 lm, 95% CI:�0.76,�0.53; P¼7.4
3 10�27) and inner inferior (b ¼ �0.61 lm, 95% CI: �0.72,
�0.50; P¼ 1.8310�27) ETDRS subfields. The mean GCIPL (SD)
thickness was significantly less in the inner inferior subfield
among those with self-reported glaucoma compared to those
without disease (83.4 lm [14.6 lm] vs. 92.2 lm [10.7 lm]; P <
0.001). Similarly, the inner superior subfield was also thinner
among participants with self-reported glaucoma compared to
those without (84.1 lm [14.8 lm] vs. 92.2 lm [11.5 lm]; P <
0.001). We observed a marginally lower mean GCIPL in the
lower inner subfield compared with the upper inner subfield
(83.4 lm [14.6 lm] vs. 84.1 lm [14.8 lm], P ¼ 0.027) in
people with self-reported glaucoma. Sensitivity analyses
including only the participants with good SD OCT signal and
image quality showed similar results (n¼49,114): Higher PM2.5

concentration (per IQR increase) was associated with thinner
GCIPL (b¼�0.50 lm, 95% CI:�0.57,�0.42; P¼ 1.33 10�40).

DISCUSSION

We have identified a novel association between greater
exposure to ambient PM2.5 and increased odds of self-reported
glaucoma. We suggest that this is a meaningful association
based on our finding that inner retinal changes, as seen in
glaucoma, are greater in those exposed to higher levels of
PM2.5. Consistent with a previous report,28,29 we found a
subtle relationship between higher IOP and greater ambient
PM2.5, although the effect was too small to explain the higher
risk of glaucoma associated with PM2.5 exposure. On the basis
that a 1 mm Hg change in IOP alters the risk of glaucoma by
10%,30 we would expect changes in IOP 10-fold higher than
those observed, if the glaucoma risk was solely mediated by
raised IOP. These results suggest that exposure to PM2.5 air

pollutants may be an independent risk factor for glaucoma,
possibly mediated by a neurotoxic or vascular mechanism
rather than by elevation of IOP.

Air pollution exposure is associated with increased oxida-
tive stress,31 inflammation,3 and hypercoagulation.32 Exposure
to polluted air has been associated with impaired cognitive
function at all ages and increased risk of AD and other
dementias in later life; this association is particularly notable
with traffic-related pollutants.33 Possible biological mecha-
nisms include the provocation of oxidative stress31 and
systemic inflammatory responses,3 disruption of the blood–
brain barrier, precipitation of Ab peptides, and microglial
activation.34,35 Exposure to ambient air pollution, especially
PM2.5, has been associated with higher rates of cardiovascular
morbidity and mortality,26,36 possibly due to its impact on
microvascular function37 as PM2.5 can impair microvascular
endothelium-dependent dilation.38 The Multi-Ethnic Study of
Atherosclerosis (MESA) study found that higher exposure to
PM2.5 was associated with narrower retinal arteriolar diameters
in older individuals.39 People with narrower retinal arteriolar
diameters have increased risk of myocardial infarction, stroke,
and cardiovascular mortality.40–42 Very recently, Wang et al.7

reported that higher average levels of PM2.5 were associated
with higher burden of glaucoma disability, using national-level
data. Our analysis builds considerably on their outlined results,
showing an association between air pollution and disease at
the level of the individual.

Although raised IOP is the cardinal modifiable risk factor for
primary open-angle glaucoma (POAG), around half of glaucoma
patients present with IOP within the statistically ‘‘normal’’
range.43 Some patients with glaucoma continue to experience
disease progression despite lowering of IOP.30 This suggests
that other mechanisms are relevant, but these have remained
elusive to date. Possible pressure-independent mechanisms
relevant to glaucoma include oxidative stress, altered immuni-
ty, and impaired microcirculation.44 The New England–based
Normative Aging Study identified an association between black
carbon exposure with IOP that was greater in individuals with
a high oxidative stress allelic score.29 The light absorbance of
PM2.5 filter samples has been used as a proxy measure for black
carbon.45 Oxidative stress may lead to impairment of secretion

TABLE 2. Distribution of PM2.5 (lg/m3) for Each Specific Outcome Including Self-Reported Glaucoma, IOP, or GCIPL

Study Sample Min 5% 25% 50% 75% 95% Max Mean (SD) IQR

Within the self-reported glaucoma dataset 8.17 8.50 9.38 9.91 10.45 11.45 19.69 9.95 (0.90) 1.07

Within the IOP dataset 8.17 8.50 9.38 9.91 10.44 11.45 19.69 9.95 (0.90) 1.06

Within the GCIPL dataset 8.17 8.42 9.32 9.88 10.44 11.47 19.69 9.92 (0.93) 1.12

Max, maximum; Min, minimum.

TABLE 3. Multivariable Linear Regression of PM2.5 With IOPcc and IOPg*

Particulate Matter With an Aerodynamic Diameter < 2.5 lm

IOPcc IOPg

b† (95% CI) P Value b (95% CI) P Value

Per IQR, 1.06 lg/m3 increase 0.03 (0.0003–0.06) 0.05 0.04 (0.02–0.07) 0.0004

Quartiles of PM2.5, lg/m
3

Q1, 8.17–9.38 Ref Ref

Q2, 9.39–9.91 �0.02 (�0.08, 0.05) 0.62 0.04 (�0.02, 0.10) 0.22

Q3, 9.92–10.45 �0.01 (�0.07, 0.05) 0.73 0.06 (�0.004, 0.13) 0.06

Q4, 10.46–19.69 0.07 (0.005–0.14) 0.04 0.13 (0.07–0.20) 7.0 3 10�5

* Initial covariates entered into stepwise forward regression model: PM2.5, age, sex, race, Townsend index, BMI, smoking status, SER, and SBP. For
outcome IOPcc, the final covariates chosen by the model include age, SBP, SER, sex, smoking status, and race. For outcome IOPg, the final covariates
chosen by the model include SBP, SER, race, age, smoking status, BMI, PM2.5, and sex. Age (years), BMI (kg/m2), IOPcc and IOPg (mm Hg), SER
(diopters), SBP (mm Hg), and PM2.5 (lg/m3).

† The beta coefficients (b) represent the effect size for IOPcc and IOPg per IQR (1.06 lg/m3) increase in PM2.5.
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of vasoregulatory factors from endothelial cells, namely nitric
oxide (NO) and endothelin-1 (ET-1), affecting ocular vascular
smooth muscle tone or endothelial dysfunction, and reducing
ocular blood flow.46

Air pollution is the most prevalent source of environmen-
tally induced inflammation. Neuroinflammation has been
identified as a mechanism underlying glaucoma.47 Glaucoma
is an optic neuropathy characterized by degeneration of retinal
ganglion cells (RGC), and previous studies have reported
thinning of GCIPL in glaucoma.48,49 GCIPL thickness has
shown higher diagnostic utility than peripapillary RNFL
thickness in early glaucoma and similar diagnostic ability for
moderate and severe glaucoma.50,51 Our results show that
higher PM2.5 exposure is associated with a thinner GCIPL,
which may reflect structural changes related to glaucoma.
Vascular mechanisms may also increase the risk of glaucoma,
which is supported by the findings on the associations
between glaucoma and systemic blood pressure,52 vaso-
spasm,53 or diseases with vascular manifestations, such as
diabetes54 and migraine.55 The Blue Mountains Eye Study
reported that generalized retinal arteriolar narrowing was
associated with POAG.56,57 Loss of retinal ganglion cells may
lead to decrease in retinal vessel diameter via the autoregula-
tory mechanism responding to a reduction in oxygen
demand.56

Our results did not suggest a clinically meaningful
relationship between ambient PM2.5 with IOPg/IOPcc. From
this, we infer that the effect of PM2.5 exposure on glaucoma is
not primarily mediated by IOP.44 Corneal biomechanics
influence IOP measurements, where the arrangement of
collagen fibers determines the corneal elasticity, viscosity,
and energy damping.58 Compared to IOPg, IOPcc is thought to
be a more accurate assessment of the ‘‘true’’ IOP and less
affected by corneal biomechanics (Luce D. IOVS 2006;47:ARVO
E-Abstract 2266). The effect estimate of PM2.5 concentration
(highest quartile) was greater on IOPg compared to IOPcc,
suggesting that the PM2.5 exposure may influence the
connective tissue biomechanical properties of the cornea.

We used self-reported glaucoma as an outcome measure.
While this is an imperfect tool to identify cases and
differentiate between the different types of glaucoma, we
consider it a valid measure as a recent genome-wide analysis
(GWAS) found that many SNPs known to be associated with
glaucoma were present in self-reported disease in UK Biobank
participants.5 In addition, the SNPs had a remarkable

correlation between the effect sizes for IOP and POAG. In
our cohort, 1.8% of participants self-reported a diagnosis of
glaucoma. A meta-analysis showed that the global prevalence
of glaucoma in Europeans aged 40 to 80 years old was
2.93%,59 while another meta-analysis reported that the
prevalence of POAG among whites was 2.1%.60 However, as
glaucoma prevalence increases exponentially with age, and is
more common among men, we used age- and sex-specific
rates of glaucoma from the EPIC-Norfolk Eye Study, and
applied them to the age- and sex-specific numbers of
participants in UK Biobank, to project the expected rate of
glaucoma in our cohort. Our calculations suggested that we
should see 1.6% of people with glaucoma, in line with the
1.8% we observed. In the EPIC-Norfolk study, 66.6% of
participants with POAG had previously been diagnosed.43

Compared with the United Kingdom, 49% were previously
diagnosed in the Blue Mountains Eye Study,61 47% in the
Rotterdam Eye Study,62 and 50% among white people in the
Baltimore Eye Study.63 The higher rate of previously
diagnosed cases of glaucoma in the United Kingdom may
reflect better access to health care in the United Kingdom,
with universal access and free eye tests for those above 60
years old.43 In the United Kingdom, people are examined by
optometrists and those with suspected glaucoma are referred
to ophthalmologists for definitive diagnosis and management.
The access to and use of eye care services for glaucoma may
differ between participants living in urban areas compared to
those living in rural areas. Among the 101,702 participants
living in urban areas, the proportion of participants with self-
reported glaucoma (n ¼ 1888 [93.5%]) was slightly higher
compared to those without self-reported glaucoma (n ¼
99,814 [92.1%]; P ¼ 0.026). We therefore adjusted for
population density (urban versus rural) in the multivariate
regression model, and PM2.5 was associated with a 6% (95%
CI: 1.01–1.11; P ¼ 0.017; per IQR increase) higher odds of
self-reported glaucoma.

Although the PM2.5 concentration in our analyses was
within the WHO ambient air quality guidelines of annual
means of 10 lg/m3, it was sufficient to cause a 6% increased
odds of self-reported glaucoma per IQR increase in PM2.5. The
WHO reported that in 98% of cities in low- and middle-income
countries, air pollution levels exceeded recommended limits.64

For example, PM2.5 concentrations for Qatar (107.3 lg/m3),
Saudi Arabia (106.2 lg/m3), Bangladesh (89.4 lg/m3), and
India (74.3 lg/m3) are high,2 and in China they ranged from 11
to 157 lg/m3.64 Studies of the concentration–response
function in cardiovascular and respiratory disease have
identified no well-delineated effects threshold. The best
evidence suggests that PM concentration-morbidity can rea-
sonably be modeled as linear.37 From a public policy
perspective, this is good news because moderate improve-
ments in air quality should result in corresponding reductions
in disease risk. However, the WHO data suggest that disease
risk in the most polluted areas of the world may be higher than
observed in the United Kingdom by a factor of 10. In addition,
the level of PM2.5 concentration in our study is based on
outdoor levels at participants’ home address, which would not
account for indoor pollution or workplace exposure. Cigarette
smoke may also contribute to particulate matter air pollution.65

Hence, we examined the association between smoking status
of participants with self-reported glaucoma, but did not
identify a significant association. This suggests that the
relationship between PM2.5 and self-reported glaucoma is not
mediated by cigarette smoke. Household air pollution is one of
the leading causes of disease and premature death in the
developing world, and sources include burning fuels such as
wood and coal in inefficient stoves of open hearths.66

Americans, on average, spend approximately 90% of their time

TABLE 4. Multivariable Linear Regression of PM2.5 With Overall
Average Thickness of GCIPL*

Particulate Matter With an

Aerodynamic Diameter

< 2.5 lm b† GCIPL (95% CI) P Value

Per IQR, 1.12 lg/m3 increase �0.56 (�0.63, �0.49) 1.2 3 10�53

Quartiles of PM2.5, lg/m
3

Q1, 8.17–9.38 Ref

Q2, 9.39–9.92 �0.18 (�0.35, �0.02) 0.03

Q3, 9.93–10.46 �0.48 (�0.65, �0.30) 6.2 3 10�8

Q4, 10.47–19.69 �1.25 (�1.43, �1.07) 4.7 3 10�42

P for trend <0.001

* Initial covariates entered into stepwise forward regression model:
PM2.5, age, sex, race, Townsend deprivation index, BMI, smoking
status, refractive error, and IOPcc. Final covariates chosen by the model
include age, SER, IOPcc, PM2.5, Townsend deprivation index, sex, BMI,
smoking status. Age (years), BMI (kg/m2), IOPcc (mm Hg); SER
(diopters), and PM2.5 (lg/m3).

† The beta coefficients (b) represent the effect size for GCIPL (lm)
per IQR (1.12 lg/m3) increase in PM2.5.
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indoors,67 where the concentrations of some pollutants are
often two to five times higher than typical outdoor concentra-
tions.68 It is likely that the biases and inadequacies that affect
our analysis will skew the effect toward the null. Our
participants will have been exposed to higher levels of PM2.5

than the ambient residential figures indicate; hence, we may
have identified only the ‘‘tip of the iceberg.’’

The strengths of this study include its large sample size,
and the highly accurate and reproducible measurements of
the SD OCT retinal thickness. This is the first large study to
evaluate the association of ambient air pollution with two
glaucoma endophenotypes and self-reported disease using a
combination of epidemiologic and retinal imaging tech-
niques. The limitations of the study include the low response
rate of 5.5% in UK Biobank. Since air pollution was estimated
using the participants’ home address, this would not have
accounted for individual activities, indoor air pollution, and
workplace exposure,69 thereby increasing the risk of
misclassification bias. However, it is likely that the individual
exposure to air pollution will be higher and probably
nondifferential between cases and controls. Hence, our risk
estimates may have been underestimated. The status of self-
reported glaucoma was obtained from questionnaire and
lacked detailed information to differentiate the different
types of glaucoma. Information collected through question-
naire is subject to misclassification. However, a recent study
by Khawaja et al.5 demonstrated that people who self-report
a diagnosis of glaucoma have a genetic makeup that is
consistent with a glaucoma diagnosis. The prevalence of self-
reported glaucoma may have been low (1.8%) and may not be
fully representative of the local or national population. Lack
of precision in diagnosing glaucoma may have reduced the
power of the study. This will have diminished our ability to
identify a true association. Participants who had self-reported
ocular diseases were excluded from the study. The discrep-
ancy between self-reported ocular conditions and clinically
diagnosed ocular diseases could have well-recognized im-
pacts on the retinal layer thickness or IOP measurements.
However, because the participants were unlikely to be aware
of their OCT measures, it is most likely to be nondifferential
misclassification bias between those who reported or did not
report a diagnosis of eye disease. Out of the 111,370
participants with data on self-reported glaucoma, 106,907
participants had IOP data and 64,117 participants had
measurements on GC IPL. However, the baseline character-
istics (Table 1) across the three glaucoma-associated outcome
groups are similar in most aspects with the exception of
refractive error. The cross-sectional design of our study also
limits any determination of the cause and effect of the
relationship between PM2.5 concentration and glaucoma-
associated outcomes.

In this study of a large, middle-aged UK population, we
found a significant association between higher current PM2.5

exposure and both a higher risk of self-reported glaucoma and
thinner macular GCIPL. The association appears independent
of IOP. These findings require replication in other cohorts. It
is possible that the structural features observed may result
from a condition similar to, but distinct from, glaucoma and
that thinning of the GCIPL may be a ‘‘pollution retinopathy.’’
However, the direction of the relationships between PM2.5

and both glaucoma and associated retinal layer thicknesses
indicates that higher exposure to PM2.5 may make the GCIPL
more vulnerable and increase the risk of glaucoma. Further,
longitudinal research will be required to determine if
exposure to pollution causes development or progression of
glaucoma, or possibly that there exists a clinically similar
condition—"particulate pollution-induced retinopathy.’’ Our
findings add to evidence for the damaging effects of ambient

air pollution, even at relatively low levels of mean PM2.5

exposure. Further research into the effects of fine particulate
air pollution on both RGC physiology and retinal vasculature
may help in the identification of an underlying pathological
mechanism.
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