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Abstract. Every minimal homeomorphism of a Cantor set is strongly orbit equivalent to a homeo-
morphism of infinite entropy.

1. Introduction.

In [Su], we showed the claim is valid for the finite entropy case. That is to say,
suppose (X, T') is any Cantor system and o is any positive number, and fix them. Then
there exists a Cantor system (Y, ) such that (Y, S) is strong orbit equivalent to (X, T)
and topological entropy of (Y, S) is equal to «. In this paper we show the claim for the
infinite entropy case. The difference of construction between finite case and infinite case
is that the simple ordered Bratteli diagram made in infinite case has no distinct orderings
(Definition 2.3). Therefore the calculation of entropy differs from each other in the two
cases. In the main theorem we shall show this calculation. The construction, except for
distinct ordering, of diagram in infinite case is basically the same as for the finite case,
1.e. we construct by induction the base diagram 2’ and the sequence of the set of
numbers {{#F®}¥ "} |, which are numbers chosen from some equivalence class on
vertex set defined in Definition 2.2. We apply Lemma 4.1 to the diagram which is
obtained by 2’ and {{# V® ¥V °1 2 || so we get the simple unordered Bratteli diagram.
Moreover we take a definite partial order in it so as to have simple ordered Bratteli
diagram yielding the associated Cantor system having an infinite entropy.
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course of my study, and I especially thank Toshihiro Hamachi and Mike Boyle for
their many helpful comments.
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2. On the order of Bratteli diagram.

In this section we shall consider some partial orders on the edge set of Bratteli
diagram in order to be able to calculate infinite entropy.

First, we give definitions and notations. Given Z={M®}=_ | which is a sequence
of positive incidence matrices of (V, E), we define for 1 <i<#V*~1 1<j<$V®,

BV U 1) M
5 (K) — E (k) o~ (k) — 5J
mrl = m: m =
J Lty L -
i=1 o
= —_ =k k) — k k
m®P= max mP, MP=mP,mP, - m@e-. ).
1 <j<syio

For p<geN, let
MPd=p@Ipgtp+1). . pra—1pq@ , which we write M(p.q)=(mi(‘pj.q)) .
In the same way we define m{P?, m&?, m'»9, MP? (1 <i<$V®™ D 1<j<$p9)

DEerFINITION 2.1 (ordered vector). We define 7: M\ V@ x N — V which indicates
the order of edges on the diagram. For any ve P\V'? and k (k>1),
et Jj-th edge whose range vertex is ve V® is connected

T(U j)=v(k-1) ] ~ _
’ with p®* " De J* =1 a5 a source vertex .

And we say an ordered vector of v if it consists of vertices defined by
(z(v, 1), (v, 2), - - 2(v, $r7 ()= 1), 2o, #r~ W) c(VE DI,
where r: E® - J'® js range map. Let O.vec(v) denote the ordered vector of v.

DEFINITION 2.2 (equivalence relations on the vertex set). Given a simple unordered
Bratteli diagram (V, E) and the incidence matrix M*, we decompose ¥V® (k>2) using
the equivalence relation ~ on V\ V@ u 'V defined as follows:

o .. def
i, je V& i~j < M®B =M}

Denote the equivalence class of ve V¥ by [¥]. For an incidence matrix M® =
(m*) and VP, let MB=m{,;,, m$;, -, M- ;) denote the incidence vector of
[V¥] (cf. Definition 3.8).

DEerFiNITION 2.3 (distinct orderings). We say edges to vertices of V' have distinct
orderings (to put it simply that V® has distinct orderings) if for v, v’ e V¥,
O.vec(v)=0.vec(v’) implies v=v'. And we say a subset 4= ¥V™ has partial distinct
ordernings if for v, v’ € A, O.vec(v)=0.vec(v’) implies v=1v".

Now we consider some simple unordered Bratteli diagram (¥, £) satisfying the
following assumption:
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AssUMPTION 2.4, For all k=2 and 1<j<#V®,
(i) m=m{ =3,

(ii) m,("}22 for all 1<i<gP®— 0,

Next we make the following four assumptions with respect to the (partial) order
of edges.

ASSUMPTION 2.5 (minimal/maximal property). For each k>2, 1 <j<#{V/®/~}

and ve PP, there exist vV, v Ve P*~D guch that

(v, N=v&% 0, o, #r @) =vdLY .

max

AssUMPTION 2.6. For each k21, v,v’e V¥ and 1 <i<4{(F**V/~}, there exist
vt Ve P*+ D and 1 <, <#r (oY) such that

TV, 1) =v WD, 4+ D=0’ .
AssuMpTION 2.7. For each k=2,
k k k
() o, o8, e VP,

2 {veV®|3;: T(v t)=1(v, t+D=1(v, t+2)=0% VY 1(v, t+3)=1(v, t+4)=
Umax '} = {vpda} and
{ve V¥ | 31: (v, t) =1(v, £+ D=v%- Y t(v,t+2)=1(v, t+3)=1(v, t +4) =
kD) = {5
max max]j -
AssUMPTION 2.8. For each k>2 and 1 <i<#{PV®/~},
(1) there exists 1, € N such that
(i) for i=1, PI\{o¥, v =™ V¥ as a disjoint set and #P¥=
(#P7® —2)/n, for all [,
(i) fori#l, V@ =) K P® as a disjoint set and VX =#PH/y, for all /,
(2) V¥ has partial distinct orderings for all  and /,
(3) if we write V#®={v® p}‘”’(k’ 20me  then O.vec(v )=O0.vec(v®. ) for all

i,l,p i, p

I<Ll'<m.and 1<p<(# V,"‘) —28(i))/nx, where 6: N — {0, 1} is defined by
a(i)z{o v
1 if i=1,

(4) there exists unique v};e P® such that (v, 2)=0%, " and (v}, 3)=v%, ",
(5) for any ve V®, z(v, #r'l(v) #ok-D

min s

(6) {veV®|3r: 1o, t)=v¥ Y, v, t+ 1) =0l V) = {v} | Vi, VI}.

For any set of equivalence class P{*, define Dist(¥)eN by

- sPE-D V- 1)
Dist(V}"’):( Z m,";’,])/ H mifat . @.1)

REMARKS. (1) Assumption 2.5 implies that we can accommodate the unique
maximal and minimal path condition.
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(2) Later when we calculate the topological entropy of some simple ordered
Bratteli diagram, we need Assumption 2.6 as a technical convenience (Lemma 3.7, 3.9).

(3) Assumption 2.7 and 2.8 are the conditions in order that (¥, E, <) satisfies
Condition 3.2 in §3. Later we shall show in Lemma 3.9, the reason why Condition 3.2
holds if (¥, E, <) satisfies Assumption 2.7 and 2.8.

(4) If P® satisfies Assumption 2.4, 2.7 and 2.8 and ¥¥ has partial distinct
orderings for all /, then there is a maximum possible value for #Vj",’, for all j. Let
Max( 17""’) be this maximum value. Then Dist( f/"}"’) is a maximum possible value of
arranging all M, vertices of ie ¥* ! for 3<i<#P* V. It is easily seen that the

relation between Max(P*) and Dist(¥®) is Max(¥*) > Dist( 7).

Let c.d(a,, a,, - - -, a,) denote the set of common divisors of a,, a,, - -, a,eN.
The following Lemma guarantees the existence of the above simple ordered Bratteli
diagram satisfying Assumptions 2.5, 2.6, 2.7 and 2.8.

LEMMA 2.9. Suppose (V,E) is the unordered Bratteli diagram satisfying
Assumption 2.4. And suppose (*,°)<(#VE*D_25(j))/n, L < Dist( Py o8P0 3
SJorallk>1and 1 <j<{PV**V/~} wherenk+1 ec.dEPErn— -28(j) |1 <j<#{V"‘“’/ ~}.
Then there exists a partial order < on E such that (V, E, Z) satisfies Assumption 2.5,
2.6, 2.7 and 2 8.

Proor. Take any k>1 and fix it. We write P®={p®}:¥" and put
pP=p® =1eP®, =08, =2ePW 2.2)
From Assumption 2.4 and (2.2), we see for any ve P&+ 1,
$lee B¢V | s(e) =0, rle)=0v} =#{ec E**V | s(e)=v®),, re)=v} =3,

where S: E%*D 5 P® is source map.
Now we fix any F** 1. Let e, ; be the number of edges connecting v{* and [ 7** 1],

. N )
We define a basic order £;: {1,2, - -, Z, , €= J} — P as follows:
- k def
()= — 1+Ze,,<t< Zeu (€o,;=0),
i.e.
g
k (k k k) ... K ... K& N k k &
IJI Tj(t) (vr(m)n’ |)m v:(m)ns 0(2)’ : ) Ug )’ » Ugvao— 15 » UsPoo — 1, vr(n;x’ v:(na)x, U( )x)
= ——_—J ~

€z ; times Eypua - l'jtimes
Since 1 ec.dFFF*V—26(j) | 1 <j<#{P** Y/~ 1), we can decompose P+ 1 so
7 (k)
as to satisfy Assumption 2.8 (1). Take any 1 </<#, ., and fix it. We pick up any (#Z )

vertices in F%*1 and write {v%* V| 1 <i<i’ <#P®}= P&+ We assign the following
order 1 to edges connecting these vertices.
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() Ifi'#gP®,

y
o{® if 1=3 ¢
1=0
(k+1) — i
(™Y, )= *) .
vy if 1=) e, ;
1=0
7;(2) otherwise ,
() Ifi#l, i'=4P®
v if 1=¢,—2
*+1) =
— (k : —
i s, 1) = Ui if =1+ ) €, (2.3)
1=0
7;(8) otherwise ,
(3) Ifi=1,i'=4P®,
o if +=1,3,4
oo —1
(k+1) 4 :
togpoo > )= H—1)  if l4e ;<t<l+ Y e
=0
k+1 . k .. k k k . (k .
(1) 0. UeC(U( )) ( ,ﬁ )’ 'U( )7 U( )9 v;(-l—) 1 T vl+)la 3
€ J~I times ;. times
ky .. k) (k) .tk N (I NP
Lvi(')’ svi(’)s Ui( )5 P!S’-)I—l’ ’vi('-)k} )9
ey ;— 1 times €41, times
k k k k k k
(2) ¢>0 Uec(vz(#lt’( ) ( Ul(—)la e 1(—)1’ Ur(n;x, vi( )5 T, U,'( )7 3
e;_, ;times e; ;— 1 times
k) k) k k k
UgPor—1, "7 75 UgPoo— 1, U( ) Ut(n:ixs U( )x)
CgPun—_1,; times
k+ 1)\ __ (., (k k k k Ky L. onk L.
(3) ¢0.U€C(U(1 FV(L))—(vr(ni)m U:mlxa Utsru)m vr(ni)na U( ) s Ué )a s
—,___a
e,,; times
) k) k k
Vgpoor—15 " " 75 Ugpoo— 1, U:nz)lxa Ur(n;x .

€sp00—p,; times

Moreover define the order on ™Yot ") and r~ Y&t V) as follows:
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4
p® if r=1,2,3
sV, n=< -2 if 6<r<é, —1
Ur(rllcz:x lf 4s S’él,
&)
¥ if t=1,6,—4,&,—3
&Y n=< #,0t+2) if 2<r<é —5
UI(I’::X if t=e—l—2aé1_1,él'

k+1 k k k k k
(4) - O'Dec(v:nin ))=(v§ni)ns v}ni)m vr(ni)m U( ) U( )

max? “max?

k k k) (k) k
‘vé ARRER v&f, R S R L AR € Umax) »
e, times Cypoo 1 tiMES
k+ 1)y k k) ... k) ...
(5) = O'Uec(vx(nax ))_(Ul(ni)ns Ué )s E Ué )9 ’
e, ; times
(k) R K ) Lk k k
Uspoor—1, s Ugpao — 1> vmi)m Umins vr(mlxs vr(m:x’ vr(m)lx) .

e — 1,1 times

Let V¥*V={ve V&Y |1(v, 3)£0%, or (v, &;—2)#v%,}. Then by the above
construction we see

DU ok Ve PEID | =] or =#PW} | $PETH_2§P0_3

Since #(P%*V\P¥* )< Dist(P** 1) holds, we can assign an order on F™ 1\
V#+ 1 satisfying the following conditions:

(i) for any ve PE*U\P¥*+D and any 1 <i<i’<#V%¥, O.vec(v) # O.vec(v{¥)),

(ii) for any u, ve P& M\ P+ D with usv, O.vec(u) # O0.vec(v),

(iiiy for any ve PETN\FPED (v, )=1(v, 2)=1(v, 3) =%, (v, &;—2)=1(v, &;—
1)=1(v, &;)=v,.

Then the above conditions imply that P{%* " has partial distinct orderings. And it
is easily seen that Assumption 2.5, 2.7 and 2.8 hold. (In this case, v* =v§’f:;71(l) in
Assumption 2.8.)

Finally we shall show Assumption 2.6 holds. Since e; ;=2 for all 1<i<#V® by
Assumption 2.4, for any v and v¥, we can choose v+ 1 if i#£i or oMV if i=i’
where ¢, t' are any pair of number with ¢ #1i, ¢’ #1i. Therefore Assumption 2.6 holds. So
we are done. [

3. Calculation of topological entropy.

The aim of this section is to calculate the topological entropy of a lexicographic
map on a Bratteli compactum in a special case.
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First, we calculate the topological entropy of subshift in a special case. Suppose
that A is a finite set, which will be called an alphabet. Let AZ be the set of all bisequences
X="""X_1XoX; - (with each x; in 4), equipped with the product topology. Then 4%
is a compact metrizable totally disconnected space, and the shift map o: 4% — 4%
given by (ox);=x;,, is a homeomorphism. The restriction of ¢ to a closed invariant
subset Y of 4% is called a subshift. If S is the restriction of ¢ to Y, then the topological
entropy of S, A(S), is called the growth rate of the number of words of length n
occurring in points of Y:

h(S)= Im sup M ,

n— oo n

(3.1)

where _
%(S)z {P1P2ps: - P, | there exists y=(y,);.z in Y with y,=p, for 1<i<n}

(cf. [Wa], [DGS]). This definition is given in [Wa: Theorem 7.13] or [DGS: Proposition
16.11].
Let W be a set of words with alphabet 4. Here we give the following definition.

DerFmNiTION 3.1 (concatenating point). We say w=w,w, - -w,e W (w,e A4 for all
1<i<n) has concatenating points in W if there exist more than two words w/=
wiwi - wl eW (1<j<d, d>2) and integers 0=p,<p, <" <p,_,; <ps=n such that

1 1 . : P —
{ wnl—p1+1wn'1—p1+2 wn1 lf l_l

1 1 'S
Wp o+ tWp_ 42" "Wy =9 W if l<i<d

wiwg-wi_ . if i=d.

Here we say a word w=ww, - -w, (w; is an alphabet for all j) is the sub-word of
u=uu," u, if n<m and there exists i with 1 <i<m—n+1 such that

W=tll; g " "Uirp—1 (w;

;=4 -4 forall 1<j<n).

Now let W be a set of words with alphabet A satisfying the following conditions:

ConpITION 3.2. (1) #W < o0,
(2) W has no word which has concatenating points in W.

ExaMPLE. Let 4 be an alphabet {a, b, c,d}.

(1) W ={a=abcd, f=acbd, y=aabcdd, S=acbdbabcd}. Then W, satisfies
Condition 3.2. Because any word in W, does not contain a sub-word “da” and any
concatenated word always contains it. (But « is a sub-word of y and 6. B is also a
sub-word of 4.) .

(2) W,={a=abcd, B=abc, y=dba, =aab, e=cdb}. Then W, does not satisfy
Condition 3.2. In fact, « is a sub-word of concatenated word By and Je. Therefore «



318 FUMIAKI SUGISAKI

has concatenating points in W,.

DEFINITION 3.3 (subshift generated by W). Let Yy, be the set of all bisequences
formed by concatenating of words in W, i.e.

S't' ynfyn.-+1. ) .yni+1—2yni+1—1=wi (ViEZ)} *

Let Sy be the restriction of shift to Y. We call (Yy, Sw) the subshift generated
by W.

For we W, let | w| be the length of w. Then there exist /e Nand J: {1,2, ---, I} >N
such that

W={w, ;| 1<i<L1<j<J (@), w; ;#wp; if G, )#(,))
Iw,-,j|=|wl-_j'| for 1 SVj, VjISJ(i)} .
Put /;=|w(i,j)|. The next lemma is a calculation of topological entropy (¥Yw, Sw).

LemMMA 3.4 ([Su]: Lemma 4.4). Suppose (Y, Sw) is a subshift generated by W
and W satisfies Condition 3.2. Let o, be the positive solution of the following equation:

i Oy, (3.2)

=1 xli
Then
h(Sw) - log 0(0 .

Proor. First without loss of generality, we may assume 1</, </, <---</,. Let
L, be a set of concatenated words of length n which are made up from words in W.
We take any n>/;, welL, and fix them. Then from Condition 3.2 (2), there exist
“unique” words w,, w,, * - -w,€ W such that w is the concatenated word ww," - -w,.
This uniqueness of concatenated words is very important, because this uniqueness
guarantees that for all n>/;, the following linear homogeneous difference equation
holds:

I
$L,= Y J(EL,_,, . (3.3)
i=1

(If W= {a=abc, B=abcabc, y=abcab, 6 =cabc} and w=abcabcabce L, then in this
case W does not satisfy Condition 3.2, so (3.3) does not hold. In fact, w has four cases of
concatenation: oo, aff, Sa, pd. In this case it is easy to check that (3.3) does not hold.)
Here consider #,(Sw) for n>1;. Take any we #,(Sw) and fix it. Then there exists
non negative integer | with 0<i<2l;,—2 and w'e L, such that w is the sub-word of

w’. Therefore the relation between #,(Sw) and {L,,;}?; 2 is as follows:
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20y —2

B, <HW(Sw)< Z $L, .. (3.4)

By the way, we also consider the following indicial equation (3.5) assocnated with

(3.3):

I : :
xh= Z J(i)xlz‘li . . o (3.5)
i=1
Immediately we see that the equation (3.5) is equivalent to (3.2). Let o, o5, - * -, &, be

all the solutions to (3.2) with o; #Za; if i#j and «;#a, for 1 <j<d.

Now we claim «y>|a;| for all 1 <j<d.

Define f x)= Z , J(@)/x". Since f(x)is a monotone decreasing function 1f x>0
and f(1)= Z -, Ji)= I we see that oy > 1 is unique positive solutlon Moreover for any .
i, we see that
I
= 3 T8 fa.

=1 |og|™*

L Jk L Jk
1= f(og)=flo;)= kgl (1,‘) = kgl J(lu)

i

Therefore the claim holds. ‘

Next, let m; be the multiplicity of «,. For n>1,, using Lagrange’s method of varia-
tion of constants (see [EDM]), we get the general solution to (3.3) by #L,= ZL o Pi(n)a”,
where P; is a polynomial and degP;=m;—1 (0 <i<d). Let M =max,; 4m; For each
sufficiently large n, 1 <Y'7_ | P,(n)| <n™ holds. Since | a;/a,|<1 and Y7_  P{ma" takes
a positive integer value, we can calculate

2}
< —
%o

1 d
—log{ ) Pi(n)(
n i=0
<——A:!~10gn—>0 (as n—0).
n

1 d
—log#L,—loga, |= log 3. | Pi(m)|
n i=0

So we get lim,_,,, + log#L,=loga,. For n>1,, define I{(n) by $L, ., ,,=mMaXocrc21, -2
#L, . From (3.4), ##,(Sw)<2#L, ; y, holds. And since 0 </(n)<2/;—2, the follow-
ing inequality holds:

1
;‘ log{le#Ln + l(")} - lOgdo

< Liogal+ "I Y yogsr 0 —logao |+ logag
n n+1l(n) n
-0 (as n— o0).
Therefore we have
log##,(Sw)

h(Sw)=Ilimsup

| adie o]

=logag .
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So we are done. [

We give some notations of an ordered Bratteli diagram 2 =(V, E, <). For ve V,
let Z(v) be the set of all paths connecting V® and v. And define #2[ V] = $#(v) where
ve V®,

Let Z#={M®}* | be a sequence of incidence matrices of &. Then it is easy to
see that the relation between P, =(#2(1), $2(2), - - -, #2(#V®)) and £ is as follows:

P, =MUMP ... pqpk=Dpr forall k>1.
Let 2 be the Bratteli compactum associated with 2.

DerFINITION 3.5 (subshift associated with an ordered Bratteli diagram). We
shall give the two types of subshift associated with an ordered Bratteli diagram:

(1) Let S§: 2 —2 be the lexicographic map of 2. For keN and neNu {o0}
with n >k, we define n, : (V™) - P(V®) by

n(p)=(es. e ", ek)eg’(V(k)) »

where p=(e, e,, " -, e,)eP(V™) and P(V'*)=2. And define the shift invariant
closed subset ¥, of 2(V®)Z by

Y= {m(S"P) - € P(VW) | pe?} . (3.6)

Let S, be the restriction of shift to Y,. We call (Y,, S,) the subshift of P(V*)Z
whose domain is Y,.

(2) For fixed k=1 and ve V¥, we write P®)={p,,ps """, Psgpwn} With
P1<P2<' <Psgpyu. (“<” is the partial order of Z( '™y associated with the order
of edges.) We write Con(v)=pp," " ' Psspyo) as a concatenation of py, ps, * - -, Pspryooy.

For t>0 and v{**?e V**", define =, by

m(Con(v* ) =md p)mdp2) * - Al Prapyie+o) 5
where {py, P2, - 5, Paapreroy | P1<P2 < <Pygpeop =PFTY). And define W(r) by
W, (1)= {m{Con(p**") | y* P pt+ay
Moreover we define the shift invariant closed subset Y, (t) of P(VW)Z by
Vi) ={y=(0)icz€ P(V®? | H{w; | w;<w;, VjeZ}2 _<Z
o} W S VE ISt Yo Vuit 17" Vg —1 =T Con(v)Vie Z} .

Let S,(?) be the restriction of the shift to Y,(z). We call (Y,(2), S\(¢)) the subshift of
P(VEYE whose domain is Y,(t).

The next lemma is the relation of entropy between (£, S) and (Y, S,).

LEMMA 3.6 ([Su]: Lemma 4.6). Suppose S is a lexicographic map on the Bratteli



ENTROPY AND STRONG ORBIT EQUIVALENCE 321

compactum associated with a simple ordered Bratteli dingram 9 =(V, E, <) and S, is the
subshift defined as above. Then

A(S) =k1im (S . 3.7
Proor. This proof follows [Wa]: §7.1 and §7.2. For k=1, let %, be the family of
cylinder sets in 2 whose length is k. That is, €, ={Ul(ey, €5, - ", &) | ey, €2, *, €€
P(V®)}. Then %, is a finite clopen cover of #. Let d denote the metric on 2. We
remark that since # is compact set, the entropy of S does not depend on the metric
chosen on Z. Define diam(%,)=sup, ¢, diam(4), where diam(4) denotes the diameter
of the set 4 measured by 4. Then diam(%,) — 0 as k — cc. Therefore from [Wa]: Theorem
7.6, we can get

k—>wn—=wo RN

i et
A(S)=lim lim —logN( V S“‘gk) , (3.8)
i=0

where \/;‘;01 S7'%, is a clopen cover, consisting of sets of the form A, S™'4, N
S24,0 - nSTTV4, | with 4,e€%, (i=0,1,2,---,n—1) and N(Vi_ 5 S™'6) is
the number of sets in a finite subcover of \/{_; S~ 2%, with the smallest cardinality.
Now we write §,={A4;}Z¥™. Since A4;’s are disjoint, we see if (m;)!zd, (m))i=de
{1,2, - - - #2(VO)" with (my, my, -+, m,_ ) #(m}y, my, -+, m,_,), then

n—1 n—1
( N S‘iAmi)m( N S‘iAm;):Q :
i=0 i=0
Therefore the following equality holds:

n—1 n—1
N(\/ S—i(gk)=#{,4= () S™4,,
i i=0

i=0

AP, me{l,2, -, $P(VM)}, Vi} . (3.9

We see that from (3.6) and (3.9), ##,(S,)=N (\/;';g S~*,) holds. Therefore from
(3.1) and (3.8), we can obtain (3.7). So we finish the proof. []

The next lemma is the relation of entropy betweeen (Y,, S,) and (Y,(¢), Si(¢)).

Lemma 3.7 ([Su]: Lemma 4.7). Suppose (V, E, <) is a simple ordered Bratteli

diagram satisfying Assumption 2.5 and Assumption 2.6. Then for k> 1,
A(S,) = lim A(S,(2)) . (3.10)

t— o

ProoFr. This proof follows [BH: Lemma 2.5]. Clearly Y, (0)= Y, (1)>--- and
Y.< ﬂtao Y, (t). Conversely, suppose ye ﬂrzo Y,(z). By compactness, y € Y, if for any
neN, the word y_, - - -y, appears in a point of Y,. It suffices to show y_,- - -y, occurs
in the subshift generated by =,(Con(v)) for some vertex v. Choose m>k such that
¥P[V™]>2n for any 1 <i<#{V™/~}. Since ye Ym—k), y_, -y, is a sub-word



322 FUMIAKI SUGISAKI

of n(Con(v)m(Con(v")) for some vertices v’,v”e V™. By Assumption 2.6,
i (Con(v))m,(Con(v")) is a sub-word of m(Con(v)) for some ve F™* 1), Therefore S, is
the nested intersection of the subshifts S,(z). From [DGS; p. 113, Corollary to Propositon
16.12], (3.10) holds. So we are done. [J

Now we define another equivalence relation on vertex sets.

DerFINITION 3.8 (equivalence relations on the vertex set). We shall define two
types of equivalence relation on the vertex set (cf. Definition 2.2).

(1) For a simple ordered Bratteli diagram (¥, E, <) and k, neN with k<n, we
decompose 7™ using the equivalence relation &, defined as follows:

i, jeP®  ixj & g (Con(i))=n(Con(})) .

Let K" be the set of the equivalence classes of P for x,. i.e. we decompose

o= Uffi“” = K{*:" as a disjoint union and denote the equivalence class of ve K{*:”
by [ K}k:n)].
(2) For a simple ordered Bratteli diagram (¥, E, <), a sequence of incidence
matrices {M™} =, of (¥, E, <) and k, neN with k <n, we define ~, using ~,, by
. . THR . . def ~ (n ~{n
i, je v I~g) = 2 i = Z mx(},
IEK(l.(':m—ll zEK(‘I«'in—l]
for all 1<I<#{P" " Y/~,}. Let 7™ be the set of the equivalence classes of ¥™ for
~ 1 [7¥*™] be the equivalence class of ve P&,

REMARKS. (1) If we take n=k, we see that K*¥={i}c V® and #{P/®/~ }=
FP0,

(2) If we take n=k+ 1, we can easily verify by (1) that the equivalence relation
~, on P**V corresponds to ~ on P*tD. §o PEk+D_ PR+ Kolds for any
I<is#{ PO/~ J=g{PEr U/~

(3) If we take n>k+1, it is easy to check that for i, je V™, i~ implies i~ /.
Therefore we can define the map &;.,: {1,2, - -+, #{V™/~}} = {1,2, - - -, #${P"/~,}} by

D) =) <= VWV, (3.11)
(4) The relation between ~, and ~, is that for i, je ™, i~, j implies i~, j.

Therefore we can define the map x,.,: {1,2, - - -, ${V"/ = )} = {1,2, -+ -, #{P"/~ }}
by

Keall)=J < Kim o plkim (3.12)
(5) For any k, I, neN with k</<n, we see that
i, jev®™, i~,j implies i~,j. (3.13)

In fact for i and j, there exist geN and {v,e ¥"}4_, such that



ENTROPY AND STRONG ORBIT EQUIVALENCE 323

n,(Con(i))=mn,(Con(j))= Con(v,)Con(v,)- - - Con(v,) .
In addition, for any ¢, there exist s,e N and {i,, € F®}%_, such that
7(Con(v) = Con(u, ;) Con(u, ,)- - - Con(,.,) .
So we have
m(Conli))= Con(u, ;)" - - Con(u, . )Con(u, ) - - Con(u, ) - - Conu,, ) - - Con(u,; )
=m(Con(j)) .

Hence we get (3.13).
(6) Moreover for any k, I, ne N with k</<n, we see that
i, je P» i~,j implies i~,j. (3.14)
Infact, by (3.13) wedefiney: {1,2, - -, ${P" " V/x}} > {1,2, -, ${P" V=,V by
w(p) p?K(lrx I)CK(kn 1)
So we have

Y =Y ) forall 1<p’'<#{F" Yz},

teK{@n—n teKn-b
— Y ¥ om®= ¥ Y " forall lsp<#{F"V/x,),
pey-Up) teKGn—h Py~ Mp) teKGn—n
= Y mM= m"  forall 1<p<#{P" Y/x,].

tk:n—1) tkin—1)
ter teKQ

So we get (3.14).
(7) For any i, je P™,
i~,j 1implies #2(i)=42()). - (3.15)
Because if n=k+1, it is clear by remark (2) that (3.15) holds. If some n>k+1,
we assume (3.15) holds. Then we may define $2[ ¥#:"] by

$P[PEM]=4P(v)  where ve P (3.16)

For any i, je P+ with i~, j,

MY )
$P(y= Y, #PmtV= Y Y #P[VER YRty

Kl:n
[EV~(") i= tGK‘k:")
1

= Y, #P[TEm Im D =$2(j) .

= T im
I=1 ekt

By induction, (3.15) holds for any n>k+1. Therefore we can define #Q’[V}’“")]
as (3.16).

Now we define W**" by
Wkn = (m(Con(v)) | ve P} .
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Next we calculate the topological entropy of (Y,(£), Si()).

LEMMA 3.9. Suppose (Y, (1), Si(t)) is the subshift associated with §=(V, E, <)
satisfying Assumption 2.4, 2.5, 2.6, 2.7 and 2.8. And suppose o ; 1, is the postive solution
of the following equality for x:

#{PF oy~ #W}k:k+z) 4

PVlk:k+e)
i XS ]

Then

WS (1) =logay s+ -
Proor. First, we shall show the following claims:

CLamMs. (i) For any keN, W (0) and W (1) satisfy Condition 3.2,
(i) forany k,teN,

{ve P&+ | m(Con(v)) =m(Con(v&t )} = {p&}?

min

{ve P9 | m(Confv) =my(ConlpliV)} = {v&i"}

max max

(iii) for any keN and t =2, W(t) satisfies Condition 3.2.

3.17)

THE PROOF OF (i). If we take any two words w, w' in W, (0), then there is no
common alphabet (=2(F™*)) between w and w’. So it is clear that W, (0) satisfies
Condition 3.2. From this reason, we can identify the word Con(v) in W, (0) with ve P®,

Take any / with 1 </<pn, ,,, where 7, is positive integer satisfying Assumption
2.8 (1) and fix it. And define P&} D={ )"~ P+ We can easily see from
Assumption 2.8 (2) that P*F 1 © {p+ D plk+ U has also partial distinct orderings. And
since W,(1) consists of the concatenated words made up from W,(0), for any
v, ' e VIO {pkt D &+ IN with v+ v, m(Con(v)) # m(Con(v’)) holds. Moreover we see

Wk(1)={1:k(Con(v("+ 1))) | pEF ¢ I?gc}-l) U {v(k_+ 1) . (k+ 1)}}

min vmax

holds for all /. Now, we also identify the word =, (Con(v))e W,(1) with the ordered
vector O.vec(v) (ve V¢V U {p& D, vkt ). From Assumption 2.5, we see that the first
vertex of all words in W,(1) is u,‘,r’,‘i’n and the last vertex of them is v¥) . Assumption 2.8
(4) and (6) imply that there is no word in W,(1) having the sub-word “v{") v%) > except
the words m(Con(vX** 1) for all 1<j<#{F**V/~}. Moreover Assumption 2.8 (6)
implies that all m,(Con(v}**V))’s always have an alphabet (vertex) “vl),” just before
the sub-word “o® v® > We note that any concatenated word made up from W,(1)
always has the sub-word “v!¥) v®* > at the points of concatenation among words in
W, (1). And from Assumption 2.8 (5), we see that at these points of concatenation,
there is no alphabet (vertex) “v%).” just before the sub-word “v¥ v >, Therefore

W, (1) satisfies Condition 3.2. We finish the proof.

THE PROOF OF (ii) AND (iii)). We shall do them by the induction with respect to
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teZ™. For all keN, Assumption 2.7 (2) is equivalent to
{ve P | my(Con(v)) =m(Con(iis "N} = {v5ia '},
{ve V&V | my(Con(v) = my(Conlvliay ")} = (v

So (i1} holds for t=1. And from (i), we see W,(¢) satisfies Condition 3.2 for t=0, 1.
So (i1i) holds for =0, 1.

Suppose for all k€N, (ii) holds for some r>1 and W,(¢) satisfies Condition 3.2.
First we shall show (ii) holds in the case of 7+ 1.

Take any ve V&*+D with m(Con(v)) =, (Con(v** 1)) and fix it. For v, there
exist unique {s**9}5_, < P** D (s=%r"'(v)) such that

(1) 0. vec(v)—( (k+t) U(k+t) P (k+r))

(2) m{Con(v))= ﬂk(Con(v"‘+')))1=k(C0n(v“‘+”)) - Con(v{* 7).
Similarly, for %%V there exist unique {u,"‘ TS PETO (s =4 Yo%l T V) such that

(3) Ovec(v}:‘:t+1)) (u(k+t) u(k+t) C u(k+t))

(4) m{Con(vli'™ V)= ﬂk(Con(u”‘+"))7tk(C0n(u”‘+")) - m Con(ud ™).
Since W ,(¢) satisfies Condition 3.2, for any concatenated word in W,(t), we can dis-
tinguish the points of concatenation. That is to say, suppose w is any concatenated
word made up from words in W,(¢), there exist unique wy, w,, - - -, w,€ W,;(¢) such that
w=w;w," - -w,. Therefore from (2) and (4), we have s=s" and for each 1<i<s,

n(Con(v* ")) =m (Con(u®*?)) .

Especially by the hypothesis of (ii), for any ge{i|u*"?=0%*9} and he{i|uf*"=

(k+t)

max 2

n(Con(w* M) =m(Con(uf*") = v}+?=0l",
(3.18)
n(Con(v* ) =m(Con(u ™)) == v 0 =plr".

We note that Assumption 2.7 (2) and (3.18) imply v=0{%}'* 1. Similarly we can show
the case of v*1** V. Therefore for ¢+ 1, (ii) holds.

Next, we shall show a contradiction if W,(z+ 1) does not satisfy Condition 3.2.
Suppose we W, (t+ 1) has concatenating points in W,(t+1). We write w=w;w," - -w,
(w;e 2(V®) 1 <i<n). Then there exist more than two words {w/=wiwi- - w] e W,(t +
1) |wie@(V®) for | <i<n;}9_; (d=>2)and integers 0=po<p, <" <p;_; <ps=nsuch
that

1 1 R e
wnl-p1+1wn1—p1+2 wﬂ1 lf I_l
Ceew = i : ;
Who i+ 1tWp 42" "Wy =< W if l<i<d
wiwg-owi_, if i=d.

For w, there exists ve P*™** Y and for v, there exist unique {v/**9¥_, < P**9 such
’ i i=1
that
(5) O.wec(w)=@k+?, vt - pEtoy
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(6) w=m(Con(v))=m(Con(v{ " ")m(Con(v§*")- - -m(Con(v¥*")).
Similarly, for w/, there exists v/e P****1 and for v/, there exist unique
{pf* N3 < P®*D gych that

() O.vecw)=({**", vf**9, - -, pj*9),

(8) w/=m(Con(v’))=myCon(v{** Nm(Con(VE**")- - -my(Con(vi**")).
As any element of W (t+1) is concatenated words made up from W,(¢) and W,(¢)
satisfies Condition 3.2, the above condition (6) and (8) imply that there are unique
integers O0=m,; <m, < - - - <my<s such that

n((Con(v %70, ) if j=1and 1<i<m,
(Con(oi AN =< m(Con(v{**")) if l<j<dand 1<i<m;,,—m;(=s;)
7, ((Con(vi®+1)) if j=dand 1<i<s—m,.
(3.19)
Since we know

{ue V&9 | m(Con(u))=m(Con(v}i")} = {pk+y

{ue V&*9 | myCon(u) =myCon(v®:")} = {vr(r’:ay) ,
immediately we see (3.19) is equivalent to the following:

D= pik 0 — kD |t - pIH IR _phtn for 2<j<d.  (3.20)

* min

From Assumption 2.8 (5), vJ**? £v%1". This implies that

vt #AofR? for 2<j<d. (3.21)
So (3.20) and (3.21) imply that O.vec(v) has at least d—1 (= 1) sub-words “o%*opk+0»

which have no word “v%}” just before. By the way, from Assumption 2.8 (6) all v},’s

(in P**** 1) have the sub-word “v¥%9v%:9”, but from Assumption 2.8 (4) they always
have “v%*"” just before the sub-word “v,‘,’l‘;"v,‘,‘l‘,:”” So v does not coincide with any
element in {v} | Vi, V/}. This is a contradiction. Therefore W,(z + 1) has no word which

has concatenating points in W,(7+ 1). By induction, we finish the proof of (iii).

Finally we calculate the topological entropy of (Y,(¢), Si(z)). The lengths of all
words in W¥:**9 are all $22[ P*:**"] and since we decompose P**+9= U“‘V;km’ i Pleck o
as a dlsjomt union, we can also decompose W, (t)= U"V"‘m’ W K0 g a d1s101nt
union. Therefore if we take W,(¢f) in Lemma 3.4, we have h(Sk(t))—logak,H, So we

finish the proof of Lemma 3.9. O

4. The modification of dimension group preserving 6rder isomorphism.

In this section, we construct the sequence of incidence matrices, which we can get
by modifying the given one so as to preserve order isomorphism,
Let 2'=(V", E') be the unordered Bratteli diagram, {M'®=(m;%)},,, be the
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sequence of incidence matrices of 2’ and {{#V*~V}L ™" . be the sequence of

subsets of N satisfying m/®@ > #V¥*~ Y for all k=2, 1 <i<$V"*" D, | <j<#V'®. Define
#P0 = :"_/( "#7®. Now we define the sequence of incidence matrices %= {M o —

(Y eNFE DTy of G=(P, E) by

VL0 Py d SN o 70 B 3 ( S K ... KTtk e NFU
M )=(M[(1§’ > M[(y)p M[(z%’ M[{zis » M[(ﬂ)/"k’l’ M[(#I)/"k)])a
#P® times 4 17‘2’" times 78  times
(k) — k k ik FP0-1
M[(ﬂ)=(M§ )_1? Mé)_], e M’E’)(k 1y, )EN N

~ k- 1) sk — . . vy
where {{M® N VTP satisfies the following condition:

PP b
Z ny= r(k)} )

=1

Pl 1)

7k A ~ #W¢
M},}e{(nh ns, ,nuygk-l))EN

Similarly, we define the dimension group Ko(¥7, E) by

~

~ . o~ - 5 - 5 - (f’
KO(V, E)Elin’(Z#V(k 1), @k)zzﬂV(o) 1 Z,;V(l) 2 Z#V(z) 1

and a_distinguished order unit #=[d,, 0], where &,(x)=xM®, xeZ*"* " and @,=
1eZ* (=2Z).
10 10 20 30 N _ _
EXAMPLE. IfM'® =/ 20 20 35 45 | and #V¥ D=2 #V§" D=3 #P¢ V=4,
30 30 40 50
VP =3, 7P =2, $7P=3, 7P =4, then, for example, we can define {M*} by
M¥, =[4,6] M®,=[7,3] MP, =19, 11T 1{,=[17, 13T
M¥, =[6,7, 71" M, =[7,2, 11 M{,=[30,2,3] 1§, =[20, 12, 13]
M, =[9,5,10, 6] M¥,=[3,2,23,2] M¥,=[14,4,6, 16]" M, =[13,10,20,77.
Therefore
4 4 4 7 7 9 9 917171717 |
6 6 6 3 3 11 11 11 13 13 13 13
6 6 6 7 7 30 30 30 20 20 20 20
- 7 07 7 2 2 2 2 2 121212 12
M®= 7 7 7 11 11 3 3 3 13131313
9 9 9 3 3 14 14 14 13 13 13 13
5 5 5 2 2 4 4 4 1010 10 10
10 10 10 23 23 6 6 6 20 20 20 20
6 6 6 2 2 16 16 16 7 7 7 7

LemMa 4.1 ([Sul: Lemma 5.4). Let @' be an unordered Bratteli diagram and 9
be the unordered Bratteli diagram constructed above. Then

(1) KoV, EV=KyV, E) as dimension groups via an isomorphism preserving
distinguished order units,

(2) for each k=1 and ic V'®, $P[VP]=42().
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PROOF.
Z §P e

follows:

(Dk(x)E_(ﬁ’ o ,le, )‘125 )

‘5 Xg,

We construct sequence of maps {¢@,}-, where for k>0, ¢,: Z*'* >
will be order isomorphisms. For x=(x,, x,, ‘-

(k)
,x,,y,(k))eZ“V s define @ as

s Xgyrtas "7, x#V’("))EZ#fi(k)

#7 times

, %, g
¢kl
951( Zg’i’r(k)

Now we calculate

Ok +1°Pr+ 1(X) =@ 4 o(x1, X3, ",

=(xy, -

# P9 times

- ’ ! .
b xla x29

# Vﬂ'{)m times

¢i:+1 (et 1 ¢i+2
Z#V( )
Pr+1 l

Dy iy P+ 1) Dy
Z —

I
Xayrik+ 1))

! - . w ! . ’
s x23 s Xgpite+ 1), » Xgpote+ 1)) s

#PE*D times #P¢* Y times

m'(k+ 1)

Yy i)
where x[=Y i 1

‘5k+l°¢k(x)=§k+1(xls T

X1, X2z, ”

¥ V“h'y*-(‘]é!' 1 times

Ty Xy T, Xy, T, xsv-g:)

# 7% times

=(x~1, T,

xl, xz, N

# 7% times # V.0 times

Ty Xa, " s Xagprtk+1)y, "7 7, xgy/(k-fl))

#7¢* D times #7¢* Y times

where X; is calculated by the following:

By (k)

= 2 b

# V"" times

Therefore for each £>0,

, -
Pr+1°Piv1 =Pir1°@ .

Next we calculate for (x4, x,, - -

Dy s (x4, X3, - -, Xypo)

"y Xgpuo) €

=(Lxls T xljs x2a T

gPEND, |, times

Py 2L

x)M}f‘f” = ) xm%*V=x;,

i=1

(4.1)

#¥ a0
VA

Ta Ay T, Xgyaern, T, x#V(ki-l‘))

#PEY D times #P¢* D times

=@r+1(X1, X5, -

#PEID, |, times

s Xgyik+ 1)) .
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where £;=(x, X5, " -, Xgpa)M% D, Thus Imd, =Ime, ., holds. It is easy to see

that @(Z** ")y Z*"*“* and ¢, preserves order units. Therefore {@,},.n gives the order
isomorphism between Ky(V’, E’) and Ky(V, E).

Next we prove the condition (2). For each k> 1, from the construction of M®,
it is clear that for each 1 < <#V'®, and for all j, j’ with Y {_ #P {0 <j, j'<¥5_ #P®
@V =0),

W0 = FT0 = ) @2)
Here we write §{? e F"® instead of je F®. So (4.2) is equivalent to
e P® and iPe PP, 4.3)
Then from (3.6) and (4.3),
P, =@206P), $20), - -, #g/;(ﬁ;’g(k)))zgmﬂ(z). oo M= 1) Jp o

=(#g[[7(1k)], e #gx[f/‘(lk)l g[ﬁgc)], e ﬂ@[fﬂzk)]? e
#V times #7 times
$PLVH0], $PLV H000)) (4.4)
P E L times
=32V 1), $2[ VY], - -, 42V Hw0]) .
By (4.1), it follows that
PP =M VM D M CT DM )= oBiedy_ o oPodP]
=¢7k0(§k_ ot 052051 0¢0=M(1)M(2). . .M(k—l)ﬂ(k)=f>k . (4.5)
From (4.4) and (4.5), we get the condition (2). So we are done. [

. - (k—-1) -
For a matrix M® =(n*), define mP=%""" "m* and m®=max, _,_,p 0 m®.
The next lemma is useful for the construction of the base diagram £’ in the main
g

theorem.

LemMMma 4.2 ([Su]: Lemma 5.5). Suppose 2=(V, E) is an unordered Bratteli
diagram and {M™}, . | is the sequence of incidence matrices of 2. Then there exist

@' '=(V', E") and {M'®}, . | such that
(1) KoV, ENY=KyV, E) as dimension groups via an isomorphism preserving
distinguished order units,
(2) for all n=2, ${M'" | m[™ <s} <25 for V""" V<5 <m’™®.
PrOOF. We construct 2’ by a recursive process. First, define #7779, M’ and the
map ¢, by
ZCETI NN VAUE YR

G {1,2, - FVOYS(1,2, -, 8D} p()=ifor all 1<i<$VD,
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Here, for n>2, we assume ¢,,_, : {1,2, - -, #V*" 1 {12, - - - $7""" D} are already
constructed. So we shall construct V'™, M'™ and ¢,.

For {M{"}3Y7, there exists the set of vectors {L™};,, such that
(1) {L{};,, coincides with {M}:¥T as a set,
@) LWAL™if i#).

We write LV =", 19, -+, I{Pw-n, ;). Now we define $V'™, M’'™ and ¢, by

1,j> % 2.

FVO=HLM,, mP= X 1N, MW=mY),

sed,1(0)
dp: {1,2, -, 4V} 5 (1,2, - #PM} Guli)=j <= MP=L{.

First we shall show Ky(V’, E'}=K(V, E). For neN, define the order homo-
morphisms @, : Z*"" —» Z¥ by

PulX 1, X35 "7, Xy ) =X (1) X2y s Xpuavom))

d).’. ZgV'(n) ¢;,:+1 Zgyl(n+ 1} ¢-:+2
(Pnl Pn+i l
¢n Zgy(n) ¢n+l Z#y(u+ 1} ¢n+z

Now we shall show &,,,°0,=0,,,°P,,,, where &,,,, D.,, are the order
homomorphisms defined by M@* 1) M’ D regpectively.

D, 1o@uX1, X3, * 7, Xgpro) =Dy 1(x¢n(1)’ Xga2y " 7o x¢,.(#V(")))

=(x~l’ x~2: T, iBV("+'))

where
$y(n} £V (n)
& (n+1)__ n+1)
X;= Z Xy i, = Z (xp Z; m,; ),
i=1 p=1 ied, (p)
’ ’
Pnr1°DPyi1(x1, Xyt Xgpron) = @y 1(X1, X3y 0, Xgprine )
=(x, ' Y )
= X6, 11)s X+ 1(2) 3 X+ 1 (2 + 1)
where

#V'(n) £y (n)
' _ Hn+1) {n+1)
X /(= Z XM p.bn s 1) = Z (x_,, Z lim“u))

p=1 r=1 ied, (p)

#V
— (n+1)
= Z (xp Z mi.j )
p=1 ieg, '(p)

Therefore X;=xy,_, ,;, holds for all 1<j<#V*"*D So we get @,,,°0,=@,+1°Py+ ;.
Next we shall show Im®, = Img, for all neN. For xeZ*" " we calculate
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@n(x)=(XM(1n), XME"), e XM;’;'/)(n))———(XLé?(l), XL((;L)(Z), ctt Xng:.)(ﬁV("))) *
(pn(XLin)a XL&")a Tt xL}','}.(n,)=(XL,§5T(1), XL.;(b':,)(z)s U XLg(b':.)(#V("))) .
So we see that @,(x)=¢,(xL{", XL, -+ XL{.c»). This implies Im®, < Ime,,.

It is easy to see that @ (Z*' )= Z*¥"* and ¢, preserves order units. Therefore
{@a}nen gives the order isomorphism between Kyo(V’, E') and Ky(V, E). We finish the
proof of the condition (1).

Next we shall show the condition (2). We see that i} =Y """ 1" and

"n = (n n "D g s—1
o | =gy =eip | 7 =<, 070 ),

where we used the following fact:

#{(ny, 1z - ng)eN? | Z‘Llni:n}:(’;::). (4.6)

And we see that

gyin-1)
gy Y n,-Ss}

i=1

s i—1 $ i i—1 s
— = — = <2*
i=wz<n—n<#V‘"‘”—l) i=m;n—l>{(#V‘"_”) (#V‘”‘”)} (#V‘"‘”) ’

where we used the formula ("):(”_1 )+(n_11 ).'So we are done. []

r r r

HM™ ' ™ < s} S#{(ﬂl, e Ry ) ENFVOTD

REMARKS. (1) In the above situation, for #1"®~ V< s<#V®™ 1 ${M™ | i)™ <

s}=0.
(2) We shall give the example of construction of (V'E’) as follows: Let
Cr a0 1110
11311111 2411222
1311331
1) (2) 12422221 (3) 1221441
MWU=[101022 2], MP= 11311331 |, MP=
1512551
12422441
11311551 Lol 1661
1711771
| 15118381 |
Then
brsl 292209
1 1242 411 4411
MMP=[10102 20 20], MP=| 1133 M= L3113 |
1244
113 s 2132213
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(62(1), $2(2), $2(3), #2(4), P2(5), 92(6), ¢2(7), $:8)=(1,2,.3,2,2,4,4,1),
(@3(1), 3(2), 93(3), P3(4), 93(5), P3(6), ¢3(7)=(1,2,3,4,5,5,1).

We shall use the next lemma in the main theorem in order to modify a given
diagram (V, E) satisfying {V® | $V® >2} < c0.

LemMMA 4.3 ([Su]: Lemma 5.6). Suppose @ =(V, E) is a simple unordered Bratteli
diagram satisfying #{V® | #V® >2} < co. Then there exists the simple unordered Bratteli
diagram % =(V, E) such that

(1) KoV, EY=Ky(V, E) as dimension groups via an isomorphism preserving
distinguished order units,

(2) $V®=2 forall k>2.

Proor. Since a dimension group associated with a contraction of diagram
preserves order isomorphism, contracting & to {c,;e Z* | #V?=1}2,, we can assume
$V® =1 for all keZ . Moreover we assume m* >2 where (m*) is the k-th incidence
matrix of 2 but we may identify (m") with m® e 2. Define the sequence of incidence
matrices {M®}=_ | of 9 by

M= { [ mV] if k=1,
[e(k:)?;cf_(k) o(k:;(t;uk):' lf k > 2 ,

where 9% eN and A% {0, 1} are the unique numbers satisfying m®=20%+ ¥ for
all k>2. It is clear that the condition (2) holds. So we shall show the condition (1).
We construct sequence of maps {@,}{ o where, for k>0, ¢,: Z*™ > Z** will be
order isomorphisms. Define ¢, by @ x)=(x) if k=0 and @ (x)=(x, x) if k=1, where
xeZ. Ttis easy to show that @ 4 ;o Dys y =Dy 1001, INBcImg, P Z )27+
and ¢, preserves order units, where @,, &, are the order homomorphisms defined by
M® M® respectively. It is also seen easily that {¢,},., are order isomorphisms. So
we are done. [

5. Preliminaries.

In this section, we pick up some lemmas in [Su] which are necessary to prove the
main theorem.

LeMMA 5.1 ([Su]: Lemma 6.1). Let {M® X | be the sequence of positive incidence
matrices of (V, E) and NeN be given. Then for all neN,

N+n—1

min ~ m®Ns ] VO, . (5.1)

PrROOF. We prove it by induction. If n=1, for all 1 <i<#V*¥ ™D, 1<j<pyV*Y,
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$V(N) #17(N)
(N.N+1) _ (N),,, (N +1) e %))
mj - Zl MipMp; 2 le =4,
pP= p=

Therefore it holds for n=1. Suppose (5.1) holds for n=k. In the case of n=k +1, for
all 1 Sis'#V(N—-l), 1 SjS#V(N+k+ 1),

BN+ k) $VIN + k) N+k-1
(NNN+k+1) __ (NNN+E) (N+k+1) (i)
i, J = Z ip Mp, j = Z ( H YV Ix 1

m;
p=1 r=1 i=N
N+k—-1 . N+k .
=4V VO [T #v@=T] #v0.
i=N i=N

Therefore it holds for n=k+1, so we are done. []

LemMA 5.2 ([Su]: Lemma 6.2). Suppose m, V,8eN, AeZ* and 1<r<2 are

numbers satisfying the following conditions:
1) m=V0+land 0<i<V,
2 (r—1D8>Vand 2—n6=2.

Then the following inequality holds:

L4
Y ni=m,2<n,<r@ (Vi)}z(
i=1

(r—l)m_r)”"1 '
vV

#{(nl, H,, - n)eNY

Proor. Let {/;}/=,' be a set of non-negative integers with /,<(r—1)d. Define

{n;eN}I_; by

0+i—1, if i=1

9 + lV -1 if i= V .
Then we can easily verify that {n;}}_, satisfies }.!_, n,=m and by condition (2), 2 <n, <8
holds for all 1<i<V. Moreover it is easy to check that the map (I, 7, -, 1, _,)—
(nq, ny, -+ -, ny) is injective. So we get

Vv
Y m=m,2<n,<r@ (Vi)}
i=1

ﬁ{(nl, Ry, - ny)eNY
Sl )e@N T 0<L<(r—1)8 (Vi)

2(te—vap=( [ =Dm=A 1)

>(|:(r—1)(m—V)])V‘1>( (r—1(m—V) —I)V_IZ( (r—1im —-r)V-l ’
|1 4 V

14
where [ ] is Gauss symbol, i.e. [x] is the integer part of x. So we finish the proof.
O

2 #{(ll’ 125 oo
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LemMA 5.3 ([Su]: Lemma 6.4). For all neN, the following inequality holds:

(n)n (n+2)n+2
— ) <nl< .
e e

PrOOF. Ifn=1, the inequality holds trivially. If n>2, then e"=Y_"_ n*/k!1>n"/n!.
Therefore the first part of the inequality holds. Next, we can calculate

n+1 n+1 k+1

login+1)!= > logk< }
k=1 k=1

n+2
logxdx=J logxdx

k 1

=(n+2)10g(n+2)-(n+ 1).
Since log(n+1)>1 for n>2, we get
logn! <(n+2)log(n+2)—(n+1)~log(n+1)
<(n+2){log(n+2)— 1} =log((n+2)/e)"* 2.
So the second part of the inequality also holds. (O

LEMMA 5.4. Let B={MW} ., be the sequence of positive incidence matrices of
simple unordered Bratteli diagram (V, E) and NeN, 1<I<#V®¥~1 be given. Suppose
¢:{1,2, -, VNN 11,2, --- I} is an onto map. For t> N, we define m;} by

n"t,-',‘?E( 2 ms‘,”f’))/rﬁ}”*” for 1<i<I, 1<j<#Ve,
se¢ (D)

Then there exist {c;}{-, {di}{=1 with 0<¢;<d; <1 such that for all 1<i<I,

] = (L ~ #(t
< inf w9, sup M9 <d;. (5.2)
1<j<vie 1<jgsve
t=N t=N

Proor. Define m;" and m;® by
N I
") — (N.1) =0 — 1)
myy = 2 m®Y, m;— = > m;y -
se¢~1(i) i=1
For any t>N, 1 <j<#V®,

#Y(N) #V(N) $V(N)

"ty _ (N}, (N+1,0) (N) (N+1,1)

m;i= Z Z mg'my < 2 ( 2 Mg g X Z my ; )
sedp= 1) 1=1 sed 1) q=1 i=1

AN ‘
{5 T mivp e, 63
sed~ () g=1
Thus
’ﬁ}(z)<n-1](_1v+ LY [ M where |MW|= 3 m® . - (54)

1<igsV(N- 1)
1<j<$¥V(VM)



ENTROPY AND STRONG ORBIT EQUIVALENCE 335

Also, the following inequality holds:

miG> w0 x g 3 min m (5.5)
sed (i) 1 <I<BV(M)
From (5.4) and (5.5), we get’
n‘1i"(3)>c,- where ¢;= min m;ﬁ’)/||M(N)|| - (5.6)
1<l<$ViN) A

It is clear that 0<¢; <1 for all 1 <i<#V™ ™1, Incidentally, since ' ;_, 7% =1 and we
use (5.6), we have

Aty __ = (1) 2 —_—
m,-,j—l— Z miv‘j<1— Ci,_di<1,
1<i'<T 1<i'<I
i"#EiQ iP#Ei

for all 1 <i<I. So we finish the proof. []

6. Proof for the infinite entropy case.

THEOREM 6.1. Let (X, T) be a Cantor system. Then there exists a Cantor system
(Y, S) such that the following conditions hold:

(1) (Y, S) is strongly orbit equivalent to (X, T),

2) A(S)=c0.

Proor. Let Z2=(V, E, <) be the simple ordered Bratteli diagram which is a
representation of (X, T), and let #={M®}*_ | be the sequence of incidence matrices
2. From the simpleness of diagram, we may assume M® is positive for any k>1. And
by Lemma 4.2, we can assume that (V, E) satisfies

#H{M® | m¥P <5} <2° (6.1)

for all k=2 and #V* " D<s<m®. Moreover if ${V® |4V®P>2 k>1} <o, as we
consider within a strong orbit equivalence class, we modify 2 using Lemma 4.3 and
we can also assume without the loss of generality that $7®>2 for all k>1. We shall
construct & =(V, E,<) and B ={M™®}_,, which is a representation of (Y, S), satisfy-
ing A(S)=oco. The construction is done recursively. From Lemma 4.1 and Lemma
4.2, it suffices to construct the sequence of increasing integers {#,}:, with t,=0
which are the depths in order to contract &, the base diagram #'={M'®}= | and
{(B7I e NJ L.

The Ist step. Define 7@ =1 and t,=0. Take any =1, a,>1 and fix them. We
define t;, V'Y, M’V and the map ¢, by

ty=t, BVO=gpe0 | pp=pptetia
by {1,2, -, #VEY 5 (1,2 - 4D} ¢ (i)=i for all 1 <i<EVEY .
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Here we write V0= {pf 1) and V'V ={p;"} Y [". Then there exists {# V{1 "N
such that

EPD_25(1)/Quo)? ¥ >1  forall 1<i<#p), (6.2)
where §: N — {0, 1} is defined by (/)=0 if i#1, 8(@)=1 if i=1. By (6.2), we see

(1=)bp M) <4V =28()) forall 1<i<#y'V,
Take any {# 7V} " satisfying (6.2) and fix them. Define # PV =Y L{" 4P and
Mu)eN#f'w»xwm by

(1) — 1.41) ... 1.1 1.t1) ... 1.61) ... J
MP =i, - m{t, mi, - i m

#7{V times # V(D times #pLn,, tmes

where (m{"*V, m§**), - - -, mi )= M. And define #¥2[ V("] by
BP(VI =420 V) =4P(v!Y)  foreach 1<i<$V'V .
And there exists a unique number a; > 2, such that the following equality holds:

#ye(y [7(1)
sy
PP

=1 (Gh) Vi

In order to satisfy the condition of induction, we define K{!: V= {i} = P, pld) =1e PV,
vi) =2e VW (therefore K{*V={p{} and K{!V={pOW#{PV/ = }=4V" and

max max

Dist(P{")=#P" for all 1 <j<#p"".

The n-th step. For n>2, suppose the following (n— 1)-th data are given,
The (n— 1)-th data:

tw1 €N, a,_,>1, n,_,eN, {#Po-0W PN,
P {1,2, T #V""“’}—»{l, 2, .- .,#V’(n-l)} )
Ifn>3,
{{*”7"’“"‘"}*&"‘"“"“%N}z;%, {{awgen— sy
(Gunmr L2 8V S (L2, BV~ 0T,
{Kpim=1:{1,2, -, ﬁ{f}(ﬂ—l)/zk}} {12, e, BV s

The (n—1)-th assumption: For all 1 <i<#pP'~ D,

(@1) (e, )" <k P D —280),

(22) #¢, () <#P1—-25(),

(a.3) #P[Pr~V]=#2(vi"" "),

(a.4) there is the partial order < on E® (2<k<n—1) such that < satisfies

Assumption 2.5, 2.6, 2.7 and 2.8 with respect to k=2, - -, n—1,
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(a.5) K¥Fr D={pl- and K¢~ V={p- N for all 1 <k<n—1.
If n>3, for any 1<k<n—2, any 1<j<#{F" Y/~ .}, any ie&;}_(j) and any
pekp.L_(j) with p#1, 2,
(a.6) n,-, S#(Vi(:_l) ﬁKz(rk:"_ 1))_= #Vi(;_ “/#{nk(Con(v)) | ve Vi(:_ ”}, i"F((f;i("_”\
-3,

(a.7) #HPO"D/~ 1>,
(@8) #{m(Con(v)) | ve P “}>#W“°" DB (NPT -3),
(a 9) (20‘ _ )m*[v(k n—1] #W("" 1) __ kn 1(])(21”/(" 2) 3)’

where {2~ 1 is defined by

Pr-V={ve PPV | v, j)=0v0;? for 1<j<3,

min

(v, j)=v{ 2 for #r Y v)-2<j<#r ()} .

max

Now we shall construct the following n-th conditions using (n— 1)-th data
The n-th conditions: For all 1 <j<#V'®,

#V(" 1) $Vin-1) . . »
@n (V7)< e 2s0r <Discr,
i=1

(n.2) #V"—-26(j)=n, (Dist(F™)+ 47"V _3)),
(n.3) #@[VW] $P(v["),
04 (a, )“?W‘"’l #7M —25()),
(n.5) 2a,_,<a, Y1 % P o d2P5 = 1,
(n.6) #¢n‘1(1)<#V‘"’ 26(),
(n.7) there is a partial order < on E®™ such that < satisfies Assumption 2.5, 2.6,
2.7 and 2.8,
(n.8) KFM={v®M " and KF"={p®} for all 1 <k <n.
If n>3, for any 1<k<n, any 1<j<#{F?®/~,), any ie&, }j) and any pek; 1))
with p#1, 2,
.9) 7, <V A KED) =4 V04 {m(Con(v) | ve P},
(VNP A K& ™y=n, and #{p’ | K& A V‘");é@’}>2# pe-bn_3,
(n.10) #H{ PO/~ 11,
(n.11)  #{m(Con(v)) |ve Vi = s Wk — g  1(j)24 V"~V —3),
(.12) (20 )PPV < Wkm g ()8 PV _3),
(n.13) 2a,_, <y j{V;"’/ i} #H/J('k n)/a#,?[V"‘ )]....1
where 7 is defined by

Vin={ve V™ | o(v, j)=o{7 1 for 1<j<3,

min

(v, j)=v0 P for #r Y (v)—2<j<#r Yv)} .

max

Take any ¢>t,_, and fix it. First we shall construct V"™, M'™ and ¢, using ¢ by
the same methods in Lemma 4.2. That is to say, for {M{»-1* 1N there exists the
~ set of vectors {L"},., such that {L{},,, coincides with {M{"-1*1L9V¥D a5 3 set and

LPW#LP if i#j. We write L =(I{", I, -+, I{%«, ;). Now we define $V'™, M'®

1,
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and the map ¢, by
BVO=HL ey, mif= Y K, MO=m),
sedy (D)
Go: {12, BVOL S {1,2, - 4V} g li)=) <> M-tI=L,

By Lemma 5.4, there exist {c;}{¥1" " and {d;}}¥|""", which are independent of ¢ and
J» with 0 <¢;<d; <1 such that

m<d,. (6.3)
Take any r, €R satisfying
1 <r,<min(3/2, 1/max, .; gy~ 0 {max{l —c; d;}}) 6.9

and fix it. And we define 8{"’eN and i1{")e Z™ to be the unique numbers for m;? and
#7"~V such that, for all 1 <j<#V'™,

m{®W—65(i) =4V b —26())0"M+ A",
0< AT <#P~D—25().

Moreover, for 1 <i<#V'"~ Y 1<), I<$V"™ and 1 <p’ <#{V" Y/z,}, define A; B,
C;, D, ,€R", which depend on ¢, by

y ) __ 6 sy'n-1) () 2Pn -1y -1
AJE{(:"_J_E) <"1 (_9:3) } , 6.5
€ i=1 e

1— 6/
B, = : 6.6
J "m'(n)+2# V(n 1)/ 27 1{") ( )

(ny __ 6 7/ 4 2 28V -1y —1
Cj__{(mij) x(%) } , 6.7

1— 6/

i J

Il

D

» R (6.8)

Tn Zseék 1o Kkin— |(p)
First we shall show that for sufficiently large ¢ and all 1<j<#$V'®,
1 <j' <#{P"/~,}, the following claims hold:

CLAMS. (c.i)

sYn=1)

A;x [ By’ >1
i=1

(cii) for n=3, for any k with 1 <k<n—2 and any le &, }(j),

#HP - Dy
Cix [l Dp)»>1,

p=1

where all f,’s are any positive numbers satisfying Z“W‘" V1= f =™,
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(c.iil) for n>3 and for any k with 1 <k<n-2,
a UREVET D ) < X — 1
where X, is defined by
FWE D gL (W4T D =3)

X. = min >1 by (a.9),
k lsf’S#{?("—”/~k} (Zakul)#g’[lf(tig:n—l)] ( y ( ))
. . ¢ » som 1t S 10) o
(c.iv) £ (n)i%n 1) g NFon Y n=m;"
k=1
S(n-1) _ Sn—1) . 7D - 260
<#{(nk) PinT P - 280) 6P D - 2000 nk=m,-’f;?)—65(i), ZSnk<r,,9i(,"}}
k=1
Jorall 1<i<#p'e—1,
#Vin-n ’
(c.v) #o, )< [T @Pe-D—28G)m?,
: i=1
#V(n—l) gy (n—1) - )
(c.vi) ( 5 )< n FP=D 253 )mP
i=1

THE PROOF OF (c.i). Let d;=r,d,. From (6.3) and (6.4), r7"? <d; <d,/d;=1 holds
for all z and j. Since all # 7~ "’s are constant values and 247"~ V/m/™ -0 as t > oo,
(note that by Lemma 3.1, these convergences do not depend on j,) there exists the con-

stant 4" with 0 <d’< 1 such that, for sufficiently large r and all j,

r(n—1)
max (di’+iV‘—)<d’

1<igV’in-1 rﬁ}"‘)

holds. Thus using the above inequality, we have B; ;>(1—6/m;™)/d’. Then we calculate

TV'n-1) 1/,53,(:1) _ #yrn—1) 1 _ 6 n—q{(,,) ,ﬁ:(r})
{1 @i} s apmes T (1O
i=1 i=1

_ AV —6/m ™)
d '
As we know the fact lim, . #'"=1, it is easily seen that A} ™(1—6/m™)—>1 as
t — oo. Therefore for sufficiently large ¢,
A1 — 6/m™) -1
dl
Using (6.10) in (6.9), we get the claim (c.i).
THE PROOF OF (c.ii)). The(n— 1)-th assumption (a.7) implies that forany 1 <k <n—2

and any 1 <j'<#{P"7 D/~ 3, #5,_ () <#V""7 1. So forany p’ with 1 <p’ <#{//*"~ 1/
~,}, there exists s” such that s'¢ &1 oK., ,(p). In addition, from (6.3) and (6.4)

(6.9)

(6.10)
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there exists d” with 0 <d” <1 such that

r, > W <r(1—mM)<rl—c,)<d’ ' <1. 6.11)

SEEi A 19Kk n—1(P}
Therefore we have

Pin— 13, Pin-1j» — , — i (n)
5V l_[/ K} ; sy I_[/ k}( 1—6/m,""’ )fp =< 1—6/m,""’ )m: .

Dlr > 6.12
dll dll ( )

N
=1 i p=1

Incidentally, using the fact lim,,, , n'"=1, we see that C}/™ (1 —6/m[™)— 1 as t — 0.
So for sufficiently large 7, C}/™"™(1 —6/m;"™)>d". From (6.12) and the above inequality,
we have for sufficiently large ¢

#{P -y} 1/myr o 1—6/ = r(n)
fpr 1/mjn
ij Hl (Dp"l) L >Cj I ‘T>1 .
p =

The above inequality implies (c.ii).

THE PROOF OF (c.iii). Since a; _,>1and X, > 1, we see that o, - = 0, X7 — oo
as t—oo. And since (2#¥®~D—3) is constant, the claim (c.iii) hold for sufficiently
large t.

THE PROOF OF (c.iv). Using (4.6), it is easily seen that

$pn— 1)
Y nme=m®

i, j
k=1

( m:',(")—l ) <(m r(n))w., -1
B, ty(H)—1

By the way, as 8{") is monotone increasing with respect to ¢, #7{" " and r, are constant,
we may assume

fPpnli(
#{(nl, Hyy "y ”s¢,,‘_',(.'))€N on=1)

(r,— DO >4V~ D 2-r)0">2.

i,j =

Therefore by Lemma 5.2, we can get
#Pmm D - 2530

m=m{"P—66(i), 2<m, <r, 0" (Vk)}

P D gs Tn—1) _ 55
{(nk) V 24(i) e Niﬂ/l 24(8)
k=1

>((r = 1~ 65() )Wﬁ"‘”—z&(i)—l
=\ Twpev s " '

Recalling that m;? is also monotone increasing with respect to ¢, and using the (n— 1)-th
assumption (a.2), for sufficiently large ¢ we have

rn ; P -1 25y -
(Yot =1 <( (ra— 1M — 65(:)) _r")‘ : (-1 |
. ﬁ'Vi(" 1) 25(}:)
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By the above inequality, for all 1 <j<#V"™ we have
22100

3" n=miy]
k=1

m=mP—64(i), 2<n, <r, 0 (Vk)} .

R LT
#{(n" Ry s Mgyt ) €N 20
VD —25a)

-l"‘,v(n—l)_ - fr(n—l)_ :
<< # {(nk)# i 283 € N " 25()
k=1

THE PROOF OF (c.v). For L{M=({M I®, - I®., , ), define W=y """ 1m,
By the construction of M'™, we see that I\’ =m J’-("). Then we can calculate by (6.1),

#qbn—l(j):#{Ms(tn_1+l,t) I M}t"—1+1't)=Ll(-")}S#{MS(I""I"-LI) I m:t"_1+1,t)=m}(n)}
<H{MP | mP <mi} <27

Define pi, =ming ¢; cgprmn- 0 #20" " 1). As we know

sy V() V(D
#g(vi;(n—l))_:mi(}.n—l): Z mi(,i)mé(,iz’"_l)= Z #?(v,:“))mifiz'"_”> Z #9’(0,2(1)) ,
1 k=1 k=1

k=

we get pm,n>zz‘ii ' $P(v; V). Using (n— 1)-th assumption (a.1) and (a.3), we calculate

gy (in—1) gpy/(n—1)

[T 7 2=2507 > T1 Qe o)™ 0> Qay g™

i=1
#V() ,;,‘;,(n)
(1) =
>( 1 @,y >) L
k=1

Therefore we get the inequality in (c.v).

THE PROOF OF (c.vi). Recalling that #7*~! is constant and $2(v/™)’s are mono-
tone increasing with respect to 7. So we can easily verify that for sufficiently large z,
the following inequality holds:

[7(n—1) #yin—1)
(Wz )< [T @Pe-b_25@)™> .
i=1

So we are done.

Next we shall decide the values of t,, 7, #7{?eN. If n=2, take any ¢> ¢, satisfying
the claims (c.i), (c.iv), (c.v) and (c.vi), and fix it. If n >3, take any t>1¢,_, satisfying all
claims and fix it. First define ¢, by #,=¢. Next, take any #,€ N satisfying the following
inequalities and fix it:

[T " @D —286)s
(20, )WWJ.‘"’]

(n) gPn- Dy gy om o7 (n) P Dy syin- Dy g tm (1) (n) (n)
Define {M{"eN and {{M{"eN L y M®=(MP, My,

i=1 i=
‘, M{.a-v ), and they satisfy the followmg conditions:

7, X >1 forall 1<j<#V®™.  (6.13)
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(c.l) M #MEif i), i
(c2) MM {myl " N | S0 — i, 2 <n, <1, 00 VK)}, where 7,
is defined by (6.4),

(c.3) if we write M&=(R{";, M, -, mE, ., > then m{ =mi ;=3
holds,
(c.4) there exist #,j and p with 1 <p<#{P"~ 1/} such that
Y rh,‘"[’,];é Z ;ﬁ}_"g” : (6.14)
[EK&::”-“ l

Lastly define $¥{" by

VM =g, x (Dist( VM) + 27"~V =3))+25()), (6.15)
where Dist(7{")eN is defined by
S AR gam—e)!
Hf’:";' ! H:W(; !

(cf. (2.1)). Let $P™=Y""""4P™ We define MM eN*¥" "> py

Dist(P{") = (6.16)

M(n)_( (H, .. M[l]: M[2]s e M[(g}, e M[‘;‘)m")]’ cee M[(;I)’"(")l) .

#7{ times #V times $774m,, times

Here what we have to show is as follows:

CraMs. (c.vii) To see that the above condition (c.1) is guaranteed,
(c.viil) To see that the above condition (c.4) is guaranteed,
(cix) I 7 @ P D283 <Dist(P™) for all 1 <j<#V'™,

i=1
(c.x) The quantities defined above satisfy the n-th conditions.
THE PROOF OF (c.vii). It is clear that if M;™ s M ™, then M{)+# M. So what we

have to show is that for any fixed j and for any k, k'e {s | M} =M™} with k#k’, we
can construct M), M) satisfying M) # M{,. By the construction of M'™, we see

gy rin—1) . oy B l1(d)
sis| a1 wdnge o enerto | 8" o —mmipon.
i=1 =

M[‘,:']’, M[‘,':?] satisfies (c.2) respectively and by the claim (c.iv) we see that

#yiin- 1) St 1(D)

[l #{(nk)it"‘;"‘”eN“"'-‘l‘“ z nk=m.-'.";’}<

i=1 k=1
Prn-1) N #Pm D —24)
I1 #{(nk)Z‘;‘-'"[”‘2"""eN“"’5-"“’-26w X m=m—68(), 25V <r, 9("’}.
i=1 =

The last part of the above inequality implies the maximum possible value for
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incidence vectors in N*7" " satisfying (c.2). Therefore we can choose incidence vectors
satisfying M[k] #M[k] So we finish the proof.

THE PROOF OF (c.viil). Suppose {M{;‘{ENW("‘“ #¥'\” satisfies the condition (c.1),
(c.2) and (c.3) but not (c.4), i.e. for any i, j and all 1 <p<#{V" " Y/x },

lEKS:" 1) IEK” n-—1)

Then we shall show that we can modify {MeN #pe-n 1 so as to satisfy the
condition (c.4).

Take any i with 1<i<#¥V'™ and any ¢ with 1 <¢r<#7”"" Y and fix them. Since
the (n—1)-th assumption (a.6) holds, there exists p, p'e {g | K{*" ™V~ V"~V g5} with
p#p p#1,2,p'#1,2and s, s’ with se K¥*= D ~ P~V and s'e K& "D P"~ D such
that ms(”[),]+ 1<r,0% and m{,—1>2.

Now we define new incidence vector M{(Q:(hl, hy, - Mgpon-n) by

AW+l if k=s
he={ mPy—1 if k=s
i otherwise .
It is easy to check that new A% satisfies (c.2) and (c.3). Then by (6.17), for j with j#i
we see

Y ) mipy, X h#E Y mfy. (6.18)

(1 :n—1) (1:r—1) (1:n—1} (1:n—1})
leK lek, leK'; leK(:

Therefore (c.4) holds. Lastly we check (c.1) holds. We assume there exists j' #i
such that

[1]—(’11’/12,‘ " hgpen-n)' (6.19)

However, it is clear that (6.19) does not imply (6.18). This is a contradiction. So
the condition (c.1) holds.

THE PROOF OF (c.ix). Using Lemma 5.3, we can calculate

8 721 _ 6)!
Dist(P") = (::( 7 —6)
H: 3 m;("[),]'
((n'1 ) __ )/e)rﬁ;.(n) -6 - ((n—1 “ny _ 6)/6),53,(") -6
#V(ﬂ 1) (( (n) + 2)/6)("_15?.)7+2) #V n-1) (( 81(") + 2)/e)m (n)+ Z“V(“ 1)

— ( 1y — n- — n
~ m‘],(n) - 6 6 l—[#V’(n- 1) rnei(,n} +2 valn 1 N #Vl(—[‘ D m;‘") _6 m!(J)
e =1 e i=1 r,,B,‘"}’+2

$yin-1) = ;(n) -6 mp
=4;x — by (6.5)) .
! il“:Il (r@‘")+2) (by (6:5)

nYi,j
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By (6.7), we see that

M —6 m;"—6
R0 GPE 280001 D

>B, (#V""V—-26(i)) .

#PD—253))

From the claim (c.i), we have

FV' -1

Dist(P")>4;x [1 (B (87" V=257
i=1

$Vn—1)

> [] @Pe-Y_25(i)™7
i=1

The proof of (c.x). (n.1) <> (c.vi) and (c.ix).
(n.2) < (6.15).
(n.3) Since the construction of A& satisfies the assumption in Lemma 4.1, (n.3)
holds by Lemma 4.1.
(n.4) By (6.15), (c.ix) and (6.13), we have
EV ™ —25(5) X Dist(7{") S [150 P @Pr-v—28G)?
Quty— P27 (20, )PP (2at, - )PP

>1.

Therefore (n.4) holds.
(n.5) Let a, be the positive number satisfying the following equality:

sV T

ji=t &,
The above equality implies that for all 2<j<#P"®, $7M <o 75”1 By (n.4) we see
that 2«,_, <a,. Therefore (n.5) holds.
(n.6) <> (c.v), (n.1) and (n.2).
(n.7) <= (n.1), (n.2) and Lemma 2.9.
(n.8) < (3.17) in Lemma 2.9.
(n.9) From the definition of IZ‘;',’, Assumption 2.8 (1) and Lemma 2.9,

#V0 =n, x Dist(F™), (6.20)
PO\ PO =5, (28 PO D_3) 4+ 25(i) . (6.21)

Now we observe the value of #{m(Con(v)) | ve P®}. For ve V™, define the ordered
vector of v for &, O.vec,(v) by

0.vec ()= ([K&" ™V [KE™ V], -+ [KE" V) <> clo,1)e K

for 1<r<q=#r~'(v). Since K{*"~V={o@;"}, K¢ V={v0V} by the (n—1)-th

max
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assumption (a.5) and for any ve F{", and p’ with 1 <p'<#{V" " V/x,},

#{re{l,2, - #710)} | tv, HeKE D= Ym0, (6.22)
leKik;n=1
we have
#{m(Con(v)) | ve Vi) =#{0.vec,(v) | e P
7" —6)! N
(" —6) =Max,(F™) . (6.23)

< =
TP Dy ~ (n)
I1,%5 (Zzex(gw—nml,[il)!
Let O(7{™} be the set of vectors arranging all wn_n i\ vertices of [K%:n~ U
k ik le K\%; LI P

: v -
for 3<p’'<#{V® Y/x,}. It is easy to see that Max (V") =4#0,(V{). Here, we shall
show that the inequality (6.23) is in fact an equality, i.c.

(7" —6)!

$HP0 - Dy ~ )
I=: ™" (ZleK‘I’,‘;"—”ml(:Pi])!

Suppose w,=([KS "~ V], [K&" V], -+, [K""V]) is any ordered vector for =
satisfying that

() g=m™ (=#r" Y[V, :

2y ([CKE"~ 2], LKy~ 1], - - -, [KE V), [Ky VD e OV,

(3} pi=p.=ps=landp, ,=p, ;=p,=2.
And for w,, take any ordered vector w=(v,, v,, * - -, v,) satisfying that

(@) #{t|v,=le PV N=m", forall l<i<#P"",

(5) veK¥rn Viorall 1<t<gq,

(6) vi=v,=vy=v{." and vq—2=vq—1=0q=vr(rr:a;1)‘
Since ¥ satisfies (6.20) and from Assumption 2.8 (2), there exists ve P such
that O.vec(v) = w holds. And from the above conditions (1), (2), - - -, and (6), O.vec,(v)=w,
holds. This implies (6.24) holds. Therefore the inequality (6.23) is in fact an equality.

Next we observe the value of #(F% ~n K%:"). Let {¥"}7~, be disjoint subsets of
V™ satisfying Assumption 2.8. Then the following equality holds:

VW A KE) =0, x 5V~ VE A KEY (6.25)

#{mCon(v)) | ve VW) = (6.24)

Take any ve P n V™ ~ K%™ and fix it. And there exist unique {p,}%, (g=4%r"'(v))
such that

O_Ueck(v)=([Kgcl:n—1}], [KI(’l;:n—l)], el [Kg;:n—l)]) X

Each P has partial distinct ordering and #(V® n P{)=Dist(¥). In addition, v
satisfies (6.22) and

P -1z -0

=) ) — 5 (1)
H ! = H !
p'=3 leKk;n—D) t=3



346 FUMIAKI SUGISAKI

It follows that
PN ATV AKEM=4{ue VN n P | O.vec,(u)=0.vec,(v)}
=#{ue VW n VD | t(u, t)e K&~V
BP0 (Y 1 ugnn L)
p=3 HIEK‘*" o

#Pn- Dy ~
I—[p(’=3 = k)(ZleK"“"'”mlo[i])!

#Vn-1 (n) 1
(=3 P!

Therefore from (6.25) and the above equality, we get

#HP -5,
Hp'=3 - (ZIGK"" n— .,m,[,])'

BV A KEM)=g, x D (6.26)
t=3 M-
Incidentally by (6.24) and (6.16), we calculate
3% _ 1, xDist(F")
${mCon(v)) | ve P}  {m(Con(v)) | ve VI
(e — BT i)
(A —NATTS "™ (e P
[55 " Qe i) .
=9, x —= T =#(VP nKE™) .
t=3 t{i]*
This implies that, for any ie &, }(j) and any pew,..(j) with p#1, 2,
Mo < (VD A KEW) =4V 0 /4 {m(Con(v)) | ve P} .
Lastly we shall show
HPO\PID N K& =1, . (6.27)

From (6.21), for any 1 </<pn,
HPENPG A P =2470"0—3.

Take any u, ve VW\(F® ~ V™) with u#v and fix them. By (2.3) in Lemma 2.9, it is
easy to check

{t] t(u, y=087 " or vl VY #{t | (v, t)=0l7 P or 00V} . (6.28)
Since K{:"~ V= {pln-DY KfFn~D={pln- 11 (6.28) implies
O.vec,(u) # O.vec,(v) . (6.29)

So it is easy observation that

HEE D o VNP 0 Vi) =1
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for all p with pek, <& (i) and ps#1, 2. This implies (6.27) holds. Moreover by
(6.29),
#{P I K},’“’"ﬁ f/"l.(n)__,ég}zﬁ{P , Kl(,k:n)ﬁ IZ‘,??‘-‘Q}"‘#{P l Kg“")ﬂ (f/“'l(n)\f}’l(:))¢g}
>#{p | KED AP0 A£G} +QEVO-D_3)> 24P D_3
So we finish the proof of (n.9).

(n.10) (3.14) implies that u,ve ™ and for any 2<k<n—1, u+,v implies
u+#v. Therefore immediately we see that for any 2<k<n—1, #{V®/~,1>1 implies
#{F™/~.}>1. So it is sufficient to show #{P™/~,}>1. By the construction of A
and the definition of ~,, (6.14) in (c.4) implies that &,.,()}#¢&,.,(j). So #{F®/~ }>1
and we finish the proof.

(n.11) From the definition of ~, itis easily seen that for any i, i’ € &, 1(j) with i #1’,

{nk(Con(v)) | ve P} = {my(Con(v)) | ve P} .

And we see that

PR U = U (PR P,
ie g a0) iege ()
where V{® = V{"\ P, By the same arguments of (n.9), for any i, i’ € & }(j) we see
{my(Con(v)) | ve P} n {my(Con(v)) | ve V) =& .
So we calculate

{m(Con(v)) | ve P ={ W(Con(v)) | ve | 17,.(,"*{}

Pesi i

{nk(Con(v)) |ve Pimy U 171-‘"?}

el

= W}k:")\{nk(Con(v)) jve 17'5‘,'?} .

R =T -0 )}

Therefore we get

#{my(Con(v)) | ve P} =4 Wk 4 { n(Con(v)) | ve ) 17,.‘,';’}

)]
>gwkn— % #{m(Con(v)) | ve P
e M

=HWP =3 ()2RV TV -3).

So we are done.
(n.12) Take any ie &, (j) and fix it. Then using Lemma 5.3
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FW N = ${myCon(v)) | ve P} > 4{m(Con(v) | ve PP

(AN —6)!

TP Ay (by (6.29))

07 5 )

p'=3 leK(k':n—l)

(7~ 6)!

= $PM- Dy

(s i)

p'=1 IEK(" n—1

() miH -6

. (AR —6)/e) n).

#P - Dy = (n)
H (( z ml('i)l]-|-2)/e)zlex1§,-n—llm,.m+2
p=1 leKtkin=

Pin-1)~ ~
Since Affj=3 "1 ™9 ¥ k0T We calculate

PV - D n"M_g Spr

(i1 ™ —

(*)> H ( (”) 2) xE:(**) Ed
p=t Zlexg’,‘;"—“ml-[il_'_

thre fp' = ZIEK(;,:H—H';;I'(:Pi] and

P - Dyay 2} -1
{((m(n) 6)/e)° x -”: ’(( ¥ m{';’,,+2) / e) } .
= leKikin—1

Incidentally we see that #{ V"~ U/x < Pe-D Y Kk W <mf) and mff] =

So we see that

Pz 2 7l 49 \ 287D
07(( 5 marz)fef <(7242
p=1 'EK(kn 1) e

Using above inequality, we get

E>C;
where C; is defined by (6.7). Moreover, for ie ..} ,(j), we can calculate
$yn- 1
Z ml(’?l]+2= z Z . l(’?l]+2
teK®k;n=1 F=1 1ek&inmDa¥Pip-1
< Y BKE DA TE Do,
FeEE i 1ok (P}
= () _ 2 ()
Py +2 ) HEE" D A PO D)6
leKin=1 JFeEA-toke iy (P7)
S m{™—6
[7(n— 1) (m)
. $VETHem,

Metci oo H{mdCon(v) | ve PV}

(6.30)

(6.31)

.

(6.32)
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mim_6 . _ o

> : XEWE N HECL oKy oy (p)2ETOD 3)
”n ) mim
J g0k, (D)

Therefore
s yxy fe
I1 (M —6)/ > i +2
pr=1 leKikin=1

$P -y

> H1 (D, x Bl 4 ok (P)2ETO"D 3V (6.33)
p’:.

where D, ; is defined by (6.8). From (6.31), (6.32) and (6.33), we see that

#HPC =Dy ~
(*x)>C; x 1—[ {DP'JX(#ch(i::j1};')_#élc_:;—lOxk:n—1(p’)(2#V(u_2)_3))}fpl .
r=1
(6.34)
Using the claim (c.ii), we get from (6.30), (6.31) and (6.34),

#HP O D)y

#W}km)> H EwEn —#fk_;r}—1°Kk:n—1(P’)(2”I7("—2)—3))f’1 .

Ki:n-1(P")
r'=1

Since

N LAy . (P 0y .
PV = Y (*W’[V”“"_”] > mz‘,’i’u)= [T #2P&m- 001,

Kicin—1(p’) Kk:n-1(p")
=1 leK§in—h r=1

(6.35)
we can calculate as follows:

e ’(W L\

> Kk:n-1(p’)
?“'(k: )
(20(;‘_1)’F (5l r=1

>XF0 - (by (c.iid)) .

#9[‘7(k :_n)‘ "
(22— 7P

Incidentally we see that

#f;}.(j)s#{ v

X M@=y Ml(:'{)i}foranISPIS#{V("_I’/zk}}

le K&in—1) leKtin-1
SHME | Al =mfi} =4 {M | ™ =1y ™)

S#{M-gn—l"" 1,tn)

ms(tn— 1+ L.ty) =n—1i'(n)} < #{Ms(tn) | n_’ls('") < n_’l,-'(")}
<2™™  (by (6.1)). (6.36)

So we have
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$¢iin () < o
(Zak _ 1)#9[??‘:")] - (zak B 1)#9[7§k:n)]

(by (6.36))

${Vin- Dyl BV D2y} (kn -1
e [ e oy 639

=1 p=1
RS i1y e
< H (ak_lxea[vxkn 1M e =g, M (6.37)
=1

In addition we use the claim (c.iii) and (6.37). Then we get

WD —gE 24PV -3) L4 i
(2ot )™ (20t )™

—a, M- _3)

> X5 (XY —1)=1.

Therefore we finish the proof.
(n.13) Let o, , be the positive number satisfying the following equality:
YOI/~ #W}k:") _1

e

The above equality implies that for all 1 <j<#{P®/~,}, #W*» <275 By (n.12) we
see 2a,_y <ay ,. Therefore (n.13) holds.
So we finish the proof of (c.ix).

Therefore we can construct recursively the simple unordered Bratteli diagram
@'=(V", E') and the simple ordered Bratteli diagram & =(V, E, <) satisfying, for all
nz=2, the following conditions:

(A) KV, E)=Ky(V', E') as dimension groups via an isomorphism preserving

distinguished order units,

(B) K V', E'Y~Ky(V, E) as dimension groups via an isomorphism preserving

distinguished order units,

(C) (¥, E) satisfies Assumption 2.4,

(D) there is the partial order < on £ such that < satisfies Assumption 2.5, 2.6,

2.7 and 2.8,
(B) 2a, ,<a, Z““""V E 17 e R
sy~ tn) 1 $PIV]

(F) for any k with 1<k<n, 20, _, <0, and ) .= T g kem gt =1.

Let (Y, S) be the Cantor system defined by &. By (A) and (B), (Y S) is strongly
orbit equivalent to (X, T). Since & satisfies (C) and (D), we see by Lemma 3.9 and (F)

(S (1) =logoy ; +,>loga,_ +log2. : (6.38)
And from Lemma 3.7 and (6.38), we obtain

(S =lim A(S,(2))>loga, _, +log2 . (6.39)
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By (E), we see lim,, ,, &, = 0. Therefore by Lemma 3.6 and (6.39), we can get
h(Sy=lm K(S,)= 0.
k— oo

So we finish the proof of the theorem. [
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