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publicly traded firms in the U. S. manufacturing sector: from a
universe of approximately 1800 firms in 1976, I am able to follow most
of them for at least three years, and over half of them from 1972 until

1983. I consider several problems, both econometric and substantive,
which exist in analyzing this kind of data: the choice of size measure,
the role of measurement error, and the effect of selection (attrition)
on estimates obtained from this sample.

Using time series methods, suitably modified for panel data (where
the number of time periods per observational unit is small), I analyze
the behavior of employment over time and find that most of the change in
employment in any given year is permanent in the sense that there is no
tendency to return to the previous level. Year-to-year growth rates are
largely uncorrelated and there is almost no role for measurement error.
I find that Gibrat's Law is weakly rejected for the smaller firms in my
sample and accepted for the larger firms; Other measures of size
produce essentially the same results.

Correction for attrition from the sample changes the results
somewhat: I use a simple model in which firms leave the sample because
they are small and/or undervalued (since many exits are acquisitions)
and find that Tobin's Q, the raio of market valuation to the value of
the underlying assets of the firm, is a much better predictor of exit
probability than size alone (firms with low Q are more likely to exit
the sample). When I use this estimate of the probability of exit to
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both investment in physical capital and R&D expenditures, with R&D

having a somewhat higher net effect.
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1. Introduction

The present paper is a first step in an investigation of the

dynamics of firm growth in the U.S. manufacturing sector during the

recent past. It updates work by earlier researchers on the relationship

between firm size and growth using a more comprehensive dataset and

modern econometric techniques to attempt to correct for some of the

problems in estimating such a relationship. The ultimate conclusion is

that the previously observed negative relationship between size and

growth for smaller firms is robust to corrections for selection bias and

heteroskedasticity, although this conclusion is clouded by the

difficulties of separating nonlinearity from selection bias in the

presence of size-related heteroskedasticity.

1. Stanford University and the National Bureau of Economic Research. I am
indebted to Zvi Criliches for numerous helpful discussions and to Tim
Bresnahan, Peter Reiss, Sherwin Rosen, David Evans, Tom MaCurdy, and
members of the Stanford University Industrial Organization seminar for
comments. Joy Mundy provided extremely able research assistance and
Clint Cummins programmed the sample selection models in TSP. Parts of
this research were supported by a National Science Foundation Grant (PRA
81-08635) and by the National Bureau of Economic Research.
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I focus on the manufacturing sector in this study because my

ultimate interest is in exploring the role of innovative activity in the

growth of firms and my main indicators of such activity, Research and

Development expenditures and patent applications, are primarily

available for that sector (and, in fact, primarily done in that sector).

However, in the modern U.S. economy, with the increasing importance of

the computer-related service sector in innovation, this is a limitation

of the study and should be kept in mind.

The dynamics of firm growth is an interesting and important topic

for two reasons: 1) the growth of firms is a main ingredient in

economic growth and job creation, and 2) the actual dynamics has an

impact on the consequences of industrial concentration. The extent and

speed at which smaller firms enter the market and grow successfully is

an important check on the development of monopoly power by the large

firms in the economy. The role o innovation in this process was

stressed by Schumpeter and the Schumpeterian hypothesis remains to this

day a controversial interpretation of the growth process in modern

industrial economies.

In this paper I try to answer a version of the question "Do small

fins grow faster?" and to reconcile my results with those of previous

researchers. My version of the question might be more properly phrased

as "Do small to medium-sized publicly traded manufacturing firms grow

faster than large ones?" If they do, is it because of the way they are

selected into our sample, or because of a difference in the rate and

direction of innovative activity, or simply because the economy is

finite and diminishing returns sets in eventually. I do not claim to be

able to distinguish among all these alternatives completely, or even

that only one must be true, but I will explore the implications of each
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for the observed data.

Stochastic models of firm growth have been subjected to two kinds

of empirical tests: the first posits a growth model which is stationary

over time and then looks at the implications of this model for the

equilibrium size distribution of firms. Various authors, beginning with

Gibrat, have shown that the simplest version of a diffusion model, in

which growth rates are independent of size, generates a log normal size

distribution, albeit with an increasing variance over time. Mandeibrot

(1963) provides a survey of this and other models in which he shows the

conditions under which the equilibrium size distribution is a stable

Pareto distribution. Boundary conditions on exit and entry are required

in order to achieve a stable distribution in most cases. This has been

investigated empirically by Simon and coworkers (e.g., Simon and Bonini

1958), Quandt 1966, and Hart and Prais 1956. Typically the size

distribution conforms fairly well to log normal, with possibly some

skewness to the right. The power of this kind of test is low, since the

relationship of growth rates to size is not explicitly investigated.

However, several of the existing theories, such as those of Lucas 1978

and the stochastic theory of Simon and Bonini have as their main

implication these static distributions.

Other theoretical models of firm growth, such as work by Lucas

(1978), Nelson and Winter (1982), Jovanovic (1982), and others, have

more specific implications for the actual dynamics of individual firm

growth. These models emphasize the role of the U-shaped cost curve and

learning in the evolution of the firm size distribution. The

empirical work in this area investigates the relationship of growth

rates and size in a panel of fins. This work is exemplified by
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Pashigian and Hymer and Mansfield in the sixties, and the more recent

work by Birch, Armington and Odle, and Evans using the Dun and

Bradstreet files (as cleaned by Brookings Institution for the Small

Business Administration) and by Evans using Fortune 500 firms. Except

for Evans, none of these researchers attempted to correct

econometrically for biases induced by the selection into the sample and

measurement error. One of the purposes of this paper is to investigate

whether such biases have an appreciable effect on the results.

The first problem is the regression to the mean phenomenon: if the

dependent variable in question is the growth rate measured as size in a

final period less size in an initial period, and the independent

variable is size in the initial period, measured with error, then fins

which have transitorily low size due to measurement error will on

average seem to grow faster than those with transitorily high size,

assuming that all fins have the same growth rate. Using yearly

observations from a panel of firms it is possible to control for this

kind of random measurement error with instrumental variable techniques

(see Griliches and Hausman 1985).

The second problem is probably somewhat more serious: measuring a

growth rate from a panel requires that data on size be available for

every firm in both the beginning and the end period. But small fins

which have slow or negative growth are more likely to disappear from the

sample than large firms, leading to another example of the well-known

problem of sample selection bias. In addition, some of the most

rapid-growing and successful small firms may not be present at the

beginning of the period, which will produce biases in the other

direction. In section 4 of the paper we present estimates of a simple

model which attempts to control.for this bias.
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The plan of the paper is as follows: first I describe the data and

present preliminary results on the role of measurement error in the

size-growth relationship. This is followed by exploration of the time

series behavior of employment growth, setting aside the issue of

selection bias temporarily. Then I develop an econometric model of

sample attrition and discuss the problems which arise in estimating such

a model in the presence of heteroskedasticity and the absence of

adequate instruments to separately identify the probability of firm

survival. Finally I investigate the relationship of investment, both in

physical capital and research and development, to firm growth. using the

sample selection model I have developed to control for attrition. The

paper concludes with some suggestions for further work.

2. Description of the Data

In this paper I confine my analysis to that part of the

manufacturing sector which consists of publicly traded firms, since our

sample is drawn from the Compustat files. This covers approximately

ninety percent of the employment in the manufacturing sector in 1976,

although only about one percent of the firms.2 Thus the study is

really about the relationship of growth and size across firms which have

already reached a certain minimum size, large enough to require outside

capitalization. We would argue that these are the firms of interest,

2. The total number of employees in our 1976 cross section is 16.7 million,
reported on an enterprise basis. This figure may include some foreign
employees. The total manufacturing employment reported by the Bureau of
Labor Statistics for the same year is 19 million, collected on an
establishment basis, and does not include foreign employees. The number
of enterprises in the Census of Manufacturers in 1977 is approximately

300,000.
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since the impact of employment growth by the smallest firms on the whole

economy is likely to be negligible until they reach a certain size. It

should be emphasized that this argument applies mainly to the

manufacturing sector, where there are almost no privately held firms of

any size.

The universe from which I draw my sample consists of 1778 firms in

the manufacturing sector in l976 (see Bound et al 1984 for further

description of this data). I considered two different panels selected

from this universe; all the firms with employment data from 1972

through 1979, and all the firms with employment data from 1976 to 1983.

The first set maximizes the data
availability, since the basic universe

of firms is as of 1976, while the second
has the advantage that it

begins in the year in which the sample was chosen and hence suffers from

selection in only one direction. There are 1349 firms in the first

sample and 1098 in the second; 962 of these firms are in both samples.

The remainder of the firms either enter the
sample during the period, or

exit from the sample. A few merge with another firm so large that they

become in effect a new firm; these observations are treated as exits

3. An earlier draft of this paper was based on a sample of 2577 firms,
which included in addition all the firms on the Compustat full coverage
file which were in the manufacturing sector. Further investigation of
the full coverage sample has revealed that it is unsuitable for a study
of growth and sample selection due to exit: many of the firms on the
file are not really publicly traded and most do not have valuation
information. In addition, many of them file for a year or two after a
public offering under rule 15(d) of the 1933 Securities and Exchange
Act, as amended in 1964, and then suspend filing because there are less
than 300 shareholders of record. This is

not really an exit, but we no
longer can obtain data on the firm.
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(and the new entity as an entry).4 Table 1 shows the industrial

breakdown and average growth rates for the two samples. The overall

growth rate of employment in this sample was about 2.9 percent in the

first period and 0.8 percent in the second. There are substantial

differences across the industries, with the so-called "high tech"

industries (drugs, computing, equipment, communication equipment, and

scientific instruments) typically growing more rapidly throughout both

periods.

In the same table I show the average R&D to sales ratio and gross

investment to sales ratio in 1976, in order to indicate the variability

in the key "engines of growth" across industries. As expected, drugs,

computers, communication equipment, and scientific instruments have much

higher R&D to sales ratios than the other industries. The industries

with high investment rates are chemicals, petroleum refining, computers,

and the lumber and paper industry.

We first consider the possible role of measurement error in biasing

a regression of changes on levels. A simple model of Markov growth with

errors in variables would look like

— +

— + u
with w and u uncorrelated white noise errors, X unobserved ("true"

4. This is obviously an inadequate treatment of an interesting aspect of
growth in the manufacturing sector, but it involves a relatively small
number of firms, and it is beyond to scope of the present paper to
model major merger activity. We hope to explore the extent to which
this kind of growth impacts on our estimates in future work.
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employment), and E observed. Under this model, the true
relationship

between the change in employment and its level is

E (dXIX =

but the estimated relationship will be

E (dEtIE1) — (5q/(5+5 ))

where s and s are variances of the error term and the unobservablew X

respectively. For these data, the within to total variance ratio for

log employment is approximately six percent. Under the simple Markov

model presented above, this variance is the sum of twice the measurement

error plus the variance of the disturbance u, so the
largest negative

value we would expect for this coefficient is -0.03 (divided by the

number of years over which the employment change is computed).

In Table 2, I present the results of a simple regression of growth

on size for our two different subperiods, with and without individual

industry effects. The coefficient of logE72 in a regression of the

annual growth rate from 72 to 79 is -1.14%, while that of logE76 in the

growth rate is -1.06%. That is, doubling a firm's size decreases its

annual growth rate by about eight tenths of one percent. In the

remainder of the table I try to correct for possible measurement error

bias in this relationship, but it remains remarkably stable. First, the

pure random walk with measurement error model would predict an estimated

coefficient of zero in the regression of the growth rate on size in the

period preceding that from which the growth rate is measured, whereas

in column 2 we obtain an estimate slightly smaller in absolute value as

in the previous regression. Second, in the last column we regress the

growth rate on size at the beginning of the period using size one year

prior to the beginning of the period as an instrument, since by
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assumption it is uncorrelated with the measurement error, but this

regression yields almost the same result as the ordinary least squares

estimate in column 3. In fact, if there is any bias at all, the

correction has the wrong sign. This impression is confirmed by

comparing regressions of one through seven year growth rates on size at

the beginning of the period (not shown). Under the simple measurement

error model presented above, the coeffcient of size in such a regession

is attenuated by the number of years over which the growth rate is

computed, whereas I find only a slight fall in absolute value in the

coefficient in going from one to seven years (about .05 per year).

The addition of industry dummies do not change the coefficients

much, although they are significant at conventional levels (the 1%

critical level is about 2.2). Since this result held for most of the

results reported in this paper, we have not presented estimates with

industry dummies in the rest of the tables; they almost invariably were

moderately significant but had little or no effect on the other

coefficients. The study of interindustry differences in these data

appears to be warranted but is beyond the scope of the paper.

The tentative conclusion is that uncorrelated errors of measurement

in employment cannot be responsible for more than about ten percent of

the observed negative relationship between size and growth. That is,

the noise to signal ratio for the employment variable is about one-tenth

of a percent in levels and about ten percent in first differences.

However, we should note that this does correspond to a standard

deviation of about fifteen percent of the level of employment in any one

year, a not inconsiderable amount. It is simply that a measurement

error of this magnitude is swamped by the large variance in size across

our firm population and introduces very little bias in the estimating
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equation.

Repeating the exercise using sales produced much the saute result in

the growth-size regressions, although the standard deviation of the

measurment error in this case could be about half again as large. For

the instrumental variable estimates corresponding to column 4 of Table

2, the size coefficient was -0.90 (.21).

3. The Time Series Behavior of Employment Growth

In Appendix A I present the results of a time series analysis of

the three sets of firms drawn from my sample: 1) 1349 firms from 1972

to 1979, 2) 1098 firms from 1976 to 1983, and 3) 962 firms from 1972 to

1983. Obviously, there is substantial overlap in these samples; the

earlier period was chosen to maximize the number of firms in a balanced

panel, while the latter has the feature that it begins in the year that

our universe was chosen, so that selection only goes in one direction.

I use all three samples in order to obtain some information about

parameter stability. In this section I interpret these time series

results in the context of several hypotheses of interest.

The evidence of the regressions in Table 2 suggested that the

simple measurement error model I was considering be modified to include

an autoregressive component. This expanded model be written as

(1) = + u Eu EX1u = 0

Yt=X+w Ew=a2 EuwOVs,t

I have allowed the variance of employment growth to vary from year

to year since this is a strong implication of the patterns observed in

10



the covariance matrix of differences. The model is above eqivalent to a

standard ARHA(l,l) model, but the latter is valid over a larger

parameter space; this turns out to be important. The ARNA(1,l) model is

written as

(2) (1-aL) y — (l-pL) c white noise

whereas the AR(l) model with measurement error was

(3) (l-flL) yt u + (1fiL)w = u + w -

If the disturbances are normally distributed, it is easy to show that

the two models are equivalent with

a—fl
22 2 2 2

(l+t )a — u + a (1-i-fl )

2 2
(p/fl)o

However, the measurement error model requires that be positive,

which imposes the constraint that p and a are of same sign in the

ARNA(1,1) model and restricts the parameter space. It turns out that

when I estimate the ARXA(1,1) model using these data that the constraint

is not satisfied, which implies a slightly negative a2. The

estimates are shown in the top half of Table 3. They are quite stable

across the periods and are consistent with the IV estimates in Table 2,

since they imply a coefficient of 100 (fl-l) = 1.0 percent in the growth

rate equation together with a slightly positive measurement error bias

(of the order of 0.001, or one tenth of a percent).

Since the time series analysis in the appendix shows that an

ARMA(2,1) model fits the data significantly better than an ARMA(l,l)
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model, we also choose to explore what Leonard calls
a "mean-reverting"

model, which is familiar from the investment literature as a flexible

accelerator model. This model rests on the idea that the number of

employees is a kind of stock which is not instantaneously
adjustable at

zero cost to the firm. For a constant returns to scale firm which has

quadratic adjustment costs, there is a linear relationship between

employment changes and the current and desired levels of employment:

= (l-A)(y - + w

In terms of the ARNA model type of formulation, this can be written as

*
(l-AL)y (1-A) y + w

The time series process implied by this model depends on what is assumed

about the process generating the desired level of employment. If the

process is constant for each firm, it becomes

(l-AL)y = a. + w where a. (l-A)j.

Because of the short panel, this cannot be estimated consistently in

levels, so I write it in first differences:

(l-AL)(l-L)y — (l-AL)Ay (lL)w

This is an ARHA(1,l) process with p constrained to be equal to one.

If the desired level of employment is a Martingale process, which

seems somewhat more reasonable, since we might expect that the target

size evolves as the firm receives random shocks each year about demand,

cost, and so forth, then

* 2 2(l-L)y — u with Eu =
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and the process becomes

(lAL)tyt = (lA)u + (l.L)w

which is equivalent to an ARMA(l,l) process with both a and p

free.5 Since the estimated p for this model is not unity, it is

easy to reject the first version (constant target size). The estimates

for the second version are shown in the bottom of Table 3. They are not

very stable across the time periods; in fact, those for the first period

not really make much sense in the context of this model since they imply

that the firm adjusts its size away for the desired level of employment

(1-A = -0.745).

The conclusions from this exercise are quite strong, if somewhat

negative: 1) the growth of firms as measured by employment is quite

random from year to year, with a standard deviation corresponding to

about twenty to thirty percent of the level. There is little evidence

of a systematic relationship of growth rates across time, at least for

5. This can be shown in the same way we showed the equivalence of (2) and
(3). Since the order of the AR part is the same, a A, and we have

2 22 2 22a + (1-a) a = a (l+p

2 2a —paw £

which implies

2 2 2 2a = a(l-p) /(l-a)

where a, p, a2 are the parameters of the ARNA(l,l) model.
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the majority of the firms. 2) Measurement error accounts for very

little (about ten percent) of these random year-to-year movements; most

of the change represents a permanent change in the level of employment.

3) Small firms do indeed grow faster, but not by much, and not by enough

to have a significant effect on the size distribution over a ten year

period.

4. Correcting for Sample Attrition

In obtaining the previous time series results, I used a balanced

sample of firms, ignoring the possible biases introduced by entry and

exit into the sample during the time period. In this section I explore

the consequences of sample attrition on the estimates of a growth

equation. The initial exploration is reduced form in nature, since it

does not use an explicit model for exit and entry, other than the simple

fact that most of the action takes place among the smaller firms in the

sample. It turns out that the power of this kind of model to control

for selection is weak, since the identification comes from the

functional form, and I intend in future work to experiment with a more

explicit model of bankruptcy and merger. In the final section of this

paper, I make a first attempt along these lines.

Any attempt to regress the growth rate of a firm from period to

period on its size in the initial period will be subject to biases

arising from the selection of the sample. In order to measure the

growth rate, we require that data be available for the fin in both the

beginning and the ending period. Even if we are able to draw a sample

of firms which are representative of the population in the initial

period, by the time we reach the final period, the smaller and more

slowly growing firms are those most likely to have dropped out of the
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sample.

In terms of a sample selection model, let y. be the growth rate of

the ith firm, and let Y. and Y. be the initial and final period
1 1

logarithm of size. Then the observed growth rate is

ÀY — Y. - Y - + U.i 1 1. i 1

where u. is an i.i.d. random variable, with E(Y.ui) = E(-y.u.) = 0. I

hypothesize that the firm will drop out of the sample when its size

drops below some cutoff value, denoted as a. in order to capture the

notion that it may vary in some systematic way across firms (for

example, by industry). Then the model which I actually estimate becomes

ifY.+u+y.>a,1 1. i 1 i 1 1

ÀY not observed if Y.+u +y <= a.i iii 1

Under normality of the for the observed sample the regression

equation becomes

(4) E(ÀY.IAY. observed) —

— + a
A(Y.+ia.)

where A(.) is the inverse Mills ratio, the ratio of the normal density

to the cumulative normal. Since A>0, the disturbance for the estimating

equation is no longer mean zero, conditional on the firm surviving.

Since A is monotonically decreasing in its argument, the bias goes to

zero as Y+ta. becomes large, that is for large firms with positive

growth rates and a low dropout size.

The model above is a variant of the standard censored regression

model with a stochastic threshold as first presented by Nelson (1977).

It assumes we know or can estimate the cutoff a for each firm and that
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firms never drop out for reasons other than becoming too small. To

allow for more ignorance about the reasons for exit, I have chosen

instead to use a general sample selection model in which the probability

of survival equation is not explictly linked to a threshold value of the

dependent variable. I show in Appendix B that this model is

observationally equivalent to the stochastic censoring model of Nelson,

but that in return for gaining a slightly more general interpretation of

the survival equation, I give up the ability to identify the coefficents

of the a equation.

With this in mind, the model I use for estimation is a standard

generalized Tobit model of the form

if y2>O

not observed if y2. < 0

y.=Z.S+v.2i 1 2i

with a covariance matrix

2
Evv = a pa1

1

where I have normalized the residual variance of the unobserved latent

variable z2 to be unity. A discussion of this model and its

estimation by the method of maximum likelihood is given in Griliches,

Hall, and Hausman 1978.

My sample is drawn from the universe of Compustat firms in 1976.

Hence there is selection in both directions: small fast growing firms

may exist in 1976 but not in 1972 and some firms exit by 1979 or 1983.

If each f in is allowed to have its own growth rate, constant over the

16



period, and the remaining shocks to growth are serially uncorrelated for

each firm, I can easily generalize the above model to allow for bias due

to sample entry and exit. I write the models for E76 and E79 as

E76E72+47.+u
E79 = E76

+ 3 y. +

where is now the growth rate per annum.6 The model for the growth

rate from 1976 to 1979 is identical to the one I presented above, so

that equation 4 applies.

For the growth rate equation from 1972 to 1976, the relationship is

t.sYi4Y.+u1 ifE72>a1

so that the regression equation becomes

E( El. lAY, observed) 4 > a,) + E(u.1E72 > a1)

— 4 > a.)

Thus there is no selection bias for this equation under the null (when

'. does not depend on 52 Since the ordinary least squares estimate

of the coefficient of 52 in a regression of employment growth from 72

to 76 on 52 is -l.34(.l6), there is reason to suspect that selection

bias may be a factor here. However, unlike the previous case, I do not

observe the independent variable E72 for the firm when the growth rate

6. We are now treating y. as a fixed growth rate associated with the firm
and have subsumed the stochastic part in the disturbances u. This
formulation implies that u1 and u2 have different variances,
proportional in a known way under a stationary model, but since I do
not wish constrain coefficients to be constant over the two subperiods,
there is no loss in writing the model this way and treating

u1
and u2 as

independent disturbances with different variances.
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from 72 to 76 is not observed, so I need to use a truncated Tobit model

(see, for example, Maddala 1983, pp. 176-177). This model can also be

estimated by maximum likelihood, but since identification of the

parameters of the selection equation come only from the probability term

in the denominator of the likelihood function, the estimates may be

rather imprecise. In practice, I found this to be the case, so I do

not report these estimates here.

In Table 5 I present the results of estimation of the growth rate

equations for the two periods first using ordinary least squares and

then maximum likelihood of the sample selection models. In neither

period was the sample selection correction significant; the estimated p

is essentially zero and the coefficients do not change. In the case of

the first period, the selection model is close to not identified since p

is zero and the standard errors are not really computable. I should

note that this is true even though I have excluded a quadratic size term

from the model, so that spurious collinearity with a Mills ratio term is

not the problem. In the table I show the (4) statistic for

the inclusion of quadratic and cubic terms in both equations in the

presence of correlated sample selection. There is evidence of

nonlinearity in the relationship of growth and size, and in the next

section I attempt to disentangle this nonlinearity from size-related

heteroskedasticity coupled with sample selection.

I note in passing that adding industry dummies improved the

explanatory power of the survival equation (from 76 percent correct to

84 percent correct) but did not change the size coefficient in the

growth rate equation very much. The conclusion is that selection bias

of this simple kind does not seem to account for the negative
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relationship between growth and size.

5. Correcting for Heteroskedasticity

It is well-known that estimates of limited dependent variable

models are not robust to departures from normality or heteroskedasticity

of the disturbances.7 This seems likely to be a problem here from

the evidence of the plots in Figures 1 and 2, which suggest that the

variance of growth rates is size-related. A simple Lagrange multiplier

test due to White (1980) for heteroskedasticity of the disturbance in

the regression equation in columns 1 and 2 of Table 5 yields chi-squares

of 60.6 and 43.0 respectively with two degrees of freedom.8 Also,

the heteroskedastic-consistent standard error estimates which I show for

the OLS estimates in Table 5 differ from the conventional estimates.

(Note that the standard errors for the Probit equation are almost

identical, however.)

Of course, the test based on the OLS residuals is not quite

appropriate for the sample selection estmates in columns 3 and 4, so I

use a simple variation of a test developed by Lee and Maddala (1985) for

7. The tests and corrections applied in this section are designed to
correct for heteroskedasticity which is correlated with the regressors
since this seemed to be the most serious failure of the homoskedastic
normality assumption required for consistency of the maximum likelihood
estimates. I also investigated the normality properties of the basic
dependent variable, the growth rate, with the following result:
skewness did not appear to be a problem, with a coefficient of about -
0.1 both for the whole sample4and for two size classes. But the
coefficient of kurtosis (p /u -3) was 4.4 for the whole sample, ad
about three when I standarâized the variable by the estimate of a.
described below. These results seem to suggest that the distribuhon of
the distubance has somewhat longer tails than would be predicted by the
normal distribution, even after heteroskedasticity is corrected for.

8. This test is the from a regression of the residuals squared on all
the variables in the regression and their cross products.
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heteroskedasticity in the Tobit model. In Appendix C I extend their

results to the regression equation of the general sample selection

model; this yields a simple IN test, which consists of regressing a

function of the squared residuals and the estimated correlation

coefficient from the sample selection model on the variables of the

model. The value of the test statistic when the heteroskedasticity is

modelled as a function of size and size squared is shown in columns 3

and 4 of Table 5. The test statistic is almost the same as that given

in the first two columns, which is not surprising given the low

estimated value of p. We would not generally expect the statistics to

be the same if p were significantly different from zero, however.

If I were willing to maintain that the error in the selection

(survival) equation was homoskedastic and normally distributed, it would

be possible to compute consistent estimates of the coefficients of the

regression equation and their standard errors using the methodology of

Heckman. It has been shown by Olsen (1980) that in this case consistent

estimates can be computed by including the estimated Mills ratio in the

regression and using White's formula for heteroskedastic-consistent

standard errors. However, in spite of the fact that the probit

disturbance appears to be homoskedastic this assumption seems

unwarranted here, since the selection equation itself arises from much

the same process as generated the heteroskedastic disturbances in the

regression equation. A more promising avenue to explore would be the

modelling of the heteroskedasticity in some simple fashion depending on

size.

Accordingly, I constructed a simple model for the variance

of the disturbances in the growth equation by regressing the
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estimated residuals squared on size and size squared in the initial

period. A typical regression of this sort had a negative coefficient on

size and a small positive coefficient on size squared. The predicted

standard deviation of the growth rate disturbance fell from about 17

percent for small firms to seven percent for the larger fins. I

assumed that the heteroskedasticity in the selection equation is

proportional to that in the growth equation, and used these estimated

as weights in both equations to induce approximate

homoskedasticity of the disturbances. Note that this procedure performs

the estimation of the model in two stages, and the maximum likelihood

estimates are no longer fully efficient, but are conditional on the

model chosen for ?. It would be possible, but difficult due to

the high nonlinearity involved, to estimate this new model by maximum

likelihood by including the model for explicitly in the

denominator of the residual functions, but I have chosen not to do this

in order to simplify the estimation.

The results of this procedure are shown in Table 6. Focusing for

the moment on columns 1 and 4, which are comparable to the sample

selection estimates in the previous table, we can see that the size

coefficient has fallen by one half, and the estimate of p is now

positive, but insignificant. The LM test for heteroskedasticity of the

disturbances of the weighted model no longer rejects after the weighting

has been performed. However, the results now show that size has an

opposite effect on the probability of survival during the two periods,

which seems highly unlikely, given that one sample is a subset of the

other. This turns out to be due to a combination of the weighting

scheme used and the nonlinearity of the probit index with respect to

size but it shows how sensitive this type of estimate can be to
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weighting.

Because of this problem and because my goal in performing this test

in the sample selection setting was to sort out the different effects of

size-related heteroskedasticity, size-related sample attrition, and

nonlinearity in the relationship of growth and size, in the other

columns of Table 6 I present estimates of the growth rate equation with

quadratic and cubic size terms. Note first that the LM test statistic

is still insignificant, so heteroskedasticity of a size-related kind is

not a problem here. The quadratic ten is significant in both periods

and the cubic term significant only in the first. The estimates for the

probit equation imply a probability of survival which is roughly

constant (about 0.88 in 1979 and 0.65 in 1983) until a size of around

10,000 employees and then rises fairly quickly to near one. This is

consistent with the observed survival rates.

In both periods, the estimated p is quite negative. The fact that

the estimate of p is robust to the order of the polynomial expansion of

the size equation is evidence that the Mills ratio term is not simply

proxying for some higher order function of size (in fact, a quartic does

not enter this equation significantly). However, a negative correlation

between the disturbances of the growth equation and the survival

equation does call into question the basis for my original model of exit

from the sample, since it seems to imply that firms which grow faster

than predicted by their size are more likely to exit from the sample,

holding size constant. I will explore this puzzle further in the next

section when I look at the reasons for exit from the sample.

6. Sample Attrition as a Function of Tobin's Q

The preceding highlights a problem with this approach to sample
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selection correction. Many before us have pointed out that in the

absence of exclusion restrictions in the selection equation the

identification in such sample selection models comes through the

nonlinearity of the Hills' ratio, i.e.
, the exact functional form of the

distribution function. In principle, as we add higher order tens to

the regression equation, these tens become more and more collinear with

the Mills ratio variable, which itself can be well approximated by a

particular polynomial expansion in the Z's. When there are additional

variables in the selection equation, this
near collinearity disappears

and it becomes possible to include nonlinear terms without having them

proxy for the selection bias correction.

However, when correcting for selection due to growth, it is

extremely difficult to think of variables which belong in a selection

equation and not in the growth equation. One possible avenue to pursue

is a more explicit modelling of the reasons for exit, about which we

have some information. Of the 1778 firms in 1976, 225 exit from the

sample by 1979 and another 369 exit by 1983. Both Compustat and the

CRSP files (which include many but not all of these fins) contain a

code giving the reason for deletion when the data for the fin is

removed from the file. Using these codes, Addanki (1985) and I, in

parallel work, were able to establish that approximately sixty percent

of the firms were dropped due to merger or acquisition, eight percent

because of bankruptcy or liquidation, and the remainder for reasons

unknown. The last category includes smaller firms, many of which were

probably acquired.

We hypothesize that a firm will be acquired and disappear from the

sample when the existing assets of the finn are not being employed in
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the optimal way; a prospective buyer is willing to buy the firm at the

current stock price in the hopes of producing an above average return on

the stock by redeploying the assets in some way. That is, the

probability of a firm's being acquired is a function of the average

Tobin's Q for the firm, the ratio of the market value to the book value

of the assets. The market value is assumed to be the current

capitalized value of the future earnings potential of the firm's assets.

The higher is Q, the less likely that the firm will be acquired and

disappear from our sample. This is a fairly crude story which leaves

unexplained why the market is undervaluing the assets in this way; it

simply posits that if they are undervalued, an opportunity exists for a

potential purchaser. What is surprising is that this variable turns out

to be a fairly good predictor of survival, somewhat better than the pure

size variable we have been using.

Of course, the assets of a firm include more than the physical

assets; in particular, we are interested in the value of the assets

represented by the firm's technological position, or knowledge stock, as

proxied by its R&D history. Thus we would like to use a Q variable

which contains a measure of R&D stock as well as physical capital in the

denominator. Following 1-Iayashi (1982), Wildasin (1984) has shown that

the market value of a f inn which maximizes discounted cash flow using

more than one stock of capital is given by a weighted stun of the value

of the capital stocks:

n

V = V A. K.
1 1

i=l
where K. are the capital stocks in physical units and the are the

shadow prices of these stocks, which depend on taxes, depreciation,

and adjustment costs, and are not necessarily equal over different kinds
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of stocks. Unfortunately, we do not have a measure of these shadow

prices, so we do not know how to weight the physical assets and R&D

stock appropriately in computing Q. Denoting the physical assets by A

and the knowledge stock by R, we can write Q as

—
A1A±Ak A1A [1+-YR/A)

where 'y is the ratio of the two shadow prices. Because the measured Q

variable in these data exhibits a very longtailed distribution, which

tends to give extreme weight to a few out outliers, I chose to use the

logarithm of the variable in the selection equation, so that the

variable becomes

log Q — log (V/A) - log(l + -y(R/A))

I approximate log (1 ÷ -y(R/A)) by (k/A) since I expect (R/A) to be

small, so that the variables actually used in the selection equation are

log(V/A) and k/A. Firms with no R&D program have an k/A stock equal to

zero; the inclusion of a separate dummy for these firms in the selecting

equation had no effect on the results, Because of work
by Addanici

(1985), who found that the valuation of a fimrs R&D program at the time

of acquisition differed depending on whether a firm was a patenter, I

allowed for a separate coefficient on R/A for those firms which filed

successful patent applications in 1976.

As a measure of the Q of physical assets, V/A, I use the total

market value of the firm (common stock, debt, and preferred stock)

divided by the sum of net capital stock, inventories, and other assets

(including subsidiaries). The value of the components of both V and A

have been adjusted for the effects of inflation using the methodology of
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Brainard, Shoven, and Weiss; the computations are more fully described

in Cuinmins, Hall, Laderman, and Mundy (l984).

The estimates for a probability of survival equation using these

variables are shown in Table 7, along with growth rate equations

augmented by the two investment variables (these will be discussed

later). What the probit equations show is that both the V/A and R/A

variables are more important in predicting survival than the raw size

variable employment, although the R/A variable has a large standard

errorj° At the sample means these estimates imply that a doubling

of employment increases the probability of survival to 1983 by .03, a

doubling of Q increases the probability .10, and a doubling of R&D

increases it .03 for non-patenters and .01 for patenters, ceteris

paribus. Firms with a larger portion of their assets in R&D are less

likely to disappear from the sample, while having patents makes them

somewhat more likely to exit than firms with R&D and no patents. This

last result is consistent with Addanki.

The use of these variables to help predict the probability of

survival has had some effect on the estimates of the growth rate

equation. The size coefficient has increased substantially over the

estimates in columns 1 and 4 of Table 6 and the estimated correlation

9. For comparison, I also used an unadjusted Q based solely on the raw
numbers on the Compustat files. In 1976, the value of this Q was lower,
and the dispersion less. The qualitative results of the Probit equation
were unchanged, and the coefficients were more significant, suggesting
that the process of adjusting for inflation bias also introduces more
measurement error into the variable.

10. The other variables in the growth equation were also included in the
selection equation, but they had insignificant coefficients so the
estimates reported do not include them.
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between the residuals of the selection equation and the growth rate

equation is quite negative. The results are not sensitive to the exact

specification of the selection equation. Inclusion of the Q variable as

a predictor seems to be enough to produce a rather ananalous result: a

firm which grows faster than predicted by its size and level of

investment is somewhat more likely to exit from the sample, controlling

for size and Q. This implies that the average growth rate for the

smaller firms is underestimated and hence that the size coefficient in

the growth rate equation is biased toward zero when we do not correct

for selection.

7. Investment and Firm Growth

This section reports on some descriptive regressions which relate

the firm growth rates to the level of investment, both physical and R&D,

in 1976. These results reported in this section are in no sense

derived from a structural model; we are merely documenting the

magnitude of the correlation between investment and growth in the

manufacturing sector.

In Table 7 we have added three variables to the standard growth

rate equation: the logarithm of capital expenditures in 1976, the

logarithm of R&D investment in 1976, and a dummy equal to one for those

firms who do no or negligible R&D. Both of the expenditure variables

have been scaled by subtracting the logarithm of 1976 employment so that

the total size effect still appears in the coefficient of logE76. The

investment coefficients are quite substantial: at the mean level of

investment for these firms, an increase of four million dollars in

physical investment is associated with a one percent increase in the

annual growth rate from 1976 to 1979, while it takes only two million
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dollars of R&D investment to achieve the same effect for those firms

which do R&D. In the second period the effects are the same, which

implies considerable persistence in the correlation of growth and

investment. Firms which have no R&D program grow on average about one to

two percent more slowly than those which do.

Earlier work in this area (Mansfield 1962 and Hymer and Pashigian

1962) found that two results seem to hold when f inn growth is examined

over a large size range of firms: 1) the variance (in logarithms) is

larger at the lower end of the size distribution, and 2) Gibrat's Law is

closer to holding for large firms than for small. We have already seen

that the first result holds in this sample and the nonlinear estimates

in Table 6 suggest that the second one probably holds as well. To check

this result I divided the sample into two size classes and reestimated

the equations in Table 5. The size cut I chose was 2500 employees in

1976. The median number of employees in 1976 is 2300 and the geometric

mean is 2700 (based on the 1349 firms which survive from 1972 to 1979),

so there are roughly equal numbers in each class for the observed

samples.

A summary of the results for these two size classes is presented in

Table 6; these estimates are also computed with corrections for

heteroskedasticity and sample selection. The results for the larger

firms do not look that different from those for the smaller firms,

although they are somewhat attenuated. A noteworthy feature of the

estimates is the substantial difference in the variance of the growth

rates across the two samples: in 1979, the ratio of the mean variances

(after weighting by weights normalized to be unity on the average) is

about 0.4. The estimated investment coefficients are not that different

from those for the whole sample although they have larger standard
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errors. The finding that a dollar of R&D expenditures is a more

important predictor of growth in the immediate future than expenditures

on physical capital is robust across size classes: the ratio of the

amount required to obtain an increase in annual growth rates of one

percent is 1.6 for the smaller firms and three for the larger firms.

This is suggestive for future work: is it because R&D is far less

volatile and therefore a better indicator of firms on a "successful"

trajectory, or because the rates of return to R&D are on average

somewhat higher?

8. Conclusion

This goal of this paper was to investigate several econometric

explanations which have been suggested for the finding of a negative

correlation between firm size and growth and to lay some groundwork for

a more careful modelling of firm dynamics. With respect to the first

question, we have negative results in the sense that neither measurement

error in employment nor sample attrition can account for the negative

coefficient on firm size in the growth rate equation. There are large

random changes in employment at any one firm from year to year, but

these changes ate largely permanent, and do not reflect a non-serially

correlated measurement error. Substantial differences in the variance

of growth rates across size classes was also observed with smaller firms

having a variance at least twice as large.

With qualifications due to the difficulty of constructing an

adequate model of sample attrition, it does appear that the smaller

firms in the sample grow faster, with a four percentage point difference

in annual growth rates between firms in the 25th and 75th percentiles in

size. Because of the large element of randomness in growth rates across
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firms from year to year, however, this difference is not enough to cause

firms to move very far in the size distribution over a ten year period.

With respect to the second question, I have found that the obvious

systematic differences among firms, such as industry and the level of

investment, do very little to reduce the variance of growth rates. The

best I could do was a reduction in the standard error from 12.6 percent

to 12.1 percent (this conclusion is based on the unweighted data, since

it is difficult to interpret the standard error after weighting). In

future I hope to explore this further using an intertemporal dynamic

optimizing model of the firm. The results of this paper give some

confidence that this can be done, at least over short periods, without

worrying too much about those firms which exit from the sample.

30



Table 1

Employment Growth by Industry

Industry Number Log E E 76 R/S 76 I/S 76of Firms 1976 (l000s) Fin mu. Firm md.
Food & kindred prod. 144 1.247 3.5 .004 .003 .047 .039Textiles & apparel 135 .857 2.3 .008 .004 .029 .033Chemicals exci. drugs 98 .954 2.6 .022 .023 .066 .102Drugs & med. inst. 87 .581 1.8 .053 .042 .053 .044Petroleum ref. & ext. 43 1.911 6.8 .005 .003 .125 .103Rubber & misc. plast. 47 .636 1.9 .016 .017 .050 .040Stone, clay & glass 60 1.026 2.8 .010 .011 .070 .064Primary metals 83 1.032 2.8 .010 .006 .055 .080Fabricated metals 135 .349 1.4 .009 .006 .049 .043Engines,fan & const. 49 1.465 4.3 .017 .018 .114 .059
Office, comp. eq. 61 .465 1.6 .090 .054 .224 .129Other mach., not elec. 143 .448 1.6 .020 .015 .049 .041Elec. equip. & supplies 65 1.178 3.2 .021 .020 .043 .038Communication equip 148 .0002 1.0 .049 .029 .045 .071Motor veh. & trans. 80 1.430 4.2 .011 .022 .063 .039Aircraft & aerospace 29 1.397 4.0 .021 .031 .029 .024Prof. & sci. equip. 75 .232 1.3 .050 .053 .040 .062Lumber, wood & paper 120 .831 2.3 .007 .004 .056 .093Misc. consumer goods 153 .740 2.1 .014 .003 .039 .061Conglomerates 23 3.082 21.8 .014 .011 .048 .053

Total 1778 .811 2.3 .027 .058
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Table 1 (continued)

Industry 1972 Log E diog E 1983 Log E diog E

Number % 1976 72-79 Number % 1976 76-83

Food & kindred prod. 112 78 1.409 2.2 62 43 1.487 1.3

Textiles & apparel 101 75 1.089 -0.02 67 50 1.269 -3.4

Chemicals excl. drugs 72 73 1.391 3.8 68 69 1.257 0.8

Drugs & med. inst. 66 69 1.034 5.3 63 72 0.976 4.1

Petroleum ref. & ext. 37 43 2.201 4.4 26 60 1.980 0.7

Rubber & misc. plast. 33 77 0.885 1.6 28 60 0.936 -0.3

Stone, clay & glass 46 77 1.069 -0.8 37 62 1.330 -2.0

Primary metals 66 80 1.174 2.2 47 57 1.345 -1.1

Fabricated metals 103 76 0.474 2.5 82 61 0.482 -0.4

Engines,farin & const. 39 80 1.791 5.8 40 82 1.502 -2.5

Office, comp. eq. 37 61 1.206 11.2 40 66 0.535 7.5

Other mach., not elec. 109 76 0.560 4.3 82 57 0.404 -0.2

Elec. equip. & supplies 50 77 1.300 2.9 45 69 1.099 0.4

Communication equip. 107 72 0.232 5.1 95 64 -0.067 3.5

Motor veh. & transp. 61 76 1.613 0.2 51 64 1.787 -3.5

Aircraft & aerospace 27 73 1.480 2.8 21 72 1.783 0.0

Prof. & sci. equip. 59 79 0.504 6.6 53 71 0.341 5.0

Lumber, wood & paper 92 77 1.045 4.5 78 65 1.013 1.1

Misc, consumer goods 116 76 0.861 2.6 98 64 0.935 2.2

Conglomerates 16 70 3.522 2.1 15 65 3.336 -1.0

Total 1349 1.044 2.9 1098 0.983 0.8

Notes:

The column E 76 is the geometric mean of 1976 employment.

The growth rates are per year.

For K/s and I/S, both the average firm ratio (labelled Firm) and the
aggregate industry ratio (labelled md.) are shown.
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Table 2

Growth Rate Regressions

1972-1979: 1349 Firms

Dependent Variable Annual Growth Rate in Percentage Terms
72-79 73-79 73-79 73-79
OLS OLS OLS Inst. Var.

Intercept 4.0 (0.2) 2.9 (0.3) 2.9 (0.3) 3.0 (0.3)

Logarithm of size -1.14 (.15) -0.98 (.14) -0.92 (.14) -0.99 (.14)in year 72 72 73 73

Standard error 8.4 9.4 9.5 9.5

Intercept 20 Industry Dummies

Logarithm of size -1.09 (.13) -0.95 (.14) -0.90 (.14) -0.97 (.14)in year 72 72 73 73

Standard error 7.6 8.7 8.7 8.7

F-statistic for
industry dummies 7.20 6.36 6.44 6.44

1976-1983: 1098 Firms

Dependent Variable Annual Growth Rate in Percentage Terms
76-83 77-83 77-83 77-83
OLS OLS OLS Inst. Var.

Intercept i.& (.30) 1.07 (.32) 1.06 (.33) 1.13 (.33)

Logarithm of size -1.06 (.15) -0.99 (.16) -0.93 (.16) -1.00 (.16)in year 76 76 77 77

Standard error 8.6 9.2 9.2 9.2

Intercept 20 Industry Dummies

Logarithm of size -0.89 (.16) -0.79 (.17) -0.72 (.17) -0.80 (.17)
in year 76 76 77 77

Standard error 8.3 8.9 8.9 8.9

F-statistic for 4.83 5.24 5.30 5.30
industry dummies
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Table 3

Time Series Behavior of Log Employment

Autoregressive Model with Measurement Error1

1972-79 1976-83 1972-83

p .991(.OOl) .990(.002) .991(.OOl)

Var. of Meas. - .0018(.0004) - .0036(.0005) - .0027(.0012)

Error (2)

Var. of Shock .0368(.0015) .0426(.0023) .0406(.0174)

23
(a)

Adjustment Cost Model2

1972-79 1976-83 1972-83

A 1.745(.147) .553(.097) .878(.051)

Var. of Meas. .057(.OO5) .015(.004) .029(.002)

2
Error (a)

Var. of Shock .032(.OO1) .057(.006) .075(.019)

23
(a)

Notes:

1These estimates are derived from the ABNA(1,l) estimates which were
based on the covariance of the levels of log employment described in
Appendix A. See the text for a definition of the model and an
explanation of the negative variance estimate.

2These estimates are derived from the ARNA(l,l) estimates which were
based on the covariance of the first differences of log employment
described in Appendix A.

3These are derived for a representative estimate of a2 (about

0.035). They actually will change slightly each year
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Table 4

Annual Growth Rates 1972-1983

962 Firms

Average Standard Estimated
Growth Rate Deviation of Shock

1972-73 8.8 16.4 16.2

73-74 0.5 18.5 18.4

74-75 -4.2 15.9 15.8

75-76 5.3 18.3 18.3

76-77 4.6 17.1 17.0

77-78 6.7 14.4 14.2

78-79 4.4 17.1 16.9

79-80 -2.7 19.8 19.7

80-81 -1.5 17.9 17.6

81-82 -8.7 22.3 22.2

82-83 0.6 24.1 24.1

*These estimates are from the ARIMA(1,1,1) model.

35



Table S

Growth Rate Regressions with Selection Correction

1778 Firms

OLS and Probit Sample Selection

Dependent Variable Ann
1979

ual Growth Rat
1983

e from 1976 to
1979 1983

Number of Firms 1551 1184 1551 1184

Intercept 5.54C40)*
(.33)

1.81(.34)
(.29)

5.54(**)
(.69)

l.69(.33)
(1.05)

Log E76 -I.06(.18)
(.18)

-O.92(.16)
(.15)

-1.06(**)
(.18)

-0.91(.15)
(.17)

Standard error 11.7 8.6 11.7 8.6

Dependent Variable Probability of Survival

Intercept 1.10(.041)
(.041)

.352(.034)
(.034)

1.10(**)
(.041)

.352(.034)
(.034)

Log F76 .057(.021)
(.024)

.104(.019)
(.019)

.057(**)
(.024)

.104(.019)
(.020)

A

p - - 0.0 (**)
(.204)

.022(.Oll)
(.197)

Log of Likelihood 446.3 105.1 446.3 105.1

2
x for squared and
size tens (DF=4)

.cubic 60.4 32.8

LM Test for

heteroskedasticity

60.6

(DF=2)

43.0 60.6 43.2

*The first set of numbers in parentheses are heteroskedastic consistent
standard error estimates and the second set are ordinary estimates.

**The HS-consistent standard errors are not computable since the maximum
likelihood estimate of p is exactly zero.
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Table 6

Growth Rate Regressions with Corrections
for Heteroskedastjcjty and Selection

1778 Firms

Dependent Var. Annual Growth Rate from 1976 to
1979 1979 1979 1983 1983 1983

Intercept 4.51(.45) 6.73(.46) 5.73(.76) 0.25(1.00) 6.37(.57) 6.10(.69)

Log E76 - .53(.16) -1.52(.29) -1.54(.29) -.49(.22) -2.12(.30) -2.10(.31)

(LogE76)2 0.16(.07) 0.64(.14) 0.16(.07) 0.26(.16)

(Log E76)3 -.10(.03) -.02(.03)

Slope(E=700) - .53(.16) -1.63(.35) -2.03(.37) -.49(22) -2.23(.34) -2.29(.35)

Slope(E—17000) -.53(.16) - .77(.20) -.14(.29) - .49(.22) -1.39(.21) -1.24(.26)

Std error (wtd) 9.32 9.60 9.51 5.54 6.46 6.41

Dependent Variable Probability of Survival

Intercept 13.4(.53) 13.0(.57) 13.4(.66) 2.85(.33) 2.66(.33) 2.67(.38)

Log Em -1.Ol(.21) -2.91(.50) -2.96(.53) .57(.l5) - .33(.28) - .32(.3o)
(Log 56)2 .70(.17) .47(.28) .32(.09) .3l(.15)

(Log 56 .058(.080) .0004(.039)

A

p .16(.10) -.49(.l2) -.41(.22) .22(.16) - .74(.06) - .73(.07)
Log likelihood -2872.4 -2855.9 -2850.0 -2801.1 -2781.1 -2780.9

114 test for 0.17 0.06 0.08 2.51 2.55 2.50
heteroskedasticity (DF-2)

All standard error estimates are heteroskedastic
consistent estimates; theyare the same as the conventional estimates to two

digits.

The weights are inversely proportional to size and size squared (see the
text for an explanation of the heteroskedasticity correction).
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Table 7

Growth Rate Regressions with Q

1753 Firms

OLS and Probit Sample Selection

Dependent Variable Ann
1979

ual Growth Rate
1983

from 1976 to
1979 1983

Number of Firms 1529 1171 1529 1171

Intercept 6.68(.46) 2.59(.38) 8.38(.51) 6.83C45)

Log E76 -1.O8(.l6) -1.14(.l3) -1.46(.18) -1.95(.14)

Log (I/E)76 1.26(.28) 1.22(.24) l.41(.29) 1.36(.24)

Log (R/E)76 1.31(.35) 1.33C20) 1.26(.35) 1.10(.22)

D(R=0) -3.50(.62) -2.30(.53) -2.71(.63) -0.81(.51)

Standard error (wtd) 8.98 5.17 9.55 6.22

Dependent Variable
1979

Probability
1983

of Survival to
1979 1983

Intercept 11.6(.56) 1.97(.34) lO.8(.60) l.54C33)

Log E76 -.92(.23) .62C15) -.62(.25) .60(.14)

LogQ76 1.66(.64) 2.17(.37) 2.47(.70) 2.75(.33)

(R/A)75.(Patents=0) 2.72(4.82) 2.25(3.13) 8.07(5.14) 4.61(2.77)

(R/A)76.(Patents>0) 2.59(4.10) 1.25(2.66) 3.60(3.30) 2.83(2.65)

A

p
- - - .6l(.09) - .82(.03)

Log likelihood -2918.1 -2740.0 -2903.2 -2702.3

LM test for heteroskedasticity (DF—4) 20.6 0.11

All standard error estimates are heteroskedastic-consistent estimates.

Estimates are obtained by maximum likelihood of the sample selection model
with the disturbances weighted to correct for heteroskedasticity.
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Table 8

Growth Rate Regressions by Firm Size

Small Firms Large Firms

Dependent Variable
1979

Annual Growth Rate
1983

from 1976 to
1979 1983

Number of Firms 832 604 697 557

Intercept 9.08(.63) 7.29(.6l) 6.92(.96) 6.02(.93)

Log E76 -l.58(.56) -1.49(.49) -0.94(.30) -l.75(.28)

Log (I/E)75 2.74C43) l.46(.38) 1.86(.33) l.22(.30)

Log (R/E)76 2.4l(.38) l.28(.37) 1.0l(.35) 0.85(.27)

D(R—0) -4.15(.88) -l.7l(.77) -l.48(.81) -0.30(.68)

Standard error (wtd) 11.6 6.60 7.50 5.63

Dependent Variable
1979

Probability
1983

of Survival to
1979 1983

Intercept lO.9(.69) 15.8(.39) 7.99(1.21) .494(.81)

Log E76 -2.03(.81) -.030(.44) .703(.48) .951(.30)

Log Q76 l.66(.82) 2.Ol(.43) 3.95(.89) 3.42(.50)

(R/A)75.(Patents—O) 15.6(9.6) 5.70(2.92) -40.6(17.8) -18.5(13.1)

(R/A)76.(Patents>O) 4.8(4.0) 2.75(2.87) 11.0(17.6) 0.2(3.8)

A

p -.77(.06) - .80(.05) - .57(.10) - .82(.05)

Log likelihood -1566.6 -1477.8 -1253.2 -1238.9

LM test for

heteroskedasticity

0.64

(DF=4)

0.01 0.49 0.23

All standard errors are heteroskedastic-consistent estimates.

Estimates are obtained by maximum likelihood of the sample selection model
with the disturbances weighted to correct for heteroskedasticity.
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Appendix A

The Time Series Behavior of Employment Growth

In this paper we present evidence that sample selection or

attrition introduces very little bias into growth rate equations over

time periods of approximately five to ten years. Therefore, in this

appendix we present the results of a time series analysis of three sets

of firms (those in the sample from 1972 to 1979, from 1976 to 1983, and

from 1972 to 1983) with some confidence that these results are not

biased by the exclusion of entrants and exiters.

In Tables Al and A2 we show the covariance matrix of the logarithm

of employment over time for two samples of firms, both in levels and in

first differences. In both cases, the overall mean for each year has

been removed) These tables indicate that the log employment time

series process has the following characteristics: it has an AR

component with a root near one, and possibly a small MA component or

higher order AR terms. The hypotheses that the variance of growth rates

is equal across years can be rejected. Accordingly, we parametrize the

process as a standard ARMA model with the variance of the innovation

changing over time:

2 2 2
(l-a1L-a2L (l-ji1L) c Ec —

1. The differenced matrix was also estimated with industry means removed
for each year to control for possible industry effects of the oil price
shock, but this made little difference, reducing the diagonal elements
by about five percent and leaving the off-diagonal elements essentially
unchanged.
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Under the assumption of niultivariate normality of the t, it is

possible to estimate the parameters of this process by maximum

likelihood; the covariance matrices are a sufficient statistic for the

problem. The method by which I perform this estimation is described in

Hall (1979)2. Macurdy (1981) has shown that these estimates are

consistent even if the disturbances are not multivariate normal,

although the estimated standard errors are no longer correct.

Before describing the results of my estimation of the model, I need

to say something about the treatment of initial conditions. I have

assumed that the process for each firm began at a random time in the

past and at a random level, and accordingly, have estimated the initial

variance as a free parameter (in the case of AR(2), two inital variances

and a covariance are free). Justification for this procedure is

provided both by Anderson and Hsiao (1981) and Macurdy (1985). It will

not be correct if the unknown initial condition is a fixed

constant.3 It is difficult to conceive of an experiment with this

data that would distinguish the two possibilities, although the smooth

lognormality of the size distribution gives me some confidence that the

2. The likelihood function being maximized can be written

logL =
-[log2vr+logIQ(9)IJ

-

tr[YIYcoYl]
where N is the number of firms, T is the number of time periods and Y'Y
and 12(9) are the observed and predicted covariance matrix of the data
respectively.

3. I am grateful to Jerry Hausman for pointing this out to me.
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first assumption is not unreasonable. The consequence of this treatment

of initial conditions is to add two or three more parameters when the

model is expanded to include a second order term, rather thanonly one.

This has a tendency to increase the log likelihood by more than is

accounted for by the additinal AR parameter, due to the fact that the

first two variances and the associated covariance are now estimated

freely. This accounts, for example, for the fact that the 72-79 data

prefers the ARMA (2,1) model strongly, in spite of the fact that it

seems to have redundant roots.

Using these assumptions about initial conditions, I estimated the ARMA

model on three sets of data: the two samples from 1972 to 79 and 1976

to 83 shown in Tables Al and A2, and finally on a longer sample from

1972 to 1983 containing 962 firms. The results are essentially the same

across the three samples and they are shown in Table A3. There I show

the value of the log likelihood obtained for six different models, where

I have imposed the constraints a1 — 1, a2 — 0, and p1 — 0 separately and

combined. In the table it can be seen that the gain in the likelihood

per degree of freedom is vastly greater going from a simple Martingale

to an ARNA(2,l) model than from the ARMA(2,l) to the unconstrained

model. The Akaike information criterion suggest that either AR(2) or

ARNA(2,l) are to be preferred in levels, while ARMA (1,1) is preferred

in first differences.

In Table A4 I show the estimated value of the roots of the

different processes. For example, the ARNA(2,1) estimates for 1972-1979

suggest that the employment process be described as

(l-1.757L)(l- .984L)Y — (1-1.748L)

It can be seen from the table that the estimates obtained with first
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differences are entirely consistent with those obtained with levels,

since the dominant effect in the latter case is one autoregressive root

near unity. It is also the case that both the ARMA(2,l) in levels and

ARMA(l,1) in differences have near redundant roots for the 1972 to 1979

period (the t-statistic for equality is 0.9), while in the later period

the roots are stable and significantly different from eachother. I

conclude that an adequate representation of the times series behavior of

the data is ARIMA(l,l,l), with a possible preference for a slightly

simpler model in the case of the earlier period because of the unstable

and near redundant roots. In the paper I interpret these time series

results in the context of several slightly more informative models.

48



Table Al

g_ Employment Covariance over Time

1349 Firms

Levels

72 73 74 75 76 77 78 79

72 2.762

73 2.704 2.678

74 2.695 2.670 2.705

75 2.655 2.631 2.666 2.655

76 2.610 2.587 2.623 2.612 2.602

77 2.575 2.559 2.594 2.586 2.577 2.582

78 2.546 2.531 2.568 2.600 2.552 2.560 2.566

79 2.541 2.530 2.573 2.563 2.557 2.570 2.582 2.643

First Differences

73-72 74-73 75-74 76-75 77-76 78-77 79-78

73-72 .0314

74-73 .0019 .0427

75-74 .0012 - .0001 .0273

76-75 - .0013 - .0006 - .0007 .0323

77-76 .0038 - .0002 - .0029 - .0010 .0295

78-77 .0030 .0018 - .0000 - .0012 - .0035 .0275

79-78 .0041 .0066 - .0023 - .0023 - .0039 - .0059 .0466

Notes:

Overall year means have been removed before computing these matrices.
The asymptotic standard error is approximately 0.09 for the levels and
0.002 for the first differences.
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Table A2

Log Employment Covariance Over Time

1098 Fins

Levels

76 77 78 79 80 81 82 83

76 2.95

77 2.91 2.90

78 2.87 2.86 2.84

79 2.83 2.81 2.81 2.82

80 2.81 2.81 2.79 2.81 2.83

81 2.80 2.79 2.78 2.80 2.83 2.87

82 2.78 2.78 2.77 2.79 2.82 2.86 2.91

83 2.73 2.74 2.73 2.75 2.78 2,82 2.87 2.89

77-76 78-77

First Differences

81-80 82-81 83-8279-78 80-79

77-76 .0333

78-77 .0035 .0234

79-78 .0040 .0013 .0347

80-79 - .0012 .0028 .0054 .0405

81-80 .0000 .0014 .0040 .0086 .0345

82-81 .0029 .0011 - .00002 .0064 - .0005 .0561

83-82 .0042 .0035 - .0016 - .0052 - .0001 .0058 .0597

Notes:
Overall year means have been removed before computing these matrices.
The asymptotic standard error is approximately 0.11 for the levels and
0.0025 for the first differences.
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Table A3

Time Series Estimates for Log Employment

Levels

1972-79 1976-83 1972-83Model # Params LogL+ # Params LogL # Params LogL

8 -151.3 8 -140.9 12 -207.0

AR(l):a2—0,p1..o 9 -107.0 9 -115.7 13 -165.9

a1—1,a2—0,MA(1) 10 -111.9 10 -96.3 14 -162.7

ARI4A(l,1);a...o 11 -86.0 11 -76.1 15 -133.7

AR(2):p1—0 11 -85.2 11 -69.9 15 -132.2

ARNA(2,1) 13 -36.4 13 -55.8 17 -117.2

Unconstrained 36 0.0 36 0.0 78 0.0
(225.2) (-406.6) (892.0)

First Differences

1972-79 1976-83 1972-83

ARMA(0,0) 7 -87.6 7 -127.9 11 -193.4

MA(1) 9 -74.7 9 -89.9 13 -162.9
ARMA(1,1) 10 -29.9 10 -73.2 14 -142.6

Unconstrained 28 0.0 28 0.0 66 0.0
(2757.4) (1729.6) (3226.0)

Notes:

+The logarithm of thefl likelihood is measured relative to the
unconstrained model, which freely fits each covariance to a separate
parameter. The actual unconstrained log likelihoods are shown in
parentheses at the bottom of the table.
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Table PA

Parameter Estimates for Time Series Models

Roots of AR Process Roots of MA Process

Levels

72-79 .989(.00l) 0 0

AR(l) 76-83 .991(.001) 0 0

72-83 .990(.00l) 0 0

72-79 1 0 -.0533(.0109)

MA(1) 76-83 1 0 -.0951(.0fl9)

72-83 1 0 - .0735(.0103)

72-79 .991(.001) 0 - .0553(.Olll)
ARMA(l,l) 76-83 .990(.002) 0 - .l025(.0125)

72-83 .991(.0Ol) 0 -.0765(.0106)

72-79 .991(.017) .0601(.0182) 0

AR(2) 76-83 .990(.018) .l196(.0223) 0

72-83 .990(.003) .08l6(.0055) 0

72-79 .984(.4l4) l.757(.294) 1.748(.l38)

ARHA(2,l) 76-83 .991(.175) .574(.388) 0.449(,096)
72-83 l.000( .767) .939( .012) 0.9l9( .057)

First Differences

72-79 1 0 - .0542(.0120)
MA(l) 76-83

72-83
1

1
0
0

- .1051(.0146)
- .0756(.0l08)

ARMA(1,1)

72-79
76-83
72-83

1
1

1

l.745(.l47)
.553(.097)
.878(.051)

1.737(.150)
.432(.101)
.821(.056)
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Appendix B

In this appendix we demonstrate the relationship of the stochastic

threshold model to the generalized Tobit
(sample selection) model and

discuss the consequences of the identifying assumptions used in

estimating each model. Although there is nothing new here, the

literature on Tobit models (see Amemiya 1984, Maddala 1983) does not

seem to contain a a discussion of the connection between the two models.

Such a connection is useful, since it implies that the same computer

program can be used to estimate both models.

First we present the standard censored regression model with a

stochastic threshold due to Nelson (1977). Denote the size of the firm

in the second period as and the unobserved threshold below which the

fin will drop out of the sample as y2... Then we have the model

y1. X.fl1
+ u1. if 3Tli > '2i

y. not observed if y1. < y2.

X.fl2
+ u2.

The disturbance vector u —
(u1. u2i) has a bivariate normal distribution

with mean zero and variance

Euu' —

[
u12 u1a2

]

The X. include all the exogenous and predetermined variables for the

model, including the size in the initial period. Some of the fl's may be

zero if there are exclusion restrictions. Nelson shows that this model

requires at least one exclusion restriction or the restriction p—O in

order to identify all the parameters.

We can rewrite this model as a standard generalized Tobit model of
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the form

y1.Xfl1+v1 ifz2.1 - y2>O

y1.
not observed if z2 y1. - y2. < 0

z2.
X.6 + v2. where S =

with a covariance matrix

Evv'=
2

A:1co2

]

It is customary in estimating this model to normalize the residual

variance of the unobserved latent variable z2 to be unity so that the

disturbance is v2iw2 and we actually estimate Since z2 is

completely unobserved, this normalization is innocuous, and still allows

us to estimate A.

However, this is not sufficient to identify the parameters of the

stochastic threshold model. It can be easily shown that the

relationship between the covariance matrices of the two sets of

disturbances is

—
c,12 :12 - A:1:2

2 2

:i2 - 2Aw1:2+w22

so that a = w and

p2 = p1 - 2

p (a1 - Aw2)/a2
2 2 2

a2 a1 - 2Aw2a1
+ :2

Given estimates of A, and a1, we will need 2 in order to identify

the parameters of the stochastic threshold model. As Nelson showed,

this can be achieved either with an exclusion restriction on one of the

fl's or by setting the correlation between the two equations, p, to zero.

Therefore, the identifying assumption we used in the sample selection

model is not sufficient to identify the parameters of this model.
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On the other hand, in the presence of one of the identifying

assunptions for the Nelson model, we
no longer need to normalize the

variance of
v2. to be unity. Thus the stochastic threshold model is in

some sense a special case of the
more general sample selection model.

In this paper we have chosen to use the more general model in order to

capture the notion the firms may drop out of the sample for reasons

other than a size threshold.
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Appendix C

Testing for Heteroskedasticity in the Sample Selection Model

This Appendix develops a Lagrange Multiplier Test for

heteroskedasticity of the disturbance in the regression equation of the

sample selection model, following a test suggested by Lee and Maddala

(1985) for the Tobit model. The alternative being considered is that

the disturbance of the growth rate equation has a variance of

which is a (possibly nonlinear) function of the regressors (in

particular, as we have seen, of size):

2 = G(a + X1)

Under the null hypothesis, the vector -y is zero and the disturbance is

homoskedastic. This test has the usual properties of an LM Test: it is

asymptotically locally most powerful under the alternative being

considered. As in Lee and Maddala, it turns out that the exact form of

G does not matter, since I am approximating it by linear functions of

near -y — 0.

I write the likelihood function for the generalized Tobit model

outlined in the text as

log L = log[l -

4'(Z1&)1
+ XlogEZ6 + pv1./c)

0 1

-X (v./2a2) - logc - (1/2) log (l-p2)
1 1 1

where the summation over 0 and 1 denotes the sum over not observed and

observed data respectively. '(.) denotes the standard normal CDF.
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Differentiating with respect to (under the null of homoskedasticity)

I obtain

BlogL

(C.1)

aa2 'H0
—

(2cY24p(v /a)A(Z5 + pv1./g) + (v1/a2 -
1)]

where .X(.) denotes the inverse
Mills ratio, (-)/t(.). The LM (score)test for y 0 is then a test for

8logL

2 'H G'(a)X. — 0
ôa 0

where the degrees of freedom for the test are the number of regressors

in X. and all quantities are evaluated at the maximum likelihood1

estimates obtained under the null hypothesis

Note that because we are
testing for heteroskedasticity of

v1.
only and not of V2, only the observations for which y. is observed

enter the test statistic, in contrast
to the Tobit model case, where the

disturbance of the selection
equation and regression equation are the

same. To perform the actual test, I
use the regression methodology of

Breusch and Pagan (1979), which implicitly estimates the variance of

this statistic from its sample
variance. This computation is invariant

to any renormalization which does not depend on the observations so the

G'(a) term drops out. The quantity which I regress on the to perform

the test is given in the
square brackets in equation (C.l). Note that

if the estimated p is zero, this is the conventional 1K test for

heteroskedasticity, where v12 is regressed on a constant and the )L.
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