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THE RELATIONSHIP BETWEEN HOMOLOGICAL PROPERTIES
AND REPRESENTATION THEORETIC REALIZATION

OF ARTIN ALGEBRAS

OSAMU IYAMA

Abstract. We will study the relationship of quite different objects in the
theory of artin algebras, namely Auslander-regular rings of global dimension
two, torsion theories, τ -categories and almost abelian categories. We will apply
our results to characterization problems of Auslander-Reiten quivers.

0.1. There exists a bijection between equivalence classes of Krull-Schmidt cate-
gories C with additive generators M and Morita-equivalence classes of semiperfect
rings Γ, which is given by C 7→ C(M,M) and the converse is given by Γ 7→ pr Γ for
the category pr Γ of finitely generated projective Γ-modules. Although this bijec-
tion itself is rather formal, it will be very fruitful to study the relationship between
(A)–(D) below. The object of this paper is to study it under the assumption that
Γ is an artin algebra.

(A) Homological properties for Γ.
(B) Representation theoretic realization of C.
(C) Categorical properties for C.
(D) Combinatorial properties for the AR quiver A(C).
For (A), we will study a property of the selfinjective resolution of Γ which is called

the (l, n)-conditions (§1.1) and generalizes both the Auslander conditions [Bj] and
the dominant dimension [T]. For (B), we will study the existence of an equivalence
between C and a torsionfree class of mod Λ over an artin algebra Λ (§1.2, §2.2),
where such a subcategory is very popular in the representation theory of artin alge-
bras [Ha], [As]. For (C), we will treat a class of additive categories which are called
τ-categories (§1.3) and introduced in [I3]. τ -categories are additive categories with
generalized almost split sequences, and our motivation and definition were rather
different from the work of Auslander and Smalø in [AS] since we aimed to treat
categories which can be far from abelian, for example, mesh categories of trans-
lation quivers (§1.3.2(3)). Nevertheless our result Theorem 2.1 asserts that some
τ -categories are realized as torsionfree classes over artin algebras, and they form
almost abelian categories (§1.5). For (D), we will study a combinatorial invariant
A(C) of a τ -category C called the AR (= Auslander-Reiten) quiver (§4.1). Some
results in this paper were already announced in [I6, 7.4] without proof.
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710 OSAMU IYAMA

0.2. Background. In [A], Auslander obtained a quite remarkable theorem which
asserts that there exists a bijection between Morita-equivalence classes of represen-
tation-finite artin algebras Λ and those of Auslander algebras Γ, which is an artin
algebra with gl.dim Γ ≤ 2 and dom.dim Γ ≥ 2. Then mod Λ is equivalent to pr Γ,
and this correspondence gives a prototype of our study. It relates a representation
theoretic realization (B) of the category C = pr Γ to a homological property (A)
of Γ, and it will be suggestive that Auslander algebras form a special class of
Auslander-regular rings Γ with gl.dim Γ ≤ 2. In [FGR], [Bj], [AR2], [C], and so on,
Auslander-regular rings, more generally Auslander-Gorenstein rings, are studied
as a non-commutative analogy of commutative Gorenstein rings motivated by the
classical results of Bass [B].

Later, Auslander and Reiten [AR1] obtained the existence theorem of almost split
sequences, which is one of the most important theorems in the representation theory
of algebras [ARS]. This theorem gives a categorical property (C) of mod Λ over an
artin algebra Λ, which means that “mod Λ forms a τ -category” in our context.
Although this theorem is a great achievement of general theory of homological
algebra, it can be proved easily for the special case when Λ is representation-finite,
and this observation seems to lead them to the general existence theorem. Moreover,
the theorem for the representation-finite case has its own importance. In terms of
the corresponding Auslander algebra Γ, it means that the functor Ext2

Γ( ,Γ) :
mod Γ ↔ mod Γop gives a duality between simple Γ-modules L with pdL = 2
and that of Γop. We can naturally generalize this duality to arbitrary Auslander-
Gorenstein rings [I9] (see §3.6.3 below).

By applying Auslander’s correspondence theorem and extending some aspects in
[BG], Igusa-Todorov and Brenner gave (distinct) characterizations of AR quivers of
representation-finite artin algebras [IT3], [Br]. These are nothing but the combina-
torial properties (D) of A(C). Recently, inspired by the work of Igusa-Todorov, the
author introduced τ -categories and successfully applied them to characterize AR
quivers of representation-finite orders [I3], [I4], [I5]. We shall see that τ -categories
give a powerful tool for our problem.

0.3. Our results. Our first theorem (Theorem 2.1) gives the relationship between
(A)–(D) in §0.1 for more general classes of algebras than those in §0.2, namely the
conditions below are equivalent for an artin algebra Γ and C = pr Γ.

(A) Γ satisfies gl.dim Γ ≤ 2 and the two-sided (2, 2)-condition (§1.1).
(B) C is equivalent to a faithful torsionfree class over an artin algebra (§1.2).
(C) C is a strict τ -category (§1.3).
(D) C is a τ -category with a right additive function on A(C) (§1.3.1).
Next we will study Auslander-regular rings Γ with gl.dim Γ ≤ 2, which forms a

special class of algebras in (A) above. Our second theorem (Theorem 3.1) gives the
corresponding objects in (B)–(D) to such Γ, namely hereditary torsionfree classes
(§1.2) correspond for (B), strict τ -categories with “Nakayama pairs” (§1.4) corre-
spond for (C), and τ -categories with additive functions on A(C) (§1.3.1) correspond
for (D). The concept of Nakayama pairs was introduced in [I4] to characterize AR
quivers of representation-finite orders, and they were essentially used also in Igusa-
Todorov’s theorem (§0.2). The concept of additive functions often appeared in
representation theory (see §4), for example, Brenner’s theorem (§0.2) and Rump’s
recent characterization of AR quivers of representation-finite orders [R5]. Moreover,
we will study two special classes of Auslander-regular rings Γ with gl.dim Γ ≤ 2, and
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give the corresponding objects in (B)–(D) again. One is Auslander algebras (§3.3)
which gave a prototype of our study, and we will prove very clearly Auslander’s cor-
respondence theorem, Igusa-Todorov’s theorem and Brenner’s theorem explained in
§0.2. Another is diagonal Auslander-regular rings Γ with gl.dim Γ ≤ 2 (§3.4), which
are closely related to the category mod spΛ of modules with projective socles [S],
and we will generalize a result of Ringel-Vossieck [RV]. The connection of several
known results will be understood very clearly in our functorial and homological
viewpoint of this paper. As we shall see in examples in §4.5, our characterizations
of AR quivers in Theorem 4.4 are very simple and can be checked easily.

We will discuss properties of Γ with gl.dim Γ ≤ 2 and the two-sided (2, 2)-
condition, namely symmetry in §3.6.1, duality in §3.6.3 and the quasi-Koszul prop-
erty [GM] of Green-Martinez in §2.5. In the final section, §5, we will study the
rejection theory of faithful torsionfree classes over artin algebras. The rejection
theory of τ -categories was studied in [I4, 4] as a wide generalization of the DK
(= Drozd-Kirichenko) Rejection Lemma which was fundamental in the theory of
Bass orders ([DKR], [Ro], [HN]). They played a crucial role in characterizing AR
quivers of representation-finite orders [I5], and recently they were applied to prove
Solomon’s second conjecture on zeta functions of orders [I7] and finiteness of rep-
resentation dimension of artin algebras [I8].

All artin algebras Γ in (A) studied in this paper satisfy gl.dim Γ ≤ 2. It will be
very interesting to generalize our results to artin algebras Γ with gl.dim Γ ≥ 3.

Finally, notice that W. Rump’s recent work [R1]–[R5] on almost abelian cate-
gories (§1.5) and τ -categories has a strong relationship with our study.

1. Preliminaries

In this paper, any module is assumed to be a left module. For a ring Λ, we
denote by mod Λ the category of finitely generated Λ-modules, by pr Λ (resp. sim Λ)
the category of finitely generated projective (resp. simple) Λ-modules, by JΛ the
Jacobson radical of Λ, by (̂ ) the functor HomΛ( ,Λ) : mod Λ ↔ mod Λop, by
0→ X → I0

Λ(X)→ I1
Λ(X)→ · · · a minimal injective resolution of a Λ-module X ,

and by pdX (resp. fdX , idX) the projective (resp. flat, injective) dimension of a
Λ-module X . We denote by mod Λ the stable category, by Ω : mod Λ→ mod Λ the
syzygy functor, and by Tr : mod Λ → mod Λop the transpose functor [AB]. When
Λ is an artin algebra over R, we denote by ( )∗ the duality HomR( , I0

R(R/JR)) :
mod Λ ↔ mod Λop, and by in Λ the category of finitely generated injective Λ-
modules. For an additive category C and X ∈ C, we denote by addX the full
subcategory of C consisting of direct summands of Xn (n > 0). We call X an
additive generator of C if C = addX holds.

1.1. Let Γ be a noetherian ring. We denote by gradeL := inf{i ≥ 0 | ExtiΓ(L,Γ) 6=
0} (resp. s.gradeL := inf{gradeM |M ⊆ L}, r.gradeL := inf{i > 0 | ExtiΓ(L,Γ) 6=
0}) the grade (resp. strong grade, reduced grade) of L ∈ mod Γ. For any n ≥ 0, the
full subcategory {L | s.gradeL ≥ n} of mod Γ is abelian and closed under subfactor
modules and extensions. For l, n > 0, we say that Γ satisfies the (l, n)-condition if
the following equivalent conditions are satisfied [I5, 6.1].

(i) fd IiΓ(Γ) < l holds for any i (0 ≤ i < n).
(ii) s.grade ExtlΓ(L,Γ) ≥ n holds for any L ∈ mod Γop.
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This equivalence simplifies the equivalence of (a) and (c) in the famous theorem
of [FGR, 3.7] and that of (b) and (d) in [AR3, 0.1]. For an artin algebra Γ, the
(l, n)-condition is equivalent to the condition that s.grade ExtlΓ(L,Γ) ≥ n holds for
any simple Γop-module L [AR2]. We say that Γ satisfies the (l, n)op-condition if
Γop satisfies the (l, n)-condition.

Put dom.dim Γ := inf{i ≥ 0 | fd IiΓ(Γ) 6= 0} [T], which is the maximal number
n such that Γ satisfies the (1, n)-condition. We call Γ n-Gorenstein if fd IiΓ(Γ) ≤ i
holds for any i (0 ≤ i < n) [FGR], or equivalently, Γ satisfies the (l, l)-condition
for any l (0 < l ≤ n). We call Γ Auslander-regular (resp. Auslander-Gorenstein) if
gl.dim Γ <∞ (resp. id ΓΓ <∞ and id ΓΓ <∞) and Γ is n-Gorenstein for any n [C].
It is well known that dom.dim Γ = dom.dim Γop holds [H2], and Γ is n-Gorenstein
if and only if Γop is also [FGR, 3.7]. These left-right symmetries were generalized
to the (l, n)-condition in [I9] (see 3.6.1 below), although the (l, n)-condition itself
is not left-right symmetric (2.1.1(2)).

1.2. Let Λ be an artin algebra. We call a full subcategory C of mod Λ a torsionfree
(resp. torsion) class if it is closed under submodules (resp. factor modules) and
extensions [As]. For a collection S of Λ-modules, define full subcategories of mod Λ
by S⊥ := {X | HomΛ(Y,X) = 0 for any Y ∈ S} and ⊥S := {X | HomΛ(X,Y ) = 0
for any Y ∈ S}. We call a pair (T ,F) of full subcategories of mod Λ a torsion
theory on mod Λ if it satisfies the following equivalent conditions:

(i) F = T ⊥ and T = ⊥F .
(ii) F is a torsionfree class and T = ⊥F .
(iii) T is a torsion class and F = T ⊥.
(iv) The inclusion F → mod Λ has a left adjoint F : mod Λ → F with a unit α

and the inclusion T → mod Λ has a right adjoint T : mod Λ → T with a counit β
such that 0→ T β→ 1mod Λ

α→ F→ 0 is exact.
We call a torsion theory (T ,F) (resp. torsion class T , torsionfree class F)

faithful if Λ ∈ F , cofaithful if Λ∗ ∈ T , hereditary if T is closed under submodules,
and cohereditary if F is closed under factor modules. If (T ,F) is a hereditary
torsion theory, then F = S⊥ holds for the set S of simple Λ-modules in T . The
facts below show that the faithfulness is fundamental for torsion theories.

1.2.1. Proposition. Let (T ,F) and (Ti,Fi) be torsion theories on mod Λ and
mod Λi (i = 1, 2), respectively.

(1) There exists a factor algebra Γ of Λ such that F ⊆ mod Γ and (T ∩mod Γ,F)
is a faithful torsion theory on mod Γ.

(2) F is faithful and contravariantly finite if and only if there exists a cotilting
Λ-module U ∈ mod Λ with idU ≤ 1 such that T = ⊥U .

(3) Assume that (Ti,Fi) is faithful for i = 1, 2. Then any equivalence I : F1 → F2

extends uniquely to an equivalence mod Λ1 → mod Λ2.

Proof. (1) Put I :=
⋂
X∈F annΛX and Γ := Λ/I. Then F ⊆ mod Γ holds, and

there exists a faithful Γ-module Y ∈ F . Put E := EndΓ(Y ) and take a sur-
jection f ∈ HomE(En, Y ). Taking HomE( , Y ), we obtain an injection (f ·) ∈
HomΓ(EndE(Y ), Y n). Thus Γ ∈ F holds by Γ ⊆ EndE(Y ). Obviously (T ∩
mod Γ,F) forms a torsion theory on mod Γ.

(2) Well known (see [H1], [AS], [As]).
(3) Suppose that X ∈ pr Λ1 satisfies IX /∈ pr Λ2. Since Λ2 ∈ F2 holds, there

exists f ∈ HomΛ1(Y,X) such that If is a non-split surjection. Since f also does
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not split, Z := Imf is a proper submodule of X . Let g ∈ HomΛ1(Z,X) be an
injection. Since Ig is a monomorphism in a torsionfree class F2, it is injective in
mod Λ2. Thus If factors through a proper submodule IZ of IX , a contradiction.
Hence I restricts to an equivalence pr Λ1 → pr Λ2. Take a progenerator X ∈ pr Λ1

such that IX = Λ2. Since HomΛ1(X, )
I
∼→ HomΛ2(IX, I( )) = I holds on F1, I

extends to the equivalence HomΛ1(X, ) : mod Λ1 → mod Λ2, which is easily shown
to be the unique extension of I. �

1.3. ([I3], [R5]) Let C be a skeletally small additive category. We denote by C(X,Y )
the set of morphisms from X to Y , by fg the composition of f ∈ C(X,Y ) and
g ∈ C(Y, Z), by JC the Jacobson radical of C, and by ind C the set of isoclasses of
indecomposable objects in C. We call C Krull-Schmidt if any object is isomorphic
to a finite direct sum of objects whose endomorphism rings are local.

Let C be a Krull-Schmidt category and A : X
f→ Y

g→ Z a complex. We call
f a weak-kernel of g if C( , X)

·f→ C( , Y )
·g→ C( , Z) is exact, and we call g a

weak-cokernel of f if C(X, )
f ·← C(Y, )

g·← C(Z, ) is exact. A weak-kernel (resp.
weak-cokernel) is called minimal if it has no direct summand of the form W → 0
(resp. 0 → W ) with W 6= 0 as a complex. Clearly, a minimal weak-(co)kernel is
unique up to isomorphism of complexes if it exists. Now we consider the following
conditions for A.

(i) f, g ∈ JC , and 0← JC(X, )
f ·← C(Y, ) and C( , Y )

·g→ JC( , Z)→ 0 are exact.
(ii) f is a minimal weak-kernel of g.
(iii) g is a minimal weak-cokernel of f .
We call A a τ-sequence (resp. right τ-sequence, left τ-sequence) if it satisfies

(i)(ii)(iii) (resp. (i)(ii), (i)(iii)). We call a right (resp. left) τ -sequence A strict if f
is a monomorphism (resp. g is an epimorphism) in C. They are analogues of almost
split sequences in arbitrary Krull-Schmidt categories.

We call C a (strict) τ-category if any X ∈ C is a right term of some (strict) right τ -
sequence and a left term of some (strict) left τ -sequence. Then the right τ -sequence
with the right termX (resp. the left τ -sequence with the left termX) is unique up to

isomorphism of complexes, and we denote it by (X ] = (τ+X
ν+
X→ θ+X

µ+
X→ X) (resp.

[X) = (X
µ−X→ θ−X

ν−X→ τ−X)). We denote by ind+
1 C (resp. ind+

0 C, ind−1 C, ind−0 C)
the subset of ind C consisting of X satisfying τ+X = 0 (resp. θ+X = 0, τ−X = 0,
θ−X = 0). Up to isomorphism of complexes, (X ] = [τ+X) and [Y ) = (τ−Y ] hold
for any X ∈ ind C − ind+

1 C and Y ∈ ind C − ind−1 C. In particular, τ+ and τ− give
mutually inverse bijections between ind C − ind+

1 C and ind C − ind−1 C [I3, 2.3].
We will use in 5.3 an important property of τ -categories C which asserts that the

factor category C/[C′] forms a τ -category again for any subcategories C′ of C, where
[C′] is the ideal of C consisting of morphisms which factor through some object in
C′ [I4, 1.4].

1.3.1. For a set Q, we denote by ZQ (resp. NQ) the free Z-module (resp. free
abelian monoid) generated by Q. Let C be a τ -category. We identify N ind C with
the set of isoclasses of objects in C. We can regard θ+, θ−, τ+ and τ− as elements of
EndZ(Z ind C). Put φ± := 1Z indC − θ± + τ± ∈ EndZ(Z ind C). Let l : ind C → N>0

be a map. We extend l uniquely to l ∈ HomZ(Z ind C,Z). We call l a right (resp.
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left) additive function if l(φ+X) ≥ 0 (resp. l(φ−X) ≥ 0) holds for any X ∈ C and
the equality holds for any X ∈ ind C − ind+

1 C (resp. X ∈ ind C − ind−1 C). Then
put l+ := {X ∈ ind+

1 C | l(φ+X) > 0} (resp. l− := {X ∈ ind−1 C | l(φ−X) > 0}).
We call l an additive function if it is left-right additive. Put l(a) := l(X)− l(Y ) for
a ∈ C(X,Y ).

1.3.2. Examples. (1) Let Λ be an artin algebra and C := mod Λ. Then C forms
a strict τ -category with ind+

1 C = ind(pr Λ) and ind−1 C = ind(in Λ). Moreover,
(X ] gives an almost split sequence for any X ∈ ind C − ind+

1 C [ARS], and l(X) :=
lengthΛX gives an additive function with l± = ind±1 C. More generally, since any
contravariantly finite torsionfree class C over Λ has almost split sequences [AS], C
forms a strict τ -category.

(2) Let Γ be a semiperfect ring and C := pr Γ. Then C forms a strict τ -category
if and only if gl.dim Γ ≤ 2 and any simple Γ or Γop-module L with pdL = 2
satisfies that gradeL = 2 and Ext2

Γ(L,Γ) is a simple Γop or Γ-module. In this case,
ind+

1 C = {P ∈ ind C | pd topP ≤ 1} and ind−1 C = {P ∈ ind C | pd top P̂ ≤ 1} hold.
(3) Let Q be a τ -species (= modulated translation quiver in [IT2]) and C the

mesh category of Q [I3, 8.3 and 8.4]. Then C is a (not necessarily strict) τ -category.
Thus we obtain a bijection between isomorphism classes of τ -species and equivalence
classes of completely graded τ -categories [I3, 10.1] by taking mesh categories. This
structure theorem of completely graded τ -categories was a strong motivation for
the introduction of τ -categories in [I3].

1.3.3. [I3, 4.1 and 7.2] Let C be a τ -category. For X =
∑

Y ∈ind C aY Y ∈ Z ind C,
put X+ :=

∑
Y ∈indC,aY >0 aY Y ∈ N ind C. Define a map θ+

n : N ind C → N ind C
(n ≥ 0) by θ+

0 := 1N indC , θ+
1 := θ+ and θ+

nX := (θ+θ+
n−1X − τ+θ+

n−2X)+ for
n ≥ 2. Then θ+

n becomes a monoid monomorphism, and has a functorial meaning
such that, for any X ∈ C, there exists the following commutative diagram such that
C( , τ+θ+

n−1X) ·an−→ C( , θ+
nX) → J nC ( , X) → 0 is exact and an is in JC for any

n ≥ 0:

· · · // τ+θ+
3 X

a4

��

// τ+θ+
2 X

a3

��

// τ+θ+
1 X

a2

��

// τ+X

a1

��

// 0

a0

��

· · · // θ+
4 X

// θ+
3 X

// θ+
2 X

// θ+
1 X

// X

1.4. Let C be a τ -category and A,B ∈ ind C. We say that (A,B) is a Nakayama
pair if there exists the following commutative diagram for some n ≥ 0 such that

(Xi
(ai gi)−→ Yi ⊕Xi−1

( −fiai−1
)

−→ Yi−1) is a τ -sequence for any i (0 < i ≤ n):

Xn

an=µ+
B

��

gn // Xn−1

an−1

��

gn−1
//

g2 // X1

a1

��

g1 // X0 = A

a0=µ−A

��

· · ·

B = Yn
fn

// Yn−1
fn−1

//
f2

// Y1
f1

// Y0
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Define η+
i ∈ EndZ(Z ind C) (i ≥ 0) by η+

0 := θ−, η+
1 := θ+ ◦ θ− − 1Z indC and

η+
i := θ+ ◦ η+

i−1 − τ+ ◦ η+
i−2 for i ≥ 2. Then Yi = η+

i A and Xi+1 = τ+η+
i A hold

immediately. In particular, B is uniquely determined by A, and vice versa. We
write B = n−(A) and A = n+(B). Note that any right (or left) additive function l
satisfies l(a0) = l(a1) = · · · = l(an).

1.4.1. Example. (1) Let Λ be an order over a complete discrete valuation ring
R and let C be the category of Λ-lattices [CR]. Then C forms a τ -category. If Λ
is representation-finite, then (A,B) is a Nakayama pair for any B ∈ ind(pr Λ) and
A := HomR(B̂, R) by [I4, 3.3].

(2) Let Λ be a representation-finite artin algebra and C := mod Λ. Let B ∈
ind(pr Λ), A := (B̂)∗ ∈ ind(in Λ) and X := soc A = topB ∈ ind(sim Λ). In 3.3.1,
we will show that (A, τ−X) is a Nakayama pair if A is not simple, and (τ+X,B) is
a Nakayama pair if B is not simple.

1.4.2. We collect basic results on Nakayama pairs, where we refer to [I4, 8.1] for
(1), [I3, 6.4] for (2) and [I4, 2.2] for (3). Let C be a τ -category.

(1) (A,B) is a Nakayama pair if and only if there exists n ≥ 0 such that η+
i A ∈

N(ind C − ind+
1 C) for any i (0 ≤ i < n), η+

nA = B and η+
n+1A = 0.

(2) Assume
⋂
n≥0 J nC = 0. If µ−A is not a monomorphism for A ∈ ind C − ind−0 C,

then (A,B) is a Nakayama pair for some B ∈ ind C − ind+
1 C.

(3) Assume that C = pr Γ for a semiperfect ring Γ. For A,B ∈ ind C, let L :=
topA be a simple Γ-module and M := top B̂ a simple Γop-module. Then (A,B)
is a Nakayama pair if and only if TrL has finite length with the socle M and
s.grade(TrL)/M ≥ 2 if and only if TrM has finite length with the socle L and
s.grade(TrM)/L ≥ 2.

1.5. τ -categories were defined “locally” by the properties of simple modules over
the category [I3]. On the other hand, Rump [R1], [R2] introduced the concept of
almost abelian categories, which is given “globally” by the properties of kernels and
cokernels. He has shown that they are closely related to tilting theory.

An additive category is called preabelian if any morphism has a kernel and a
cokernel. A preabelian category is called almost abelian if kernels are stable under
pushout and cokernels are stable under pullback. An almost abelian category is
called integral if monomorphisms are stable under pushout and epimorphisms are
stable under pullback.

2. Representation theoretic realization

of artinian strict τ-categories

2.1. Theorem. Let Γ be an artin algebra and C := pr Γ. Then the following
conditions are equivalent.

(1) Γ satisfies gl.dim Γ ≤ 2 and the (2, 2) and (2, 2)op-conditions (§1.1).
(2) There exists an artin algebra Λ and a (faithful) torsion theory (T ,F) on

mod Λ such that C is equivalent to F (§1.2).
(3) C is a strict τ-category (§1.3).
(4) C is a τ-category with a right additive function (§1.3.1).
(5) C is an almost abelian category (§1.5).
(i)op Opposite side version of (i) (1 ≤ i ≤ 5).
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2.1.1. Remark. (1) The equivalence of 2.1(2) and (2)op follows from the classical
cotilting theorem (see 1.2.1(2)), and (2)⇒(3) follows from the remark in 1.3.2(1).

(2) There exists an artin algebra Γ with gl.dim Γ ≤ 2 such that Γ satisfies exactly
one of the (2, 2) and (2, 2)op-conditions. For example, such an algebra Γ is given
by the quiver • a→ • b→ • ← • with the relation ba = 0.

2.2. Definition. Let Γ be an artin algebra and Ii := IiΓ(Γ). We call a functor
P : pr Γ → mod Λ a (representation theoretic) realization of Γ if Λ is an artin
algebra, P is full faithful and Λ ∈ P(pr Γ). This is equivalent to the condition that
there exists Q ∈ pr Γ such that Λ = EndΓ(Q), P is isomorphic to HomΓ(Q, ) and
I0⊕ I1 ∈ add(Q̂)∗. We call a realization P = HomΓ(Q, ) minimal if add(I0⊕ I1) =
add(Q̂)∗ holds. A minimal realization of Γ is unique up to Morita-equivalence. We
sometimes regard P = HomΓ(Q, ) as a functor mod Γ→ mod Λ.

2.2.1. Let Γ be an artin algebra and Ii := IiΓ(Γ). For Q ∈ pr Γ, put Λ := EndΓ(Q)
and P := HomΓ(Q, ) : mod Γ → mod Λ. Then P induces an equivalence add Q →
pr Λ, and the conditions (i)–(iv) below are equivalent.

(i) gradeX ≥ 2 (resp. gradeX ≥ 1) holds for any X ∈ mod Γ with PX = 0.
(ii) P is full faithful (resp. faithful) on pr Γ.
(iii) PX,Y is bijective (resp. injective) for any X ∈ mod Γ and Y ∈ pr Γ.
(iv) I0 ⊕ I1 ∈ add(Q̂)∗ (resp. I0 ∈ add(Q̂)∗).

Proof. We only prove the assertion for “full faithful”. (iii)⇒(ii) and (i)⇔(iv) are
clear (see 3.2(1)).

(ii)⇒(i) Let P2 → P1 → P0 → X → 0 be a projective resolution. Then PP2 →
PP1 → PP0 → 0 is exact. Since P is full faithful on pr Γ, we obtain an exact
sequence P̂2 ← P̂1 ← P̂0 ← 0 by taking HomΛ( ,PΓ). Thus gradeX ≥ 2 holds.

(i)⇒(iii) We can take a complex A : Qm
f1→ Qn

f0→ X → 0 such that Λm
Pf1−→

Λn
Pf0−→ PX → 0 is exact. We obtain an exact sequence PΓm

Pf1·←− PΓn
Pf0·←−

HomΛ(PX,PΓ)← 0 by taking HomΛ( ,PΓ). On the other hand, put H0 := Cok f0

and H1 := Ker f0/ Im f1. Since PHj = 0 (j = 0, 1) holds, we obtain gradeHj ≥
2. Taking HomΓ( ,Γ) for A, we obtain an exact sequence PΓm

Pf1·←− PΓn
Pf0·←−

HomΓ(X,Γ)← 0. �

2.2.2. Proof of 2.2. Assume that Q ∈ pr Γ satisfies I0 ⊕ I1 ∈ add(Q̂)∗ and put
Λ := EndΓ(Q). Then HomΓ(Q, ) is a realization of Γ by 2.2.1. Conversely, let

P be a realization of Γ. Take Q ∈ pr Γ such that PQ = Λ. Since HomΓ(Q, )
P
∼→

HomΛ(PQ,P( )) = P holds, P is isomorphic to HomΓ(Q, ). Moreover, I0 ⊕ I1 ∈
add(Q̂)∗ holds by 2.2.1. �

2.2.3. (1) Let Λ be an artin algebra, C a full subcategory of mod Λ with an additive
generator M and Γ := EndΛ(M). Then the functors Q := HomΛ(M, ) : mod Λ→
mod Γ and R := HomΛ( ,M) : mod Λ→ mod Γop induce equivalences C → pr Γ and
C → pr Γop such that HomΓ( ,Γ) ◦Q = R and HomΓ( ,Γ) ◦ R = Q hold on C.

(2) Let P : pr Γ→ mod Λ be a realization of Γ. Put C := P(pr Γ) and M := PΓ.
Then Q : C → pr Γ in (1) gives a quasi-inverse of P : pr Γ→ C.
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2.3. Lemma. Let Γ be an artin algebra and P : pr Γ → mod Λ a realization. As-
sume that Γ satisfies gl.dim Γ ≤ 2 and the (2, 2)op-condition. Then P(pr Γ) is closed
under kernels and extensions in mod Λ.

Proof. Take Q ∈ pr Γ in 2.2 and extend P = HomΓ(Q, ) to mod Γ→ mod Λ. Using
gl.dim Γ ≤ 2, we can easily show that pr Γ is closed under kernels.

(i) Let A : 0 → PP ′ g→ X
f→ PP → 0 be an exact sequence in mod Λ with

P, P ′ ∈ pr Γ. We will show that there exists an exact sequence B : 0→ P ′ → L→
P →M → 0 in mod Γ such that A is isomorphic to PB as a complex.

Take a surjection d ∈ HomΛ(PP1, X) with P1 ∈ add Q by 2.2.1, and take a ∈
HomΓ(P1, P ) such that df = Pa. Taking an exact sequence C : 0→ Ω2M

b→ P1
a→

P →M → 0, we obtain the following commutative diagram:

A : 0 // PP ′
g

// X
f

// PP // 0

PC : 0 // PΩ2M
Pb //

d

OO

PP1
Pa //

c

OO

PP // 0

Take e ∈ HomΓ(Ω2M,P ′) such that Pe = d by 2.2.1, and define B by the
following push-out diagram:

B : 0 // P ′ // L // P // M // 0

C : 0 // Ω2M
b //

e

OO

P1
a //

OO

P // M // 0

Since both A and PB are given by the push-out of PC by d = Pe, the complexes
A and PB are isomorphic.

(ii) To show the lemma, take the complex B in (i). Since gradeM ≥ 2 holds by
PM = 0, we have an exact sequence Ext2

Γ(M,Γ) ← P̂ ′ ← L̂ ← P̂ ← 0 by taking
(̂ ). Since Γ satisfies the (2, 2)op-condition, we obtain the upper exact sequence of
the following commutative diagram by taking (̂ ) again:

0 // ̂̂
P ′

// ̂̂
L

// ̂̂
P

B : 0 // P ′ // L //

OO

P // M // 0

Taking the mapping cone, we obtain an exact sequence 0 → L → ̂̂
L → M .

Thus X = PL = P̂̂L holds. Since gl.dim Γ ≤ 2 holds, we obtain L̂ ∈ pr Γop. Thus
X ∈ P(pr Γ). �

2.4. Proof of 2.1. (1)⇔(1)op is clear, and (1)⇔(3) holds by [I5, 6.3].
(1)⇒(2) Let P = HomΓ(Q, ) be a minimal realization of Γ which we extend to

mod Γ → mod Λ, and let F := P(pr Γ) be a full subcategory of mod Λ. Then F is
closed under extensions by 2.3. We will show that F is closed under submodules.
Fix any P ∈ pr Γ and an injection f ∈ HomΛ(X,PP ). Take a surjection g ∈
HomΛ(PP1, X) with P1 ∈ add Q by 2.2.1, and take a ∈ HomΓ(P1, P ) such that
gf = Pa. Then X = PL holds for L := Im a. The set {M ∈ mod Γ | L ⊆ M ⊆
P, P(M/L) = 0} has a unique maximal element, which we denote by M . Then
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PM = X and soc(P/M) ∈ add topQ = add soc(I0
Γ(Γ) ⊕ I1

Γ(Γ)) hold. Since Γ
satisfies the (2, 2)-condition, an injective hull I of soc (P/M) satisfies pd I ≤ 1.
Since I gives an injective hull of P/M , we obtain pdP/M ≤ 1 by gl.dim Γ ≤ 2.
Thus X = PM and M ∈ pr Γ hold, and F is a faithful torsionfree class.

(2)⇒(4) We will show that l(X) := lengthΛX gives a right additive function.

For any X ∈ C, (X ] gives an exact sequence 0→ τ+X
ν+
X→ θ+X

µ+
X→ X in mod Λ since

the kernel of µ+
X in mod Λ is contained in F and thus coincides with τ+X . Hence

l(φ+X) = l(X) − l(θ+X) + l(τ+X) ≥ 0 holds. We only have to show that µ+
X is

surjective for any X ∈ ind C − ind+
1 C. Otherwise, the inclusion Y := Imµ+

X
a→ X

induces an isomorphism C( , Y ) ·a→ JC( , X) with Y ∈ F . Thus 0 → Y
a→ X gives

(X ], a contradiction to X /∈ ind+
1 C.

(4)⇒(3) Let l be a right additive function. For any X ∈ ind C − ind+
1 C, we only

have to show that ν+
X is a monomorphism. Otherwise, there exists Y ∈ ind C −

ind+
1 C such that (τ+X,Y ) is a Nakayama pair by 1.4.2(2). Then 0 > −l(X) =

l(ν+
X) = l(µ+

Y ) = l(τ+Y ) > 0 holds by 1.4, a contradiction.
(2)⇔(5) See [R2, Theorem 1]. �

2.5. We call an artin algebra Γ a strict τ-algebra if it satisfies the equivalent
conditions in 2.1. We denote by Gr Γ :=

⊕
n≥0 J

n
Γ/J

n+1
Γ the associated graded

algebra. The Radical Layers Theorem of Igusa-Todorov ([IT1], [BG]), which is one
of the most important theorems in the representation theory of algebras, was proved
for arbitrary artin algebras and even for τ -categories in [I3, 4.2]. Consequently we
obtain 2.5.1 below, which implies the following theorem immediately [I3, 5.2].

Theorem. Let Γ be a strict τ-algebra. Then Γ is strongly quasi-Koszul in the sense
of Green-Martinez [GM, §5], and Gr Γ is a strict τ-algebra again.

2.5.1. Lemma. Let Γ be a strict τ-algebra and 0 → P2
g→ P1

f→ P0 → L → 0
a minimal projective resolution of a simple Γ-module L. Then 0 → J i−1

Γ P2
g→

J iΓP1
f→ J i+1

Γ P0 → 0 is exact for any i ≥ 0, where we put J−1
Γ := Γ.

3. Auslander-regular artin algebra with global dimension two

In this section, we study several variations of our Theorem 2.1.

3.1. Theorem. Let Γ be an artin algebra and C := pr Γ. Then the following con-
ditions are equivalent.

(1) Γ is an Auslander-regular ring with gl.dim Γ ≤ 2 (§1.1).
(2) There exists an artin algebra Λ and a (faithful) hereditary torsion theory

(T ,F) on mod Λ such that C is equivalent to F (§1.2).
(3) C is a strict τ-category and n− gives a map ind−1 C − ind−0 C → ind C (§1.4).
(4) C is a τ-category with an additive function (§1.3.1).
(5) C is an integral almost abelian category (§1.5).
(i)op Opposite side version of (i) (1 ≤ i ≤ 5).

3.1.1. Lemma. Let Λ and Γ be artin algebras and (T ,F) a torsion theory on
mod Λ. Assume that pr Γ is equivalent to F . Then (1) and (2) below are equivalent,
and (3) implies them. If (T ,F) is faithful, then (1)–(3) are equivalent.

(1) Γ is an Auslander-regular ring with gl.dim Γ ≤ 2.
(2) If f ∈ HomΛ(Y,X) is a surjection with Y ∈ F and X ∈ T , then f(socY ) = 0.
(3) (T ,F) is hereditary.
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Proof. Γ satisfies gl.dim Γ ≤ 2 and the (2, 2) and (2, 2)op-conditions, and F forms
a τ -category by 2.1. We use the notations in 2.2.3 and 1.2(iv).

(2)⇒(1) To show that Γ satisfies the (1, 1)op-condition, we will show gradeM > 0
for any simple Γ-module L and a submodule M of Ext1

Γ(L,Γ). Since pdL = 2 im-
plies gradeL = 2 by 1.3.2(2), we can assume pdL = 1. Take projective resolutions

0 → QY Qf−→ QX → L → 0 and 0 ← M
a← RW . Then 0 ← Ext1

Γ(L,Γ) ←
RY Rf←− RX is exact, and a lifts to Rd ∈ HomΓ(RW,RY ). Take an exact sequence

Y
(f d)−→ X ⊕W

(ge)→ V → 0. Then 0 ← M
a← RW R(eαV )←− R ◦ FV gives a projective

resolution for eαV ∈ HomΛ(W,FV ). Since 0 → M̂ → QW Q(eαV )−→ Q ◦ FV is exact,
we only have to show that eαV is injective. Put U :=

(
g
e

)−1(TV ) ⊆ X ⊕W . Then(
g
e

)
(soc U) = 0 holds by (2). Since f and e are injective, W ∩ soc U = 0 holds.

Thus W ∩ U = 0 holds, and we obtain the assertion.
(1)⇒(2) Let 0 → Z

g→ Y
f→ X → 0 be an exact sequence such that Y ∈ F ,

X ∈ T and soc Y 6⊆ Z. Then there exists an injection
(
g
h

)
∈ HomΛ(Z⊕W,Y ) with

W 6= 0. Define L ∈ mod Γ by an exact sequence 0→ Q(Z⊕W )
Q(gh)−→ QY → L→ 0.

Then 0 ← Ext1
Γ(L,Γ) a← R(Z ⊕ W )

R(gh)←− RY is exact. Since Rg is injective, a
restricts to an injection RW → Ext1

Γ(L,Γ). Thus QW = HomΓ(RW,Γ) = 0, a
contradiction.

(3)⇒(2) For any simple submodule Z of Y , Z ∈ F and f(Z) ∈ T imply f(Z) = 0.
(2)+(Λ ∈ F)⇒(3) Let X be a submodule of Y ∈T and let f ∈ HomΛ(FX,Y/TX)

be a natural injection. Take a surjection
(
g
f

)
∈ HomΛ(P ⊕ FX,Y/TX) with P ∈

pr Λ. By P⊕FX ∈ F and Y/TX ∈ T , we obtain f(soc FX) = 0. Thus soc FX = 0
and X ∈ T . �

3.1.2. Proof of 3.1. (4)⇔(4)op holds clearly.
(3)⇒(1) We use the notation in 2.2.3. To show that Γ satisfies the (1, 1)op-

condition, we will show s.grade Ext1
Γ(L,Γ) ≥ 1 for any simple Γ-module L with

pdL = 1. Put L = topRA for A ∈ ind−1 C − ind−0 C, B := n−(A) ∈ ind C and
M := topQB. Then we have an exact sequence 0 → M → Ext1

Γ(L,Γ) → N →
0, where s.gradeN ≥ 2 holds by 1.4.2(3). Since grade Ext1

Γ(L,Γ) ≥ 1 holds by
pdL = 1, we obtain s.gradeM = gradeM ≥ 1 by taking HomΓ( ,Γ). Thus
s.grade Ext1

Γ(L,Γ) ≥ 1 holds.
(1)⇒(2) Immediate from 2.1 and 3.1.1.
(2)⇒(4) By 1.2, we can put F = S⊥ and T = ⊥F for S ⊆ ind(sim Λ). For

X ∈ mod Λ, we denote by l(X) the number of its composition factors which is not
in S. We will show that l gives an additive function. By the argument in the proof
of 2.1(2)⇒(4), l is right additive. For any X ∈ ind−1 C, take an exact sequence

X
µ−X→ θ−X → Y → 0 in mod Λ. Since µ−X is an epimorphism in C, we obtain Y ∈ T

and l(Y ) = 0. Thus l(X) ≥ l(θ−X) holds for any X ∈ ind−1 C, and l is additive.
(4)⇒(3) C is strict by 2.1. Let l be an additive function. In the proof below,

we have to use concepts in [I3]. Take X ∈ ind−1 C − ind−0 C and let a = (ai)0≤i be
the right ladder of µ−X for ai ∈ C(Xi, Yi). If a is not essential, then (X,Y ) is a
Nakayama pair for some Y ∈ ind C − ind+

1 C by [I3, 6.4]. Thus we assume that a
is essential. Take a maximal number n such that Yn 6= 0. Then Yn ∈ add(ind+

1 C)
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and an = µ+
Yn

hold. Let c = (ci)0≤i≤n be the left ladder of an for ci ∈ C(Ai, Bi).
Since Ai has no direct summands in ind−1 C for any i (0 ≤ i < n) by [I3, 6.3.1(1)],
c is invertible by [I3, 6.2.1]. Since l(ci) = l(an) ≤ 0 holds, Bi = 0 implies Ai = 0.
Hence Ai 6= 0 holds for any i (0 ≤ i ≤ n) inductively. Since (ai)0≤i≤n is invertible
by [I3, 6.3.1(2)(i)], (X,Yn) is a Nakayama pair and n−(X) = Yn.

(2)⇒(5) follows from [R2, Lemma 6], and (5)⇒(1) follows from a quite similar
argument as in the proof of 3.1.1(2)⇒(1). �

3.2. Let Γ be an artin algebra with Ii := IiΓ(Γ).
(1) The bijection soc : ind(in Γ)→ ind(sim Γ) induces the maps below. The first

and second maps are bijective, and so is the third map if gl.dim Γ <∞:
ind(add In) → {L ∈ ind(sim Γ) | ExtnΓ(L,Γ) 6= 0}

ind(add I
n

)−
⋃
i<n

ind(add I
i
) → {L ∈ ind(sim Γ) | gradeL = n}

ind(add In)−
⋃
i>n

ind(add Ii) → {L ∈ ind(sim Γ) | pdL = n}

(2) Assume that the conditions in 2.1 are satisfied and (T ,F) is faithful. Let P :
pr Γ = C ∼→ F ⊂ mod Λ be the composition. Then ind(add(I0⊕I1))∩ind(add I2) =
∅ holds, and P is a minimal realization of Γ given by P = HomΓ(Q, ) for some
Q ∈ pr Γ. We have the bijections below, where the middle map is given by the
projective cover:

ind(in Γ)
soc−→ ind(sim Γ) −→ ind(pr Γ) = indC P−→ ind(F)

∪ ∪ ∪ ∪
ind(add(I0 ⊕ I1)) −→{L ∈ ind(simΓ) | pd L ≤ 1}−→ind(add Q) = ind+

1 C−→ ind(pr Λ)

∪ ∪ ∪ ∪
ind(add(I0 ⊕ I1)) − ind(add I1)−→{L ∈ ind(simΓ) | pd L = 0}−→ ind+

0 C −→ind(prΛ) ∩ ind(sim Λ)

(3) In (2), assume that the conditions in 3.1 are satisfied and l is an additive
function of C. Then the bijections in (2) induce the bijections (i), and the equalities
(ii) hold:

ind(add I0) −→ {L ∈ ind(sim Γ) | gradeL = 0} −→ l+ −→ {X ∈ ind(pr Λ) | topX ∈ F} (i)

l+ = ind+
0 C ∪ {X ∈ ind+

1 C − ind+
0 C | n+(X) ∈ indC − ind+

1 C}
= {X ∈ ind+

1 C | µ
+
X is not an epimorphism} (ii)

Proof. (1) Taking HomΓ(L, ) for a minimal injective resolution 0 → Γ → I0 →
I1 → · · · , we obtain the first bijection, which implies others.

(2) The former assertion follows from 1.3.2(2), and soc induces the left bijections
by (1). Since P is a realization by Λ ∈ P(pr Γ), we can take Q ∈ pr Γ such that
P = HomΓ(Q, ) and I0 ⊕ I1 ∈ add(Q̂)∗ by 2.2. To show that P is minimal, fix
P ∈ ind(pr Γ). Then P ∈ ind+

1 C ⇔ pd topP ≤ 1 ⇔ (P̂ )∗ ∈ add(I0 ⊕ I1) ⇒ P ∈
add Q⇔ PP ∈ pr Λ (∗) holds. Assume PP ∈ pr Λ, and take f ∈ C(P ′, P ) such that

Pf gives the inclusion JΛPP ⊂ PP . Since (P ] = (0 → P ′
f→ P ) holds, we obtain

P ∈ ind+
1 C. Thus the above five conditions in (∗) are equivalent. Consequently, P

is minimal by add(I0 ⊕ I1) = add(Q̂)∗, and we obtain the desired bijections.
(3) Clearly, l+ ⊇ ind+

0 C holds. Let X ∈ ind+
1 C−ind+

0 C and Y := n+(X) ∈ ind C.
Then 0 ≥ l(µ+

X) = l(µ−Y ) holds by 1.4. Since l(µ−Y ) ≥ 0 if and only if Y ∈ ind−1 C,
we obtain the first equality in (ii). The second equality in (ii) follows from [I3,
6.4.1(2)].
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Take I ∈ ind(add(I0 ⊕ I1)). Let L := soc I, let 0 → P1
f→ P0 → L → 0 be a

minimal projective resolution and let X := PP0 ∈ F . Then (P0] = (0→ P1
f→ P0)

holds for pr Γ = C. Moreover, I ∈ add I0 if and only if gradeL = 0 if and only if
f is not an epimorphism in C if and only if P0 ∈ l+ by (ii). Since PL is a simple

Λ-module, we obtain an exact sequence 0 → PP1
Pf−→ X → topX → 0 in mod Λ

by taking P. Hence f is not an epimorphism in C if and only if Pf is also not an
epimorphism in F if and only if topX ∈ F . Thus (i) holds. �
3.3. Now we obtain the following theorem which implies the classical theorem of
Auslander in 0.2. Recall that we call an artin algebra Γ an Auslander algebra if
gl.dim Γ ≤ 2 and Γ satisfies the (1, 2)-condition, namely dom.dim Γ ≥ 2. Notice
that the equivalence of (2) and (3) below is a special case of [R3, Cor. of Prop. 6].

Theorem. Let Γ be an artin algebra and C := pr Γ. Then the following conditions
are equivalent.

(1) Γ is an Auslander algebra.
(2) Γ is an Auslander-regular ring with gl.dim Γ ≤ 2, and any simple Γ-module

L with pdL = 1 satisfies gradeL = 0.
(3) There exists an artin algebra Λ such that C is equivalent to mod Λ.
(4) C is a strict τ-category and n− gives a map ind−1 C− ind−0 C → ind C− ind+

1 C.
(5) C is a τ-category with an additive function l such that l− = ind−1 C.
(6) C is an abelian category.
(i)op Opposite side version of (i) (1 ≤ i ≤ 6).

Proof. Each of the above conditions implies that Γ is Auslander-regular with
gl.dim Γ ≤ 2 by 3.1. Obviously (1) is equivalent to add(I0 ⊕ I1) = add I0. Now
3.2(3) immediately implies (1)⇔(2)⇔(3)⇔(4)op ⇔(5)op since {X ∈ ind(pr Λ) |
topX ∈ F} = ind(pr Λ) is equivalent to F = mod Λ. Since (mod Λ)op is equivalent
to mod Λop, we obtain (3)⇔(3)op, and (3)⇒(6) is obvious. We will show (6)⇒(2).

We only have to show the latter assertion. Let 0→ P1
f→ P0 → L→ 0 be a minimal

projective resolution. Since f is a non-invertible monomorphism in an abelian cat-
egory C, f is not an epimorphism in C. Thus f̂ : P̂0 → P̂1 is not a monomorphism,
and L̂ 6= 0 holds. �
3.3.1. Corollary. Let Λ be a representation-finite artin algebra and C := mod Λ.
Let B ∈ ind(pr Λ), A := (B̂)∗ ∈ ind(in Λ) and X := soc A = topB ∈ ind(sim Λ).
Then (A, τ−X) is a Nakayama pair if A is not simple, and (τ+X,B) is a Nakayama
pair if B is not simple.

Proof. Since n−(A) ∈ ind(mod Λ)− ind(pr Λ) holds by 3.3(4), there exists an exact

sequence 0 → τ+n−(A) → A
µ−A→ θ−A → 0 by the definition 1.4. Since µ−A is

a natural surjection A → A/X , we obtain τ+n−(A) = X . Thus (A, τ−X) is a
Nakayama pair. �
3.4. We denote by mod spΛ the full subcategory of mod Λ consisting of Λ-modules
whose socles are projective. Such categories mod spΛ play an important role in
representation theory. They are closely related to the representation theory of
partially ordered sets, vector space categories, and orders over complete discrete
valuation rings (see [S]). The theorem below asserts that the endomorphism ring
of mod spΛ is characterized in terms of a diagonal Auslander-regular ring, where
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we call an Auslander-regular ring Γ diagonal if any non-zero direct summand I of
IiΓ(Γ) satisfies fdΓI = i.

Theorem. Let Γ be an artin algebra and C := pr Γ. Then the following conditions
are equivalent.

(1) Γ is a diagonal Auslander-regular ring with gl.dim Γ ≤ 2.
(2) Γ is an Auslander-regular ring with gl.dim Γ ≤ 2, and any simple Γ-module

L with pdL = 1 satisfies gradeL = 1.
(3) There exists an artin algebra Λ such that C is equivalent to mod spΛ.
(4) C is a strict τ-category and n− gives a (bijective) map ind−1 C − ind−0 C →

ind+
1 C − ind+

0 C.
(5) C is a τ-category with an additive function l such that l− = ind−0 C.
(i)op Opposite side version of (i) (1 ≤ i ≤ 5).

3.4.1. Let Γ be a 1-Gorenstein artin algebra. Then any simple Γ-module L with
gradeL = 0 is projective if and only if any simple Γop-module L with gradeL = 0
is projective.

Proof. We will show the “only if” part. Assume that a simple Γop-module L satisfies
gradeL = 0 and pdL > 0. Take a projective resolution 0 → ΩL

g→ P0
f→ L → 0.

We have an exact sequence 0 ← Ext1
Γ(L,Γ) a← Ω̂L

ĝ← P̂0
f̂← L̂ ← 0. Then the

injective hull b ∈ HomΓ(P̂0, I) satisfies I ∈ pr Γ by the (1, 1)-condition. Suppose
that b is not an isomorphism. Since b̂ factors through g, it follows that b factors
through ĝ. Thus L̂ = 0, a contradiction. Hence P̂0 ∈ ind(in Λ) holds. Since Ω̂L 6= 0
by pdL > 0, we can take an injection c ∈ HomΓ(M, Ω̂L) for a simple Γ-module M .
Then M ∈ pr Γ holds by gradeM = 0. Since ca = 0 holds by the (1, 1)-condition,
there exists c′ such that c = c′ĝ. Since soc P̂0 is simple, c′ factors through f̂ . Thus
c = 0, a contradiction. �
3.4.2. Proof of 3.4. (2)⇔(2)op holds by 3.4.1. The diagonal condition is equiva-
lent to ind(add(I0 ⊕ I1)) − ind(add I1) = ind(add I0). Now a similar argument
as in the proof of 3.3 works to show (1)⇔(2)⇔(3)⇔(4)op ⇔(5)op since {X ∈
ind(pr Λ) | topX ∈ F} = ind(pr Λ)∩ ind(sim Λ) is equivalent to F = mod spΛ. �
3.5. We obtain the following corollary by 1.2.1, where the case i = 2 is Auslander’s
correspondence 0.2.

Corollary. There exists a bijection between (1-i) and (2-i) below (1 ≤ i ≤ 4),
which is given by C 7→ Γ := C(M,M).

(1) Equivalence classes of additive categories C with additive generators M such
that

(1-1) C is a faithful torsionfree class over an artin algebra,
(1-2) C is a faithful hereditary torsionfree class over an artin algebra,
(1-3) C = mod Λ over an artin algebra Λ,
(1-4) C = mod spΛ over an artin algebra Λ.
(2) Morita-equivalence classes of artin algebras Γ such that
(2-1) Γ satisfies gl.dim Γ ≤ 2 and the (2, 2) and (2, 2)op-conditions,
(2-2) Γ is an Auslander-regular ring with gl.dim Γ ≤ 2,
(2-3) Γ is an Auslander algebra,
(2-4) Γ is a diagonal Auslander-regular ring with gl.dim Γ ≤ 2.
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3.6. In this section, we collect some homological results and questions.

3.6.1. Symmetry. We have obtained a few left-right symmetries in previous sec-
tions. Moreover, recall that Γ is n-Gorenstein if and only if Γop is also by [FGR, 3.7],
and dom.dim Γ = dom.dim Γop holds by [H2]. These left-right symmetries are gener-
alized as follows: We say that l ≥ 0 is a dominant number of Γ if fd IiΓ(Γ) < fd I lΓ(Γ)
holds for any i (0 ≤ i < l).

Theorem ([I9, 1.1, 2.4]). Let l and n be positive integers.
(1) For an n-Gorenstein ring Γ, the set of dominant numbers of Γ smaller than

n coincides with that of Γop. Any dominant number l of Γ with l < n satisfies
fd I lΓ(Γ) = l.

(2) Assume that a noetherian ring Γ satisfies the (l, l) and (l, l)op-conditions.
Then Γ satisfies the (l, n)-condition if and only if it satisfies the (l, n)op-condition.

3.6.2. Question. Let Γ be an artin algebra. Is the condition that Γ is diagonal
Auslander-regular left-right symmetric? This is true if gl.dim Γ ≤ 2 by 3.4. More
generally, is the following condition (∗) left-right symmetric for an n-Gorenstein
ring Γ? This is true for n = 1 by 3.4.1.

(∗) Any simple Γ-module L with gradeL = i satisfies pdL = i for any i (0 ≤
i < n).

3.6.3. Duality. Let Γ be a noetherian ring, En := ExtnΓ( ,Γ) and Fn := soc En.
Consider the following condition (Dn).

(Dn) Fn gives a bijection between isoclasses of simple Γ-modules L with gradeL
= n and that of Γop. Moreover, Fn◦FnL is isomorphic to L, and s.gradeEnL/FnL >
n holds.

If an artin algebra Γ satisfies gl.dim Γ ≤ 2 and the (2, 2) and (2, 2)op-conditions,
then (D2) holds by 2.1 and 1.3.2(2). Moreover, if Γ is Auslander-regular, then
3.1 and 1.4.2(3) imply that (D1) holds, and more strongly F1 gives an injection
from isoclasses of simple Γ-modules L with gradeL ≤ 1 to isoclasses of simple
Γop-modules. These observations are generalized as follows:

Theorem. Let n ≥ 0 and let Γ be a noetherian algebra satisfying the (l, l) and
(l, l)op-conditions for l = n, n+1. Then (Dn) holds. Moreover, if gl.dim Γ = n ≥ 2,
then any simple Γ-module L with gradeL = 0 and r.gradeL = n− 1 satisfies that
Fn−1L is simple and s.gradeEn−1L = n.

Proof. The former assertion was shown in [I9, 1.3]. We will show the latter asser-
tion. Put CΓ := {M ∈ mod Γ | s.gradeM ≥ n}. Then CΓ (resp. CΓop) is an abelian
subcategory of mod Γ (resp. mod Γop) closed under subfactor modules, and En gives
a duality between CΓ and CΓop such that En ◦En is isomorphic to the identity func-
tor by [I5, 6.2]. Take a projective resolution 0 → Pn−1 → · · · → P0 → L → 0 by
pdL = n−1. Taking (̂ ), we obtain an exact sequence 0← En−1L← P̂n−1 ← · · · ←
P̂0 ← L̂ ← 0 by r.gradeL = n − 1. Thus L̂ ∈ ind(pr Γop) holds by gl.dim Γ = n,

and we obtain an exact sequence 0→ L→ ̂̂
L→M → 0 with M := En En−1L ∈ CΓ

and ̂̂L ∈ ind(pr Γ). Thus En−1L = EnM ∈ CΓop holds, and topM is simple. By the
remark above, Fn−1L = FnM = En(topM) is simple. �

3.6.4. Question. When is FnL a simple Γop-module for a simple Γ-module L and
n?
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4. AR quivers

In representation theory, the concept of additive functions often appears. We
recall several results below which assert that some representation theoretic diagrams
are characterized by the existence of additive functions:

(a) It is a classical result that Dynkin diagrams and extended Dynkin diagrams
are characterized in terms of additive functions [HPR].

(b) Brenner characterized AR quivers of representation-finite artin algebras in
terms of hammocks, which is a formulation of the existence of additive functions [Br].
At the same time, Igusa and Todorov gave another characterization independently
which does not use additive functions [IT3].

(c) Ringel and Vossieck studied hammocks in [RVo] very clearly, and character-
ized AR quivers of representation-finite partially ordered sets in terms of hammocks.

(d) Reiten and Van den Bergh characterized AR quivers of representation-finite
two-dimensional orders, which essentially uses additive functions [RV].

(e) Inspired by the work of Igusa-Todorov (b), the author characterized AR quiv-
ers of representation-finite one-dimensional orders [I5], which does not use additive
functions. Then Rump gave another characterization in terms of additive functions
[R5].

(f) Additive functions are used to characterize rejectable subsets 5.1(2) for two-
dimensional orders by Reiten and Van den Bergh [RV] and for one-dimensional
orders by the author [I2].

In this section, we shall see that (b) and (c) above are understood clearly in our
viewpoint of (e) and this paper (see 4.4.1).

4.1. Definition. (1) Q = (Q,Qp, Qi, τ+, d, d′) is called a translation quiver if Q is
a set, Qp and Qi are subsets of Q, τ+ is a bijection Q − Qp → Q − Qi, d and d′

are maps Q×Q→ N≥0 such that d(Y,X) = d′(τ+X,Y ) holds for any X ∈ Q−Qp
and Y ∈ Q, and d( , X) = 0 implies X ∈ Qp. We call Q admissible if there exists a
map c : Q→ N>0 such that c(X)d(X,Y ) = d′(X,Y )c(Y ) holds for any X , Y ∈ Q.
We call Q locally finite if

∑
Y ∈Q d(Y,X) < ∞ and

∑
Y ∈Q d

′(X,Y ) < ∞ hold for
any Y ∈ Q.

Usually, we draw Q as a directed graph: Q is the set of vertices, and we draw

valued arrows X
(d(X,Y ),d′(X,Y ))

- Y for any X,Y ∈ Q such that d(X,Y ) 6= 0, and
dotted arrows from X to τ+X for any X ∈ Q−Qp.

For a τ -category C, we define a locally finite translation quiver A(C) = (Q,Qp, Qi,
τ+, d, d′) called the AR quiver of C as follows: Q := ind C, Qp := ind+

1 C, Qi :=
ind−1 C, d(X,Y ) is the multiplicity of X in θ+Y and d′(X,Y ) is the multiplicity of
Y in θ−X . Thus A(C) displays terms of each (X ] and [X) diagrammatically. If
C is a torsionfree class over an artin algebra Λ over R, then A(C) is admissible by
k := R/JR and c(X) := dimk EndΛ(X)/JEndΛ(X).

(2) For a locally finite translation quiver Q, we denote by ZQ (resp. NQ) the free
Z-module (resp. free abelian monoid) generated by Q. For X =

∑
Y ∈Q aY Y ∈ ZQ,

put suppX := {Y ∈ Q | aY 6= 0}. Define elements θ+, θ−, τ+ and τ− of EndZ(ZQ)
as follows: Put θ+X :=

∑
Y ∈Q d(Y,X)Y and θ−X :=

∑
Y ∈Q d

′(X,Y )Y for X ∈ Q.
Put τ+X := 0 for X ∈ Qp, τ−X := (τ+)−1(X) for X ∈ Q − Qi and τ−X := 0
for X ∈ Qi. When Q = A(C) for a τ -category C, these definitions are consistent
with those in 1.3.1. Define φ± and a (left, right) additive function of Q by a similar
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manner in 1.3.1, and define θ+
n and η+

n ∈ EndZ(ZQ) (n ≥ 0) by the recursion
formulas in 1.3.3 and 1.4.

4.2. We call an additive category C with an additive generator M artinian if the
ring C(M,M) is artinian. We call a translation quiver Q artinian (resp. strict) if
there exists an artinian (resp. strict) τ -category C with Q = A(C). The proposition
below gives a simple criterion for Q to be artinian (resp. strict).

Proposition. Let Q be an admissible translation quiver with a finite number of
vertices. Then Q is artinian (resp. strict) if and only if any τ-category C with
Q = A(C) is artinian (resp. strict).

(1) Q is artinian if and only if there exists n > 0 such that θ+
n = 0. If any

connected component of Q contains a vertex in Qi, then Q is artinian if and only
if there exists n > 0 such that θ+

nX = 0 for any X ∈ Qi.
(2) If Q is artinian, then Q is strict if and only if Q =

⋃
X∈Qi,n≥0 supp θ+

nX if
and only if θ+

n = θ+ ◦ θ+
n−1 − τ+ ◦ θ+

n−2 for any n ≥ 2.

4.2.1. Example. Let Q be the translation quiver below, where τ+ is the left
translation:

1 13 6 1

@R �� @R �� @R ��
18 - 14 - 11 - 7 - 4

�� @R �� @R �� @R
2 15 8 2

@R �� @R �� @R ��
19 - 16 - 12 - 9 - 5

�� @R �� @R �� @R
3 17 10 3

Qp = {14, 16}
Qi = {7, 9}

Then the calculation of θ+
n (7) and θ+

n (9) below implies that Q is artinian by
4.2(1), where we describe the diagram in 1.3.3:

*

*

*

*

On the other hand, Q is not strict by 4.2(2) and
⋃
n≥0 supp θ+

n (7)∪supp θ+
n (9) =

Q− {6, 8, 10, 14, 16}.

4.2.2. Lemma. Let C be a τ-category with # ind C < ∞ and Q = A(C). Assume
that any connected component of Q contains a vertex in Qi. Then C( , X) has finite
length for any X ∈ C if and only if C( , X) has finite length for any X ∈ ind−1 C.

Proof. PutD := {X ∈ C|C( , X) has finite length}, C := C/[ind+
1 C], C := C/[ind−1 C]

and C′ := add(ind−1 C). Then C′ ⊆ D holds by our assumption. Fix indecomposable
X ∈ D. Since C( , X) has finite length by X ∈ D, C( , τ+X) has finite length
by the proof of [I4, 2.4]. Now we will show Y := τ+X ∈ D. Since we have an
exact sequence 0 → [C′]( , Y ) → C( , Y ) → C( , Y ) −→ 0, we only have to show
that [C′]( , Y ) has finite length. Since any finite length C-module is finitely pre-
sented, [C′]( , Y ) is a finitely generated C-module. Thus there exists f ∈ C(Z, Y )

with Z ∈ C′ such that C( , Z)
·f→ [C′]( , Y ) → 0 is exact. Hence [C′]( , Y ) has

finite length by C′ ⊆ D. Thus τ+X ∈ D holds. Since we have an exact sequence
C( , τ+X)→ C( , θ+X)→ C( , X), we obtain θ+X ∈ D. Thus any predecessor of X
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in A(C) is again contained in D. By our assumption, we can easily show that there
exists a path from any vertex in Q to some vertex in Qi. Thus D = C holds. �

4.2.3. Proof of 4.2. (1) (cf. [I3, 7.3]) The former assertion follows from 1.3.3, and
the latter assertion follows from the former one and 4.2.2. (2) follows from [I3, 7.4].

Now the first equivalence follows from (1) and (2), where we remark that any
admissible translation quiver is realized as the AR quiver of some τ -category [I5,
4.2.1]. �

4.3. Theorem. Let Γ be an artin algebra and C := pr Γ. Put

lX(Y ) := lengthC(X,X)C(X,Y )

for any X,Y ∈ C.
(1) Assume that the conditions in 2.1 are satisfied. Then φ+(N ind C) ⊇ N ind C

holds. Moreover, a map l : ind C → N>0 is a right additive function if and only
if l =

∑
X∈ind+

1 C
aX lX holds for some (aX) ∈ Nind+

1 C. Such (aX) is uniquely
determined.

(2) Assume that the conditions in 3.1 are satisfied and put S+(C) := {X ∈
ind+

1 C | µ+
X is not an epimorphism}. Then a map l : ind C → N>0 is an additive

function if and only if l =
∑
X∈S+(C) aX lX holds for some (aX) ∈ NS

+(C). Such
(aX) is uniquely determined.

Proof. Since 0 → C(X, τ+Y ) → C(X, θ+Y ) → JC(X,Y ) → 0 is exact for any
Y ∈ C, we obtain lX(φ+Y ) = 0 for any Y ∈ ind C − {X} and lX(φ+X) = 1.

(1) Since C is artinian strict,

φ+(
∑
n≥0

θ+
nX) =

∑
n≥0

θ+
nX −

∑
n≥0

(θ+θ+
nX − τ+θ+

n−1X)

=
∑
n≥0

θ+
nX −

∑
n≥0

θ+
n+1X = X

holds for any X ∈ C by 4.2(2). Thus the first assertion follows. We will show
the “only if” part. Put aX := l(φ+X) ≥ 0 for any X ∈ ind+

1 C and l′ := l −∑
X∈ind+

1 C
aX lX . Since l′ ◦ φ+ = 0 holds, we obtain l′ = 0 by the first assertion.

Thus l =
∑

X∈ind+
1 C

aX lX holds. The third assertion follows from the first.
(2) Since l(φ+X) = 0 holds for any X ∈ ind+

1 C−S+(C) by 3.2(3), we obtain l =∑
X∈S+(C) aX lX by (1). Fix X ∈ S+(C). We only have to show that lX(µ−Y ) ≥ 0

holds for any Y ∈ ind−1 C. Put Z := n−(Y ) ∈ ind C; then lX(µ−Y ) = lX(µ+
Z ) holds by

1.4. Since n+(X) /∈ ind−1 C holds by 3.2(3), we obtain X 6= Z. Thus lX(φ+Z) = 0
implies lX(µ+

Z ) = lX(τ+Z) ≥ 0. �

4.4. Theorem. Let Q be an admissible artinian translation quiver with a finite
number of vertices. Then the following conditions (1-i), (2-i), (3-i) and (4-i) are
equivalent for each i (1 ≤ i ≤ 4).

(1) There is an artin algebra Λ
(1-1) with a torsion theory (T ,F) on mod Λ such that Q = A(F),
(1-2) with a hereditary torsion theory (T ,F) on mod Λ such that Q = A(F),
(1-3) such that Q = A(mod Λ),
(1-4) such that Q = A(mod spΛ).
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(2) Any τ-category C with A(C) = Q is

(2-1) strict,
(2-2) strict and n− gives a map ind−1 C − ind−0 C → ind C,
(2-3) strict and n− gives a map ind−1 C − ind−0 C → ind C − ind+

1 C,
(2-4) strict and n− gives a map ind−1 C − ind−0 C → ind+

1 C − ind+
0 C.

(3) Q satisfies

(3-1) Q =
⋃
X∈Qi,n≥0 supp θ+

nX,
(3-2) Q =

⋃
X∈Qi,n≥0 supp θ+

nX, and for any X ∈ Qi with θ−X 6= 0, there
exists n ≥ 0 such that η+

i X ∈ N(Q − Qp) for any i (0 ≤ i < n) and
η+
n+1X = 0,

(3-3) (3-2) and η+
nX ∈ Q−Qp,

(3-4) (3-2) and η+
nX ∈ Qp.

(4) Q has

(4-1) a right additive function l,
(4-2) an additive function l,
(4-3) an additive function l with l− = ind−1 C,
(4-4) an additive function l with l− = ind−0 C.

4.4.1. Remark. (1) In 4.4(2), we can replace “any” by “some”. In 4.4(3-2), n−(X) =
η+
nX holds. In 4.4(1), we can add the condition that Λ is a finite-dimensional al-

gebra over an arbitrary finite field k (see [I5, 4.2.1]).
(2) Our condition (3-3) simplifies that of Igusa-Todorov (b) above, and our con-

dition (4-3) simplifies that of Brenner (b) above. After the work of Brenner, Ringel
and Vossieck (c) call a simply connected translation quiver Q with a unique source
X hammock if Q has an additive function l with l− = {X}. Thus our condition
(4-4) is a generalization of their hammock condition to a general translation quiver.

4.4.2. Proof of 4.4. We can fix an artin algebra Γ0 such that C0 := pr Γ0 forms
a τ -category with Q = A(C0) by [I5, 4.2.1]. Then (1-i)⇒(4-i)⇒(2-i)⇒(C := C0
satisfies (2-i))⇒(1-i) holds by 2.1 (i = 1), 3.1 (i = 2), 3.3 (i = 3) and 3.4 (i = 4).
Moreover, (2-i)⇔(3-i) holds by 4.2(1) (i = 1) and 1.4.2(1) (i = 2, 3, 4). �

4.5. Example. (1) Let Q be the artinian strict translation quiver below, where τ+

is the left translation:

1 33 27 - 24 - 20 14 9 - 4 - 1

@R �� @R �� @R �� @R �� @R �� @R ��
37 - 34 - 31 - 28 - 25 - 21 - 18 - 15 - 12 5

�� @R �� @R �� @R �� @R �� @R �� @R
2 35 29 22 16 10 - 6 - 2

@R �� @R �� @R �� @R �� @R �� @R ��
38 32 26 19 13 7

�� @R �� @R �� @R �� @R �� @R �� @R
3 36 30 23 17 11 - 8 - 3

Qp = {4, 6, 8, 24, 34}
Qi = {4, 6, 8, 15, 24}

Then the calculation of η+
n (Qi) below shows that Q satisfies condition 4.4(3-2),

where we describe the diagram in 1.4. Thus Q = A(C) holds for some hereditary

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



728 OSAMU IYAMA

torsionfree class C over an artin algebra Λ.
19 → 16 → 12 → 9 → 4
↓ ↓ ↓ ↓ ↓
17 → 13 → 10 → 5 → 1

n−(4) = 17

27 → 25 → 21, 22 → 18, 19 → 14, 16, 17 → 12, 13 → 10 → 6
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
24 → 20 → 18 → 15, 16 → 12, 13 → 9, 10, 11 → 5, 7 → 2

n−(6) = 24

32 → 29 → 25 → 20, 21 → 18 → 16 → 13 → 11 → 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
30 → 26 → 22 → 18 → 14, 15 → 12 → 10 → 7 → 3

n−(8) = 30

37 → 33, 35 → 31, 32 → 28, 29, 30 → 25, 26 → 20, 22 → 18 → 15
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
34 → 31 → 27, 29 → 25, 26 → 21, 22, 23 → 18, 19 → 14, 16 → 12

n−(15) = 34

10 → 5, 7 → 1, 2, 3 → 37, 38 → 34, 35 → 31 → 27 → 24
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
6 → 2 → 37, 38 → 33, 35, 36 → 31, 32 → 28, 29 → 25 → 20

n−(24) = 6

(2) Let Q be the artinian strict translation quiver below, where τ+ is the left
translation:

13 7 1

@R �� @R ��
11 5

�� @R �� @R
3 20 14 8 2

@R �� @R �� @R �� @R ��
4 - 24 - 21 - 18 - 15 - 12 - 9 - 6 - 3

�� @R �� @R �� @R �� @R
2 22 16 10 4

@R �� @R ��
25 19

�� @R �� @R
26 23 17

Qp = {11, 13, 25, 26}
Qi = {1, 5, 17, 19}

Then the calculation of η+
n (Qi) below shows that Q satisfies condition 4.4(3-4),

where we describe the diagram in 1.4. Thus Q = A(mod spΛ) holds for some artin
algebra Λ.
2, 26 → 24, 25 → 20, 21, 22 → 182 → 14, 15, 16 → 11, 12 → 7, 8 → 5
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
25 → 22, 23 → 18, 19 → 14, 15, 16 → 122 → 8, 9, 10 → 5, 6 → 1, 2

n−(5) = 25

13, 14 → 11, 12 → 8, 9, 10 → 62 → 2, 3, 4 → 24, 25 → 22, 23 → 19
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
11 → 7, 8 → 5, 6 → 2, 3, 4 → 242 → 20, 21, 22 → 18, 19 → 16, 17

n−(19) = 11

(3) Let Q be the artinian strict translation quiver below, where τ+ is the left
translation:

1 - 17 11 5 - 1

�� @R �� @R �� @R
2 - 18 - 15 - 12 - 9 - 6 - 2

@R �� @R �� @R ��
19 13 7

�� @R �� @R �� @R
3 16 10 3

@R �� @R �� @R ��
4 - 20 14 8 - 4

Qp = {1, 4} = Qi

Then the calculation of η+
n (Qi) below shows that Q satisfies condition 4.4(3-3),

where we describe the diagram in 1.4.
9 → 6, 7 → 2, 3 → 17, 19, 20 → 15, 16 → 12, 13 → 9 → 5 → 1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
5 → 2 → 18, 19 → 15, 16 → 11, 13, 14 → 9, 10 → 6, 7 → 2 → 17

n−
(1) = 5

10 → 7 → 2 → 17, 18 → 15 → 13 → 10 → 8 → 4
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
8 → 3 → 19 → 15 → 11, 12 → 9 → 7 → 3 → 20

n−(4) = 8

Thus Q = A(mod Λ) holds for some artin algebra Λ.
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(4) Let Q be the artinian strict translation quiver below, where τ+ is the left
translation. Then Q is a part of the preprojective component of the hereditary

algebra Λ of the wild quiver
• •
↓ ↑

• → • ← • → • ← •
, and Q = A(C) holds for a faithful

torsionfree class C of mod Λ.
22 15 8

@R �� @R �� @R
23 - 19 - 16 - 12 - 9 - 5

�� @R �� @R �� @R
24 - 20 - 17 - 13 - 10 - 6 - 3

@R �� @R �� @R �� @R
21 14 7 2

�� @R �� @R �� @R �� @R
25 18 11 4 1

Qp = {19, 20, 21, 22, 23, 24, 25}
Qi = {1, 2, 3, 5, 6, 8, 9}

In fact, Q satisfies the condition 4.4(3-1), but not (3-2) since the calculation
below shows that n−(i) is not defined for i = 5, 6, 8, 9.

5. Rejection theory

The rejection theory of an additive category C is a study of subcategories called
rejective (5.1) and the corresponding subsets of ind C called rejectable (5.1). For
example, rejective subcategories of mod Λ for an artin algebra Λ are given by fac-
tor algebras of Λ (5.1.1). The first example of rejection theory seems to be the
DK (= Drozd-Kirichenko) Rejection Lemma [DK] (see 5.3.1), which characterizes
one-point rejectable subsets and plays a crucial role in the theory of Bass orders
[DKR], [Ro], [HN]. In [I1], the author studied the rejection theory of orders and
artin algebras by connecting with Auslander-Reiten theory, and characterized fi-
nite rejectable subsets in terms of AR quivers (see 5.3), a generalization of the DK
Rejection Lemma. It is surprising that the rejectability of a finite subset S of ind C
depends only on the restriction of A(C) to S (see [I1] for examples of rejectable
subsets). Moreover, he studied the rejection theory of arbitrary τ -categories in [I4].
In particular, he generalized results in [I1] to τ -categories, and successfully applied
to characterize AR quivers of representation-finite orders [I5]. Of course, his results
are valid for our case when C is a torsionfree class of mod Λ, and we will give a
representation theoretic interpretation of rejective subcategories of such C in 5.2.
Note that, recently, rejective subcategories were successfully applied to quite dif-
ferent kinds of problems, Solomon’s second conjecture on zeta functions of orders
[I7] and finiteness of representation dimension of artin algebras [I8].

5.1. Definition. In the rest of this paper, assume that any subcategory is full
and closed under isomorphism, direct sums and direct summands. Let C′ be a
subcategory of a Krull-Schmidt category C.
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(1) [I4, 5.1] We call C′ a rejective subcategory of C if the inclusion functor C′ → C
has a right adjoint ( )− : C → C′ with a counit ε− such that ε−X is a monomorphism
for any X ∈ C, and a left adjoint ( )+ : C → C′ with a unit ε+ such that ε+X is an
epimorphism for any X ∈ C (compare with torsion theories 1.2). We call C′ a trivial
subcategory of C if C is a unique rejective subcategory of C which contains C′.

(2) [I4, 8.2] We call a subset S of ind C rejectable (resp. trivial) if S = ind C−ind C′
for some rejective (resp. trivial) subcategory C′ of C.

5.1.1. Example ([I4, 5.4]). Let Λ be an artin algebra and C = mod Λ.
Any ring morphism G : Λ→ Γ induces a faithful functor G∗ : mod Γ→ C, which

is full if G is surjective. A subcategory C′ of C is rejective if and only if there exists
a factor algebra Γ of Λ such that C′ = mod Γ. In this case, adjoint functors are
given by ( )+ = Γ⊗Λ and ( )− = HomΛ(Γ, ). Thus we obtain a bijection from
factor algebras of Λ to rejective subcategories of C defined by Γ 7→ mod Γ.

Note that it is shown in [I4, 6.3] that any rejective subcategory C′ of a (strict)
τ -category C forms a (strict) τ -category again if C/[C′] is artinian.

5.2. Theorem. Let Λ be an artin algebra, (T , C) a faithful torsion theory on mod Λ
and C′ a subcategory of C. Then C′ is a rejective subcategory of C if and only if
there exists a morphism G : Λ → Γ of artin algebras such that C′ = C ∩ Fac Γ,
Γ ∈ C′ and Γ/G(Λ) ∈ T , where we denote by Fac Γ the full subcategory of mod Λ
consisting of factor modules of Γn (n > 0). In this case, G∗ induces an equivalence
from a faithful torsionfree class {X ∈ mod Γ | G∗X ∈ C} on mod Γ to C′.

Proof. (i) We will show the “only if” part.
Let ( )+ : C → C′ be a left adjoint of the inclusion functor with a unit ε+, and

let Γ := EndΛ(Λ+). Then ε+Λ ∈ HomΛ(Λ,Λ+) is given by a left multiplication of an
element a ∈ Λ+. Taking HomΛ( ,Λ+), we obtain a bijection (a·) : EndΛ(Λ+) = Γ→
HomΛ(Λ,Λ+) = Λ+. Thus a map G : Λ→ Γ is well defined by xa = aG(x) for any
x ∈ Λ. Obviously G is a ring morphism. Since (a·) is a bijection such that (a·)◦G =
(·a) = ε+Λ , we can replace Λ+ and ε+Λ by Γ and G. Let Λ G→ Γ H→ Γ/G(Λ) → 0
be exact. Taking HomΛ( , X) for any X ∈ C, we obtain Γ/G(Λ) ∈ ⊥C = T . For
any X ∈ C ∩ Fac Γ, take a surjection f ∈ HomΛ(Γn, X). Since f factors through
the injection ε−X ∈ HomΛ(X−, X), we obtain X = X− ∈ C′. Conversely, for any
X ∈ C′, take a surjection f ∈ HomΛ(Λn, X). Since f+ ∈ HomΛ(Γn, X) is surjective
again, we obtain X ∈ C ∩ Fac Γ. Thus C′ = C ∩ Fac Γ holds.

(ii) We will show the “if” part.
Fix any X ∈ C. Put X− := HomΛ(Γ, X). Then the natural map ε−X ∈

HomΛ(X−, X) is injective by Γ/G(Λ) ∈ T . Thus X− is a unique maximal sub-
module of X such that X− ∈ Fac Γ. Hence X− ∈ C ∩ Fac Γ = C′ holds, and

HomΛ( , X−)
·ε−X−→ HomΛ( , X) is an isomorphism on Fac Γ ⊇ C′. Thus ( )− : C → C′

gives a right adjoint of the inclusion functor with a counit ε−. Let F : mod Λ→ C be
the left adjoint of the inclusion functor (1.2), X+ := F(Γ⊗ΛX) ∈ C∩Fac Γ = C′ and
ε+X ∈ HomΛ(X,X+) the natural map. Then HomΛ(X+, Y ) = HomΛ(Γ⊗Λ X,Y ) =
HomΛ(X,Y −) = HomΛ(X,Y ) holds for any Y ∈ C′. Thus ( )+ : C → C′ gives a left
adjoint of the inclusion functor with a unit ε+.

(iii) We will show the latter assertion.
Obviously F ′ := {X ∈ mod Γ | G∗X ∈ C} forms a torsionfree class on mod Γ and

G∗ induces a functor F ′ → C∩Fac Γ = C′. For any X ∈ C′, we have an isomorphism
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HomΛ(Γ, X) = X−
ε−X→ X by (ii). Since Γ is a (Λ,Λ)-bimodule, we can regard

X− = HomΛ(Γ, X) as a Γ-module such that G∗(X−) = X . Thus G∗ : F ′ → C′
is dense. Finally we will show that G∗ is full faithful on F ′. For any X,Y ∈ F ′,
take an exact sequence Γm → Γn → X → 0 in mod Γ. Taking HomΛ( , Y ) and
HomΓ( , Y ), we obtain HomΛ(X,Y ) = HomΓ(X,Y ) by Y = HomΛ(Γ, Y ). �

5.3. Let C be a τ -category, C′ a subcategory of C, and C := C/[C′] the factor
category. Then we can regard ind C as a disjoint union of ind C and ind C′ naturally.
By [I4, 1.4], C forms a τ -category again, and A(C) is obtained by deleting vertices
in ind C′ from A(C). Thus we easily obtain the terms θ±C and τ±C of left and right
τ -sequences in C. Notice that the non-trivial subcategory C′ of C is rejective if any
subcategory of C containing C′ is trivial except C′. Thus we can use both (1) and
(2) below to check the rejectivity.

Theorem. Let C′ be a rejective subcategory of a strict τ-category C. Assume that
C := C/[C′] is artinian.

(1) [I4, 8.2.1] C′ is a trivial subcategory of C if and only if C(B,A) = 0 holds for
any A ∈ ind−1 C and B ∈ ind+

1 C if and only if the condition below is satisfied:
For any X ∈ ind C ∩ ind−1 C, put

Y0 := X, Y1 := θ+
C X and Yi := (θ+

C Yi−1 − τ+
C Yi−2)+

for i ≥ 2. Then Yi ∈ Z(ind C − ind+
1 C) holds for any i ≥ 0.

(2) [I4, 8.2.2] C′ is a rejective subcategory of C if and only if µ−A is a monomor-
phism and µ+

B is an epimorphism in C for any A ∈ ind C − ind−1 C and B ∈
ind C − ind+

1 C if and only if (i) and (ii) below are satisfied:

(i) For any X ∈ ind C − ind−1 C, put Y0 := θ−C X, Y1 := θ+
C θ
−
C X − X and

Yi := θ+
C Yi−1 − τ+

C Yi−2 for i ≥ 2. Then Yi ∈ N ind C holds for any i ≥ 0.
(ii) For any X ∈ ind C − ind+

1 C, put Y0 := θ+
C X, Y1 := θ−C θ

+
C X − X and

Yi := θ−C Yi−1 − τ−C Yi−2 for i ≥ 2. Then Yi ∈ N ind C holds for any i ≥ 0.

5.3.1. Corollary (DK Rejection Lemma). Let C′ be a rejective subcategory of a
strict τ-category C. Assume that ind C − indC′ = {X} and C/[C′] is artinian. Then
C′ is a rejective subcategory of C if and only if X ∈ ind+

1 C ∩ ind−1 C holds.

5.4. Example. (1) By 5.3.1, singleton sets {4}, {6}, {8}, {24} in 4.5(1) and {1},
{4} in 4.5(3) are rejectable.

(2) We can easily check that
11→ 8→ 6 → 3

↓ ↓
4 → 24→ 22 → 19

in 4.5(2) is rejectable

by 5.3(2) (or (1)). Moreover, the AR quiver A(C′) of the corresponding rejective
subcategory C′ is the following:

7 1

�� @R ��
20 14 5

�� @R �� @R �� @R
2 - 21 - 18 - 15 - 12 - 9 - 2 13 - 17

@R �� @R �� @R ��
25 16 10

�� @R ��
26 23

τ+(20) = 10
Qp = {7, 13, 17, 25, 26}
Qi = {1, 5, 13, 17, 23}
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(3) We can easily check that 20 → 17 → 12 → 8 and
21→ 17→ 12
↓ ↓ ↓
18→ 14→ 10→ 6

and so

on in 4.5(4) are rejectable.

5.5. Let C′ be a rejective subcategory of a strict τ -category C. If C := C/[C′]
is artinian, then C forms a strict τ -category again by [I4, 6.1] (cf. 5.3(2)). In
particular, we obtain the following result by 2.1.

Proposition. Let C be a faithful torsionfree class over an artin algebra Λ, C′ a
rejective subcategory of C and C := C/[C′]. If # ind C < ∞, then C is equivalent to
a faithful torsionfree class over some artin algebra Λ′.

5.5.1. The above result 5.5 holds even if we drop the assumption # ind C < ∞.
See the author’s forthcoming papers.
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