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Microsatellite markers are widely used for genetic studies, but the relationship between microsatellite slippage mutation
rate and the number of repeat units remains unclear. In this study, microsatellite distributions in the human genome are
collected from public sequence databases. We observe that there is a threshold size for slippage mutations. We consider
a model of microsatellite mutation consisting of point mutations and single stepwise slippage mutations. From two sets of
equations based on two stochastic processes and equilibrium assumptions, we estimate microsatellite slippage mutation
rates without assuming any relationship between microsatellite slippage mutation rate and the number of repeat units. We
use the least squares method with constraints to estimate expansion and contraction mutation rates. The estimated
slippage mutation rate increases exponentially as the number of repeat units increases. When slippage mutations happen,
expansion occurs more frequently for short microsatellites and contraction occurs more frequently for long
microsatellites. Our results agree with the length-dependent mutation pattern observed from experimental data, and
they explain the scarcity of long microsatellites.

Introduction

Microsatellites are tandem repeats of DNA units.
There are usually 1–6 bp (base pairs) for a repeat unit
(motif). Microsatellites are highly abundant in eukaryotic
genomes and can be genotyped using polymerase chain
reaction (Weber and May 1989; Weber and Wong 1993).
Microsatellites are highly polymorphic and are widely used
as genetic markers in studies of disease mutations (Ashley
and Warren 1995; Leeflang et al. 1999), tumor and cancer
research (Sturzeneker et al. 2000), genetic mapping (Kong
et al. 2002), population genetics (Rosenberg et al. 2002),
and linkage and association studies (Ott 1999). Micro-
satellites are subject to mutations durng evolution. Besides
point mutations, polymerase template slippage mutations
may occur to change the number of repeat units in
a microsatellite locus (Schlötterer and Tautz 1992; Viguera,
Canceill, and Erlich 2001). An important problem is to
understand microsatellites slippage mutation mechanisms.

Based on phylogenetic analysis, Messier, Li, and
Stewart (1996) suggested a minimum number of repeat
units for slippage mutations. Using a simple mathematical
model, Rose and Falush (1998) demonstrated the existence
of a minimum threshold size for slippage mutations by
studying the ratio between the observed frequency and the
expected frequency of microsatellites. The estimated
threshold size was about eight nucleotides long irrespec-
tive of different motifs for mononucleotides, dinucleotides,
and tetranucleotides. The study suggested more compli-
cated mechanisms for microsatellite slippage mutations
(Rose and Falush 1998). However, Pupko and Graur
(1999) debated the existence of threshold sizes for slippage
mutations.

In experimental studies for human microsatellite
mutations in vivo, high mutation rates from about 10�4

to 10�2 per locus per generation were observed. Besides
single step mutational events, some multiple steps
mutational events were also observed. Zhang et al.
(1994) observed that longer trinucleotide repeats had
much higher mutation rates than short ones and that
contractions occurred more frequently than expansions.
Xu et al. (2000) observed more mutations and contractions
for longer tetranucleotide repeats. Bacon, Dunlop, and
Farrington (2001) observed high mutation rates for
mononucleotides. Huang et al. (2002) observed that the
mutation rate increased and the probability of expansion
given mutation occurrence decreased as the number of
repeat units increased for dinucleotides. Length-dependent
mutation patterns of microsatellites were also observed
from different organisms, such as flies (Harr and
Schlötterer 2000) and yeast (Wierdl, Dominska, and Petes
1997). In all those experiments, the numbers of observed
mutations were not large enough to give clear patterns for
the relationship between microsatellite slippage mutation
rate and the number of repeat units.

With the whole genome sequence available, it is
possible to collect a large volume of data for microsatellite
distributions. The equilibrium assumption assumes that the
observed distributions of this generation are the same as
those of the next generation. Together with the equilibrium
assumption, it is possible to estimate microsatellite
mutation rates. Bell and Jurka (1997) first proposed such
an approach and applied it to some genome sequences.
Kruglyak et al. (1998, 2000) extended such an idea and
proposed a novel estimation method. Sibly, Whittaker, and
Talbort (2001) further generalized it with a maximum
likelihood estimation method. Those studies were based on
the symmetric single stepwise model that assumes the
expansion rate to be the same as the contraction rate. A
recent study by Sibly et al. (2003) found that the
symmetric single stepwise model for microsatellite
slippage mutations cannot explain the observed human
sequence data. In a recent study by Calabrese and Durrett
(2003), they found that it was difficult to model micro-
satellite slippage mutations using simple functions. They
observed a bias toward contraction for long microsatellites
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by assuming a quadratic model or piecewise linear model
for slippage mutation rates. Most of the previous
approaches were based on the single stepwise mutation
model. This simplified model can reflect microsatellite
mutation mechanisms because single-step mutational
events were the major mutational events observed in
experiments. In previous studies (Bell and Jurka 1997;
Kruglyak et al. 1998, 2000; Sibly, Whittaker, and Talbort
2001; Calabrese and Durrett 2003; Sibly et al. 2003),
a constant, linear, or quadratic relationship between
microsatellite slippage mutation rate and the number of
repeat units was assumed. Such assumptions are not
strongly supported by the experimental results (Zhang et al.
1994; Xu et al. 2000; Bacon, Dunlop, and Farrington
2001; Huang et al. 2002).

In this study, we propose a novel method using two
sets of equations based on two stochastic processes to
estimate microsatellite slippage mutation rates. This study
differs from previous studies by introducing a new multi-
type branching process in addition to the stationary
Markov process proposed before (Bell and Jurka 1997;
Kruglyak et al. 1998, 2000; Sibly, Whittaker, and Talbort
2001; Calabrese and Durrett 2003; Sibly et al. 2003). The
distributions from the two processes make it possible to
estimate microsatellite slippage mutation rates without
assuming any relationship between microsatellite slippage
mutation rate and the number of repeat units. We apply our
method to the sequence data from the human genome.
We also develop a novel method for estimating the thres-
hold size for slippage mutations. In the following para-
graphs, we first explain our method for data collection
and the mathematical model; we then present estimation
results.

Materials and Methods

In this section, we first describe how the data are
collected from public sequence database. Then, we
introduce two stochastic processes to model the collected
data. Based on the equilibrium assumption that the
observed distributions of this generation are the same as
those of the next generation, two sets of equations are
derived for estimation purposes. Next, we introduce a novel
method for estimating threshold size for microsatellite
slippage mutation. Finally, we give the details of our
estimation method.

Data Collection

We downloaded the human genome sequence from
the National Center for Biotechnology Information data-
base ftp://ftp.ncbi.nih.gov/genbank/genomes/H_sapiens/
OLD/(updated on September 06, 2001). We collected
mono-, di-, tri-, tetra-, penta-, and hexa- nucleotides in two
different schemes. The first scheme is simply to collect all
repeats that are microsatellites without interruptions
among the repeats. The second scheme is to collect
perfect repeats (Sibly, Whittaker, and Talbort 2001), such
that there are no interruptions among the repeats and the
left flanking region (up to 2l nucleotides) does not contain
the same motifs when microsatellites (of motif with l
nucleotide bases) are collected. Mononucleotides were
excluded when di-, tri-, tetra-, penta-, and hexa- nucleo-
tides were collected; dinucleotides were excluded when
tetra- and hexa- nucleotides were collected; trinucleotides
were excluded when hexanucleotides were collected. For
a fixed motif of l nucleotide bases, microsatellites with the
number of repeat units greater than 1 were collected in the
above manner. The number of microsatellites with one
repeat unit was roughly calculated by [(total number of
counted nucleotides) �

P
i.1 l 3 i 3 (number of micro-

satellites with i repeat units)]/l. All the human chromo-
somes were processed in such a manner. Table 1 gives an
example of the two schemes.

Mathematical Models and Equations

We study two models for microsatellite mutations. For
all repeats, we use a multi-type branching process. For
perfect repeats, we use a Markov process as proposed in
previous studies (Bell and Jurka 1997; Kruglyak et al. 1998,
2000; Sibly, Whittaker, and Talbort 2001; Calabrese and
Durrett 2003; Sibly et al. 2003). Both processes are discrete
time stochastic processes with finite integer states f1, 2, . . . ,
Ng corresponding to the number of repeat units of micro-
satellites. To guarantee the existence of equilibrium
distributions, we assume that the number of states N is
finite. In practice,N could be an integer greater than or equal
to the length of the longest observed microsatellite. In both
models, we consider two types of mutations: point mutations
and slippage mutations. Because single-nucleotide substi-
tutions are the most common type of point mutations, we
only consider single-nucleotide substitutions for point
mutations in our models. Because the number of nucleotides
in a microsatellite locus is small, we assume that there is at
most one point mutation to happen for one generation. Let
a be the point mutation rate per repeat unit per generation,
and let ek and ck be the expansion slippage mutation rate and
contraction slippage mutation rate, respectively. In the
following models, we assume that a. 0; ek. 0, 1� k�N�
1 and ck � 0, 2 � k � N.

Modeling all repeats

For all repeats, we consider the following stochastic
process:

1. After one generation, by microsatellite slippage
mutations, any state k can change to state k þ 1 with

Table 1
An Example for Collecting Tetranucleotides Classified
by Their Length

Repeat 2 Repeat 3 Repeat 4 Repeat 5

all repeats 1 (7,14) 1 (19,30) 1 (45,60) 1 (61, 80)
perfect repeats 1 (7,14) 0 1 (45,60) 1 (61, 80)

NOTE.—The results for collecting tetranucleotides from the sequence

‘‘TTTAAAATGT ATGTATCTAT GTATGTATGT TTTAAACACA CACAATG-

GAT GGATGGATGG CAGGCAGGCA GGCAGGCAGG TA’’ with a space after

every 10 nucleotide bases. ‘‘repeat i’’ means the number of tetranucleotides with the

number of repeat units equal to i. The numbers in parentheses are the start and end

positions of the collected tetranucleotides.
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probability ek for 1 � k � N � 1 and state k � 1 with
probability ck for 2 � k � N.

2. After one generation, by point mutations, one micro-
satellite will break, and the breaking point will be
another microsatellite motif. So with probability a per
repeat unit, a microsatellite of state k, 2 � k � N can
generate one of state 1, one of state h, and one of state
k � h � 1 where 1 � h � k � 1, if the point mutation

does not happen at the boundary. Otherwise, we will
have one of state 1, and one of state k � 1.

Let Zn ¼ (Zn1, Zn2, . . . , ZnN), n ¼ 0, 1, 2, . . . be the
corresponding stochastic process, where Znk is the number
of microsatellites with k repeat units after n generations.
fZng forms a multi-type branching process. The first
moments matrix (Harris 1963) is given by

The jth entry in the ith row in the matrix M represents the
expected number of microsatellites with j repeat units in
the next generation when there is only one microsatellite
with i repeat units in this generation. We explain in more
detail about the expected number generated by point
mutations. For a microsatellite with k repeat units, there are
k possible repeat units in which a point mutation may
occur. The breaking point will generate another micro-
satellite motif, which is of state 1. If the point mutation
happens at the second position or the penultimate position,
we will have a microsatellite of state 1 at the boundary.
Therefore, the expected number of microsatellites of state
1 is (kþ 2)a.

From the Perron-Frobenius Theorem (Harris 1963),
the Perron-Frobenius eigenvalue of M is greater than 1, and
we denote it as 1þk. We denote the left Perron-Frobenius
eigenvector of M as p¼ (p1, p2, . . . , pN). From the theory of
multi-type branching processes (Harris 1963; Athreya and
Ney 1972; Athreya and Vidyashankar 1995), we have
limnfi‘Zn/jZnj¼p. Here j�jmeans to sum over all the entries
of a vector. Therefore, the distribution of all repeats will
converge to p. From equation pM¼ (1þk)p, we have

pkek � pkþ1ckþ1 ¼ arkþ1 þ 2aðw2 þw3 þ � � � þwkþ1Þ � kvk;

ð1Þ
for all 0 , k, N, where rk¼

PN
i¼k ipi, wk¼

PN
i¼k pi and vk

¼
Pk

i¼1 pi.

Modeling perfect repeats

For perfect repeats, we consider the following
Markov process proposed in previous studies (Bell and
Jurka 1997; Kruglyak et al. 1998, 2000; Sibly, Whittaker,
and Talbort 2001; Calabrese and Durrett 2003; Sibly et al.
2003).

1. After one generation, by microsatellite slippage
mutations, any state k can change to state k þ 1 with
probability ek for 1 � k � N � 1 and state k � 1 with
probability ck for 2 � k � N.

2. After one generation, by point mutations, any state k,
2 � k � N can change to some state h, 1 � h � k� 1.
There are k positions that a point mutation can happen
equally likely with probability a per repeat unit. If
a point mutation happens at the boundary, we will
collect a microsatellite with repeat k� 1. Therefore by
point mutation, any state k can change to state h, 1 �
h � k � 2 with probability a, and state k � 1 with
probability 2a.

Let Xn, n¼0, 1, 2, . . . be the corresponding stochastic
process. fXng forms a Markov process. The transition
matrix is given by

M¼

1 � e1 e1 0 . . .
4aþ c2 1 � 2a� e2 � c2 e2 0 . . .
. . .

ðk þ 2Þa 2a 2a . . . 2aþ ck 1 � ka� ek � ck ek 0 . . .
. . .

ðN þ 2Þa 2a 2a . . . . . . . . . . . . . . . . . . 2aþ cN 1 � ka� cN

0
BBBBBB@

1
CCCCCCA
:

P ¼

1 � e1 e1 0 . . .
2aþ c2 1 � 2a� e2 � c2 e2 0 . . .
. . .
a a a . . . 2aþ ck 1 � ka� ek � ck ek 0 . . .
. . .
a a a . . . . . . . . . . . . . . . . . . 2aþ cN 1 � ka� cN

0
BBBBBB@

1
CCCCCCA
:
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From the theory of Markov process, there is a stationary
distribution q ¼ (q1, q2, . . . , qN) with qP ¼ q, which is
equivalent to

qkek � qkþ1ckþ1 ¼ aðkþ 1Þukþ1 � aukþ2; ð2Þ

for all 0 , k , N, where uk ¼
PN

j¼k qj.

Two Sets of Equations

Note that a is a nuisance parameter in both models.
We can only estimate the relative expansion slippage rates
and contraction slippage rates compared to the point
mutation rate. We divide both sides of equations (1) and
(2) by a and denote k, ek, and ck for the previous k/a,
ek/a and ck/a, respectively. We have the following two
fundamental equations.

pkek � pkþ1ckþ1 ¼ rkþ1 þ 2ðw2 þw3 þ � � � þwkþ1Þ � kvk;

qkek � qkþ1ckþ1 ¼ ðkþ 1Þukþ1 � ukþ2: ð3Þ

�

Compared to microsatellites slippage mutation rates,
point mutation rates are relatively small. The difference
between the matrices M and P is of the level of point
mutation rate a, which is very small. Therefore, we expect
only slight differences between the two distributions p and
q when they are normalized.

For convenience, the above point mutation rate a is
the point mutation rate for the whole motif. We will apply
our estimation method to sequence data of mono-, di-, tri-,
tetra-, penta-, and hexa- nucleotides. Therefore, a is
different for microsatellites with motifs of different
numbers of nucleotide bases. The estimation results are
the relative ratios between the slippage mutation rate and
point mutation rate. To keep the estimation results
comparable, we will multiply the estimated slippage
mutation rates by the motif length l.

Threshold Size

We define microsatellite slippage threshold size T as
the number of repeat units such that ck¼ 0, 2 � k � T and
ck . 0, for k . T. Under this threshold size T, there are
almost no slippage mutations; Above T, microsatellites
slippage mutations will dominate point mutations.

For the observed distributions fpkg for all repeats and
fqkg for perfect repeats, we consider their sequential ratios
fpkþ1/pkg and fqkþ1/qkg. A null hypothesis is that there is
no microsatellite slippage mutation and that microsatellites
are generated by random arrangement by different
nucleotides (Pupko and Graur 1999; Rose and Falush
1998). Under this hypothesis, fpkg and fqkg should follow
a geometric distribution. Therefore, we expect that the
sequential ratios are all of relatively low and constant
level.

If the sequential ratios can keep a relatively low and
constant level up to L, then the observed fractions of states
up to Lþ 1 can be explained by the above null hypothesis.
This implies that there is almost no slippage mutation from
L þ 2 to L þ 1. Therefore, we can estimate the threshold
size T by Lþ 2.

Estimating Slippage Mutation Rates

When the number of repeat units is below T,
microsatellite slippage mutation rates are small and can
be regarded as 0. In the following paragraphs, we will
examine only slippage mutation rates of microsatellites
with a number of repeat units greater than T. Statistically,
the estimated results will be reliable only when we have
a large number of observations. Therefore, we estimate
slippage mutation rates of microsatellites with a number of
repeat units ranging from T þ 1 to H � 1, where H is the
minimum number of repeat units for which either the
observed number of all repeats or perfect repeats with H
repeat units is less than 100.

The estimated threshold size for microsatellites
slippage mutation is useful for computing the Perron-
Frobenius eigenvalue 1 þ k. On the threshold size T, we
set the contraction slippage mutation rate cT ¼ 0. Then k
and eT�1 can be obtained by directly solving equations (3)
for k¼T�1. With k available, we can estimate ek and ckþ1

using equations (3) for k � T. Owing to random variation
of the observations, some of solved values for ek and ckþ1

are negative. It was observed from experiments (Zhang
et al. 1994; Xu et al. 2000; Huang et al. 2002) that the
contraction slippage mutation rate increased with the
number of repeat units. We thus use the following strategy
to guarantee non-negative solutions: If the direct solutions
ek and ckþ1 from equations (3) are all non-negative, we will
accept them. Otherwise, we set ckþ1 ¼ ck and compute ek
using the least squares method for equations (3). The
confidence intervals for our estimated slippage mutation
rates can be obtained using the bootstrap method (Effron
1979).

Results
Microsatellites Frequencies

Data were collected for 22 autosomes, chromosome
X, and chromosome Y. The observed distributions from
different chromosomes had similar patterns (data not
shown), indicating that the microsatellite mutation mech-
anism is similar for different chromosomes. Therefore, we
combined the distributions for all the chromosomes
together as the observed distribution.

Figure 1 shows the observed frequency in logarithm
scale for all repeats fpkg and perfect repeats fqkg (see
Materials and Methods for details). We observe that
mononucleotides are the most abundant microsatellites in
the human genome, followed by dinucleotides, trinucleo-
tides, etc. Microsatellites can contain a large number of
repeat units, with the observation of more than 65 for
mononucleotides and more than 49 for dinucleotides.
Overall, microsatellite frequencies decrease exponentially
as the number of repeat units increases. But the shape
of the frequency distribution is not regular, with different
slopes in different intervals of the number of repeat
units. Around repeat 36 for mononucleotides, repeat 10
for tetranucleotides, we observe ‘‘humps.’’ The compli-
cated shape of microsatellite frequency distributions in-
dicates that the microsatellite mutation mechanism is
complicated.
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The Threshold Size

Figure 2 shows the observed sequential ratios of all
repeats and perfect repeats for microsatellites in the
human genome (See Materials and Methods for definition
of sequential ratio). We observe that the sequential ratios
keep a relatively low and constant level up to 7, 2, 2, 2, 2,
and 2 for mono-, di-, tri-, tetra-, penta-, and hexa-
nucleotides, respectively, and then the sequential ratios
suddenly jump and maintain a high and fluctuating level.
Those observations provide evidence for the existence of
the threshold size for microsatellite slippage mutations.
Based on our criterion for estimating the threshold size
(see Materials and Methods for details), the estimated
threshold size T is 9, 4, 4, 4, 4, or 4 for mono-, di-, tri-,
tetra-, penta-, or hexa- nucleotides, respectively. The
results are also given in table 2.

Estimating Slippage Mutation Rates

Figure 3 shows the total estimated slippage mutation
rates fek þ ckg in logarithm scale, and figure 4 shows the
estimated expansion ratio fek/(ek þ ck)g together with
confidence intervals. Our estimation results show that
microsatellites with different motif lengths have similar
mutation mechanisms. There is an exponentially increas-
ing trend for the estimated slippage rate fek þ ckg, and
a decreasing trend for the estimated expansion ratio fek/
(ek þ ck)g. Our results are consistent with the estimated
level of mutation rates from experimental studies (Zhang et
al. 1994; Xu et al. 2000; Bacon, Dunlop, and Farrington
2001; Huang et al. 2002) in which higher mutability and
more contractions than expansions were observed at longer
microsatellite loci. The point mutation rate per nucleotide
per generation is of the level of a¼ 10�8 (Li 1997). Using
this quantity, the estimated total slippage rates from Tþ 1
to H � 1 are as given in table 3. The estimated average
mutation rates based on experimental studies are 1.94 3
10�4 for dinucleotides (Huang et al. 2002) and 1.8 3 10�3

for tetranucleotides (Xu et al. 2000), both within the above
intervals from our estimation. In the experiments with
mononucleotides (Bacon, Dunlop, and Farrington 2001),
only BAT-40 loci were studied. Most BAT-40 loci contain
about 40 poly-(A/T) repeat units, and the estimated
average mutation rate is 6.95 3 10�2. Our estimated
slippage mutation rate for mononucleotides with 40 repeat
units is 8.8310�3 with confidence level (1.8310�3, 1.63
10�1). In experiments with trinucleotides (Zhang et al.
1994), the estimated average mutation rate is 1.3 3 10�2

for 20–22 repeat alleles and 4.4 times higher for 28–31
repeat alleles. Those numbers of repeat units in the
experiment of Zhang et al. are not in our estimation range
(5–17). But if we extend the trend of our estimated
slippage mutation rates for trinucleotides in figure 3, we
expect to have the same level of slippage mutation rate as
reported in experimental studies. Interestingly, in figure 3
all of our estimated values including the confidence
intervals, are less than 1 when the point mutation rate is
set at a¼ 10�8.

As shown in figure 3 and figure 4, the patterns of the
estimated slippage mutation rates and expansion ratios are

quite complicated. Overall, we can roughly use a line to fit
the estimated slippage mutation rates in logarithm scale,
which implies an exponential relationship between the
slippage mutation rate and the number of repeat units. The
trend of the estimated expansion ratios looks like it is
decreasing exponentially.

We obtained 95% confidence intervals using the
bootstrap method. Those confidence intervals for our
estimations are shown in figure 3 and figure 4. Because the
number of microsatellites decreases rapidly as the number
of repeat units increases, the interval becomes wider as the
number of repeat units increases.

Discussion

A slippage mutation threshold size was estimated by
a previous in silico study for the yeast Saccharomyces
cerevisiae (Rose and Falush 1998), where the authors
claimed that a minimum threshold size of about 8
nucleotide bases is necessary for slippage mutations. A
similar threshold size was observed in previous studies of
microsatellite mutation during polymerase chain reaction
(Lai et al. 2003; Lai and Sun 2003; Shinde et al. 2003). In

FIG. 1.—The observed frequencies for mono-, di-, tri-, tetra-, penta-,
and hexa- nucleotides for the human genome. In the figure, ‘‘all’’ denotes
observed frequencies of all repeats fpkg, ‘‘perfect’’ denotes observed
frequencies of perfect repeats fqkg. The X-axis denotes the number of
repeat units, and the Y-axis denotes the value of frequency in logarithm
scale.
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the present study, we also observed evidence of a slippage
mutation threshold. The results from those studies suggest
common features of microsatellite mutation mechanism
both in vivo and in vitro.

Using two sets of equations based on a multi-type
branching process and a Markov process, we estimated
mutation rates of microsatellites in the human genome
without assuming any relationship between microsatellite
slippage mutation rate and the number of repeat units. The
novelity of this study is the introduction of a multi-type
branching process. In previous studies involving only the
Markov process, some relationship between the micro-
satellite slippage mutation rate and the number of repeat

units has to be assumed. Our method can also be applied to
estimate microsatellite mutation mechanisms for other
organisms when large amounts of genome sequence data
are available. It is possible to compare microsatellite
mutation mechanisms among different organisms.

We observed an exponentially increasing trend for the
estimated slippage mutation rates and a decreasing trend
for the estimated slippage expansion ratios. The total
slippage mutation rate may differ up to 103 ; 104-fold for
different numbers of repeat units. Our estimation results
are consistent with experimental studies (Zhang et al.
1994; Xu et al. 2000; Bacon, Dunlop, and Farrington
2001; Huang et al. 2002) and computational studies
(Calabrese and Durrett 2003). Long microsatellites are
highly unstable and likely to mutate. When slippage
mutations happen, expansions occur more frequently if the
number of repeat units is small, and contractions occur
more frequently if the number of repeat units is large.
When mutations happen, long microsatellites are likely to
mutate to shorter ones; short microsatellites are likely to
mutate to longer ones. The scarcity of large numbers of
repeat units in a microsatellite locus can be explained by

Table 2
The Estimated Threshold Size

mono- di- tri- tetra- penta- hexa-

9 4 4 4 4 4

NOTE.—The estimated threshold size for microsatellite slippage mutations in

the table denotes the number of repeat units (motif) of a microsatellite.

FIG. 2.—The observed sequential ratios: (the first row from left to right) mono-, di-, tri-nucleotides; (the second row from left to right) tetra-, penta-,
and hexa- nucleotides. In the figure, ‘‘all’’ denotes observed sequential ratios of all repeats fpkþ1/pkg; ‘‘perfect’’ denotes observed sequential
ratios of perfect repeats fqkþ1/qkg. The X-axis denotes the number of repeat units, and the Y-axis denotes the value of ratio. We set the range
for Y-axis from 0 to 1 because most sequential ratios are smaller than 1.
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the high mutation rate and downward mutation bias when
the number of repeat units is large.

As Calabrese and Durrett (2003) have pointed out, it is
difficult to describe microsatellite slippage mutation rates
using simple functions. We observe complicated patterns in
our estimated results, which suggests that the microsatellite
slippage mutation mechanism is complicated.

It is possible that genetic characteristics of local
sequences influence the microsatellites mutation mecha-
nism. Calabrese and Durrett (2003) applied comparative
studies to show that local dinucleotide distributions were
not significantly different for the regions with different
local recombination rates, proximity to genes, local GC
contents, location on the chromosome, and proximity to
Alu repeats. Such results support the approach to
estimating microsatellite slippage mutation rates using
whole genome sequence data.

There are several limitations to our approach. One is
that we grouped all the motifs with the same length

together in this study. Different motifs may have different
mutation mechanisms, and their mutation mechanisms
need to be studied separately when enough data become
available. In the present study, we assumed that the
distribution of the number of perfect repeats and all
repeats had achieved equilibrium, a common assumption

FIG. 3.—The estimated results for the total slippage mutation rates for different microsatellites: (the first row from left to right) mono-, di-, tri-
nucleotides; (the second row from left to right) tetra-, penta-, and hexa- nucleotides. The X-axis denotes the number of repeat units, and the Y-axis
denotes the ratio in logarithm scale of the estimated total slippage mutation rate compared to the point mutation rate (ckþ ek)/a. M, U, and L denote the
median, upper 2.5%, and lower 2.5% quantiles from the bootstrap estimation.

Table 3
The Range of the Estimated Slippage Mutation Rates

Microsatellites Repeats Range
Slippage Mutation

Rates Range

mono- [10, 47] [10�6, 10�2]
di- [5, 31] [10�6, 10�2]
tri- [5, 17] [10�6, 10�3]
tetra- [5, 19] [10�6, 10�3]
penta- [5, 14] [10�7, 10�4]
hexa- [5, 8] [10�7, 10�4]

NOTE.—The range of our estimated slippage mutation rates when point

mutation rate a is set at 10�8 per nucleotide per generation.
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in almost all the studies of similar type. An important
question is how to test if the distributions have achieved
equilibrium. These questions need to be considered in
future studies.
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