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We compare two independent generalizations of the usual spherical harmonics, namely 
monopole harmonics and spin-weighted spherical harmonics, and make precise the sense in 
which they can be considered to be the same. By analogy with the spin-gauge language, raising 
and lowering operators for the monopole index of the monopole harmonics can immediately be 
written down. 

I. INTRODUCTION 

Once again physicists in two completely different areas 
have independently developed the same mathematics. Wu 
and Yang! introduced2 monopole harmonics as particular 
solutions of the Schrodinger equation for an electron in the 
field of a Dirac magnetic monopole. Newman and Penrose3 

introduced2 spin-weighted spherical harmonics as a means 
to describe certain quantities exhibiting a particular "spin
gauge" behavior which occur naturally in the asymptotic 
expansion of the gravitational field in null directions. 

In what follows we compare these two generalizations 
of the usual spherical harmonics and show that, for a parti
cular choice of spin gauge, the spin-weighted spherical har
monics reduce to the monopole harmonics. As a simple ap
plication of this result, we note that the fundamental 
operators in the spin-gauge language raise or lower the spin 
weight by 1. Thus, writing these operators in the appropriate 
gauge immediately yields operators which raise or lower the 
monopole index of the monopole harmonics by 1. Going in 
the other direction, we adapt the angular momentum opera
tors of the Schrodinger picture to the spin-gauge language 
and derive the corresponding operators there. 

In Sec. II we first review monopole harmonics and in 
Sec. III we do the same for spin-weighted spherical harmon
ics. We compare the two in Sec. IV and then discuss our 
results in Sec. V. 

II. MONOPOLE HARMONICS 

The term "monopole harmonics" was first used by Wu 
and Yang l to describe solutions of the SchrOdinger equation 
for an electron in the field of a magnetic monopole. How
ever, the functions used in this description are almost as old 
as the relevant Schrodinger equation itself, which dates back 
to the original paper on monopoles by Dirac.4 

These functions were first discussed by TammS and 
Fierz6 and then by numerous other authors.7 

The fundamental difference in the approach ofWu and 
Yang l is that elements of their Hilbert space are not func
tions at all, but rather sections of a particular fiber bundle. 
This eliminates the string singularity of the original descrip
tion of the Dirac monopole. Although the presentation be-

a) Permanent address. 

low follows Wu and Yang l we will deliberately deemphasize 
the underlying fiber bundle structure. 

Define the regions Ra and Rb on the sphere by 

Ra = {O";O<1Tj, Rb = {O<O";1Tj. (1) 

The relevant Schrodinger equation is 

[-(lIr)a,(ra,)+(lIr)[L 2- q2] + V-E]f/!=O, (2) 

where V(r) is the potential, E is the energy eigenvalue, L 2 is 
the total angular momentum operator, and q = eg (see Ref. 
8). 

One makes the ansatz 

f/!(r,O,rp) = R (r)Yqlm(O,rp), (3) 

where the Yq1m are characterized by their angular momen
tum eigenvalues 

L 2Yq1m = 1(1 + I)Yq1m , LzYq1m = mYq1m . (4a) 

We also have 

L± Yq1m = [(l =Fm)(1 + 1 =Fm)] l12Yqlm± l' (4b) 

The fiber bundle structure can be interpreted as follows: The 
angular momentum operators take different forms in regions 
R a and R b, leading to different functions Y:1m and Y!/m 
which together make up a monopole harmonic Yq1m . In this 
paper, however, we will only be concerned with the/unctions 
Y:/m and Y!/m' 

The angular momentum operators are 

= -41 + .~ (cosO-I)L:, (5c) 
sin 0 

L! = - i a", + q, (5d) 

L b± = e±ltp( ± ae + i ~s 0 a _ q(I ~ cos 0)), (5e) 
smO '" smO 

2' 2q2 
(L 2)b= -41 -~(1 + cos O)a", +-'-2-(1 +cosO) 

smO smO 

= -41 + .~ (cosO + I)L!, 
sm 0 

(5f) 
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where 

L1 =a 2 + cosO a +_I_a2 
() sin 0 () sin2 0 '" 

is the Laplace operator on the two-sphere. 
With appropriate normalization the Yqlm satisfy 

i YqlmYq/,m' dS=811'8mm" (6a) 

where the integral is over the full two-sphere; we note that 
the integrand is the same in the regions R a and R b. We also 
have 

Yqlm = 0, for I< Iql, 
(6b) 

(6c) 

where the Ylm denote the usual spherical harmonics. Final
ly, we note that {Yqlm J for given q is complete in the follow
ing sense: Given any sectionf = (fa I b), wherefa andfb are 
functions on R a and R b, respectively, satisfyingfa = e2qi"'fb

, 

thenf can be expanded as a linear combination ofthe Yqlm . 

III. SPIN-WEIGHTED SPHERICAL HARMONICS 

Newman and Penrose3 introduced spin-weighted 
spherical harmonics based on ideas in Janis and Newman9 in 
order to describe the asymptotic behavior of the gravita
tional field of isolated systems at large null distances from 
the source. Although they did this for a particular choice of 
spin gauge (the "standard" spin gauge) the concept can be 
immediately generalized to an arbitrary spin gauge. Except 
for this minor difference our presentation follows Newman 
and Penrose. 3 

Consider a two-sphere with the usual metric 

gab dxa dxb = dO 2 + sin2 0 dql. (7) 

Instead of the usual orthonormal basis [a(),(lIsin 0 )a",], we 
introduce a complex null basis (ma,ma) via 

(8) 

where the bar denotes complex conjugation. The general m a 

can thus be written 

(9) 

The choice of the function r( O,tp) will be called the choice of a 
spin gauge. We are thus led to consider transformations of 
the form 

(10) 

A quantity Q whose behavior under this gauge transforma
tion is 

(11 ) 

is said to have spin weight s [sw(Q ) = s]. The simplest exam
ple of this is 

sw(ma) = + 1, sw(ma) = - 1. (12) 

Note that not all quantities have a well-defined spin weight. 
An example of this is 

(13) 

where Va denotes covariant differentiation on the two
sphere, which transforms under (10) as 
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(14) 

We can, however, combine m a and 7i into operators which 
raise or lower the spin weight. For sW(Q ) = s define lO 

3Q=maaaQ + 27isQ, d=maaaQ-2asQ, (15) 

where 3 is the Icelandic letter "edth"; note that 3Q is the 
complex conjugate of 3Q since sW(Q ) = - sw(Q). The fun
damental property of these operators is 

sw(3Q) =s + 1, 
sw(Q) =s=> ('3i'Q) _ 1 sw u -s-, 

i.e., sw (3) = 1, sw (d) = - 1. We also have 

[3,d] Q = - 2sQ. 

(16) 

(17) 

The standard gauge is given by choosing r = 0 in (9), thus 

30 = a() + (ilsin 0 )a", - s(cos Olsin 0), 

do = a() - (ilsin 0 )a", + s(cos Olsin 0). 

In an arbitrary gauge we have 

(18) 

:II ir[a i a ( cos O. 1)] u=e () +-.- +s --. --zr,() +-.-r, ' 
sm 0 '" sm 0 sm 0 '" 

d - ir[a i a ( cos O. 1)] = e () - sin 0 '" - s - sin 0 + zr,() + sin Or.", . 

(19) 

We can now obtain the spin-weighted spherical harmonics 
(for integer spin) s Ylm by raising and lowering the spin 
weight of the usual spherical harmonics Ylm(O,tp) 
[sw(Ylm ) = 0] II 

[ 
(I - s)! ] 112 s --- 3 Ylm , O':;'s.:;.l, 
(I +s)! 

[ 
(I + s)! ] 112 ( _ I)Sd - sy -1.:;.s.:;.O, (20) 
(/-s)! 1m' 

0, I< lsi. 

We summarize the properties of the s Ylm 

sw(s Ylm ) = s, (2Ia) 

3(sYlm )= + [(l-s)(/+s+ I)]1I2 s+ I Ylm ' (2Ib) 

d(sYlm )= - [(l+s)(/-s+ I)]1I2 s_ I Ylm ' (2Ic) 

oYlm = Ylm , (2Id) 

lsYlm sYI'm' dS=811 ,8mm,. (2Ie) 

We can ask if there are generalizations ofthe usual angular 
momentum operators, i. e., operators L z ' L ± ,L 2 satisfying 
[cf. (4)] 

L± sYlm = [(l =t=m)(1 + 1 ± m)]112 sYlm ±1> 

L 2 s Ylm = I (I + 1) s Ylm . 

Since these imply that 

[L,3] = 0 = [L,d], 

(22) 

(23) 

whereL represents any of the angular momentum operators, 
one can easily solve for these operators. The result is 12 

L z = - i a", - sr."" 
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L - ±iq>[ ±a + icos() a 
± -e e. () '" sm 

( 
1 . cos () )] 

+ s - sin () + 'r.e + sin () r.", ' 

L2= -.1'+ 2scos() L +~ 
sin2 () Z sin2 () 

= -.1 + is(.1r) - 2sr.e(Ly cos", - Lx sin",) 

~ () )L r( . .2 y'", - 1 ) + ~() cos - r.", Z - r.e + . 2 () , 
sm sm 

where 

.1 ' =.1 - is(.1r) - 2is(r.e ae + r.", a",/sin2 ()) 

-r(Y.e + y'",/sin2 (), 

and 

(24) 

Here,.1 ' is just the operator obtained from.1 by the substitu
tions 

a",f-+a", -isr."" aef-+ae -isr.e· 

Note that in the standard gauge, den~ted "0" the L o± 
are just the angular momentum operators J ± given in Lan
dau and Lifschitzl3 for the symmetric top (with k there iden
tified with - s here). The similarity between the symmetric 
top operators and the Yqlm has already been pointed out, 
e. g., in Ref. 6. 

IV. COMPARISON OF MONOPOLE AND SPIN
WEIGHTED SPHERICAL HARMONICS 

Comparing (24) with (5) we see that if we introduce the 
gauges A, defined by r = + rp, and B, defined by r = - rp 
[in (9)], and if we make the identification q = s, then 

(25) 

where L again represents any of the angular momentum op
erators. But since the Yqlm are fully determined up to a con
stant phase factor for each q by specifying q, the behavior of 
the angular momentum operators [Eq. (4)], and the normali
zation condition (6a), and since the. Ylm have the same be
havior with respect to angular momentum [Eq. (22)] and the 
same normalization [Eq. (21e)], we see that Yqlm and q Ylm 
differ at most by a constant (q-dependent) phase factor. With 
our. Ylm as defined in (20) we have 

Y o _ yA. yb _ yB 
qlm -q 1m' qlm -q 1m' (26) 

This is our main result. 
Note that we can now immediately give raising and 

lowering operators for the monopole index of the monopole 
harmonics; these are just 3 and '3 in the appropriate gauge: 

3A.=e+iq>(ae +_._i_a +q (1-.COS())), 
sm () '" sm () 

3B=e-iq>(a +_i_a _ (1 +COS())) 
e '()'" q .() , sm sm 

(27) 

'3A.=e- I"'(a _~ _ (I-COS())) 
e '()'" q .() , sm sm 
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'3B=e+ i",(ae __ ._i_a +q (1 +.COS())). 
sm () '" sm () 

[To obtain the correct normalization merely divide these by 
the constant on the right side of(21b) or (21c) withs = q.] 

V. DISCUSSION 

Our result (26) should not be surprising. The monopole 
harmonics are analytic, whereas the operator 30 has a direc
tion-dependent limit at () = 0 and () = 11". Going to the gauge 
A or B is necessary in order to tum 3 into an analytic opera
tor on the region R 0 or R b!14 

Futhermore, since the. Y1m of course have spin weight 
s, our result can be interpreted as follows: Remove the ex
plicit q dependence (i. e., e ± Iqtp) from the q Yi::. The result is 
precisely the spin-weighted spherical harmonics q Y~m in 
standard gauge. 

We have only explicitly treated the spin-weighted 
spherical harmonics for integer spin. However, the argu
ment used in Sec. III to introduce the angular momentum 
operators L can be inverted: we could equally well define the 
spin-weighted spherical harmonics as eigenfunctions of L. It 
is then obvious that the results of Sec. IV are also valid for 
half-integer spin. 

Note added: In fact, if we let. yrm denote the spin
weighted spherical harmonics in spin gauge r [Eq. (9)] then II 

(28) 

_ ( - 1)'(21 + 1)1/2 I 
= (411")1/2 D -.m(rp,(),r), 

where the D I_.m are the Wigner D functions as given by 
Goldberg et al. IS Thus, choosing a gauge rin the sense of this 
paper corresponds to fixing a Euler angle ( - r) in the argu
ment of the Wigner D functions. As pointed out by the re
feree, the spin-weighted spherical harmonics in standard 
gauge s Y~m and the monopole harmonics Y;i!:. merely cor
respond to different choices of this Euler angle. 
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